1
|
Lao-Rodríguez AB, Pérez-González D, Malmierca MS. Physiological properties of auditory neurons responding to omission deviants in the anesthetized rat. Hear Res 2024; 452:109107. [PMID: 39241554 DOI: 10.1016/j.heares.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
The detection of novel, low probability events in the environment is critical for survival. To perform this vital task, our brain is continuously building and updating a model of the outside world; an extensively studied phenomenon commonly referred to as predictive coding. Predictive coding posits that the brain is continuously extracting regularities from the environment to generate predictions. These predictions are then used to supress neuronal responses to redundant information, filtering those inputs, which then automatically enhances the remaining, unexpected inputs. We have recently described the ability of auditory neurons to generate predictions about expected sensory inputs by detecting their absence in an oddball paradigm using omitted tones as deviants. Here, we studied the responses of individual neurons to omitted tones by presenting individual sequences of repetitive pure tones, using both random and periodic omissions, presented at both fast and slow rates in the inferior colliculus and auditory cortex neurons of anesthetized rats. Our goal was to determine whether feature-specific dependence of these predictions exists. Results showed that omitted tones could be detected at both high (8 Hz) and slow repetition rates (2 Hz), with detection being more robust at the non-lemniscal auditory pathway.
Collapse
Affiliation(s)
- Ana B Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León, University of Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León, University of Salamanca, Spain; Department of Basic Psychology, Psychobiology and Methodology of Behavioral Sciences, University of Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León, University of Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
2
|
McCollum M, Manning A, Bender PTR, Mendelson BZ, Anderson CT. Cell-type-specific enhancement of deviance detection by synaptic zinc in the mouse auditory cortex. Proc Natl Acad Sci U S A 2024; 121:e2405615121. [PMID: 39312661 PMCID: PMC11459170 DOI: 10.1073/pnas.2405615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Stimulus-specific adaptation is a hallmark of sensory processing in which a repeated stimulus results in diminished successive neuronal responses, but a deviant stimulus will still elicit robust responses from the same neurons. Recent work has established that synaptically released zinc is an endogenous mechanism that shapes neuronal responses to sounds in the auditory cortex. Here, to understand the contributions of synaptic zinc to deviance detection of specific neurons, we performed wide-field and 2-photon calcium imaging of multiple classes of cortical neurons. We find that intratelencephalic (IT) neurons in both layers 2/3 and 5 as well as corticocollicular neurons in layer 5 all demonstrate deviance detection; however, we find a specific enhancement of deviance detection in corticocollicular neurons that arises from ZnT3-dependent synaptic zinc in layer 2/3 IT neurons. Genetic deletion of ZnT3 from layer 2/3 IT neurons removes the enhancing effects of synaptic zinc on corticocollicular neuron deviance detection and results in poorer acuity of detecting deviant sounds by behaving mice.
Collapse
Affiliation(s)
- Mason McCollum
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Abbey Manning
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Philip T. R. Bender
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Benjamin Z. Mendelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| | - Charles T. Anderson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV26505
| |
Collapse
|
3
|
Shi K, Quass GL, Rogalla MM, Ford AN, Czarny JE, Apostolides PF. Population coding of time-varying sounds in the nonlemniscal inferior colliculus. J Neurophysiol 2024; 131:842-864. [PMID: 38505907 PMCID: PMC11381119 DOI: 10.1152/jn.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's nonlemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and nonprimary auditory cortices, forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here, we use two-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset was highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ∼0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.NEW & NOTEWORTHY The IC's shell layers originate a "nonlemniscal" pathway important for perceiving vocalization sounds. However, prior studies suggest that individual shell IC neurons are broadly tuned and have high response thresholds, implying a limited reliability of efferent signals. Using Ca2+ imaging, we show that amplitude modulation is accurately represented in the population activity of shell IC neurons. Thus, downstream targets can read out sounds' temporal envelopes from distributed rate codes transmitted by populations of broadly tuned neurons.
Collapse
Affiliation(s)
- Kaiwen Shi
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Gunnar L Quass
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Meike M Rogalla
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alexander N Ford
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jordyn E Czarny
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Pierre F Apostolides
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, United States
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Gong Y, Song P, Du X, Zhai Y, Xu H, Ye H, Bao X, Huang Q, Tu Z, Chen P, Zhao X, Pérez-González D, Malmierca MS, Yu X. Neural correlates of novelty detection in the primary auditory cortex of behaving monkeys. Cell Rep 2024; 43:113864. [PMID: 38421870 DOI: 10.1016/j.celrep.2024.113864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/11/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
The neural mechanisms underlying novelty detection are not well understood, especially in relation to behavior. Here, we present single-unit responses from the primary auditory cortex (A1) from two monkeys trained to detect deviant tones amid repetitive ones. Results show that monkeys can detect deviant sounds, and there is a strong correlation between late neuronal responses (250-350 ms after deviant onset) and the monkeys' perceptual decisions. The magnitude and timing of both neuronal and behavioral responses are increased by larger frequency differences between the deviant and standard tones and by increasing the number of standard tones preceding the deviant. This suggests that A1 neurons encode novelty detection in behaving monkeys, influenced by stimulus relevance and expectations. This study provides evidence supporting aspects of predictive coding in the sensory cortex.
Collapse
Affiliation(s)
- Yumei Gong
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China; Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Hangzhou Extremely Weak Magnetic Field Major Science and Technology, Infrastructure Research Institute, Hangzhou 310000, China; Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peirun Song
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Du
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuying Zhai
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haoxuan Xu
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hangting Ye
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuehui Bao
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qianyue Huang
- Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical, Engineering, and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyi Tu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Pei Chen
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China
| | - David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, Salamanca, Spain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, Spain.
| | - Xiongjie Yu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, Shanghai, China; Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Bakay WMH, Cervantes B, Lao-Rodríguez AB, Johannesen PT, Lopez-Poveda EA, Furness DN, Malmierca MS. How 'hidden hearing loss' noise exposure affects neural coding in the inferior colliculus of rats. Hear Res 2024; 443:108963. [PMID: 38308936 DOI: 10.1016/j.heares.2024.108963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024]
Abstract
Exposure to brief, intense sound can produce profound changes in the auditory system, from the internal structure of inner hair cells to reduced synaptic connections between the auditory nerves and the inner hair cells. Moreover, noisy environments can also lead to alterations in the auditory nerve or to processing changes in the auditory midbrain, all without affecting hearing thresholds. This so-called hidden hearing loss (HHL) has been shown in tinnitus patients and has been posited to account for hearing difficulties in noisy environments. However, much of the neuronal research thus far has investigated how HHL affects the response characteristics of individual fibres in the auditory nerve, as opposed to higher stations in the auditory pathway. Human models show that the auditory nerve encodes sound stochastically. Therefore, a sufficient reduction in nerve fibres could result in lowering the sampling of the acoustic scene below the minimum rate necessary to fully encode the scene, thus reducing the efficacy of sound encoding. Here, we examine how HHL affects the responses to frequency and intensity of neurons in the inferior colliculus of rats, and the duration and firing rate of those responses. Finally, we examined how shorter stimuli are encoded less effectively by the auditory midbrain than longer stimuli, and how this could lead to a clinical test for HHL.
Collapse
Affiliation(s)
- Warren M H Bakay
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Blanca Cervantes
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; School of Medicine, University Anáhuac Puebla, Mexico
| | - Ana B Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Peter T Johannesen
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Enrique A Lopez-Poveda
- Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain; Department of Surgery, Faculty of Medicine, University of Salamanca, Spain
| | - David N Furness
- School of Life Sciences, Keele University, Keele, United Kingdom
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Spain; Institute for Biomedical Research of Salamanca, Salamanca, Spain; Department of Biology and Pathology, Faculty of Medicine, University of Salamanca, Spain.
| |
Collapse
|
6
|
Pérez-González D, Lao-Rodríguez AB, Aedo-Sánchez C, Malmierca MS. Acetylcholine modulates the precision of prediction error in the auditory cortex. eLife 2024; 12:RP91475. [PMID: 38241174 PMCID: PMC10942646 DOI: 10.7554/elife.91475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
A fundamental property of sensory systems is their ability to detect novel stimuli in the ambient environment. The auditory brain contains neurons that decrease their response to repetitive sounds but increase their firing rate to novel or deviant stimuli; the difference between both responses is known as stimulus-specific adaptation or neuronal mismatch (nMM). Here, we tested the effect of microiontophoretic applications of ACh on the neuronal responses in the auditory cortex (AC) of anesthetized rats during an auditory oddball paradigm, including cascade controls. Results indicate that ACh modulates the nMM, affecting prediction error responses but not repetition suppression, and this effect is manifested predominantly in infragranular cortical layers. The differential effect of ACh on responses to standards, relative to deviants (in terms of averages and variances), was consistent with the representational sharpening that accompanies an increase in the precision of prediction errors. These findings suggest that ACh plays an important role in modulating prediction error signaling in the AC and gating the access of these signals to higher cognitive levels.
Collapse
Affiliation(s)
- David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
- Department of Basic Psychology, Psychobiology and Behavioural Science Methodology, Faculty of Psychology, Campus Ciudad Jardín, University of SalamancaSalamancaSpain
| | - Ana Belén Lao-Rodríguez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - Cristian Aedo-Sánchez
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando GallegoSalamancaSpain
- Institute for Biomedical Research of Salamanca (IBSAL)SalamancaSpain
- Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of SalamancaSalamancaSpain
| |
Collapse
|
7
|
Offutt SJ, Rose JE, Crawford KJ, Harris ML, Lim HH. Gradients of response latencies and temporal precision of auditory neurons extend across the whole inferior colliculus. J Neurophysiol 2023; 130:719-735. [PMID: 37609690 PMCID: PMC10650646 DOI: 10.1152/jn.00461.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Neural responses to acoustic stimulation have long been studied throughout the auditory system to understand how sound information is coded for perception. Within the inferior colliculus (IC), a majority of the studies have focused predominantly on characterizing neural responses within the central region (ICC), as it is viewed as part of the lemniscal system mainly responsible for auditory perception. In contrast, the responses of outer cortices (ICO) have largely been unexplored, though they also function in auditory perception tasks. Therefore, we sought to expand on previous work by completing a three-dimensional (3-D) functional mapping study of the whole IC. We analyzed responses to different pure tone and broadband noise stimuli across all IC subregions and correlated those responses with over 2,000 recording locations across the IC. Our study revealed there are well-organized trends for temporal response parameters across the full IC that do not show a clear distinction at the ICC and ICO border. These gradients span from slow, imprecise responses in the caudal-medial IC to fast, precise responses in the rostral-lateral IC, regardless of subregion, including the fastest responses located in the ICO. These trends were consistent at various acoustic stimulation levels. Weaker spatial trends could be found for response duration and spontaneous activity. Apart from tonotopic organization, spatial trends were not apparent for spectral response properties. Overall, these detailed acoustic response maps across the whole IC provide new insights into the organization and function of the IC.NEW & NOTEWORTHY Study of the inferior colliculus (IC) has largely focused on the central nucleus, with little exploration of the outer cortices. Here, we systematically assessed the acoustic response properties from over 2,000 locations in different subregions of the IC. The results revealed spatial trends in temporal response patterns that span all subregions. Furthermore, two populations of temporal response types emerged for neurons in the outer cortices that may contribute to their functional roles in auditory tasks.
Collapse
Affiliation(s)
- Sarah J Offutt
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jessica E Rose
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kellie J Crawford
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Megan L Harris
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hubert H Lim
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
8
|
Shi K, Quass GL, Rogalla MM, Ford AN, Czarny JE, Apostolides PF. Population coding of time-varying sounds in the non-lemniscal Inferior Colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553263. [PMID: 37645904 PMCID: PMC10461978 DOI: 10.1101/2023.08.14.553263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The inferior colliculus (IC) of the midbrain is important for complex sound processing, such as discriminating conspecific vocalizations and human speech. The IC's non-lemniscal, dorsal "shell" region is likely important for this process, as neurons in these layers project to higher-order thalamic nuclei that subsequently funnel acoustic signals to the amygdala and non-primary auditory cortices; forebrain circuits important for vocalization coding in a variety of mammals, including humans. However, the extent to which shell IC neurons transmit acoustic features necessary to discern vocalizations is less clear, owing to the technical difficulty of recording from neurons in the IC's superficial layers via traditional approaches. Here we use 2-photon Ca2+ imaging in mice of either sex to test how shell IC neuron populations encode the rate and depth of amplitude modulation, important sound cues for speech perception. Most shell IC neurons were broadly tuned, with a low neurometric discrimination of amplitude modulation rate; only a subset were highly selective to specific modulation rates. Nevertheless, neural network classifier trained on fluorescence data from shell IC neuron populations accurately classified amplitude modulation rate, and decoding accuracy was only marginally reduced when highly tuned neurons were omitted from training data. Rather, classifier accuracy increased monotonically with the modulation depth of the training data, such that classifiers trained on full-depth modulated sounds had median decoding errors of ~0.2 octaves. Thus, shell IC neurons may transmit time-varying signals via a population code, with perhaps limited reliance on the discriminative capacity of any individual neuron.
Collapse
Affiliation(s)
- Kaiwen Shi
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Gunnar L. Quass
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Meike M. Rogalla
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Alexander N. Ford
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Jordyn E. Czarny
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
| | - Pierre F. Apostolides
- Kresge Hearing Research Institute, Department of Otolaryngology — Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109
| |
Collapse
|
9
|
Abstract
Adaptation is an essential feature of auditory neurons, which reduces their responses to unchanging and recurring sounds and allows their response properties to be matched to the constantly changing statistics of sounds that reach the ears. As a consequence, processing in the auditory system highlights novel or unpredictable sounds and produces an efficient representation of the vast range of sounds that animals can perceive by continually adjusting the sensitivity and, to a lesser extent, the tuning properties of neurons to the most commonly encountered stimulus values. Together with attentional modulation, adaptation to sound statistics also helps to generate neural representations of sound that are tolerant to background noise and therefore plays a vital role in auditory scene analysis. In this review, we consider the diverse forms of adaptation that are found in the auditory system in terms of the processing levels at which they arise, the underlying neural mechanisms, and their impact on neural coding and perception. We also ask what the dynamics of adaptation, which can occur over multiple timescales, reveal about the statistical properties of the environment. Finally, we examine how adaptation to sound statistics is influenced by learning and experience and changes as a result of aging and hearing loss.
Collapse
Affiliation(s)
- Ben D. B. Willmore
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Stein J, von Kriegstein K, Tabas A. Predictive encoding of pure tones and FM-sweeps in the human auditory cortex. Cereb Cortex Commun 2022; 3:tgac047. [PMID: 36545253 PMCID: PMC9764222 DOI: 10.1093/texcom/tgac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Expectations substantially influence perception, but the neural mechanisms underlying this influence are not fully understood. A prominent view is that sensory neurons encode prediction error with respect to expectations on upcoming sensory input. Although the encoding of prediction error has been previously demonstrated in the human auditory cortex (AC), previous studies often induced expectations using stimulus repetition, potentially confounding prediction error with neural habituation. These studies also measured AC as a single population, failing to consider possible predictive specializations of different AC fields. Moreover, the few studies that considered prediction error to stimuli other than pure tones yielded conflicting results. Here, we used functional magnetic resonance imaging (fMRI) to systematically investigate prediction error to subjective expectations in auditory cortical fields Te1.0, Te1.1, Te1.2, and Te3, and two types of stimuli: pure tones and frequency modulated (FM) sweeps. Our results show that prediction error is elicited with respect to the participants' expectations independently of stimulus repetition and similarly expressed across auditory fields. Moreover, despite the radically different strategies underlying the decoding of pure tones and FM-sweeps, both stimulus modalities were encoded as prediction error in most fields of AC. Altogether, our results provide unequivocal evidence that predictive coding is the general encoding mechanism in AC.
Collapse
Affiliation(s)
| | - Katharina von Kriegstein
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technical University Dresden, Bamberger Str. 7, Dresden 01187, Germany
| | - Alejandro Tabas
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technical University Dresden, Bamberger Str. 7, Dresden 01187, Germany
| |
Collapse
|
11
|
Pastyrik JD, Firzlaff U. Object specific adaptation in the auditory cortex of bats. J Neurophysiol 2022; 128:556-567. [PMID: 35946795 DOI: 10.1152/jn.00151.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify behaviourally relevant sounds is an important function of the auditory system. Echolocating bats have to negotiate a wealth of sounds in the context of navigation and foraging. They must be able to detect relatively rare but behaviourally important echoes and segregate them from a large number of unimportant background echoes. For this, the bat auditory system might rely on neural deviance detection, a process influencing the excitability of a neuron depending on the frequency of occurrence of a stimulus. To investigate neural deviance detection in the auditory cortex (AC) of anaesthetised bats (Phyllostomus discolor), we designed sequences of repetitive naturalistic virtual echoes differing in spectro-temporal envelope, resembling those bats might perceive in their natural environment. In these sequences, one echo (standard) was repeated ten times and another echo (deviant) was presented at the end. Temporal intervals between echoes within the sequences varied. Our results show, that neurons in the AC of the bat P. discolor are sensitive to novel virtual echoes presented at the end of these repetitive sequences: In 49 % (62/126) of cortical neurons, extracellularly recorded responses adapted to the standard echo, but showed a strong response to the finally presented deviant echo. This effect depended strongly on the temporal intervals between echoes, with stronger adaptation at shorter intervals. This type of response behavior might represent a form of neuronal deviance detection in the AC that could help the bats to detect echoes of novel and potentially important objects within a stream of homogeneous background echoes.
Collapse
Affiliation(s)
- Jan David Pastyrik
- Chair of Zoology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Uwe Firzlaff
- Chair of Zoology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
12
|
Oberle HM, Ford AN, Dileepkumar D, Czarny J, Apostolides PF. Synaptic mechanisms of top-down control in the non-lemniscal inferior colliculus. eLife 2022; 10:e72730. [PMID: 34989674 PMCID: PMC8735864 DOI: 10.7554/elife.72730] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023] Open
Abstract
Corticofugal projections to evolutionarily ancient, subcortical structures are ubiquitous across mammalian sensory systems. These 'descending' pathways enable the neocortex to control ascending sensory representations in a predictive or feedback manner, but the underlying cellular mechanisms are poorly understood. Here, we combine optogenetic approaches with in vivo and in vitro patch-clamp electrophysiology to study the projection from mouse auditory cortex to the inferior colliculus (IC), a major descending auditory pathway that controls IC neuron feature selectivity, plasticity, and auditory perceptual learning. Although individual auditory cortico-collicular synapses were generally weak, IC neurons often integrated inputs from multiple corticofugal axons that generated reliable, tonic depolarizations even during prolonged presynaptic activity. Latency measurements in vivo showed that descending signals reach the IC within 30 ms of sound onset, which in IC neurons corresponded to the peak of synaptic depolarizations evoked by short sounds. Activating ascending and descending pathways at latencies expected in vivo caused a NMDA receptor-dependent, supralinear excitatory postsynaptic potential summation, indicating that descending signals can nonlinearly amplify IC neurons' moment-to-moment acoustic responses. Our results shed light upon the synaptic bases of descending sensory control and imply that heterosynaptic cooperativity contributes to the auditory cortico-collicular pathway's role in plasticity and perceptual learning.
Collapse
Affiliation(s)
- Hannah M Oberle
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Alexander N Ford
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Jordyn Czarny
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
| | - Pierre F Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology, University of MichiganAnn ArborUnited States
- Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
13
|
Kommajosyula SP, Bartlett EL, Cai R, Ling L, Caspary DM. Corticothalamic projections deliver enhanced responses to medial geniculate body as a function of the temporal reliability of the stimulus. J Physiol 2021; 599:5465-5484. [PMID: 34783016 PMCID: PMC10630908 DOI: 10.1113/jp282321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 01/12/2023] Open
Abstract
Ageing and challenging signal-in-noise conditions are known to engage the use of cortical resources to help maintain speech understanding. Extensive corticothalamic projections are thought to provide attentional, mnemonic and cognitive-related inputs in support of sensory inferior colliculus (IC) inputs to the medial geniculate body (MGB). Here we show that a decrease in modulation depth, a temporally less distinct periodic acoustic signal, leads to a jittered ascending temporal code, changing MGB unit responses from adapting responses to responses showing repetition enhancement, posited to aid identification of important communication and environmental sounds. Young-adult male Fischer Brown Norway rats, injected with the inhibitory opsin archaerhodopsin T (ArchT) into the primary auditory cortex (A1), were subsequently studied using optetrodes to record single-units in MGB. Decreasing the modulation depth of acoustic stimuli significantly increased repetition enhancement. Repetition enhancement was blocked by optical inactivation of corticothalamic terminals in MGB. These data support a role for corticothalamic projections in repetition enhancement, implying that predictive anticipation could be used to improve neural representation of weakly modulated sounds. KEY POINTS: In response to a less temporally distinct repeating sound with low modulation depth, medial geniculate body (MGB) single units show a switch from adaptation towards repetition enhancement. Repetition enhancement was reversed by blockade of MGB inputs from the auditory cortex. Collectively, these data argue that diminished acoustic temporal cues such as weak modulation engage cortical processes to enhance coding of those cues in auditory thalamus.
Collapse
Affiliation(s)
- Srinivasa P Kommajosyula
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Edward L Bartlett
- Department of Biological Sciences and the Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Rui Cai
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lynne Ling
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Donald M Caspary
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
14
|
Wetekam J, Hechavarría J, López-Jury L, Kössl M. Correlates of deviance detection in auditory brainstem responses of bats. Eur J Neurosci 2021; 55:1601-1613. [PMID: 34766394 DOI: 10.1111/ejn.15527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
Identifying unexpected acoustic inputs, which allows to react appropriately to new situations, is of major importance for animals. Neural deviance detection describes a change of neural response strength to a stimulus solely caused by the stimulus' probability of occurrence. In the present study, we searched for correlates of deviance detection in auditory brainstem responses obtained in anaesthetised bats (Carollia perspicillata). In an oddball paradigm, we used two pure tone stimuli that represented the main frequencies used by the animal during echolocation (60 kHz) and communication (20 kHz). For both stimuli, we could demonstrate significant differences of response strength between deviant and standard response in slow and fast components of the auditory brainstem response. The data suggest the presence of correlates of deviance detection in brain stations below the IC, at the level of the cochlea nucleus and lateral lemniscus. Additionally, our results suggest that deviance detection is mainly driven by repetition suppression in the echolocation frequency band, while in the communication band, a deviant-related enhancement of the response plays a more important role. This finding suggests a contextual dependence of the mechanisms underlying subcortical deviance detection. The present study demonstrates the value of auditory brainstem responses for studying deviance detection and suggests that auditory specialists, such as bats, use different frequency-specific strategies to ensure an appropriate sensation of unexpected sounds.
Collapse
Affiliation(s)
- Johannes Wetekam
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Julio Hechavarría
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Luciana López-Jury
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Manfred Kössl
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Jia G, Li X, Liu C, He J, Gao L. Stimulus-Specific Adaptation in Auditory Thalamus Is Modulated by the Thalamic Reticular Nucleus. ACS Chem Neurosci 2021; 12:1688-1697. [PMID: 33900722 DOI: 10.1021/acschemneuro.1c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A striking property of the auditory system is its capacity for the stimulus-specific adaptation (SSA), which is the reduction of neural response to repeated stimuli but a recuperative response to novel stimuli. SSA is found in both the medial geniculate body (MGB) and thalamic reticular nucleus (TRN). However, it remains unknown whether the SSA of MGB neurons is modulated by inhibitory inputs from the TRN, as it is difficult to investigate using the extracellular recording method. In the present study, we performed intracellular recordings in the MGB of anesthetized guinea pigs and examined whether and how the TRN modulates the SSA of MGB neurons with inhibitory inputs. This was accomplished by using microinjection of lidocaine to inactivate the neural activity of the TRN. We found that (1) MGB neurons with hyperpolarized membrane potentials exhibited SSA at both the spiking and subthreshold levels; (2) SSA of MGB neurons depends on the interstimulus interval (ISI), where a shorter ISI results in stronger SSA; and (3) the long-lasting hyperpolarization of MGB neurons decreased after the burst firing of the TRN was inactivated. As a result, SSA of these MGB neurons was diminished after inactivation of the TRN. Taken together, our results revealed that the SSA of the MGB is strongly modulated by the neural activity of the TRN, which suggests an alternative circuit mechanism underlying the SSA of the auditory thalamus.
Collapse
Affiliation(s)
- Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chunhua Liu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Guangzhou Regenerative Medicine and Health Guang Dong Laboratory, Guangzhou 510005, China
| | - Jufang He
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Departments of Neuroscience and Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Tabas A, von Kriegstein K. Adjudicating Between Local and Global Architectures of Predictive Processing in the Subcortical Auditory Pathway. Front Neural Circuits 2021; 15:644743. [PMID: 33776657 PMCID: PMC7994860 DOI: 10.3389/fncir.2021.644743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Predictive processing, a leading theoretical framework for sensory processing, suggests that the brain constantly generates predictions on the sensory world and that perception emerges from the comparison between these predictions and the actual sensory input. This requires two distinct neural elements: generative units, which encode the model of the sensory world; and prediction error units, which compare these predictions against the sensory input. Although predictive processing is generally portrayed as a theory of cerebral cortex function, animal and human studies over the last decade have robustly shown the ubiquitous presence of prediction error responses in several nuclei of the auditory, somatosensory, and visual subcortical pathways. In the auditory modality, prediction error is typically elicited using so-called oddball paradigms, where sequences of repeated pure tones with the same pitch are at unpredictable intervals substituted by a tone of deviant frequency. Repeated sounds become predictable promptly and elicit decreasing prediction error; deviant tones break these predictions and elicit large prediction errors. The simplicity of the rules inducing predictability make oddball paradigms agnostic about the origin of the predictions. Here, we introduce two possible models of the organizational topology of the predictive processing auditory network: (1) the global view, that assumes that predictions on the sensory input are generated at high-order levels of the cerebral cortex and transmitted in a cascade of generative models to the subcortical sensory pathways; and (2) the local view, that assumes that independent local models, computed using local information, are used to perform predictions at each processing stage. In the global view information encoding is optimized globally but biases sensory representations along the entire brain according to the subjective views of the observer. The local view results in a diminished coding efficiency, but guarantees in return a robust encoding of the features of sensory input at each processing stage. Although most experimental results to-date are ambiguous in this respect, recent evidence favors the global model.
Collapse
Affiliation(s)
- Alejandro Tabas
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katharina von Kriegstein
- Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
17
|
Tabas A, Mihai G, Kiebel S, Trampel R, von Kriegstein K. Abstract rules drive adaptation in the subcortical sensory pathway. eLife 2020; 9:64501. [PMID: 33289479 PMCID: PMC7785290 DOI: 10.7554/elife.64501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 01/19/2023] Open
Abstract
The subcortical sensory pathways are the fundamental channels for mapping the outside world to our minds. Sensory pathways efficiently transmit information by adapting neural responses to the local statistics of the sensory input. The long-standing mechanistic explanation for this adaptive behaviour is that neural activity decreases with increasing regularities in the local statistics of the stimuli. An alternative account is that neural coding is directly driven by expectations of the sensory input. Here, we used abstract rules to manipulate expectations independently of local stimulus statistics. The ultra-high-field functional-MRI data show that abstract expectations can drive the response amplitude to tones in the human auditory pathway. These results provide first unambiguous evidence of abstract processing in a subcortical sensory pathway. They indicate that the neural representation of the outside world is altered by our prior beliefs even at initial points of the processing hierarchy.
Collapse
Affiliation(s)
- Alejandro Tabas
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Max Planck Research Group Neural Mechanism of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Glad Mihai
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Max Planck Research Group Neural Mechanism of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefan Kiebel
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katharina von Kriegstein
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Max Planck Research Group Neural Mechanism of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
18
|
Pérez-González D, Parras GG, Morado-Díaz CJ, Aedo-Sánchez C, Carbajal GV, Malmierca MS. Deviance detection in physiologically identified cell types in the rat auditory cortex. Hear Res 2020; 399:107997. [PMID: 32482383 DOI: 10.1016/j.heares.2020.107997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 11/26/2022]
Abstract
Auditory deviance detection is a function of the auditory system that allows reduction of the processing demand for repetitive stimuli while stressing unpredictable ones, which are potentially more informative. Deviance detection has been extensively studied in humans using the oddball paradigm, which evokes an event-related potential known as mismatch negativity (MMN). The same stimulation paradigms are used in animal studies that aim to elucidate the neuronal mechanisms underlying deviance detection. In order to understand the circuitry responsible for deviance detection in the auditory cortex (AC), it is necessary to determine the properties of excitatory and inhibitory neurons separately. Measuring the spike widths of neurons recorded extracellularly from the anaesthetized rat AC, we classified them as fast spiking or regular spiking units. These two neuron types are generally considered as putative inhibitory or excitatory, respectively. In response to an oddball paradigm, we found that both types of units showed similar amounts of deviance detection overall. When considering each AC field separately, we found that only in A1 fast spiking neurons showed higher deviance detection levels than regular spiking neurons, while in the rest of the fields there was no such distinction. Interpreting these responses in the context of the predictive coding framework, we found that the responses of both types of units reflect mainly prediction error signaling (i.e., genuine deviance detection) rather than repetition suppression.
Collapse
Affiliation(s)
- David Pérez-González
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - Gloria G Parras
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - Camilo J Morado-Díaz
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - Cristian Aedo-Sánchez
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - Guillermo V Carbajal
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Spain
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain; Institute for Biomedical Research of Salamanca (IBSAL), Spain; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Spain.
| |
Collapse
|
19
|
Valdés-Baizabal C, Casado-Román L, Bartlett EL, Malmierca MS. In vivo whole-cell recordings of stimulus-specific adaptation in the inferior colliculus. Hear Res 2020; 399:107978. [PMID: 32402412 DOI: 10.1016/j.heares.2020.107978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/31/2022]
Abstract
The inferior colliculus is an auditory structure where inputs from multiple lower centers converge, allowing the emergence of complex coding properties of auditory information such as stimulus-specific adaptation. Stimulus-specific adaptation is the adaptation of neuronal responses to a specific repeated stimulus, which does not entirely generalize to other new stimuli. This phenomenon provides a mechanism to emphasize saliency and potentially informative sensory inputs. Stimulus-specific adaptation has been traditionally studied analyzing the somatic spiking output. However, studies that correlate within the same inferior colliculus neurons their intrinsic properties, subthreshold responses and the level of acoustic stimulus-specific adaptation are still pending. For this, we recorded in vivo whole-cell patch-clamp neurons in the mouse inferior colliculus while stimulating with current injections or the classic auditory oddball paradigm. Our data based on cases of ten neuron, suggest that although passive properties were similar, intrinsic properties differed between adapting and non-adapting neurons. Non-adapting neurons showed a sustained-regular firing pattern that corresponded to central nucleus neurons and adapting neurons at the inferior colliculus cortices showed variable firing patterns. Our current results suggest that synaptic stimulus-specific adaptation was variable and could not be used to predict the presence of spiking stimulus-specific adaptation. We also observed a small trend towards hyperpolarized membrane potentials in adapting neurons and increased synaptic inhibition with consecutive stimulus repetitions in all neurons. This finding indicates a more simple type of adaptation, potentially related to potassium conductances. Hence, these data represent a modest first step in the intracellular study of stimulus-specific adaptation in inferior colliculus neurons in vivo that will need to be expanded with pharmacological manipulations to disentangle specific ionic channels participation.
Collapse
Affiliation(s)
- Catalina Valdés-Baizabal
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, 37007, Salamanca, Spain; The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Lorena Casado-Román
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, 37007, Salamanca, Spain; The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Edward L Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Manuel S Malmierca
- Cognitive and Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, 37007, Salamanca, Spain; The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain; Department of Cell Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
20
|
Ross JM, Hamm JP. Cortical Microcircuit Mechanisms of Mismatch Negativity and Its Underlying Subcomponents. Front Neural Circuits 2020; 14:13. [PMID: 32296311 PMCID: PMC7137737 DOI: 10.3389/fncir.2020.00013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
In the neocortex, neuronal processing of sensory events is significantly influenced by context. For instance, responses in sensory cortices are suppressed to repetitive or redundant stimuli, a phenomenon termed “stimulus-specific adaptation” (SSA). However, in a context in which that same stimulus is novel, or deviates from expectations, neuronal responses are augmented. This augmentation is termed “deviance detection” (DD). This contextual modulation of neural responses is fundamental for how the brain efficiently processes the sensory world to guide immediate and future behaviors. Notably, context modulation is deficient in some neuropsychiatric disorders such as schizophrenia (SZ), as quantified by reduced “mismatch negativity” (MMN), an electroencephalography waveform reflecting a combination of SSA and DD in sensory cortex. Although the role of NMDA-receptor function and other neuromodulatory systems on MMN is established, the precise microcircuit mechanisms of MMN and its underlying components, SSA and DD, remain unknown. When coupled with animal models, the development of powerful precision neurotechnologies over the past decade carries significant promise for making new progress into understanding the neurobiology of MMN with previously unreachable spatial resolution. Currently, rodent models represent the best tool for mechanistic study due to the vast genetic tools available. While quantifying human-like MMN waveforms in rodents is not straightforward, the “oddball” paradigms used to study it in humans and its underlying subcomponents (SSA/DD) are highly translatable across species. Here we summarize efforts published so far, with a focus on cortically measured SSA and DD in animals to maintain relevance to the classically measured MMN, which has cortical origins. While mechanistic studies that measure and contrast both components are sparse, we synthesize a potential set of microcircuit mechanisms from the existing rodent, primate, and human literature. While MMN and its subcomponents likely reflect several mechanisms across multiple brain regions, understanding fundamental microcircuit mechanisms is an important step to understand MMN as a whole. We hypothesize that SSA reflects adaptations occurring at synapses along the sensory-thalamocortical pathways, while DD depends on both SSA inherited from afferent inputs and resulting disinhibition of non-adapted neurons arising from the distinct physiology and wiring properties of local interneuronal subpopulations and NMDA-receptor function.
Collapse
Affiliation(s)
- Jordan M Ross
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, United States.,Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
21
|
Fong CY, Law WHC, Uka T, Koike S. Auditory Mismatch Negativity Under Predictive Coding Framework and Its Role in Psychotic Disorders. Front Psychiatry 2020; 11:557932. [PMID: 33132932 PMCID: PMC7511529 DOI: 10.3389/fpsyt.2020.557932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Traditional neuroscience sees sensory perception as a simple feedforward process. This view is challenged by the predictive coding model in recent years due to the robust evidence researchers had found on how our prediction could influence perception. In the first half of this article, we reviewed the concept of predictive brain and some empirical evidence of sensory prediction in visual and auditory processing. The predictive function along the auditory pathway was mainly studied by mismatch negativity (MMN)-a brain response to an unexpected disruption of regularity. We summarized a range of MMN paradigms and discussed how they could contribute to the theoretical development of the predictive coding neural network by the mechanism of adaptation and deviance detection. Such methodological and conceptual evolution sharpen MMN as a tool to better understand the structural and functional brain abnormality for neuropsychiatric disorder such as schizophrenia.
Collapse
Affiliation(s)
- Chun Yuen Fong
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Meguro-ku, Japan
| | - Wai Him Crystal Law
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Meguro-ku, Japan
| | - Takanori Uka
- Department of Integrative Physiology, Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Meguro-ku, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Meguro-ku, Japan.,University of Tokyo Center for Integrative Science of Human Behavior (CiSHuB), 3-8-1 Komaba, Meguro-ku, Japan.,The International Research Center for Neurointelligence (WPI-IRCN), Institutes for Advanced Study (UTIAS), University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
22
|
Carbajal GV, Malmierca MS. The Neuronal Basis of Predictive Coding Along the Auditory Pathway: From the Subcortical Roots to Cortical Deviance Detection. Trends Hear 2019; 22:2331216518784822. [PMID: 30022729 PMCID: PMC6053868 DOI: 10.1177/2331216518784822] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this review, we attempt to integrate the empirical evidence regarding stimulus-specific adaptation (SSA) and mismatch negativity (MMN) under a predictive coding perspective (also known as Bayesian or hierarchical-inference model). We propose a renewed methodology for SSA study, which enables a further decomposition of deviance detection into repetition suppression and prediction error, thanks to the use of two controls previously introduced in MMN research: the many-standards and the cascade sequences. Focusing on data obtained with cellular recordings, we explain how deviance detection and prediction error are generated throughout hierarchical levels of processing, following two vectors of increasing computational complexity and abstraction along the auditory neuraxis: from subcortical toward cortical stations and from lemniscal toward nonlemniscal divisions. Then, we delve into the particular characteristics and contributions of subcortical and cortical structures to this generative mechanism of hierarchical inference, analyzing what is known about the role of neuromodulation and local microcircuitry in the emergence of mismatch signals. Finally, we describe how SSA and MMN are occurring at similar time frame and cortical locations, and both are affected by the manipulation of N-methyl- D-aspartate receptors. We conclude that there is enough empirical evidence to consider SSA and MMN, respectively, as the microscopic and macroscopic manifestations of the same physiological mechanism of deviance detection in the auditory cortex. Hence, the development of a common theoretical framework for SSA and MMN is all the more recommendable for future studies. In this regard, we suggest a shared nomenclature based on the predictive coding interpretation of deviance detection.
Collapse
Affiliation(s)
- Guillermo V Carbajal
- 1 Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castile and León, University of Salamanca, Salamanca, Spain.,2 Salamanca Institute for Biomedical Research, Spain
| | - Manuel S Malmierca
- 1 Auditory Neuroscience Laboratory (Lab 1), Institute of Neuroscience of Castile and León, University of Salamanca, Salamanca, Spain.,2 Salamanca Institute for Biomedical Research, Spain.,3 Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Spain
| |
Collapse
|
23
|
Xie Z, Reetzke R, Chandrasekaran B. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech. Neuroscience 2018; 384:64-75. [PMID: 29802881 DOI: 10.1016/j.neuroscience.2018.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023]
Abstract
Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner.
Collapse
Affiliation(s)
- Zilong Xie
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rachel Reetzke
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bharath Chandrasekaran
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA; Department of Linguistics, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Mental Health Research, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
24
|
Chen C, Cheng M, Ito T, Song S. Neuronal Organization in the Inferior Colliculus Revisited with Cell-Type-Dependent Monosynaptic Tracing. J Neurosci 2018; 38:3318-3332. [PMID: 29483283 PMCID: PMC6596054 DOI: 10.1523/jneurosci.2173-17.2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023] Open
Abstract
The inferior colliculus (IC) is a critical integration center in the auditory pathway. However, because the inputs to the IC have typically been studied by the use of conventional anterograde and retrograde tracers, the neuronal organization and cell-type-specific connections in the IC are poorly understood. Here, we used monosynaptic rabies tracing and in situ hybridization combined with excitatory and inhibitory Cre transgenic mouse lines of both sexes to characterize the brainwide and cell-type-specific inputs to specific neuron types within the lemniscal IC core and nonlemniscal IC shell. We observed that both excitatory and inhibitory neurons of the IC shell predominantly received ascending inputs rather than descending or core inputs. Correlation and clustering analyses revealed two groups of excitatory neurons in the shell: one received inputs from a combination of ascending nuclei, and the other received inputs from a combination of descending nuclei, neuromodulatory nuclei, and the contralateral IC. In contrast, inhibitory neurons in the core received inputs from the same combination of all nuclei. After normalizing the extrinsic inputs, we found that core inhibitory neurons received a higher proportion of inhibitory inputs from the ventral nucleus of the lateral lemniscus than excitatory neurons. Furthermore, the inhibitory neurons preferentially received inhibitory inputs from the contralateral IC shell. Because IC inhibitory neurons innervate the thalamus and contralateral IC, the inhibitory inputs we uncovered here suggest two long-range disinhibitory circuits. In summary, we found: (1) dominant ascending inputs to the shell, (2) two subpopulations of shell excitatory neurons, and (3) two disinhibitory circuits.SIGNIFICANCE STATEMENT Sound undergoes extensive processing in the brainstem. The inferior colliculus (IC) core is classically viewed as the integration center for ascending auditory information, whereas the IC shell integrates descending feedback information. Here, we demonstrate that ascending inputs predominated in the IC shell but appeared to be separated from the descending inputs. The presence of inhibitory projection neurons is a unique feature of the auditory ascending pathways, but the connections of these neurons are poorly understood. Interestingly, we also found that inhibitory neurons in the IC core and shell preferentially received inhibitory inputs from ascending nuclei and contralateral IC, respectively. Therefore, our results suggest a bipartite domain in the IC shell and disinhibitory circuits in the IC.
Collapse
Affiliation(s)
- Chenggang Chen
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Mingxiu Cheng
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences, Beijing, 102206, China, and
| | - Tetsufumi Ito
- Anatomy II, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Sen Song
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China,
| |
Collapse
|
25
|
宋 长, 魏 金, 李 绿, 肖 中. [Effects of auditory response patterns on stimulus-specific adaptation of inferior colliculus neurons in awake mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:69-74. [PMID: 33177024 PMCID: PMC6765611 DOI: 10.3969/j.issn.1673-4254.2018.01.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To explore whether the pattern of neuron's auditory response to a sound stimulus affects the characteristics of stimulus-specific adaptation (SSA) in awake mice. METHODS The auditory responses of the neurons in the inferior colliculus to sound stimuli were recorded using microelectrodes in awake mice. The sequence of sound stimuli consisted of random combinations of pure tones of two different frequencies (f1 and f2) with different repetition rates. The auditory responses of the neurons to standard and deviant stimuli were calculated, namely s(f2)/s(f2) and d(f1)/d(f2), respectively. Three indexes of the responses were also calculated, including the firing difference index (FDI), frequency-specific index (SI), and common SSA index(CSI). RESULTS The CSI of neurons with a greater FDI was significantly higher than that of neurons with a smaller FDI (P < 0.05). The primary-like neurons showed different characteristics of SSAs in different time periods; SSA was significantly increased in the phase of sustained response compared with that at the onset of response (P < 0.05). CONCLUSIONS The auditory response pattern to sound stimuli is also an important factor that affect SSA of inferior colliculus neurons in awake mice.
Collapse
Affiliation(s)
- 长宝 宋
- />南方医科大学基础医学院生理学教研室,广东 广州 510515Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 金星 魏
- />南方医科大学基础医学院生理学教研室,广东 广州 510515Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 绿 李
- />南方医科大学基础医学院生理学教研室,广东 广州 510515Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 中举 肖
- />南方医科大学基础医学院生理学教研室,广东 广州 510515Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Neurons, Connections, and Microcircuits of the Inferior Colliculus. THE MAMMALIAN AUDITORY PATHWAYS 2018. [DOI: 10.1007/978-3-319-71798-2_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Parras GG, Nieto-Diego J, Carbajal GV, Valdés-Baizabal C, Escera C, Malmierca MS. Neurons along the auditory pathway exhibit a hierarchical organization of prediction error. Nat Commun 2017; 8:2148. [PMID: 29247159 PMCID: PMC5732270 DOI: 10.1038/s41467-017-02038-6] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022] Open
Abstract
Perception is characterized by a reciprocal exchange of predictions and prediction error signals between neural regions. However, the relationship between such sensory mismatch responses and hierarchical predictive processing has not yet been demonstrated at the neuronal level in the auditory pathway. We recorded single-neuron activity from different auditory centers in anaesthetized rats and awake mice while animals were played a sequence of sounds, designed to separate the responses due to prediction error from those due to adaptation effects. Here we report that prediction error is organized hierarchically along the central auditory pathway. These prediction error signals are detectable in subcortical regions and increase as the signals move towards auditory cortex, which in turn demonstrates a large-scale mismatch potential. Finally, the predictive activity of single auditory neurons underlies automatic deviance detection at subcortical levels of processing. These results demonstrate that prediction error is a fundamental component of singly auditory neuron responses.
Collapse
Affiliation(s)
- Gloria G Parras
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain
| | - Javier Nieto-Diego
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain
| | - Guillermo V Carbajal
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain
| | - Catalina Valdés-Baizabal
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, 08035, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, 08035, Catalonia, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950, Catalonia, Spain
| | - Manuel S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León (INCYL), Salamanca, 37007, Castilla y León, Spain. .,The Salamanca Institute for Biomedical Research (IBSAL), Salamanca, 37007, Castilla y León, Spain. .,Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, Salamanca, 37007, Castilla y León, Spain.
| |
Collapse
|
28
|
The effect of inhibition on stimulus-specific adaptation in the inferior colliculus. Brain Struct Funct 2017; 223:1391-1407. [PMID: 29143124 DOI: 10.1007/s00429-017-1546-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
The inferior colliculus is a center of convergence for inhibitory and excitatory synaptic inputs that may be activated simultaneously by sound stimulation. Stimulus repetition may generate response habituation by changing the efficacy of neuron's synaptic inputs. Specialized IC neurons reduce their response to repetitive tones, but restore their firing when a different and infrequent tone occurs, a phenomenon known as stimulus specific adaptation. Here, using the microiontophoresis technique, we determined the role of GABAA-, GABAB-, and glycinergic receptors in stimulus-specific adaptation (SSA). We found that blockade of postsynaptic GABAB receptors selectively modulated response adaptation to repetitive sounds, whereas blockade of presynaptic GABAB receptors exerted a gain control effect on neuron excitability. Adaptation decreased when postsynaptic GABAB receptors were blocked, but increased if the blockade affected the presynaptic GABAB receptors. A dual, paradoxical effect was elicited by blockade of glycinergic receptors, i.e., both increase and decrease in adaptation. Moreover, simultaneous co-application of GABAA, GABAB, and glycinergic antagonists demonstrated that local GABA- and glycine-mediated inhibition contributes to only about 50% of SSA. Therefore, inhibition via chemical synapses dynamically modulate the strength and dynamics of stimulus-specific adaptation, but does not generate it.
Collapse
|
29
|
Valdés-Baizabal C, Parras GG, Ayala YA, Malmierca MS. Endocannabinoid Modulation of Stimulus-Specific Adaptation in Inferior Colliculus Neurons of the Rat. Sci Rep 2017; 7:6997. [PMID: 28765608 PMCID: PMC5539202 DOI: 10.1038/s41598-017-07460-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/26/2017] [Indexed: 11/11/2022] Open
Abstract
Cannabinoid receptors (CBRs) are widely distributed in the brain, including the inferior colliculus (IC). Here, we aim to study whether endocannabinoids influence a specific type of neuronal adaptation, namely, stimulus-specific adaptation (SSA) found in some IC neurons. SSA is important because it has been found as early as the level of the midbrain and therefore it may be a neuronal correlate of early indices of deviance detection. Furthermore, recent studies have demonstrated a direct link between SSA and MMN, that is widely used as an outcome measure in a variety of human neurodegenerative disorders. SSA is considered a form of short-term plasticity, and CBRs have been shown to play a role in short-term neural plasticity. Therefore, it is reasonable to hypothesize that endocannabinoids may play a role in the generation or modulation of SSA. We recorded single units in the IC under an oddball paradigm stimulation. The results demonstrate that cannabinoid agonists lead to a reduction in the neuronal adaptation. This change is due to a differential increase of the neuronal firing rate to the standard tone alone. Furthermore, we show that the effect is mediated by the cannabinoid receptor 1 (CBR1). Thus, cannabinoid agonists down-modulate SSA in IC neurons.
Collapse
Affiliation(s)
- C Valdés-Baizabal
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - G G Parras
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.,The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain
| | - Y A Ayala
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain.,Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - M S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, Calle Pintor Fernando Gallego 1, 37007, Salamanca, Spain. .,The Salamanca Institute for Biomedical Research (IBSAL), 37007, Salamanca, Spain. .,Department of Biology and Pathology, Faculty of Medicine, Campus Miguel de Unamuno, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
30
|
Spatial Processing Is Frequency Specific in Auditory Cortex But Not in the Midbrain. J Neurosci 2017; 37:6588-6599. [PMID: 28559383 PMCID: PMC5511886 DOI: 10.1523/jneurosci.3034-16.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 11/25/2022] Open
Abstract
The cochlea behaves like a bank of band-pass filters, segregating information into different frequency channels. Some aspects of perception reflect processing within individual channels, but others involve the integration of information across them. One instance of this is sound localization, which improves with increasing bandwidth. The processing of binaural cues for sound location has been studied extensively. However, although the advantage conferred by bandwidth is clear, we currently know little about how this additional information is combined to form our percept of space. We investigated the ability of cells in the auditory system of guinea pigs to compare interaural level differences (ILDs), a key localization cue, between tones of disparate frequencies in each ear. Cells in auditory cortex believed to be integral to ILD processing (excitatory from one ear, inhibitory from the other: EI cells) compare ILDs separately over restricted frequency ranges which are not consistent with their monaural tuning. In contrast, cells that are excitatory from both ears (EE cells) show no evidence of frequency-specific processing. Both cell types are explained by a model in which ILDs are computed within separate frequency channels and subsequently combined in a single cortical cell. Interestingly, ILD processing in all inferior colliculus cell types (EE and EI) is largely consistent with processing within single, matched-frequency channels from each ear. Our data suggest a clear constraint on the way that localization cues are integrated: cortical ILD tuning to broadband sounds is a composite of separate, frequency-specific, binaurally sensitive channels. This frequency-specific processing appears after the level of the midbrain. SIGNIFICANCE STATEMENT For some sensory modalities (e.g., somatosensation, vision), the spatial arrangement of the outside world is inherited by the brain from the periphery. The auditory periphery is arranged spatially by frequency, not spatial location. Therefore, our auditory perception of location must be synthesized from physical cues in separate frequency channels. There are multiple cues (e.g., timing, level, spectral cues), but even single cues (e.g., level differences) are frequency dependent. The synthesis of location must account for this frequency dependence, but it is not known how this might occur. Here, we investigated how interaural-level differences are combined across frequency along the ascending auditory system. We found that the integration in auditory cortex preserves the independence of the different-level cues in different frequency regions.
Collapse
|
31
|
Tolnai S, Beutelmann R, Klump GM. Effect of preceding stimulation on sound localization and its representation in the auditory midbrain. Eur J Neurosci 2017; 45:460-471. [PMID: 27891687 DOI: 10.1111/ejn.13491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/27/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra Tolnai
- Cluster of Excellence Hearing4all; Animal Physiology and Behaviour Group; Department of Neuroscience; School of Medicine and Health Sciences; University of Oldenburg; Oldenburg D-26111 Germany
| | - Rainer Beutelmann
- Cluster of Excellence Hearing4all; Animal Physiology and Behaviour Group; Department of Neuroscience; School of Medicine and Health Sciences; University of Oldenburg; Oldenburg D-26111 Germany
| | - Georg M. Klump
- Cluster of Excellence Hearing4all; Animal Physiology and Behaviour Group; Department of Neuroscience; School of Medicine and Health Sciences; University of Oldenburg; Oldenburg D-26111 Germany
| |
Collapse
|
32
|
Happel MFK, Ohl FW. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input. PLoS One 2017; 12:e0169461. [PMID: 28046062 PMCID: PMC5207691 DOI: 10.1371/journal.pone.0169461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/16/2016] [Indexed: 11/20/2022] Open
Abstract
Robust perception of auditory objects over a large range of sound intensities is a fundamental feature of the auditory system. However, firing characteristics of single neurons across the entire auditory system, like the frequency tuning, can change significantly with stimulus intensity. Physiological correlates of level-constancy of auditory representations hence should be manifested on the level of larger neuronal assemblies or population patterns. In this study we have investigated how information of frequency and sound level is integrated on the circuit-level in the primary auditory cortex (AI) of the Mongolian gerbil. We used a combination of pharmacological silencing of corticocortically relayed activity and laminar current source density (CSD) analysis. Our data demonstrate that with increasing stimulus intensities progressively lower frequencies lead to the maximal impulse response within cortical input layers at a given cortical site inherited from thalamocortical synaptic inputs. We further identified a temporally precise intercolumnar synaptic convergence of early thalamocortical and horizontal corticocortical inputs. Later tone-evoked activity in upper layers showed a preservation of broad tonotopic tuning across sound levels without shifts towards lower frequencies. Synaptic integration within corticocortical circuits may hence contribute to a level-robust representation of auditory information on a neuronal population level in the auditory cortex.
Collapse
Affiliation(s)
- Max F. K. Happel
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University, D-39120 Magdeburg, Germany
- * E-mail: (MH); (FO)
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology, D-39118, Magdeburg, Germany
- Institute of Biology, Otto-von-Guericke-University, D-39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- * E-mail: (MH); (FO)
| |
Collapse
|
33
|
The Janus Face of Auditory Learning: How Life in Sound Shapes Everyday Communication. THE FREQUENCY-FOLLOWING RESPONSE 2017. [DOI: 10.1007/978-3-319-47944-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Functional magnetic resonance imaging confirms forward suppression for rapidly alternating sounds in human auditory cortex but not in the inferior colliculus. Hear Res 2016; 335:25-32. [PMID: 26899342 DOI: 10.1016/j.heares.2016.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/08/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022]
Abstract
Forward suppression at the level of the auditory cortex has been suggested to subserve auditory stream segregation. Recent results in non-streaming stimulation contexts have indicated that forward suppression can also be observed in the inferior colliculus; whether this holds for streaming-related contexts remains unclear. Here, we used cardiac-gated fMRI to examine forward suppression in the inferior colliculus (and the rest of the human auditory pathway) in response to canonical streaming stimuli (rapid tone sequences comprised of either one repetitive tone or two alternating tones). The first stimulus is typically perceived as a single stream, the second as two interleaved streams. In different experiments using either pure tones differing in frequency or bandpass-filtered noise differing in inter-aural time differences, we observed stronger auditory cortex activation in response to alternating vs. repetitive stimulation, consistent with the presence of forward suppression. In contrast, activity in the inferior colliculus and other subcortical nuclei did not significantly differ between alternating and monotonic stimuli. This finding could be explained by active amplification of forward suppression in auditory cortex, by a low rate (or absence) of cells showing forward suppression in inferior colliculus, or both.
Collapse
|
35
|
Ono M, Ito T. Functional organization of the mammalian auditory midbrain. J Physiol Sci 2015; 65:499-506. [PMID: 26362672 PMCID: PMC10718034 DOI: 10.1007/s12576-015-0394-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022]
Abstract
The inferior colliculus (IC) is a critical nexus between the auditory brainstem and the forebrain. Parallel auditory pathways that emerge from the brainstem are integrated in the IC. In this integration, de-novo auditory information processed as local and ascending inputs converge via the complex neural circuit of the IC. However, it is still unclear how information is processed within the neural circuit. The purpose of this review is to give an anatomical and physiological overview of the IC neural circuit. We address the functional organization of the IC where the excitatory and inhibitory synaptic inputs interact to shape the responses of IC neurons to sound.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
- Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, 910-8507, Japan
| |
Collapse
|
36
|
Kraus N, White-Schwoch T. Unraveling the Biology of Auditory Learning: A Cognitive-Sensorimotor-Reward Framework. Trends Cogn Sci 2015; 19:642-654. [PMID: 26454481 PMCID: PMC4754986 DOI: 10.1016/j.tics.2015.08.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 01/03/2023]
Abstract
The auditory system is stunning in its capacity for change: a single neuron can modulate its tuning in minutes. Here we articulate a conceptual framework to understand the biology of auditory learning where an animal must engage cognitive, sensorimotor, and reward systems to spark neural remodeling. Central to our framework is a consideration of the auditory system as an integrated whole that interacts with other circuits to guide and refine life in sound. Despite our emphasis on the auditory system, these principles may apply across the nervous system. Understanding neuroplastic changes in both normal and impaired sensory systems guides strategies to improve everyday communication.
Collapse
Affiliation(s)
- Nina Kraus
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, IL, USA; Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA; Department of Otolaryngology, Northwestern University, Chicago, IL, USA.
| | - Travis White-Schwoch
- Auditory Neuroscience Laboratory and Department of Communication Sciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
37
|
Shen L, Zhao L, Hong B. Frequency-specific adaptation and its underlying circuit model in the auditory midbrain. Front Neural Circuits 2015; 9:55. [PMID: 26483641 PMCID: PMC4589587 DOI: 10.3389/fncir.2015.00055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/16/2015] [Indexed: 11/13/2022] Open
Abstract
Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior colliculus (IC) changed when exposed to a biased tone sequence. Pure tone with one specific frequency (adaptor) was presented markedly more often than others. The adapted tuning was compared with the original tuning measured with an unbiased sequence. We found inhomogeneous changes in frequency tuning in IC, exhibiting a center-surround pattern with respect to the neuron's best frequency. Central adaptors elicited strong suppressive and repulsive changes while flank adaptors induced facilitative and attractive changes. Moreover, we proposed a two-layer model of the underlying network, which not only reproduced the adaptive changes in the receptive fields but also predicted novelty responses to oddball sequences. These results suggest that frequency-specific adaptation in auditory midbrain can be accounted for by an adapted frequency channel and its lateral spreading of adaptation, which shed light on the organization of the underlying circuitry.
Collapse
Affiliation(s)
- Li Shen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing, China
| | - Lingyun Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University Beijing, China
| |
Collapse
|
38
|
Ayala YA, Malmierca MS. Cholinergic Modulation of Stimulus-Specific Adaptation in the Inferior Colliculus. J Neurosci 2015; 35:12261-72. [PMID: 26338336 PMCID: PMC6605313 DOI: 10.1523/jneurosci.0909-15.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/13/2015] [Accepted: 07/28/2015] [Indexed: 01/28/2023] Open
Abstract
Neural encoding of an ever-changing acoustic environment is a complex and demanding process that depends on modulation by neuroactive substances. Some neurons of the inferior colliculus (IC) exhibit "stimulus-specific adaptation" (SSA), i.e., a decrease in their response to a repetitive sound, but not to a rare one. Previous studies have demonstrated that acetylcholine (ACh) alters the frequency response areas of auditory neurons and therefore is important in the encoding of spectral information. Here, we address how microiontophoretic application of ACh modulates SSA in the IC of the anesthetized rat. We found that ACh decreased SSA in IC neurons by increasing the response to the repetitive tone. This effect was mainly mediated by muscarinic receptors. The strength of the cholinergic modulation depended on the baseline SSA level, exerting its greatest effect on neurons with intermediate SSA responses across IC subdivisions. Our data demonstrate that the increased availability of ACh exerts transient functional changes in partially adapting IC neurons, enhancing the sensory encoding of the ongoing stimulation. This effect potentially contributes to the propagation of ascending sensory-evoked afferent activity through the thalamus en route to the cortex. SIGNIFICANCE STATEMENT Neural encoding of an ever-changing acoustic environment is a complex and demanding task that may depend on the available levels of neuroactive substances. We explored how the cholinergic inputs affect the responses of neurons in the auditory midbrain that exhibit different degrees of stimulus-specific adaptation (SSA), i.e., a specific decrease in their response to a repeated sound that does not generalize to other, rare sounds. This work addresses the role of cholinergic synaptic inputs as well as the contribution of the muscarinic and nicotinic receptors on SSA. This is the first report on the role of neuromodulation on SSA, and the results contribute to our understanding of the cellular bases for processing low- and high-probability sounds.
Collapse
Affiliation(s)
- Yaneri A Ayala
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León and
| | - Manuel S Malmierca
- Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León and Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|