1
|
Monyama MC, Ramatla T, Khosa B, Mafokwane T, Thekisoe O. Anaplasma Phagocytophilum, a Zoonotic Vector-Borne Bacterial Species in Rodents and Its Associated Tick Vector: Systematic Review. Vet Med Sci 2025; 11:e70387. [PMID: 40324014 PMCID: PMC12051846 DOI: 10.1002/vms3.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/28/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND The bacterium Anaplasma phagocytophilum, the causative agent of tick-borne fever, is alleged to be naturally maintained in a tick-rodent cycle, with human beings involved only as incidental impasse hosts. This study was undertaken to update scientific evidence on the occurrence of A. phagocyphilum in rodents and its associated tick species. RESULTS The systematic review was executed using the PRISMA guidelines to assess and compile the relevant literature. Published journal articles from 1 January 2000 to August 2023 were sourced from three electronic databases, including PubMed, ScienceDirect and Google Scholar, and after evaluation of the articles, ultimately 23 were eligible for this systematic review. Of the eligible studies, 43.5% did not report on the detection of A. phagocytophilum in tick species but only in rodents, whilst 26.1% of the studies, reported on negative detection of A. phagocytophilum in both rodents and ticks. In terms of rodents, there were 11 genera observed from the eligible studies with Apodemus spp. being the most frequently reported host, followed by Microtus spp. and Myodes spp. Ixodes ticks including I. ricinus and I. trianguliceps were the most frequent tick species investigated as arthropod carriers/vectors in the studies, followed by Dermacentor and Haemaphysalis tick species. CONCLUSIONS This study has consolidated information from published articles on the role that rodents play as hosts or carriers of A. phagocytophilum and the possible role that related tick species play as vectors. Various tick species play a significant role as vectors of Anaplasma phagocytophilum and infect a wide array of rodent hosts that may possibly interact with humans.
Collapse
Affiliation(s)
- Maropeng C. Monyama
- Department of Life and Consumer SciencesUniversity of South AfricaFloridaSouth Africa
| | - Tsepo Ramatla
- Centre for Applied Food Safety and Biotechnology, Department of Life SciencesCentral University of TechnologyBloemfonteinSouth Africa
| | - Bradly Khosa
- Department of Life and Consumer SciencesUniversity of South AfricaFloridaSouth Africa
| | - Tshepo Mafokwane
- Department of Life and Consumer SciencesUniversity of South AfricaFloridaSouth Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and ManagementNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
2
|
Ernst KC, Fernandez P, Diuk-Wasser M, Enriquez AJ, Berry K, Hayden MH. Contrasting Perceptions, Knowledge, and Actions around Lyme Disease in an Urban Area of Emerging Lyme Disease and an Area of Endemic Lyme Disease in the Northeastern United States. Am J Trop Med Hyg 2024; 111:865-879. [PMID: 39043173 PMCID: PMC11448533 DOI: 10.4269/ajtmh.24-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/09/2024] [Indexed: 07/25/2024] Open
Abstract
Lyme disease transmission dynamics in the northeastern United States vary by context. Periurban regions, including Block Island, RI, have experienced decades of endemic transmission. In urban areas, including Staten Island, a borough in New York City, NY, Lyme disease is an emerging issue. Knowledge, attitudes, and practices around Lyme disease evolve as an area progresses from emergent to endemic. We conducted focus group discussions and household surveys within Staten Island, NY and Block Island, RI to compare knowledge, attitudes, and practices surrounding Lyme disease and other tick-borne diseases. Qualitative data were coded into themes, and survey data were used to provide more general context of the focus group discussions. Using item response theory, we developed an index of knowledge from relevant factors within the household survey. We identified a significant difference in knowledge scores between the two study areas. Additionally, we identified key differences across multiple domains. Participants from Block Island were more likely to report prior tick exposure and Lyme disease in themselves or household members and were more likely to express concerns about the environmental impact of mitigation strategies. Individuals on Staten Island were more likely to assign responsibility of prevention and control to local, state, and federal government than to take personal prevention measures. Prevention of Lyme disease and other tick-borne diseases must be tailored to the community context and monitored over time as perceptions and priorities may evolve as transmission dynamics transition from emergent to endemic.
Collapse
Affiliation(s)
- Kacey C. Ernst
- College of Public Health, University of Arizona, Tucson, Arizona
| | - Pilar Fernandez
- College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York
| | - Aaron J. Enriquez
- College of Business and Public Policy, University of Alaska Anchorage, Anchorage, Alaska
| | - Kevin Berry
- College of Business and Public Policy, University of Alaska Anchorage, Anchorage, Alaska
| | - Mary H. Hayden
- Lyda Hill Institute for Human Resilience, University of Colorado, Colorado Springs, Colorado
| |
Collapse
|
3
|
Estrada-Peña A, Sprong H, Wijburg SR. A crucial nexus: Phylogenetic versus ecological support of the life-cycle of Ixodes ricinus (Ixodoidea: Ixodidae) and Borrelia spp. amplification. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 6:100198. [PMID: 39081593 PMCID: PMC11286992 DOI: 10.1016/j.crpvbd.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
The tick Ixodes ricinus parasitizes a wide range of vertebrates. These hosts vary in the relative contribution to the feeding of the different tick life stages, and their interplay is pivotal in the transmission dynamics of tick-borne pathogens. We aimed to know if there is a phylogenetic signal in the feeding and propagation hosts of I. ricinus, independently of other traits, as well as in the amplification of Borrelia burgdorferi (s.l.) in feeding larvae. We used a compilation of 1127 published field surveys in Europe, providing data for 96,586 hosts, resulting in 265,124 larvae, 72,080 nymphs and 37,726 adults. The load of immature ticks on hosts showed a significant phylogenetic signal towards the genera Psammodromus, Podarcis, and Lacerta (nymphs only). We hypothesize that such signal is the background hallmark of the primitive hosts associations of I. ricinus, probably in the glaciation refugia. A secondary phylogenetic signal for tick immatures appeared for some genera of Rodentia and Eulipotyphla. Results suggest the notion that the tick gained these hosts after spread from glaciation refugia. Analyses support a phylogenetic signal in the tick adults, firmly linked to Cetartiodactyla, but not to Carnivora or Aves. This study provides the first demonstration of host preferences in the generalist tick I. ricinus. We further demonstrate that combinations of vertebrates contribute in different proportions supporting the tick life-cycle in biogeographical regions of the Western Palaearctic as each region has unique combinations of dominant hosts. Analysis of the amplification of B. burgdorferi (s.l.) demonstrated that each genospecies is better amplified by competent reservoirs with which a strong phylogenetic signal exists. These vertebrates are the same along the spatial range: environmental traits do not change the reservoirs along the large territory studied. The transmission of B. burgdorferi (s.l.) is amplified by a few species of vertebrates, that share biogeographical regions with the tick vector in variable proportions.
Collapse
Affiliation(s)
- Agustin Estrada-Peña
- Department of Animal Health, University of Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, 50013-Zaragoza, Spain
- Ministry of Human Health, Madrid, Spain
| | - Hein Sprong
- Centre for Infectious Diseases, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| | - Sara R. Wijburg
- Centre for Infectious Diseases, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| |
Collapse
|
4
|
Kulisz J, Hoeks S, Kunc-Kozioł R, Woźniak A, Zając Z, Schipper AM, Cabezas-Cruz A, Huijbregts MAJ. Spatiotemporal trends and covariates of Lyme borreliosis incidence in Poland, 2010-2019. Sci Rep 2024; 14:10768. [PMID: 38730239 PMCID: PMC11087522 DOI: 10.1038/s41598-024-61349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024] Open
Abstract
Lyme borreliosis (LB) is the most commonly diagnosed tick-borne disease in the northern hemisphere. Since an efficient vaccine is not yet available, prevention of transmission is essential. This, in turn, requires a thorough comprehension of the spatiotemporal dynamics of LB transmission as well as underlying drivers. This study aims to identify spatiotemporal trends and unravel environmental and socio-economic covariates of LB incidence in Poland, using consistent monitoring data from 2010 through 2019 obtained for 320 (aggregated) districts. Using yearly LB incidence values, we identified an overall increase in LB incidence from 2010 to 2019. Additionally, we observed a large variation of LB incidences between the Polish districts, with the highest risks of LB in the eastern districts. We applied spatiotemporal Bayesian models in an all-subsets modeling framework to evaluate potential associations between LB incidence and various potentially relevant environmental and socio-economic variables, including climatic conditions as well as characteristics of the vegetation and the density of tick host species. The best-supported spatiotemporal model identified positive relationships between LB incidence and forest cover, the share of parks and green areas, minimum monthly temperature, mean monthly precipitation, and gross primary productivity. A negative relationship was found with human population density. The findings of our study indicate that LB incidence in Poland might increase as a result of ongoing climate change, notably increases in minimum monthly temperature. Our results may aid in the development of targeted prevention strategies.
Collapse
Affiliation(s)
- Joanna Kulisz
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland.
| | - Selwyn Hoeks
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, Nijmegen, GL, The Netherlands
| | - Renata Kunc-Kozioł
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland
| | - Aneta Woźniak
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland
| | - Zbigniew Zając
- Chair and Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska St. 11, 20-080, Lublin, Poland
| | - Aafke M Schipper
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, Nijmegen, GL, The Netherlands
| | - Alejandro Cabezas-Cruz
- Anses, UMR BIPAR, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500, Nijmegen, GL, The Netherlands
| |
Collapse
|
5
|
Selmi R, Abdi K, Belkahia H, Abdallah MB, Mamlouk A, Kratou M, Said MB, Messadi L. Detection and genetic identification of Borrelia lusitaniae in questing Ixodes inopinatus tick from Tunisia. INFECTIOUS MEDICINE 2024; 3:100093. [PMID: 38586546 PMCID: PMC10998273 DOI: 10.1016/j.imj.2024.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 04/09/2024]
Abstract
Background Until now, there has been limited information on the prevalence and the phylogeny of Borrelia burgdorferi sensu lato in Ixodes ticks in Tunisia, particularly in Ixodes inopinatus. Methods The present study aimed to determine the prevalence and the phylogeny of B. burgdorferi s.l., in coexisted I. ricinus and I. inopinatus ticks collected from Northern Tunisia. One hundred questig ticks were collected during winter 2020 by tick-dragging method in Beja gouvernorate located in the north of Tunisia. Real-time PCR panel targeting B. burgdorferi s.l. 23S rRNA gene were performed. Positive DNA samples were subjected to conventional PCRs targeting 457 bp fragment of the Borrelia sp. flagellin (fla) gene using primers FlaF/FlaR. The identified Borrelia sp. isolate underwent partial sequence analysis to determine genospecies and evaluate their phylogenetic position. Results The study revealed a prevalence rate of 28% (28/100) for B. burgdorferi sensu lato in the Ixodes ticks. The prevalence rates across tick species and genders did not show significant variations (p > 0.05). Interestingly, the study underlines the coexistence of I. inopinatus and I. ricinus sharing the same geographic areas in Northern Tunisia. Furthermore, DNA of B. lusitaniae was detected in I. inopinatus ticks for the first time in Tunisia. Revealed B. lusitaniae bacterium is similar to previously identified strains in Mediterranean region, but distinct from those isolated exclusively from countries of Eastern and Central Europe, such as Serbia, Romania, and Poland. This study highlights the prevalence of B. burgdorferi s.l. in I. ricinus/I. inopinatus ticks, and reveals B. lusitaniae in I. inopinatus ticks for the first time in Tunisia. Conclusion These findings suggest the involvement of I. inopinatus as a potential vector of this pathogenic genospeciess in Tunisia. This may help understanding the ecology of Ixodes ticks, the natural infection and the transmission dynamics of Borrelia species in this country.
Collapse
Affiliation(s)
- Rachid Selmi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
- Ministry of National Defense, General Directorate of Military Health, Military Center of Veterinary Medicine, Tunis 1030, Tunisia
| | - Khaoula Abdi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Hanène Belkahia
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Meriem Ben Abdallah
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Aymen Mamlouk
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia
| | - Lilia Messadi
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, LR16AGR01, University of Manouba, Manouba 2010, Tunisia
| |
Collapse
|
6
|
Zając Z, Obregon D, Foucault-Simonin A, Wu-Chuang A, Moutailler S, Galon C, Kulisz J, Woźniak A, Bartosik K, Cabezas-Cruz A. Disparate dynamics of pathogen prevalence in Ixodes ricinus and Dermacentor reticulatus ticks occurring sympatrically in diverse habitats. Sci Rep 2023; 13:10645. [PMID: 37391552 PMCID: PMC10313804 DOI: 10.1038/s41598-023-37748-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
Ixodes ricinus and Dermacentor reticulatus ticks are important reservoirs and vectors of pathogens. The aim of the present study was to investigate the dynamic of the prevalence and genetic diversity of microorganisms detected in these tick species collected from two ecologically diverse biotopes undergoing disparate long-term climate condition. High-throughput real time PCR confirmed high prevalence of microorganisms detected in sympatrically occurring ticks species. D. reticulatus specimens were the most often infected with Francisella-like endosymbiont (FLE) (up to 100.0%) and Rickettsia spp. (up to 91.7%), while in case of I. ricinus the prevalence of Borreliaceae spirochetes reached up to 25.0%. Moreover, pathogens belonging to genera of Bartonella, Anaplasma, Ehrlichia and Babesia were detected in both tick species regardless the biotope. On the other hand, Neoehrlichia mikurensis was conformed only in I. ricinus in the forest biotope, while genetic material of Theileria spp. was found only in D. reticulatus collected from the meadow. Our study confirmed significant impact of biotope type on prevalence of representatives of Borreliaceae and Rickettsiaceae families. The most common co-infection detected in D. reticulatus was Rickettsia spp. + FLE, while Borreliaceae + R. helvetica was the most common in I. ricinus. Additionally, we found significant genetic diversity of R. raoultii gltA gene across studied years, however such relationship was not observed in ticks from studied biotopes. Our results suggest that ecological type of biotope undergoing disparate long-term climate conditions have an impact on prevalence of tick-borne pathogens in adult D. reticulatus and I. ricinus.
Collapse
Affiliation(s)
- Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland.
| | - Dasiel Obregon
- School of Environmental Sciences University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Angélique Foucault-Simonin
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Sara Moutailler
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Clemence Galon
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Aneta Woźniak
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Katarzyna Bartosik
- Department of Biology and Parasitology, Medical University of Lublin, Radziwiłłowska 11 St, 20-080, Lublin, Poland
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
7
|
Pillay A, Nyangiwe N, Mukaratirwa S. Low genetic diversity and population structuring of Amblyomma hebraeum and Rickettsia africae from coastal and inland regions in the Eastern Cape Province of South Africa. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:275-285. [PMID: 36468449 PMCID: PMC10191886 DOI: 10.1111/mve.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/16/2022] [Indexed: 05/18/2023]
Abstract
Amblyomma hebraeum is the main vector of Rickettsia africae, the causative agent of African tick bite fever in southern Africa. Because pathogen dispersal is known to be influenced by tick adaptations to climate or host species, this study aimed to analyse the genetic diversity of A. hebraeum and R. africae infection of ticks collected from cattle in the Eastern Cape province of South Africa. DNA was extracted, amplified, and sequenced for the COI and ITS2 markers from A. hebraeum samples and the 17 kDa and ompA genes for rickettsial detection. Between six and ten haplotypes were identified from 40 COI and 31 ITS2 sequences; however, no population structuring was observed among sites (ΦST = 0.22, p < 0.05). All A. hebraeum isolates clustered with southern Africa GenBank isolates. Rickettsia africae was detected in 46.92% (95% CI = 41%-53%, n = 260) of ticks. All R. africae isolates clustered with strain PELE and Chucks, which were reported previously from South Africa. These results confirm that A. hebraeum populations are undergoing a recent population expansion driven by cattle movement, facilitating local and long dispersal events across the Eastern Cape province.
Collapse
Affiliation(s)
- Alicia Pillay
- School of Life Sciences, Biological Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Nkululeko Nyangiwe
- Department of Rural Development and Agrarian Reform, Animal Science, Döhne Agricultural Development Institute, Stutterheim, South Africa
- Department of Agriculture and Animal Health, University of South Africa, Florida, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, Biological Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| |
Collapse
|
8
|
Estrada-Peña A, Guglielmone AA, Nava S. Worldwide host associations of the tick genus Ixodes suggest relationships based on environmental sharing rather than on co-phylogenetic events. Parasit Vectors 2023; 16:75. [PMID: 36810195 PMCID: PMC9945728 DOI: 10.1186/s13071-022-05641-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND This study aims to capture how ticks of the genus Ixodes gained their hosts using network constructs. We propose two alternative hypotheses, namely, an ecological background (ticks and hosts sharing environmentally available conditions) and a phylogenetic one, in which both partners co-evolved, adapting to existing environmental conditions after the association took place. METHODS We used network constructs linking all the known pairs of associations between each species and stage of ticks with families and orders of hosts. Faith's phylogenetic diversity was used to evaluate the phylogenetic distance of the hosts of each species and changes occurring in the ontogenetic switch between consecutive stages of each species (or the extent of the changes in phylogenetic diversity of hosts for consecutive stages of the same species). RESULTS We report highly clustered associations among Ixodes ticks and hosts, supporting the influence of the ecological adaptation and coexistence, demonstrating a lack of strict tick-host coevolution in most cases, except for a few species. Keystone hosts do not exist in the relationships between Ixodes and vertebrates because of the high redundancy of the networks, further supporting an ecological relationship between both types of partners. The ontogenetic switch of hosts is high for species with enough data, which is another potential clue supporting the ecological hypothesis. Other results suggest that the networks displaying tick-host associations are different according to the biogeographical realms. Data for the Afrotropical region reveal a lack of extensive surveys, while results for the Australasian region are suggestive of a mass extinction of vertebrates. The Palearctic network is well developed, with many links demonstrating a highly modular set of relationships. CONCLUSIONS With the obvious exceptions of Ixodes species restricted to one or a few hosts, the results point to an ecological adaptation. Even results on species linked to groups of ticks (such as Ixodes uriae and the pelagic birds or the bat-tick species) are suggestive of a previous action of environmental forces.
Collapse
Affiliation(s)
| | - Alberto A. Guglielmone
- Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Agropecuaria Rafaela—Instituto de Investigación de la Cadena Láctea (INTA-Consejo de Investigaciones Científicas y Técnicas), Rafaela, Santa Fe Argentina
| | - Santiago Nava
- Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Agropecuaria Rafaela—Instituto de Investigación de la Cadena Láctea (INTA-Consejo de Investigaciones Científicas y Técnicas), Rafaela, Santa Fe Argentina
| |
Collapse
|
9
|
Estrada-Peña A, Fernández-Ruiz N. An Agenda for Research of Uncovered Epidemiological Patterns of Tick-Borne Pathogens Affecting Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2206. [PMID: 36767573 PMCID: PMC9915995 DOI: 10.3390/ijerph20032206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The panorama of ticks and tick-borne pathogens (TBP) is complex due to the many interactions among vertebrates, vectors, and habitats, occurring at different scales. At a broad spatial range, climate and host availability regulate most tick processes, including questing activity, development, and survival. At a local scale, interactions are obscured by a high indeterminacy, making it arduous to record in field surveys. A solid modelling framework could translate the local/regional empirical findings into larger scales, shedding light on the processes governing the circulation of TBP. In this opinion paper, we advocate for a re-formulation of some paradigms in the research of these outstanding cycles of transmission. We propose revisiting concepts that faced criticisms or lacked solid support, together with the development of a conceptual scheme exploring the circulation of TBP under a range of conditions. We encourage (i) an adequate interpretation of the niche concept of both ticks and vertebrate/reservoir hosts interpreting the (a)biotic components that shape the tick's niche, (ii) an assessment of the role played by the communities of wild vertebrates on the circulation of pathogens, and (iii) the development of new approaches, based on state-of-the-art epidemiological concepts, to integrate findings and modelling efforts on TBP over large regions.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| | - Natalia Fernández-Ruiz
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain
| |
Collapse
|
10
|
Martin JT, Fischhoff IR, Castellanos AA, Han BA. Ecological Predictors of Zoonotic Vector Status Among Dermacentor Ticks (Acari: Ixodidae): A Trait-Based Approach. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2158-2166. [PMID: 36066562 PMCID: PMC9667724 DOI: 10.1093/jme/tjac125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 05/05/2023]
Abstract
Increasing incidence of tick-borne human diseases and geographic range expansion of tick vectors elevates the importance of research on characteristics of tick species that transmit pathogens. Despite their global distribution and role as vectors of pathogens such as Rickettsia spp., ticks in the genus Dermacentor Koch, 1844 (Acari: Ixodidae) have recently received less attention than ticks in the genus Ixodes Latreille, 1795 (Acari: Ixodidae). To address this knowledge gap, we compiled an extensive database of Dermacentor tick traits, including morphological characteristics, host range, and geographic distribution. Zoonotic vector status was determined by compiling information about zoonotic pathogens found in Dermacentor species derived from primary literature and data repositories. We trained a machine learning algorithm on this data set to assess which traits were the most important predictors of zoonotic vector status. Our model successfully classified vector species with ~84% accuracy (mean AUC) and identified two additional Dermacentor species as potential zoonotic vectors. Our results suggest that Dermacentor species that are most likely to be zoonotic vectors are broad ranging, both in terms of the range of hosts they infest and the range of ecoregions across which they are found, and also tend to have large hypostomes and be small-bodied as immature ticks. Beyond the patterns we observed, high spatial and species-level resolution of this new, synthetic dataset has the potential to support future analyses of public health relevance, including species distribution modeling and predictive analytics, to draw attention to emerging or newly identified Dermacentor species that warrant closer monitoring for zoonotic pathogens.
Collapse
Affiliation(s)
- Jessica T Martin
- Department of Fish, Wildlife, and Conservation Ecology, New Mexico State University, 2980 South Espina Street, Las Cruces, NM 88003, USA
| | - Ilya R Fischhoff
- Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA
| | | | - Barbara A Han
- Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA
| |
Collapse
|
11
|
Transmission Cycle of Tick-Borne Infections and Co-Infections, Animal Models and Diseases. Pathogens 2022; 11:pathogens11111309. [PMID: 36365060 PMCID: PMC9696261 DOI: 10.3390/pathogens11111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Tick-borne pathogens such as species of Borrelia, Babesia, Anaplasma, Rickettsia, and Ehrlichia are widespread in the United States and Europe among wildlife, in passerines as well as in domestic and farm animals. Transmission of these pathogens occurs by infected ticks during their blood meal, carnivorism, and through animal bites in wildlife, whereas humans can become infected either by an infected tick bite, through blood transfusion and in some cases, congenitally. The reservoir hosts play an important role in maintaining pathogens in nature and facilitate transmission of individual pathogens or of multiple pathogens simultaneously to humans through ticks. Tick-borne co-infections were first reported in the 1980s in white-footed mice, the most prominent reservoir host for causative organisms in the United States, and they are becoming a major concern for public health now. Various animal infection models have been used extensively to better understand pathogenesis of tick-borne pathogens and to reveal the interaction among pathogens co-existing in the same host. In this review, we focus on the prevalence of these pathogens in different reservoir hosts, animal models used to investigate their pathogenesis and host responses they trigger to understand diseases in humans. We also documented the prevalence of these pathogens as correlating with the infected ticks’ surveillance studies. The association of tick-borne co-infections with other topics such as pathogens virulence factors, host immune responses as they relate to diseases severity, identification of vaccine candidates, and disease economic impact are also briefly addressed here.
Collapse
|
12
|
Yee DA, Dean Bermond C, Reyes-Torres LJ, Fijman NS, Scavo NA, Nelsen J, Yee SH. Robust network stability of mosquitoes and human pathogens of medical importance. Parasit Vectors 2022; 15:216. [PMID: 35725618 PMCID: PMC9208160 DOI: 10.1186/s13071-022-05333-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Background The exact number of mosquito species relevant to human health is unknown, posing challenges in understanding the scope and breadth of vector–pathogen relationships, and how resilient mosquito vector–pathogen networks are to targeted eradication of vectors. Methods We performed an extensive literature survey to determine the associations between mosquito species and their associated pathogens of human medical importance. For each vector–pathogen association, we then determined the strength of the associations (i.e., natural infection, lab infection, lab dissemination, lab transmission, known vector). A network analysis was used to identify relationships among all pathogens and vectors. Finally, we examined how elimination of either random or targeted species affected the extinction of pathogens. Results We found that 88 of 3578 mosquito species (2.5%) are known vectors for 78 human disease-causing pathogens; however, an additional 243 species (6.8%) were identified as potential or likely vectors, bringing the total of all mosquitos implicated in human disease to 331 (9.3%). Network analysis revealed that known vectors and pathogens were compartmentalized, with the removal of six vectors being enough to break the network (i.e., cause a pathogen to have no vector). However, the presence of potential or likely vectors greatly increased redundancies in the network, requiring more than 41 vectors to be eliminated before breaking the network. Conclusion Although < 10% of mosquitoes are involved in transmitting pathogens that cause human disease, our findings point to inherent robustness in global mosquito vector–pathogen networks. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05333-4.
Collapse
Affiliation(s)
- Donald A Yee
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA.
| | - Catherine Dean Bermond
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Limarie J Reyes-Torres
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Nicole S Fijman
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Nicole A Scavo
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Joseph Nelsen
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Susan H Yee
- Gulf Ecosystem Measurement and Modeling Division, U.S. Environmental Protection Agency, 1 Sabine Island Drive, Gulf Breeze, FL, 32561, USA
| |
Collapse
|
13
|
Iweriebor BC, Afolabi KO, Nqoro A, Obi LC. Emergence of Theileria species in ticks from free-ranging domestic animals in Raymond Mhlaba Local Municipality, South Africa. Heliyon 2022; 8:e09085. [PMID: 35295661 PMCID: PMC8919220 DOI: 10.1016/j.heliyon.2022.e09085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/21/2021] [Accepted: 03/08/2022] [Indexed: 11/28/2022] Open
Abstract
Ticks infestation and diseases associated with it, are becoming a major life threatening concern to wildlife, domesticated animals and human health in general. Besides causing skin damage, ticks infestations have become a growing burden in food security and transmission of multiple pathogens. There is paucity of data on the occurrence of etiologic agents of tick-borne diseases in the Eastern Cape Province South Africa. We therefore carried out a molecular surveillance on Babesia and Theileria species in ticks obtained from livestock in Raymond Mhlaba District Municipality of the Province. A total of 962 ticks were collected and were morphologically identified and processed for DNA extraction using commercial DNA extraction kit. The extracted DNA samples were used to molecular identification of the ticks, and also to assess the occurrence of the Babesia and Theileria spp by PCR using genus specific primers. Positive amplicons obtained were sequenced, processed and characterised using appropriate bioinformatics tools. The molecular and morphological identifications of ticks obtained from the domestic animals in the study areas revealed that they belong to three different genera namely: Haemophalis, Rhipicephalus, and Amblyomma in ascending order of their abundance. Furthermore, the DNA of Theileria spp. was detected from 10 out of 962 ticks screened, with an overall infection of about 1% for Rhipicephalus spp., while none of the ticks was positive for Babesia spp. The phylogenetic analysis of the 10 theilerial sequences showed that nine (9) clustered distinctly within the T. orientalis complex clade, while only one (1) sequence formed a cluster with reference sequences of T. velifera. The findings from this study therefore expand the knowledge on recent emergence of Theileria spp. in livestock reared in the study area. This calls for an urgent effort in curbing the further spread of the pathogens in the area and beyond. Distribution of ticks' species in domestic animals was described. Emergence of theilerial parasites in ticks from free-ranging domestic animals was observed Rhipicephalus spp. of ticks serve as the major transmission vector for Theileria spp. in the Eastern Cape Province, South Africa
Collapse
Affiliation(s)
- Benson Chuks Iweriebor
- Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
- Corresponding author.
| | | | - Ayabulela Nqoro
- Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| | - Larry Chikwelu Obi
- Sefako Makgatho Health Sciences University, Ga-Rankuwa, Pretoria, South Africa
| |
Collapse
|
14
|
Ramachandran PD, Muniyappa MD, Kanapadinchareveetil S, Nair SN, Ajithkumar KG, Samraj S, Rajappan A, Varghese A, Kalarickal DC, Ravindran R, Ghosh S, Juliet S. Modulation of the PGE 2-Mediated Pathway in the Eclosion Blocking Effect of Flumethrin and Terpenoid Subfraction Isolated from Artemesia nilagirica in Rhipicephalus annulatus. Molecules 2021; 26:molecules26164905. [PMID: 34443500 PMCID: PMC8401071 DOI: 10.3390/molecules26164905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Prostaglandins are a group of important cell-signaling molecules involved in the regulation of ovarian maturation, oocyte development, egg laying and associated behaviors in invertebrates. However, the presence of prostaglandin E2 (PGE2), the key enzymes for PGE2 biosynthesis and its interference by drugs were not investigated previously in the ovary of ticks. The present study was undertaken to assess the modulation of the PGE2-mediated pathway in the eclosion blocking effect of flumethrin and terpenoid subfraction isolated from Artemisia nilagirica in Rhipicephalus annulatus ticks. The acaricidal activities and chemical profiling of the terpenoid subfraction were performed. The localization of the cyclooxygenase1 (COX1) and prostaglandin E synthase (PGES) enzymes and the quantification of PGE2 in the ovaries of the ticks treated with methanol (control), flumethrin and terpenoid subfraction were also undertaken. In addition, the vitellogenin concentration in hemolymph was also assayed. Both flumethrin and the terpenoid subfraction of A. nilagirica elicited a concentration-dependent inhibition of fecundity and blocking of hatching of the eggs. The COX1 could not be detected in the ovaries of treated and control ticks, while there was no significant difference observed in the concentration of vitellogenin (Vg) in them. The presence of PGES in the oocytes of control ticks was confirmed while the immunoreactivities against PGES were absent in the vitellogenic oocytes of ticks treated with flumethrin and terpenoid subfraction. The levels of PGE2 were below the detection limit in the ovaries of the flumethrin-treated ticks, while it was significantly lower in the ovaries of the terpenoid subfraction-treated ticks. Hence, the prostaglandin E synthase and PGE2 were identified as very important mediators for the signaling pathway for ovarian maturation and oviposition in ticks. In addition, the key enzyme for prostaglandin biosynthesis, PGES and the receptors for PGE2 can be exploited as potential drug targets for tick control. The detection of PGES by immunohistochemistry and quantification of PGE2 by LC-MSMS can be employed as valuable tools for screening newer compounds for their eclosion blocking acaricidal effects.
Collapse
Affiliation(s)
- Panicker Devyani Ramachandran
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Mahesh Doddadasarahalli Muniyappa
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Sreelekha Kanapadinchareveetil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Suresh Narayanan Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Karapparambu Gopalan Ajithkumar
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
| | - Sujith Samraj
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Anoopraj Rajappan
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India;
| | - Anju Varghese
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
| | - Deepa Chundayil Kalarickal
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
| | - Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
- Correspondence: or ; Tel.: +91-9447713422
| | - Srikanta Ghosh
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India;
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
- Center for Ethnopharmacology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India
| |
Collapse
|
15
|
Function of cofactor Akirin2 in the regulation of gene expression in model human Caucasian neutrophil-like HL60 cells. Biosci Rep 2021; 41:229302. [PMID: 34291801 PMCID: PMC8298264 DOI: 10.1042/bsr20211120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
The Akirin family of transcription cofactors are involved throughout the metazoan in the regulation of different biological processes (BPs) such as immunity, interdigital regression, muscle and neural development. Akirin do not have catalytic or DNA-binding capability and exert its regulatory function primarily through interacting proteins such as transcription factors, chromatin remodelers, and RNA-associated proteins. In the present study, we focused on the human Akirin2 regulome and interactome in neutrophil-like model human Caucasian promyelocytic leukemia HL60 cells. Our hypothesis is that metazoan evolved to have Akirin2 functional complements and different Akirin2-mediated mechanisms for the regulation of gene expression. To address this hypothesis, experiments were conducted using transcriptomics, proteomics and systems biology approaches in akirin2 knockdown and wildtype (WT) HL60 cells to characterize Akirin2 gene/protein targets, functional complements and to provide evidence of different mechanisms that may be involved in Akirin2-mediated regulation of gene expression. The results revealed Akirin2 gene/protein targets in multiple BPs with higher representation of immunity and identified immune response genes as candidate Akirin2 functional complements. In addition to linking chromatin remodelers with transcriptional activation, Akirin2 also interacts with histone H3.1 for regulation of gene expression.
Collapse
|
16
|
Tick-human interactions: from allergic klendusity to the α-Gal syndrome. Biochem J 2021; 478:1783-1794. [PMID: 33988703 DOI: 10.1042/bcj20200915] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/06/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Ticks and the pathogens they transmit, including bacteria, viruses, protozoa, and helminths, constitute a growing burden for human and animal health worldwide. The ability of some animal species to acquire resistance to blood-feeding by ticks after a single or repeated infestation is known as acquired tick resistance (ATR). This resistance has been associated to tick-specific IgE response, the generation of skin-resident memory CD4+ T cells, basophil recruitment, histamine release, and epidermal hyperplasia. ATR has also been associated with protection to tick-borne tularemia through allergic klendusity, a disease-escaping ability produced by the development of hypersensitivity to an allergen. In addition to pathogen transmission, tick infestation in humans is associated with the α-Gal syndrome (AGS), a type of allergy characterized by an IgE response against the carbohydrate Galα1-3Gal (α-Gal). This glycan is present in tick salivary proteins and on the surface of tick-borne pathogens such as Borrelia burgdorferi and Anaplasma phagocytophilum, the causative agents of Lyme disease and granulocytic anaplasmosis. Most α-Gal-sensitized individuals develop IgE specific against this glycan, but only a small fraction develop the AGS. This review summarizes our current understanding of ATR and its impact on the continuum α-Gal sensitization, allergy, and the AGS. We propose that the α-Gal-specific IgE response in humans is an evolutionary adaptation associated with ATR and allergic klendusity with the trade-off of developing AGS.
Collapse
|
17
|
Using Data Mining and Network Analysis to Infer Arboviral Dynamics: The Case of Mosquito-Borne Flaviviruses Reported in Mexico. INSECTS 2021; 12:insects12050398. [PMID: 33946977 PMCID: PMC8146811 DOI: 10.3390/insects12050398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
Given the significant impact of mosquito-borne flaviviruses (MBFVs) on both human and animal health, predicting their dynamics and understanding their transmission cycle is of the utmost importance. Usually, predictions about the distribution of priority pathogens, such as Dengue, Yellow fever, West Nile Virus and St. Louis encephalitis, relate abiotic elements to simple biotic components, such as a single causal agent. Furthermore, focusing on single pathogens neglects the possibility of interactions and the existence of common elements in the transmission cycles of multiple pathogens. A necessary, but not sufficient, condition that a mosquito be a vector of a MBFV is that it co-occurs with hosts of the pathogen. We therefore use a recently developed modeling framework, based on co-occurrence data, to infer potential biotic interactions between those mosquito and mammal species which have previously been identified as vectors or confirmed positives of at least one of the considered MBFVs. We thus create models for predicting the relative importance of mosquito species as potential vectors for each pathogen, and also for all pathogens together, using the known vectors to validate the models. We infer that various mosquito species are likely to be significant vectors, even though they have not currently been identified as such, and are likely to harbor multiple pathogens, again validating the predictions with known results. Besides the above "niche-based" viewpoint we also consider an assemblage-based analysis, wherein we use a community-identification algorithm to identify those mosquito and/or mammal species that form assemblages by dint of their significant degree of co-occurrence. The most cohesive assemblage includes important primary vectors, such as A. aegypti, A. albopictus, C. quinquefasciatus, C. pipiens and mammals with abundant populations that are well-adapted to human environments, such as the white-tailed deer (Odocoileus virginianus), peccary (Tayassu pecari), opossum (Didelphis marsupialis) and bats (Artibeus lituratus and Sturnira lilium). Our results suggest that this assemblage has an important role in the transmission dynamics of this viral group viewed as a complex multi-pathogen-vector-host system. By including biotic risk factors our approach also modifies the geographical risk profiles of the spatial distribution of MBFVs in Mexico relative to a consideration of only abiotic niche variables.
Collapse
|
18
|
Gomard Y, Flores O, Vittecoq M, Blanchon T, Toty C, Duron O, Mavingui P, Tortosa P, McCoy KD. Changes in Bacterial Diversity, Composition and Interactions During the Development of the Seabird Tick Ornithodoros maritimus (Argasidae). MICROBIAL ECOLOGY 2021; 81:770-783. [PMID: 33025063 DOI: 10.1007/s00248-020-01611-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Characterising within-host microbial interactions is essential to understand the drivers that shape these interactions and their consequences for host ecology and evolution. Here, we examined the bacterial microbiota hosted by the seabird soft tick Ornithodoros maritimus (Argasidae) in order to uncover bacterial interactions within ticks and how these interactions change over tick development. Bacterial communities were characterised through next-generation sequencing of the V3-V4 hypervariable region of the bacterial 16S ribosomal RNA gene. Bacterial co-occurrence and co-exclusion were determined by analysing networks generated from the metagenomic data obtained at each life stage. Overall, the microbiota of O. maritimus was dominated by four bacterial genera, namely Coxiella, Rickettsia, Brevibacterium and Arsenophonus, representing almost 60% of the reads. Bacterial diversity increased over tick development, and adult male ticks showed higher diversity than did adult female ticks. Bacterial networks showed that co-occurrence was more frequent than co-exclusion and highlighted substantial shifts across tick life stages; interaction networks changed from one stage to the next with a steady increase in the number of interactions through development. Although many bacterial interactions appeared unstable across life stages, some were maintained throughout development and were found in both sexes, such as Coxiella and Arsenophonus. Our data support the existence of a few stable interactions in O. maritimus ticks, on top of which bacterial taxa accumulate from hosts and/or the environment during development. We propose that stable associations delineate core microbial interactions, which are likely to be responsible for key biological functions.
Collapse
Affiliation(s)
- Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France.
| | - Olivier Flores
- Université de La Réunion, UMR PVBMT (Peuplements Végétaux et Bioagresseurs en Milieu Tropical), CIRAD, Saint-Pierre, La Réunion, France
| | - Marion Vittecoq
- Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Thomas Blanchon
- Tour de Valat, Research Institute for the Conservation of Mediterranean Wetlands, Arles, France
| | - Céline Toty
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
| | - Olivier Duron
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
- Centre for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Pablo Tortosa
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Karen D McCoy
- MIVEGEC, University of Montpellier CNRS IRD, Centre IRD, Montpellier, France
- Centre for Research on the Ecology and Evolution of Diseases (CREES), Montpellier, France
| |
Collapse
|
19
|
Bellekom B, Hackett TD, Lewis OT. A Network Perspective on the Vectoring of Human Disease. Trends Parasitol 2021; 37:391-400. [PMID: 33419670 DOI: 10.1016/j.pt.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022]
Abstract
Blood-sucking insects are important vectors of disease, with biting Diptera (flies) alone transmitting diseases that cause an estimated 700 000 human deaths a year. Insect vectors also bite nonhuman hosts, linking them into host-biting networks. While the major vectors of prominent diseases, such as malaria, yellow fever, dengue, and Zika, are intensively studied, there has been limited focus on the wider interactions of biting insects with nonhuman hosts. Drawing on network analysis and visualisation approaches from food-web ecology, we discuss the value of a network perspective for understanding host-insect-disease interactions, with a focus on Diptera vectors. Potential applications include highlighting pathways of disease transmission, highlighting reservoirs of infection, and identifying emerging and previously unrecognised vectors.
Collapse
Affiliation(s)
- Ben Bellekom
- Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Talya D Hackett
- Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Owen T Lewis
- Department of Zoology, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
20
|
Gilbert L, Brülisauer F, Willoughby K, Cousens C. Identifying Environmental Risk Factors for Louping Ill Virus Seroprevalence in Sheep and the Potential to Inform Wildlife Management Policy. Front Vet Sci 2020; 7:377. [PMID: 32695800 PMCID: PMC7339109 DOI: 10.3389/fvets.2020.00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/28/2020] [Indexed: 11/18/2022] Open
Abstract
Identifying the risk factors for disease is crucial for developing policy and strategies for controlling exposure to pathogens. However, this is often challenging, especially in complex disease systems, such as vector-borne diseases with multiple hosts and other environmental drivers. Here we combine seroprevalence data with GIS-based environmental variables to identify the environmental risk factors associated with an endemic tick-borne pathogen—louping ill virus—in sheep in Scotland. Higher seroprevalences were associated with (i) upland/moorland habitats, in accordance with what we predicted from the habitat preferences of alternative LIV transmission hosts (such as red grouse), (ii) areas of higher deer density, which supports predictions from previous theoretical models, since deer are the key Ixodes ricinus tick reproduction host in this system, and (iii) a warmer climate, concurring with our current knowledge of how temperature affects tick activity and development rates. The implications for policy include adopting increased disease management and awareness in high risk habitats and in the presence of alternative LIV hosts (e.g., grouse) and tick hosts (especially deer). These results can also inform deer management policy, especially where there may be conflict between contrasting upland management objectives, for example, revenue from deer hunting vs. sheep farmers.
Collapse
Affiliation(s)
- Lucy Gilbert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | | | - Kim Willoughby
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Chris Cousens
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| |
Collapse
|
21
|
Estrada-Peña A, Nava S, Tarragona E, de la Fuente J, Guglielmone AA. A community approach to the Neotropical ticks-hosts interactions. Sci Rep 2020; 10:9269. [PMID: 32518281 PMCID: PMC7283479 DOI: 10.1038/s41598-020-66400-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023] Open
Abstract
The relationships between ticks and hosts are relevant to capture the ecological background driving the evolution of these parasites. We used a set of 4,764 records of ticks of the genera Amblyomma, Ixodes, and Haemaphysalis and their hosts in the Neotropics to approach the tick-host relationships using a network-based construct. The network identified 9 clusters of interacting hosts and ticks partially connected by 22 tick species that switch their host range according to their life cycle stage. These links among clusters do not confer an extra resilience to the network following removal of hosts and subsequent cascade extinctions of ticks: the robustness of the network slightly changed when these inter-clusters links are considered. Phylogenetic clustering of ticks to hosts at cluster level was not significant (p > 0.15) but if examined individually 63 tick species/stages (59%) displayed such clustering, suggesting that their hosts have a related phylogenetic background. We interpreted these results under an ecological perspective in which ticks could track its environmental niche associating to vertebrates that would maximize tick survival under the range of abiotic traits. We encourage these integrated analyses to capture the patterns of circulation of tick-transmitted pathogens, a topic still unaddressed in the Neotropical region.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Pathology. Faculty of Veterinary Medicine, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.
| | | | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | | |
Collapse
|
22
|
Pollet T, Sprong H, Lejal E, Krawczyk AI, Moutailler S, Cosson JF, Vayssier-Taussat M, Estrada-Peña A. The scale affects our view on the identification and distribution of microbial communities in ticks. Parasit Vectors 2020; 13:36. [PMID: 31964404 PMCID: PMC6975024 DOI: 10.1186/s13071-020-3908-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/15/2020] [Indexed: 01/25/2023] Open
Abstract
Ticks transmit the highest variety of pathogens impacting human and animal health worldwide. It is now well established that ticks also harbour a microbial complex of coexisting symbionts, commensals and pathogens. With the development of high throughput sequencing technologies, studies dealing with such diverse bacterial composition in tick considerably increased in the past years and revealed an unexpected microbial diversity. These data on diversity and composition of the tick microbes are increasingly available, giving crucial details on microbial communities in ticks and improving our knowledge on the tick microbial community. However, consensus is currently lacking as to which scales (tick organs, individual specimens or species, communities of ticks, populations adapted to particular environmental conditions, spatial and temporal scales) best facilitate characterizing microbial community composition of ticks and understanding the diverse relationships among tick-borne bacteria. Temporal or spatial scales have a clear influence on how we conduct ecological studies, interpret results, and understand interactions between organisms that build the microbiome. We consider that patterns apparent at one scale can collapse into noise when viewed from other scales, indicating that processes shaping tick microbiome have a continuum of variability that has not yet been captured. Based on available reports, this review demonstrates how much the concept of scale is crucial to be considered in tick microbial community studies to improve our knowledge on tick microbe ecology and pathogen/microbiota interactions.
Collapse
Affiliation(s)
- Thomas Pollet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France.
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Emilie Lejal
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Aleksandra I Krawczyk
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Laboratory of Entomology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Jean-Francois Cosson
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | | |
Collapse
|
23
|
Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit Vectors 2019; 12:328. [PMID: 31253201 PMCID: PMC6599317 DOI: 10.1186/s13071-019-3583-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background Anaplasma phagocytophilum is currently regarded as a single species. However, molecular studies indicate that it can be subdivided into ecotypes, each with distinct but overlapping transmission cycle. Here, we evaluate the interactions between and within clusters of haplotypes of the bacterium isolated from vertebrates and ticks, using phylogenetic and network-based methods. Methods The presence of A. phagocytophilum DNA was determined in ticks and vertebrate tissue samples. A fragment of the groEl gene was amplified and sequenced from qPCR-positive lysates. Additional groEl sequences from ticks and vertebrate reservoirs were obtained from GenBank and through literature searches, resulting in a dataset consisting of 1623 A. phagocytophilum field isolates. Phylogenetic analyses were used to infer clusters of haplotypes and to assess phylogenetic clustering of A. phagocytophilum in vertebrates or ticks. Network-based methods were used to resolve host-vector interactions and their relative importance in the segregating communities of haplotypes. Results Phylogenetic analyses resulted in 199 haplotypes within eight network-derived clusters, which were allocated to four ecotypes. The interactions of haplotypes between ticks, vertebrates and geographical origin, were visualized and quantified from networks. A high number of haplotypes were recorded in the tick Ixodes ricinus. Communities of A. phagocytophilum recorded from Korea, Japan, Far Eastern Russia, as well as those associated with rodents had no links with the larger set of isolates associated with I. ricinus, suggesting different evolutionary pressures. Rodents appeared to have a range of haplotypes associated with either Ixodes trianguliceps or Ixodes persulcatus and Ixodes pavlovskyi. Haplotypes found in rodents in Russia had low similarities with those recorded in rodents in other regions and shaped separate communities. Conclusions The groEl gene fragment of A. phagocytophilum provides information about spatial segregation and associations of haplotypes to particular vector-host interactions. Further research is needed to understand the circulation of this bacterium in the gap between Europe and Asia before the overview of the speciation features of this bacterium is complete. Environmental traits may also play a role in the evolution of A. phagocytophilum in ecotypes through yet unknown relationships. Electronic supplementary material The online version of this article (10.1186/s13071-019-3583-8) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Cabezas-Cruz A, Estrada-Peña A, de la Fuente J. The Good, the Bad and the Tick. Front Cell Dev Biol 2019; 7:79. [PMID: 31157221 PMCID: PMC6529820 DOI: 10.3389/fcell.2019.00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | | | - Jose de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
25
|
How general are generalist parasites? The small mammal part of the Lyme disease transmission cycle in two ecosystems in northern Europe. Oecologia 2019; 190:115-126. [PMID: 31062166 DOI: 10.1007/s00442-019-04411-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
The pathogens causing Lyme disease are all vectored by generalist tick species found on a wide range of vertebrates, but spatial and annual variation in host use has rarely been quantified. We here compare the load of Ixodes ricinus (the vector) on small mammals and investigate the infection prevalence of Borrelia burgdorferi s.l. (the pathogen) involved in the enzootic transmission cycle of Lyme disease in two contrasting ecosystems in Norway from 2014 to 2016. The most common larval tick host in the eastern region was the bank vole, while the common shrew dominated in the western region of Norway. However, the wood mouse and the bank vole had consistently higher larval tick loads than the common shrew in both ecosystems. Hence, the evidence indicated that species are differently suitable as hosts, regardless of their abundances. The pathogen infection prevalence was similar among small mammal species, but markedly higher in the region with larger small mammal populations and higher tick loads, while the seasonal and annual variation was less marked. Our study indicated that the generalist I. ricinus shows consistent patterns of load on species of small vertebrate hosts, while B. burgdorferi s.l. (B. afzelii) was a true generalist. The similar roles of host species across regions suggest that disease dynamics can be predicted from host community composition, but predicting the role of host community composition for disease dynamics requires a detailed understanding of the different species population limitations under global change.
Collapse
|
26
|
Vila A, Estrada-Peña A, Altet L, Cusco A, Dandreano S, Francino O, Halos L, Roura X. Endosymbionts carried by ticks feeding on dogs in Spain. Ticks Tick Borne Dis 2019; 10:848-852. [PMID: 31006611 DOI: 10.1016/j.ttbdis.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Studies on tick microbial communities historically focused on tick-borne pathogens. However, there is an increasing interest in capturing relationships among non-pathogenic endosymbionts and exploring their relevance for tick biology. The present study included a total of 1600 adult ticks collected from domestic dogs in 4 different biogeographical regions of Spain. Each pool formed by 1 to 10 halves of individuals representing one specific ticks species was examined by PCR for the presence of Coxiellaceae, Rickettsia spp., Rickettsiales, Wolbachia spp., and other bacterial DNA. Of the pools analyzed, 92% tested positive for endosymbiont-derived DNA. Coxiella spp. endosymbionts were the most prevalent microorganisms, being always present in Rhipicephalus sanguineus sensu lato (s.l.) pools. Rickettsia spp. DNA was detected in 60% of Dermacentor reticulatus pools and 40% of R. sanguineus s.l. pools, with a higher diversity of Rickettsia species in R. sanguineus s.l. pools. Our study reveals a negative relationship of Rickettsia massiliae with the presence of tick-borne pathogens in the same pool of ticks. An additional endosymbiont, 'Candidatus Rickettsiella isopodorum', was only detected in D. reticulatus pools. Data from this study indicate that dogs in Spain are exposed to several endosymbionts. Due to the importance of tick-borne pathogens, characterizing the role of endosymbionts for tick physiology and prevalence, may lead to novel control strategies.
Collapse
Affiliation(s)
- A Vila
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - A Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - L Altet
- Vetgenomics, Edifici Eureka, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - A Cusco
- Vetgenomics, Edifici Eureka, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - S Dandreano
- Vetgenomics, Edifici Eureka, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - O Francino
- Molecular Genetics Veterinary Service, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - L Halos
- Boehringer Ingelheim Animal Health, Lyon, France
| | - X Roura
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
27
|
Estrada-Peña A, Cabezas-Cruz A. Phyloproteomic and functional analyses do not support a split in the genus Borrelia (phylum Spirochaetes). BMC Evol Biol 2019; 19:54. [PMID: 30760200 PMCID: PMC6375133 DOI: 10.1186/s12862-019-1379-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
Background The evolutionary history of a species is frequently derived from molecular sequences, and the resulting phylogenetic trees do not include explicit functional information. Here, we aimed to assess the functional relationships among bacteria in the Spirochaetes phylum, based on the biological processes of 42,489 proteins in reference proteomes of 34 Spirochaetes species. We tested the hypothesis that the species in the genus Borrelia might be sufficiently different to warrant splitting them into two separate genera. Results A detrended canonical analysis demonstrated that the presence/absence of biological processes among selected bacteria contained a strong phylogenetic signal, which did not separate species of Borrelia. We examined the ten biological processes in which most proteins were involved consistently. This analysis demonstrated that species in Borrelia were more similar to each other than to free-life species (Sediminispirochaeta, Spirochaeta, Sphaerochaeta) or to pathogenic species without vectors (Leptospira, Treponema, Brachyspira), which are highly divergent. A dendrogram based on the presence/absence of proteins in the reference proteomes demonstrated that distances between species of the same genus among free-life or pathogenic non-vector species were higher than the distances between the 19 species (27 strains) of Borrelia. A phyloproteomic network supported the close functional association between species of Borrelia. In the proteome of 27 strains of Borrelia, only a few proteins had evolved separately, in the relapsing fever and Lyme borreliosis groups. The most prominent Borrelia proteins and processes were a subset of those also found in free-living and non-vectored pathogenic species. In addition, the functional innovation (i.e., unique biological processes or proteins) of Borrelia was very low, compared to other genera of Spirochaetes. Conclusions We found only marginal functional differences among Borrelia species. Phyloproteomic networks that included all pairwise combinations between species, proteins, and processes were more effective than other methods for evaluating the evolutionary relationships among taxa. With the limitations of data availability, our results did not support a split of the arthropod-transmitted spirochaetes into the proposed genera, Borrelia and Borreliella. Electronic supplementary material The online version of this article (10.1186/s12862-019-1379-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Pathology, Faculty of Veterinary Medicine, Miguel Servet, 177, 50013, Zaragoza, Spain.
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 94700, Maisons-Alfort, France
| |
Collapse
|
28
|
Stigum VM, Jaarsma RI, Sprong H, Rolandsen CM, Mysterud A. Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasit Vectors 2019; 12:1. [PMID: 30606222 PMCID: PMC6318929 DOI: 10.1186/s13071-018-3256-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023] Open
Abstract
Background The geographical expansion of the tick Ixodes ricinus in northern Europe is a serious concern for animal and human health. The pathogen Anaplasma phagocytophilum is transmitted by ticks and causes emergences of tick-borne fever (anaplasmosis) in livestock. The transmission dynamics of the different ecotypes of A. phagocytophilum in the ecosystems is only partly determined. Red deer and roe deer contribute to circulation of different ecotypes of A. phagocytophilum in continental Europe, while the role of moose for circulation of different ecotypes is not fully established but an important issue in northern Europe. Methods We determined infection prevalence and ecotypes of A. phagocytophilum in moose (n = 111), red deer (n = 141), roe deer (n = 28) and questing ticks (n = 9241) in Norway. Results As previously described, red deer was exclusively linked to circulation of ecotype I, while roe deer was exclusively linked to circulation of ecotype II. Surprisingly, we found 58% ecotype I (n = 19) and 42% of ecotype II (n = 14) in moose. Both ecotypes were found in questing ticks in areas with multiple cervid species present, while only ecotype I was found in ticks in a region with only red deer present. Hence, the geographical distribution of ecotypes in ticks followed the distribution of cervid species present in a given region and their link to ecotype I and II. Conclusions Moose probably function as reservoirs for both ecotype I and II, indicating that the ecotypes of A. phagocytophilum are not entirely host-specific and have overlapping niches. The disease hazard depends also on both host abundance and the number of immature ticks fed by each host. Our study provides novel insights in the northern distribution and expansion of tick-borne fever.
Collapse
Affiliation(s)
- Vetle M Stigum
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway
| | - Ryanne I Jaarsma
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Christer M Rolandsen
- Norwegian Institute for Nature Research, PO Box 5685, Sluppen, NO-7485, Trondheim, Norway
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway. .,Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
29
|
ESCCAR international congress on Rickettsiae and other intracellular bacteria. Microbes Infect 2018; 20:392-400. [PMID: 30315955 DOI: 10.1016/j.micinf.2018.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/23/2022]
|
30
|
Estrada-Peña A, Villar M, Artigas-Jerónimo S, López V, Alberdi P, Cabezas-Cruz A, de la Fuente J. Use of Graph Theory to Characterize Human and Arthropod Vector Cell Protein Response to Infection With Anaplasma phagocytophilum. Front Cell Infect Microbiol 2018; 8:265. [PMID: 30123779 PMCID: PMC6086010 DOI: 10.3389/fcimb.2018.00265] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022] Open
Abstract
One of the major challenges in modern biology is the use of large omics datasets for the characterization of complex processes such as cell response to infection. These challenges are even bigger when analyses need to be performed for comparison of different species including model and non-model organisms. To address these challenges, the graph theory was applied to characterize the tick vector and human cell protein response to infection with Anaplasma phagocytophilum, the causative agent of human granulocytic anaplasmosis. A network of interacting proteins and cell processes clustered in biological pathways, and ranked with indexes representing the topology of the proteome was prepared. The results demonstrated that networks of functionally interacting proteins represented in both infected and uninfected cells can describe the complete set of host cell processes and metabolic pathways, providing a deeper view of the comparative host cell response to pathogen infection. The results demonstrated that changes in the tick proteome were driven by modifications in protein representation in response to A. phagocytophilum infection. Pathogen infection had a higher impact on tick than human proteome. Since most proteins were linked to several cell processes, the changes in protein representation affected simultaneously different biological pathways. The method allowed discerning cell processes that were affected by pathogen infection from those that remained unaffected. The results supported that human neutrophils but not tick cells limit pathogen infection through differential representation of ras-related proteins. This methodological approach could be applied to other host-pathogen models to identify host derived key proteins in response to infection that may be used to develop novel control strategies for arthropod-borne pathogens.
Collapse
Affiliation(s)
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla - La Mancha (JCCM), Ciudad Real, Spain
| | - Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla - La Mancha (JCCM), Ciudad Real, Spain
| | - Vladimir López
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla - La Mancha (JCCM), Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla - La Mancha (JCCM), Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR Biologie Moléculaire et Immunologie Parasitaires (BIPAR), INRA, Agence Nationale de Sécurité Sanitairede l'Alimentation, de l'Environnement et du Travail (ANSES), Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France.,Faculty of Science, University of South Bohemia, Ceské Budějovice, Czechia.,Institute of Parasitology, Biology Center, Czech Academy of Sciences, Ceské Budějovice, Czechia
| | - José de la Fuente
- Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
31
|
De La Fuente J, Villar M, Estrada-Peña A, Olivas JA. High throughput discovery and characterization of tick and pathogen vaccine protective antigens using vaccinomics with intelligent Big Data analytic techniques. Expert Rev Vaccines 2018; 17:569-576. [DOI: 10.1080/14760584.2018.1493928] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- José De La Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | | | - José A. Olivas
- Technologies and Information Systems Institute UCLM, Ciudad Real, Spain
| |
Collapse
|
32
|
Estrada-Peña A, Cabezas-Cruz A, Pollet T, Vayssier-Taussat M, Cosson JF. High Throughput Sequencing and Network Analysis Disentangle the Microbial Communities of Ticks and Hosts Within and Between Ecosystems. Front Cell Infect Microbiol 2018; 8:236. [PMID: 30038903 DOI: 10.3389/fcimb.2018.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/19/2018] [Indexed: 05/25/2023] Open
Abstract
We aimed to develop a framework, based on graph theory, to capture the ecological meaning behind pure pair comparisons of microbiome-derived data. As a proof of concept, we applied the framework to analyze the co-occurrence of bacteria in either Ixodes ricinus ticks or the spleen of one of their main hosts, the vole Myodes glareolus. As a secondary lymphoid organ, the spleen acts as a filter of blood and represents well the exposure to microorganisms circulating in the blood; including those acquired and transmitted by ticks during feeding. The microbiome of 301 and 269 individual tick and vole samples, respectively, were analyzed using next generation sequencing (NGS) of 16S rRNA. To assess the effect of habitat on ecological communities of bacteria associated to ticks and voles, two different biotopes were included in the study, forest, and ecotone. An innovative approach of NGS data analysis combining network analysis and phylogenies of co-occuring of bacteria was used to study associations between bacteria in individual samples. Of the 126 bacterial genera found in ticks and voles, 62% were shared by both species. Communities of co-occurring bacteria were always more phylogenetically diverse in ticks than in voles. Interestingly, ~80% of bacterial phylogenetic diversity was found in ~20% of ticks. This pattern was not observed in vole-associated bacteria. Results revealed that the microbiome of I. ricinus is only slightly related to that of M. glareolus and that the biotope plays the most important role in shaping the bacterial communities of either ticks or voles. The analysis of the phylogenetic signal of the network indexes across the 16S rRNA-derived tree of bacteria suggests that the microbiome of both ticks and voles has high phylogenetic diversity and that closest bacterial genera do not co-occur. This study shows that network analysis is a promising tool to unravel complex microbial communities associated to arthropod vectors and vertebrate hosts.
Collapse
Affiliation(s)
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Thomas Pollet
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Jean-François Cosson
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
33
|
Estrada-Peña A, Cabezas-Cruz A, Pollet T, Vayssier-Taussat M, Cosson JF. High Throughput Sequencing and Network Analysis Disentangle the Microbial Communities of Ticks and Hosts Within and Between Ecosystems. Front Cell Infect Microbiol 2018; 8:236. [PMID: 30038903 PMCID: PMC6046413 DOI: 10.3389/fcimb.2018.00236] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/19/2018] [Indexed: 11/23/2022] Open
Abstract
We aimed to develop a framework, based on graph theory, to capture the ecological meaning behind pure pair comparisons of microbiome-derived data. As a proof of concept, we applied the framework to analyze the co-occurrence of bacteria in either Ixodes ricinus ticks or the spleen of one of their main hosts, the vole Myodes glareolus. As a secondary lymphoid organ, the spleen acts as a filter of blood and represents well the exposure to microorganisms circulating in the blood; including those acquired and transmitted by ticks during feeding. The microbiome of 301 and 269 individual tick and vole samples, respectively, were analyzed using next generation sequencing (NGS) of 16S rRNA. To assess the effect of habitat on ecological communities of bacteria associated to ticks and voles, two different biotopes were included in the study, forest, and ecotone. An innovative approach of NGS data analysis combining network analysis and phylogenies of co-occuring of bacteria was used to study associations between bacteria in individual samples. Of the 126 bacterial genera found in ticks and voles, 62% were shared by both species. Communities of co-occurring bacteria were always more phylogenetically diverse in ticks than in voles. Interestingly, ~80% of bacterial phylogenetic diversity was found in ~20% of ticks. This pattern was not observed in vole-associated bacteria. Results revealed that the microbiome of I. ricinus is only slightly related to that of M. glareolus and that the biotope plays the most important role in shaping the bacterial communities of either ticks or voles. The analysis of the phylogenetic signal of the network indexes across the 16S rRNA-derived tree of bacteria suggests that the microbiome of both ticks and voles has high phylogenetic diversity and that closest bacterial genera do not co-occur. This study shows that network analysis is a promising tool to unravel complex microbial communities associated to arthropod vectors and vertebrate hosts.
Collapse
Affiliation(s)
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Thomas Pollet
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Muriel Vayssier-Taussat
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Jean-François Cosson
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
34
|
Estrada-Peña A, Álvarez-Jarreta J, Cabezas-Cruz A. Reservoir and vector evolutionary pressures shaped the adaptation of Borrelia. INFECTION GENETICS AND EVOLUTION 2018; 66:308-318. [PMID: 29654924 DOI: 10.1016/j.meegid.2018.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022]
Abstract
The life cycle of spirochetes of the genus Borrelia includes complex networks of vertebrates and ticks. The tripartite association of Borrelia-vertebrate-tick has proved ecologically successful for these bacteria, which have become some of the most prominent tick-borne pathogens in the northern hemisphere. To keep evolutionary pace with its double-host life history, Borrelia must adapt to the evolutionary pressures exerted by both sets of hosts. In this review, we attempt to reconcile functional, phylogenetic, and ecological perspectives to propose a coherent scenario of Borrelia evolution. Available empirical information supports that the association of Borrelia with ticks is very old. The major split between the tick families Argasidae-Ixodidae (dated some 230-290 Mya) resulted in most relapsing fever (Rf) species being restricted to Argasidae and few associated with Ixodidae. A further key event produced the diversification of the Lyme borreliosis (Lb) species: the radiation of ticks of the genus Ixodes from the primitive stock of Ixodidae (around 217 Mya). The ecological interactions of Borrelia demonstrate that Argasidae-transmitted Rf species remain restricted to small niches of one tick species and few vertebrates. The evolutionary pressures on this group are consequently low, and speciation processes seem to be driven by geographical isolation. In contrast to Rf, Lb species circulate in nested networks of dozens of tick species and hundreds of vertebrate species. This greater variety confers a remarkably variable pool of evolutionary pressures, resulting in large speciation of the Lb group, where different species adapt to circulate through different groups of vertebrates. Available data, based on ospA and multilocus sequence typing (including eight concatenated in-house genes) phylogenetic trees, suggest that ticks could constitute a secondary bottleneck that contributes to Lb specialization. Both sets of adaptive pressures contribute to the resilience of highly adaptable meta-populations of bacteria.
Collapse
Affiliation(s)
| | - Jorge Álvarez-Jarreta
- Institute of Infection and Immunity, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort 94700, France; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic; Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| |
Collapse
|
35
|
Spengler JR, Estrada-Peña A. Host preferences support the prominent role of Hyalomma ticks in the ecology of Crimean-Congo hemorrhagic fever. PLoS Negl Trop Dis 2018; 12:e0006248. [PMID: 29420542 PMCID: PMC5821391 DOI: 10.1371/journal.pntd.0006248] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/21/2018] [Accepted: 01/18/2018] [Indexed: 11/18/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne zoonotic agent that is maintained in nature in an enzootic vertebrate-tick-vertebrate cycle. Hyalomma genus ticks have been implicated as the main CCHFV vector and are key in maintaining silent endemic foci. However, what contributes to their central role in CCHFV ecology is unclear. To assess the significance of host preferences of ticks in CCHFV ecology, we performed comparative analyses of hosts exploited by 133 species of ticks; these species represent 5 genera with reported geographical distribution over the range of CCHFV. We found that the composition of vertebrate hosts on which Hyalomma spp. feed is different than for other tick genera. Immatures of the genus Hyalomma feed preferentially on species of the orders Rodentia, Lagomorpha, and the class Aves, while adults concentrate mainly on the family Bovidae. With the exception of Aves, these hosts include the majority of the vertebrates consistently reported to be viremic upon CCHFV infection. While other tick genera also feed on these hosts, Hyalomma spp. almost completely concentrate their populations on them. Hyalomma spp. feed on less phylogenetically diverse hosts than any other tick genus, implying that this network of hosts has a low resilience. Indeed, removing the most prominent hosts quickly collapsed the network of parasitic interactions. These results support the intermittent activity of CCHFV foci: likely, populations of infected Hyalomma spp. ticks exceed the threshold of contact with humans only when these critical hosts reach adequate population density, accounting for the sporadic occurence of clinical tick-transmitted cases. Our data describe the association of vertebrate host preferences with the role of Hyalomma spp. ticks in maintaining endemic CCHFV foci, and highlight the importance of host-tick dynamics in pathogen ecology.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Agustin Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
36
|
Cabezas-Cruz A, Vayssier-Taussat M, Greub G. Tick-borne pathogen detection: what's new? Microbes Infect 2018; 20:441-444. [PMID: 29329935 DOI: 10.1016/j.micinf.2017.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022]
Abstract
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Traditionally, tick-borne pathogen detection has been carried out using PCR-based methods that rely in known sequences for specific primers design. This approach matches with the view of a 'single-pathogen' epidemiology. Recent results, however, have stressed the importance of coinfections in pathogen ecology and evolution with impact in pathogen transmission and disease severity. New approaches, including high-throughput technologies, were then used to detect multiple pathogens, but they all need a priori information on the pathogens to search. Thus, those approaches are biased, limited and conceal the complexity of pathogen ecology. Currently, next generation sequencing (NGS) is applied to tick-borne pathogen detection as well as to study the interactions between pathogenic and non-pathogenic microorganisms associated to ticks, the pathobiome. The use of NGS technologies have surfaced two major points: (i) ticks are associated to complex microbial communities and (ii) the relation between pathogens and microbiota is bidirectional. Notably, a new challenge emerges from NGS experiments, data analysis. Discovering associations among a high number of microorganisms is not trivial and therefore most current NGS studies report lists of microorganisms without further insights. An alternative to this is the combination of NGS with analytical tools such as network analysis to unravel the structure of microbial communities associated to ticks in different ecosystems.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France; Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic; Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Muriel Vayssier-Taussat
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Faculty of Biology and Medicine, University of Lausanne and University Hospital, 1011, Lausanne, Switzerland; Infectious Disease Service, University Hospital, 1011, Lausanne, Switzerland.
| |
Collapse
|
37
|
Estrada-Peña A, de la Fuente J. Host Distribution Does Not Limit the Range of the Tick Ixodes ricinus but Impacts the Circulation of Transmitted Pathogens. Front Cell Infect Microbiol 2017; 7:405. [PMID: 29085806 PMCID: PMC5649210 DOI: 10.3389/fcimb.2017.00405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/31/2017] [Indexed: 02/06/2023] Open
Abstract
Ticks, pathogens, and vertebrates interact in a background of environmental features that regulate the densities of ticks and vertebrates, affecting their contact rates and thence the circulation of the pathogens. Regional scale studies are invaluable sources of information about the regulation of these interactions, but a large-scale analysis of the interaction of communities of ticks, hosts, and the environment has been never modeled. This study builds on network analysis, satellite-derived climate and vegetation, and environmental modeling, quantifying the interactions between the tick Ixodes ricinus and the transmitted bacteria of the complex Borrelia burgdorferi s.l. in the Western Palaearctic. We derived the rates of contact of the tick with 162 species of vertebrates recorded as hosts, and the relative importance of each vertebrate in the circulation of the pathogen. We compiled more than 11 millions of pairs of coordinates of the vertebrates, deriving distribution models of each species and the relative faunal composition in the target territory. The results of the modeling of the distribution of the tick and its hosts, weighted by their importance in the circulation of Borrelia captured the spatial patterns of interactions that allow the circulation of the pathogen. Results indicate that both I. ricinus and B. burgdorferi s.l. are supported in the Western Palaearctic by complex communities of vertebrates, which have large distribution ranges. This high functional redundancy results in the pervasiveness of B. burgdorferi s.l., which depends on the gradient of contributions of the large community of vertebrates, instead of relying on a few dominant vertebrates, which was the prevailing paradigm. Most prominent reservoirs of the pathogen are distributed in specific regions of the environmental niche. However, literally dozens of potential reservoirs can colonize many other environmental regions, marginally but efficiently contributing to the circulation of the pathogen. These results consistently point to the need of evaluating the beta-diversity of the community of vertebrates acting as reservoirs of the pathogen to better know the interactions with the vector. They also demonstrate why the pathogen is so resilient to perturbations in the composition of the reservoirs.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Faculty of Veterinary Medicine, University of Zaragoza, Miguel Servet, Zaragoza, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
38
|
de la Fuente J, Contreras M, Estrada-Peña A, Cabezas-Cruz A. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine 2017; 35:5089-5094. [DOI: 10.1016/j.vaccine.2017.07.097] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
39
|
Peterson AT, Raghavan RK. The Geographic Distribution of Ixodes scapularis (Acari: Ixodidae) Revisited: The Importance of Assumptions About Error Balance. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1080-1084. [PMID: 28591858 DOI: 10.1093/jme/tjx095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 05/23/2023]
Abstract
The black-legged tick, Ixodes scapularis Say, is the primary vector of Borrelia burgdorferi, a spirochete that causes Lyme disease, in eastern North America. Lyme disease risk has generally been considered to be focused in the Northeast and the northern Midwest in the United States, yet the distribution of the vector extends considerably more broadly. A recent analysis of the distribution of the species using ecological niche modeling approaches painted an odd biogeographic picture, in which the species is distributed in a "rimming" distribution across the northern Midwest and Northeast, and along the Atlantic and Gulf coasts of the eastern United States, but not broadly in the interior of eastern North America. Here, we reanalyze the situation for this species, and demonstrate that the distribution estimated in the previous study was a consequence of assumptions about relative weights applied to different error types. A more appropriate error weighting scheme for niche modeling analyses, in which omission error is prioritized over commission error, shows a simpler distribution, in which the species ranges continuously across eastern North America; this distributional pattern is supported by independent occurrence data from the eastern Great Plains, in Kansas. We discuss implications for public health planning and intervention across the region, as well as for developing effective and predictive maps of vector distributions and pathogen transmission risk.
Collapse
Affiliation(s)
| | - Ram K Raghavan
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
| |
Collapse
|
40
|
The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: A review of published field and laboratory studies. Antiviral Res 2017; 144:93-119. [PMID: 28579441 DOI: 10.1016/j.antiviral.2017.05.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/21/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
This manuscript is part of a series of reviews that aim to cover published research on Crimean-Congo hemorrhagic fever (CCHF) and its etiological agent, CCHF virus (CCHFV). The virus is maintained and transmitted in a vertical and horizontal transmission cycle involving a variety of wild and domestic vertebrate species that act as amplification hosts, without showing signs of illness. These vertebrates have traditionally been considered reservoirs of CCHFV, but in fact they develop only a transient viremia, while the virus can persist in ticks for their entire lifespan, and can also be transmitted vertically to the next generation. As a result, ticks are now considered to be both the vector and the reservoir for the virus. CCHFV has been detected in a wide range of tick species, but only a few have been proven to be vectors and reservoirs, mainly because most published studies have been performed under a broad variety of conditions, precluding definitive characterization. This article reviews the published literature, summarizes current knowledge of the role of ticks in CCHFV maintenance and transmission and provides guidance for how to fill the knowledge gaps. Special focus is given to existing data on tick species in which vertical passage has been demonstrated under natural or experimental conditions. At the same time, we identify earlier reports that used unreliable methods and perceptions to ascribe a vector role to some species of ticks, and have contributed to confusion regarding viral transmission. We also examine epidemiological pathways of CCHFV circulation and discuss priority areas for future research.
Collapse
|
41
|
Estrada-Peña A, de la Fuente J, Cabezas-Cruz A. Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens. Front Cell Infect Microbiol 2017; 7:234. [PMID: 28620590 PMCID: PMC5450623 DOI: 10.3389/fcimb.2017.00234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/19/2017] [Indexed: 11/13/2022] Open
Abstract
Ticks are vectors of pathogens affecting human and animal health worldwide. Nevertheless, the ecological and evolutionary interactions between ticks, hosts, and pathogens are largely unknown. Here, we integrated a framework to evaluate the associations of the tick Ixodes ricinus with its hosts and environmental niches that impact pathogen circulation. The analysis of tick-hosts association suggested that mammals and lizards were the ancestral hosts of this tick species, and that a leap to Aves occurred around 120 M years ago. The signature of the environmental variables over the host's phylogeny revealed the existence of two clades of vertebrates diverging along a temperature and vegetation split. This is a robust proof that the tick probably experienced a colonization of new niches by adapting to a large set of new hosts, Aves. Interestingly, the colonization of Aves as hosts did not increase significantly the ecological niche of I. ricinus, but remarkably Aves are super-spreaders of pathogens. The disparate contribution of Aves to the tick-host-pathogen networks revealed that I. ricinus evolved to maximize habitat overlap with some hosts that are super-spreaders of pathogens. These results supported the hypothesis that large host networks are not a requirement of tick survival but pathogen circulation. The biological cost of tick adaptation to non-optimal environmental conditions might be balanced by molecular mechanisms triggered by the pathogens that we have only begun to understand.
Collapse
Affiliation(s)
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCMCiudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, United States
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, Animal Health Laboratory, Institut National de la Recherche Agronomique, ANSES, ENVAMaisons Alfort, France.,Faculty of Science, University of South BohemiaBudejovice, Czechia.,Biology Centre, Institute of Parasitology, Czech Academy of SciencesCeske Budejovice, Czechia
| |
Collapse
|
42
|
Ibarra-Cerdeña CN, Valiente-Banuet L, Sánchez-Cordero V, Stephens CR, Ramsey JM. Trypanosoma cruzi reservoir-triatomine vector co-occurrence networks reveal meta-community effects by synanthropic mammals on geographic dispersal. PeerJ 2017; 5:e3152. [PMID: 28413725 PMCID: PMC5391790 DOI: 10.7717/peerj.3152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Contemporary patterns of land use and global climate change are modifying regional pools of parasite host species. The impact of host community changes on human disease risk, however, is difficult to assess due to a lack of information about zoonotic parasite host assemblages. We have used a recently developed method to infer parasite-host interactions for Chagas Disease (CD) from vector-host co-occurrence networks. Vector-host networks were constructed to analyze topological characteristics of the network and ecological traits of species’ nodes, which could provide information regarding parasite regional dispersal in Mexico. Twenty-eight triatomine species (vectors) and 396 mammal species (potential hosts) were included using a data-mining approach to develop models to infer most-likely interactions. The final network contained 1,576 links which were analyzed to calculate centrality, connectivity, and modularity. The model predicted links of independently registered Trypanosoma cruzi hosts, which correlated with the degree of parasite-vector co-occurrence. Wiring patterns differed according to node location, while edge density was greater in Neotropical as compared to Nearctic regions. Vectors with greatest public health importance (i.e., Triatoma dimidiata, T. barberi, T. pallidipennis, T. longipennis, etc), did not have stronger links with particular host species, although they had a greater frequency of significant links. In contrast, hosts classified as important based on network properties were synanthropic mammals. The latter were the most common parasite hosts and are likely bridge species between these communities, thereby integrating meta-community scenarios beneficial for long-range parasite dispersal. This was particularly true for rodents, >50% of species are synanthropic and more than 20% have been identified as T. cruzi hosts. In addition to predicting potential host species using the co-occurrence networks, they reveal regions with greater expected parasite mobility. The Neotropical region, which includes the Mexican south and southeast, and the Transvolcanic belt, had greatest potential active T. cruzi dispersal, as well as greatest edge density. This information could be directly applied for stratification of transmission risk and to design and analyze human-infected vector contact intervention efficacy.
Collapse
Affiliation(s)
- Carlos N Ibarra-Cerdeña
- Departamento de Ecología Humana, Centro de Investigaciones y de Estudios de Avanzados (Cinvestav) del IPN Unidad Mérida, Mérida, Yucatán, México
| | - Leopoldo Valiente-Banuet
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Víctor Sánchez-Cordero
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Christopher R Stephens
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, México.,Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Janine M Ramsey
- Centro Regional de Investigaciones en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| |
Collapse
|
43
|
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, Johnson N, Kocan KM, Mansfield KL, Nijhof AM, Papa A, Rudenko N, Villar M, Alberdi P, Torina A, Ayllón N, Vancova M, Golovchenko M, Grubhoffer L, Caracappa S, Fooks AR, Gortazar C, Rego ROM. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front Cell Infect Microbiol 2017; 7:114. [PMID: 28439499 PMCID: PMC5383669 DOI: 10.3389/fcimb.2017.00114] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisboa, Portugal
| | | | - Alejandro Cabezas-Cruz
- UMR BIPAR INRA-ANSES-ENVAMaisons-Alfort, France.,Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Ana G Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de LisboaLisboa, Portugal
| | | | - Nicholas Johnson
- Animal and Plant Health AgencySurrey, UK.,Faculty of Health and Medicine, University of SurreyGuildford, UK
| | - Katherine M Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| | - Karen L Mansfield
- Animal and Plant Health AgencySurrey, UK.,Institute of Infection and Global Health, University of LiverpoolLiverpool, UK
| | - Ard M Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität BerlinBerlin, Germany
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Nataliia Rudenko
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain
| | - Alessandra Torina
- National Center of Reference for Anaplasma, Babesia, Rickettsia and Theileria, Intituto Zooprofilattico Sperimentale della SiciliaSicily, Italy
| | - Nieves Ayllón
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain
| | - Marie Vancova
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia
| | - Maryna Golovchenko
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia
| | - Libor Grubhoffer
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| | - Santo Caracappa
- National Center of Reference for Anaplasma, Babesia, Rickettsia and Theileria, Intituto Zooprofilattico Sperimentale della SiciliaSicily, Italy
| | - Anthony R Fooks
- Animal and Plant Health AgencySurrey, UK.,Institute of Infection and Global Health, University of LiverpoolLiverpool, UK
| | - Christian Gortazar
- SaBio. Instituto de Investigación en Recursos Cinegéticos CSIC-UCLM-JCCMCiudad Real, Spain
| | - Ryan O M Rego
- Biology Centre, Czech Academy of Sciences, Institute of ParasitologyCeske Budejovice, Czechia.,Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| |
Collapse
|
44
|
Ferrell AM, Brinkerhoff RJ, Bernal J, Bermúdez SE. Ticks and tick-borne pathogens of dogs along an elevational and land-use gradient in Chiriquí province, Panamá. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 71:371-385. [PMID: 28417248 DOI: 10.1007/s10493-017-0116-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
Systematic acarological surveys are useful tools in assessing risk to tick-borne infections, especially in areas where consistent clinical surveillance for tick-borne disease is lacking. Our goal was to identify environmental predictors of tick burdens on dogs and tick-borne infectious agents in dog-derived ticks in the Chiriquí Province of western Panama to draw inferences about spatio-temporal variation in human risk to tick-borne diseases. We used a model-selection approach to test the relative importance of elevation, human population size, vegetative cover, and change in landuse on patterns of tick parasitism on dogs. We collected 2074 ticks, representing four species (Rhipicephalus sanguineus, R. microplus, Amblyomma ovale, and Ixodes boliviensis) from 355 dogs. Tick prevalence ranged from 0 to 74% among the sites we sampled, and abundance ranged from 0 to 20.4 ticks per dog with R. sanguineus s.l. being the most commonly detected tick species (97% of all ticks sampled). Whereas elevation was the best single determinant of tick prevalence and abundance on dogs, the top models also included predictor variables describing vegetation cover and landuse change. Specifically, low-elevation areas associated with decreasing vegetative cover were associated with highest tick occurrence on dogs, potentially because of the affinity of R. sanguineus for human dwellings. Although we found low prevalence of tick-borne pathogen genera (two Rickettsia-positive ticks, no R. rickettsia or Ehrlichia spp.) in our study, all of the tick species we collected from dogs are known vectors of zoonotic pathogens. In areas where epidemiological surveillance infrastructure is limited, field-based assessments of acarological risk can be useful and cost-effective tools in efforts to identify high-risk environments for tick-transmitted pathogens.
Collapse
Affiliation(s)
| | - R Jory Brinkerhoff
- Department of Biology, University of Richmond, Richmond, VA, USA.
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Juan Bernal
- Universidad Autónoma de Chiriquí, David, Panama
| | - Sergio E Bermúdez
- Departamento de Investigación en Entomología Médica, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| |
Collapse
|
45
|
Cabezas-Cruz A, Estrada-Peña A, Rego ROM, De la Fuente J. Tick-Pathogen Ensembles: Do Molecular Interactions Lead Ecological Innovation? Front Cell Infect Microbiol 2017; 7:74. [PMID: 28348982 PMCID: PMC5346557 DOI: 10.3389/fcimb.2017.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/27/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, Animal Health Laboratory, ANSES, Institut National de la Recherche Agronomique, ENVAMaisons Alfort, France; Department of Parasitology, Faculty of Science, University of South BohemiaČeské Budějovice, Czechia; Biology Center, Institute of Parasitology, Czech Academy of SciencesČeské Budějovice, Czechia
| | | | - Ryan O M Rego
- Department of Parasitology, Faculty of Science, University of South BohemiaČeské Budějovice, Czechia; Biology Center, Institute of Parasitology, Czech Academy of SciencesČeské Budějovice, Czechia
| | - José De la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
46
|
Contreras M, de la Fuente J. Control of infestations by Ixodes ricinus tick larvae in rabbits vaccinated with aquaporin recombinant antigens. Vaccine 2017; 35:1323-1328. [PMID: 28161419 DOI: 10.1016/j.vaccine.2017.01.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tick-borne diseases greatly impact human and animal health worldwide, and vaccines are an environmentally friendly alternative to acaricides for their control. Recent results have suggested that aquaporin (AQP) water channels have a key function during tick feeding and development, and constitute good candidate antigens for the control of tick infestations. METHODS Here we describe the effect of vaccination with the Ixodes ricinus AQP1 (IrAQP) and a tick AQP conserved region (CoAQP) on I. ricinus tick larval mortality, feeding and molting. RESULTS We demonstrated that vaccination with IrAQP and CoAQP had an efficacy of 32% and 80%, respectively on the control of I. ricinus larvae by considering the cumulative effect on reducing tick survival and molting. CONCLUSIONS The effect of the AQP vaccines on larval survival and molting is essential to reduce tick infestations, and extended previous results on the effect of R. microplus AQP1 on the control of cattle tick infestations. These results supports that AQP, and particularly CoAQP, might be a candidate protective antigen for the control of different tick species.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
47
|
Collini M, Albonico F, Rosà R, Tagliapietra V, Arnoldi D, Conterno L, Rossi C, Mortarino M, Rizzoli A, Hauffe HC. Identification of Ixodes ricinus blood meals using an automated protocol with high resolution melting analysis (HRMA) reveals the importance of domestic dogs as larval tick hosts in Italian alpine forests. Parasit Vectors 2016; 9:638. [PMID: 27955678 PMCID: PMC5154095 DOI: 10.1186/s13071-016-1901-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In Europe, Ixodes ricinus L. is the main vector of a variety of zoonotic pathogens, acquired through blood meals taken once per stage from a vertebrate host. Defining the main tick hosts in a given area is important for planning public health interventions; however, until recently, no robust molecular methods existed for blood meal identification from questing ticks. Here we improved the time- and cost-effectiveness of an HRMA protocol for blood meal analysis and used it to identify blood meal sources of sheep tick larvae from Italian alpine forests. METHODS Nine hundred questing nymphs were collected using blanket-dragging in 18 extensive forests and 12 forest patches close to rural villages in the Province of Trento. Total DNA was either extracted manually, with the QIAamp DNA Investigator kit, or automatically using the KingFisher™ Flex Magnetic Particle Processors (KingFisher Cell and Tissue DNA Kit). Host DNA was amplified with six independent host group real-time PCR reactions and identified by means of HRMA. Statistical analyses were performed in R to assess the variables important for achieving successful identification and to compare host use in the two types of forest. RESULTS Automating DNA extraction improved time- and cost-effectiveness of the HRMA protocol, but identification success fell to 22.4% (KingFisher™) from 55.1% (QIAamp), with larval hosts identified in 215 of 848 questing nymphs; 23 mixed blood meals were noted. However, the list of hosts targeted by our primer sets was extended, improving the potential of the method. Host identification to species or genus level was possible for 137 and 102 blood meals, respectively. The most common hosts were Rodentia (28.9%) and, unexpectedly, Carnivora (28.4%), with domestic dogs accounting for 21.3% of all larval blood meals. Overall, Cetartiodactyla species fed 17.2% of larvae. Passeriformes (14.6%) fed a significantly higher proportion of larvae in forest patches (22.3%) than in extensive forest (9.6%), while Soricomorpha (10.9%) were more important hosts in extensive forest (15.2%) than in forest patches (4.3%). CONCLUSIONS The HRMA protocol for blood meal analysis is a valuable tool in the study of feeding ecology of sheep ticks, especially with the cost- and time- reductions introduced here. To our knowledge, we show for the first time that domestic dogs are important larval hosts in the Alps, which may have possible implications for tick-borne disease cycles in urbanized areas.
Collapse
Affiliation(s)
- Margherita Collini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Francesca Albonico
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Lorenza Conterno
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Chiara Rossi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Michele Mortarino
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| | - Heidi Christine Hauffe
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy
| |
Collapse
|
48
|
Can You Judge a Disease Host by the Company It Keeps? Predicting Disease Hosts and Their Relative Importance: A Case Study for Leishmaniasis. PLoS Negl Trop Dis 2016; 10:e0005004. [PMID: 27716833 PMCID: PMC5055336 DOI: 10.1371/journal.pntd.0005004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/25/2016] [Indexed: 11/23/2022] Open
Abstract
Zoonoses are an important class of infectious diseases. An important element determining the impact of a zoonosis on domestic animal and human health is host range. Although for particular zoonoses some host species have been identified, until recently there have been no methods to predict those species most likely to be hosts or their relative importance. Complex inference networks infer potential biotic interactions between species using their degree of geographic co-occurrence, and have been posited as a potential tool for predicting disease hosts. Here we present the results of an interdisciplinary, empirical study to validate a model based on such networks for predicting hosts of Leishmania (L.) mexicana in Mexico. Using systematic sampling to validate the model predictions we identified 22 new species of host (34% of all species collected) with the probability to be a host strongly dependent on the probability of co-occurrence of vector and host. The results confirm that Leishmania (L.) mexicana is a generalist parasite but with a much wider host range than was previously thought. These results substantially change the geographic risk profile for Leishmaniasis and provide insights for the design of more efficient surveillance measures and a better understanding of potential dispersal scenarios. Emerging and neglected zoonoses are an important global threat to public health. Host range, in particular, is a crucial factor in determining disease risk and the potential for adequate interventions. Here we show that Leishmania has a very wide host range and that Complex Inference Networks can be used to infer ecological relationships in the context of zoonoses, identifying both the potential hosts and their relative importance. These results substantially change the risk profile and potential control measures that can be used to combat the disease, allowing for the design of more efficient surveillance measures and a better understanding of potential dispersal scenarios.
Collapse
|
49
|
Estrada-Peña A, Sprong H, Cabezas-Cruz A, de la Fuente J, Ramo A, Coipan EC. Nested coevolutionary networks shape the ecological relationships of ticks, hosts, and the Lyme disease bacteria of the Borrelia burgdorferi (s.l.) complex. Parasit Vectors 2016; 9:517. [PMID: 27662832 PMCID: PMC5035442 DOI: 10.1186/s13071-016-1803-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022] Open
Abstract
Background The bacteria of the Borrelia burgdorferi (s.l.) (BBG) complex constitute a group of tick-transmitted pathogens that are linked to many vertebrate and tick species. The ecological relationships between the pathogens, the ticks and the vertebrate carriers have not been analysed. The aim of this study was to quantitatively analyse these interactions by creating a network based on a large dataset of associations. Specifically, we examined the relative positions of partners in the network, the phylogenetic diversity of the tick’s hosts and its impact on BBG circulation. The secondary aim was to evaluate the segregation of BBG strains in different vectors and reservoirs. Results BBG circulates through a nested recursive network of ticks and vertebrates that delineate closed clusters. Each cluster contains generalist ticks with high values of centrality as well as specialist ticks that originate nested sub-networks and that link secondary vertebrates to the cluster. These results highlighted the importance of host phylogenetic diversity for ticks in the circulation of BBG, as this diversity was correlated with high centrality values for the ticks. The ticks and BBG species in each cluster were not significantly associated with specific branches of the phylogeny of host genera (R2 = 0.156, P = 0.784 for BBG; R2 = 0.299, P = 0.699 for ticks). A few host genera had higher centrality values and thus higher importance for BBG circulation. However, the combined contribution of hosts with low centrality values could maintain active BBG foci. The results suggested that ticks do not share strains of BBG, which were highly segregated among sympatric species of ticks. Conclusions We conclude that BBG circulation is supported by a highly redundant network. This network includes ticks with high centrality values and high host phylogenetic diversity as well as ticks with low centrality values. This promotes ecological sub-networks and reflects the high resilience of BBG circulation. The functional redundancy in BBG circulation reduces disturbances due to the removal of vertebrates as it allows ticks to fill other biotic niches. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1803-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Miguel Servet, 177, Zaragoza, Spain.
| | - Hein Sprong
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 - CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - José de la Fuente
- SaBio, Instituto de Investigación de Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ana Ramo
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Miguel Servet, 177, Zaragoza, Spain
| | - Elena Claudia Coipan
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| |
Collapse
|
50
|
Multiple independent transmission cycles of a tick-borne pathogen within a local host community. Sci Rep 2016; 6:31273. [PMID: 27498685 PMCID: PMC4976386 DOI: 10.1038/srep31273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/15/2016] [Indexed: 01/09/2023] Open
Abstract
Many pathogens are maintained by multiple host species and involve multiple strains with potentially different phenotypic characteristics. Disentangling transmission patterns in such systems is often challenging, yet investigating how different host species contribute to transmission is crucial to properly assess and manage disease risk. We aim to reveal transmission cycles of bacteria within the Borrelia burgdorferi species complex, which include Lyme disease agents. We characterized Borrelia genotypes found in 488 infected Ixodes ricinus nymphs collected in the Sénart Forest located near Paris (France). These genotypes were compared to those observed in three sympatric species of small mammals and network analyses reveal four independent transmission cycles. Statistical modelling shows that two cycles involving chipmunks, an introduced species, and non-sampled host species such as birds, are responsible for the majority of tick infections. In contrast, the cycle involving native bank voles only accounts for a small proportion of infected ticks. Genotypes associated with the two primary transmission cycles were isolated from Lyme disease patients, confirming the epidemiological threat posed by these strains. Our work demonstrates that combining high-throughput sequence typing with networks tools and statistical modeling is a promising approach for characterizing transmission cycles of multi-host pathogens in complex ecological settings.
Collapse
|