1
|
Zrihan S, Itay P, Kroin Y, Davidovich N, Wosnick N, Tchernov D, Koh XP, Lau SCK, Morick D. Monitoring Fish Bacterial Pathogens of Wild Fish Species From the South China Sea by Applying Next-Generation Sequencing on Gill Tissue. JOURNAL OF FISH DISEASES 2025; 48:e14050. [PMID: 39575841 PMCID: PMC11706320 DOI: 10.1111/jfd.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The classic epidemiological triangle model of host-environment-pathogen is recently being reshaped into a tetrahedron, with the growing understanding of the importance of the microbiome in this array. The gills, being a gateway into the fish body, bearing an important role in fish homeostasis, host a complex microbiome that reflects the ambient water, while also showing resemblance to gut microbiome. Next-generation sequencing (NGS) and improvements in data analysis tools enable researchers to gather and analyse a lot more data than ever before, take a closer, more detailed look at microbiota, and gain a much better understanding of the biological processes at work in these complex relations. Here, 16S rRNA amplicons of bacterial DNA extracted from the gills of 36 asymptomatic specimens of three wild fish species from the South China Sea (Nemipterus japonicus, Alepes djebaba, and Saurida tumbil) were sequenced using NGS. Data analyses revealed the presence of 20 potentially pathogenic species, including several zoonotic agents. Gill microbiota exhibited host species-specificity, and expressed a significant difference between demersal and pelagic-amphidromous fish. It is suggested that this method be more widely implemented, in order to gain more insight on ocean ecosystems' health status, as well as fish stocks of commercial importance.
Collapse
Affiliation(s)
- Shlomi Zrihan
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Department of Marine Biology, Leon H. Charney School of Marine SciencesUniversity of HaifaSdot YamIsrael
| | - Peleg Itay
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Department of Blue Biotechnologies and Sustainable Mariculture, The Leon H. Charney School of Marine SciencesUniversity of HaifaSdot YamIsrael
| | - Yael Kroin
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
| | - Nadav Davidovich
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Israeli Veterinary ServicesBet DaganIsrael
| | - Natascha Wosnick
- Programa de Pós‐Graduação Em ZoologiaUniversidade Federal Do ParanáCuritibaBrazil
| | - Dan Tchernov
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Department of Marine Biology, Leon H. Charney School of Marine SciencesUniversity of HaifaSdot YamIsrael
| | - Xiu Pei Koh
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyHong KongSARChina
| | - Stanley C. K. Lau
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyHong KongSARChina
| | - Danny Morick
- Morris Kahn Marine Research StationUniversity of HaifaSdot YamIsrael
- Department of Blue Biotechnologies and Sustainable Mariculture, The Leon H. Charney School of Marine SciencesUniversity of HaifaSdot YamIsrael
| |
Collapse
|
2
|
Duarte Rosado JG, Delgadillo-Ordoñez N, Monti M, Peinemann VN, Antony CP, Alsaggaf A, Raimundo I, Coker D, Garcias-Bonet N, García F, Peixoto RS, Carvalho S, Berumen ML. Coral probiotics induce tissue-specific and putative beneficial microbiome restructuring in a coral-dwelling fish. ISME COMMUNICATIONS 2025; 5:ycaf052. [PMID: 40230573 PMCID: PMC11994995 DOI: 10.1093/ismeco/ycaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/12/2025] [Accepted: 03/19/2025] [Indexed: 04/16/2025]
Abstract
The ongoing fourth mass global coral bleaching event reinforces the need for active solutions to support corals through this major crisis. The use of beneficial microorganisms for corals (BMCs) offers a promising nature-based solution to rehabilitate coral's dysbiotic microbiomes. While the benefits to corals are increasingly recognized, the impacts on associated reef organisms, such as fish, remain unexplored. This study investigated the effects of BMCs on the tissue-associated microbiomes of Dascyllus abudafur (Pomacentridae), a damselfish that lives closely associated with coral colonies. Over three months, we applied BMCs three times per week to healthy Pocillopora verrucosa colonies in the central Red Sea and analyzed the resultant changes in the inhabiting fish's microbiomes. Our findings reveal significant, tissue-specific shifts in bacterial communities, particularly skin and gut, with moderate changes observed in gills. Notably, putative fish beneficial bacteria such as Mitsuokella spp. were enriched in the skin, while various Firmicutes taxa increased in the gut. There was also a marked decrease in potential fish pathogens. This study highlights the potential extended benefits of BMCs on coral reef fish and sets a foundation for understanding the broader ecological interactions between BMCs and reef-associated organisms.
Collapse
Affiliation(s)
| | | | - Matteo Monti
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Viktor Nunes Peinemann
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Chakkiath Paul Antony
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Ahmed Alsaggaf
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Inês Raimundo
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Darren Coker
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Neus Garcias-Bonet
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Francisca García
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Raquel Silva Peixoto
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Susana Carvalho
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| | - Michael L Berumen
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah, 23955-6900, Saudi Arabia
| |
Collapse
|
3
|
Gilmour KM, Turko AJ. Effects of structural remodelling on gill physiology. J Comp Physiol B 2024; 194:595-609. [PMID: 38758304 DOI: 10.1007/s00360-024-01558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024]
Abstract
The complex relationships between the structure and function of fish gills have been of interest to comparative physiologists for many years. Morphological plasticity of the gill provides a dynamic mechanism to reversibly alter its structure in response to changes in the conditions experienced by the fish. The best known example of gill remodelling is the growth or retraction of cell masses between the lamellae, a rapid process that alters the lamellar surface area that is exposed to the water (i.e. the functional lamellar surface area). Decreases in environmental O2 availability and/or increases in metabolic O2 demand stimulate uncovering of the lamellae, presumably to increase the capacity for O2 uptake. This review addresses four questions about gill remodelling: (1) what types of reversible morphological changes occur; (2) how do these changes affect physiological function from the gill to the whole animal; (3) what factors regulate reversible gill plasticity; and (4) is remodelling phylogenetically widespread among fishes? We address these questions by surveying the current state of knowledge of gill remodelling in fishes, with a focus on identifying gaps in our understanding that future research should consider.
Collapse
Affiliation(s)
- Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada.
| | - Andy J Turko
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Koll R, Theilen J, Hauten E, Woodhouse JN, Thiel R, Möllmann C, Fabrizius A. Network-based integration of omics, physiological and environmental data in real-world Elbe estuarine Zander. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173656. [PMID: 38830414 DOI: 10.1016/j.scitotenv.2024.173656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic measurements in a network analysis approach to decipher the impact of multiple stressors on the health of juvenile Sander lucioperca along one of the largest European estuaries. We find mesohaline areas characterized by gill tissue specific transcriptional responses matching osmosensing and tissue remodeling. Liver transcriptomes instead emphasized that zander from highly turbid areas were undergoing starvation which was supported by compromised body condition. Potential pathogenic bacteria, including Shewanella, Acinetobacter, Aeromonas and Chryseobacterium, dominated the gill microbiome along the freshwater transition and oxygen minimum zone. Their occurrence coincided with a strong adaptive and innate transcriptional immune response in host gill and enhanced energy demand in liver tissue supporting their potential pathogenicity. Taken together, we show physiological responses of a fish species and its microbiome to abiotic factors whose impact is expected to increase with consequences of climate change. We further present a method for the close-meshed detection of the main stressors and bacterial species with disease potential in a highly productive ecosystem.
Collapse
Affiliation(s)
- Raphael Koll
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany.
| | - Jesse Theilen
- University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Elena Hauten
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jason Nicholas Woodhouse
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Microbial and phytoplankton Ecology, Germany
| | - Ralf Thiel
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) - Hamburg site, Centre for Taxonomy & Morphology, Zoological Museum, Germany; University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Christian Möllmann
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Andrej Fabrizius
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany
| |
Collapse
|
5
|
Berggren H, Yıldırım Y, Nordahl O, Larsson P, Dopson M, Tibblin P, Lundin D, Pinhassi J, Forsman A. Ecological filtering drives rapid spatiotemporal dynamics in fish skin microbiomes. Mol Ecol 2024; 33:e17496. [PMID: 39161196 DOI: 10.1111/mec.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Skin microbiomes provide vital functions, yet knowledge about the drivers and processes structuring their species assemblages is limited-especially for non-model organisms. In this study, fish skin microbiome was assessed by high throughput sequencing of amplicon sequence variants from metabarcoding of V3-V4 regions in the 16S rRNA gene on fish hosts subjected to the following experimental manipulations: (i) translocation between fresh and brackish water habitats to investigate the role of environment; (ii) treatment with an antibacterial disinfectant to reboot the microbiome and investigate community assembly and priority effects; and (iii) maintained alone or in pairs to study the role of social environment and inter-host dispersal of microbes. The results revealed that fish skin microbiomes harbour a highly dynamic microbial composition that was distinct from bacterioplankton communities in the ambient water. Microbiome composition first diverged as an effect of translocation to either the brackish or freshwater habitat. When the freshwater individuals were translocated back to brackish water, their microbiome composition converged towards the fish microbiomes in the brackish habitat. In summary, external environmental conditions and individual-specific factors jointly determined the community composition dynamics, whereas inter-host dispersal had negligible effects. The dynamics of the microbiome composition was seemingly non-affected by reboot treatment, pointing towards high resilience to disturbance. The results emphasised the role of inter-individual variability for the unexplained variation found in many host-microbiome systems, although the mechanistic underpinnings remain to be identified.
Collapse
Affiliation(s)
- Hanna Berggren
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Oscar Nordahl
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
6
|
Montoya XC, Thompson WA, Smith CM, Wilson JM, Vijayan MM. Exposure to Total Suspended Solids (TSS) Impacts Gill Structure and Function in Adult Zebrafish. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:14. [PMID: 39012477 DOI: 10.1007/s00128-024-03922-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
Total suspended solids (TSS) are a major contributor of anthropogenic impacts to aquatic systems. TSS exposure have been shown to affect the function of gills, but the mode of action is unclear. Zebrafish (Danio rerio) is emerging as an excellent model for mechanistic toxicology, and as there are no baseline studies on TSS effects in zebrafish gills, we tested the hypothesis that environmental concentrations of TSS damages gill structure and function in this species. Adult zebrafish were exposed to either 0, 10, 100, 500, 1000, or 2000 mg/L TSS for 4 days to assess the gill morphology. The minimal concentration that affected the gill structure was further tested for the distribution of key ion transporters, including Na+/K+- ATPase (NKA) and vacuolar-type H+-ATPase (VHA), using confocal microscopy. Our results reveal that TSS concentration as low as 100 mg/L alters the morphology of gills, including greater filament thickness, lamellae thickness, and epithelial lifting. This was also associated with a reduction in NKA immunoreactive (IR) cell count and intensity in the 100 mg/L TSS group, while there was neither a change in the VHA-IR cell count or expression nor the transcript abundance of atp6v1a and atp1a1a4 in the gills. Markers of stress response in these animals, including levels of cortisol, glucose, lactate, and glycogen were not altered after 4 days of TSS exposure. Overall, environmentally relevant concentrations of TSS can damage the gill structure and function in zebrafish and has the potential to enhance the toxicity of contaminants acting via the gills.
Collapse
Affiliation(s)
- Xena C Montoya
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - W Andrew Thompson
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Courtney M Smith
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jonathan M Wilson
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
7
|
Firth BL, Craig PM, Drake DAR, Power M. Impact of turbidity on the gill morphology and hypoxia tolerance of eastern sand darter (Ammocrypta pellucida). JOURNAL OF FISH BIOLOGY 2024; 104:1888-1898. [PMID: 38506425 DOI: 10.1111/jfb.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/21/2024]
Abstract
Anthropogenic stressors such as agriculture and urbanization can increase river turbidity, which can negatively impact fish gill morphology and growth due to reduced oxygen in the benthic environment. We assessed the gill morphology, field metabolic rate (FMR), and two hypoxia tolerance metrics (oxygen partial pressure at loss of equilibrium, PO2 at LOE, and critical oxygen tension, Pcrit) of eastern sand darter (Ammocrypta pellucida), a small benthic fish listed as threatened under the Species at Risk Act in Canada, from rivers in southern Ontario. Field trials were conducted streamside in the Grand River (August 2019; mean NTU 8) and in the comparatively more turbid Thames River (August 2020; mean NTU 94) to test the effect of turbidity on each physiological endpoint. Gills were collected from incidental mortalities and museum specimens, and were assessed using hematoxylin and eosin and immunofluorescent staining. The between-river comparison indicated that turbidity significantly increased interlamellar space and filament width but had no significant influence on other gill morphometrics or FMR. Turbidity significantly increased PO2 at LOE (i.e., fish had a lower hypoxia tolerance) but did not significantly impact Pcrit. Therefore, although turbidity influences hypoxia tolerance through LOE, turbidity levels were not sufficiently high in the study rivers to contribute to measurable changes in gill morphology or metabolism in the wild. Determining whether changes in gill morphology or metabolism occur under higherturbidity levels would help resolve the ecological importance of turbidity on species physiology in urban and agricultural ecosystems.
Collapse
Affiliation(s)
- Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
8
|
Firth BL, Craig PM, Drake DAR, Power M. Impacts of temperature and turbidity on the gill physiology of darter species. Comp Biochem Physiol A Mol Integr Physiol 2024; 291:111589. [PMID: 38253199 DOI: 10.1016/j.cbpa.2024.111589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Fish gills are complex organs that have direct contact with the environment and perform numerous functions including gas exchange and ion regulation. Determining if gill morphometry can change under different environmental conditions to maintain and/or improve gas exchange and ion regulation is important for understanding if gill plasticity can improve survival with increasing environmental change. We assessed gill morphology (gas exchange and ion regulation metrics), hematocrit and gill Na+/K+ ATPase activity of wild-captured blackside darter (Percina maculata), greenside darter (Etheostoma blennioides), and johnny darter (Etheostoma nigrum) at two temperatures (10 and 25 °C) and turbidity levels (8 and 94 NTU). Samples were collected August and October 2020 in the Grand River to assess temperature differences, and August 2020 in the Thames River to assess turbidity differences. Significant effects of temperature and/or turbidity only impacted ionocyte number, lamellae width, and hematocrit. An increase in temperature decreased ionocyte number while an increase in turbidity increased lamellae width. Hematocrit had a species-specific response for both temperature and turbidity. Findings suggest that the three darter species have limited plasticity in gill morphology, with no observed compensatory changes in hematocrit or Na+/K+ ATPase activity to maintain homeostasis under the different environmental conditions.
Collapse
Affiliation(s)
- Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada. https://twitter.com/pcraig77
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, ON, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
9
|
Boussinet E, Nachón DJ, Sottolichio A, Lochet A, Stoll S, Bareille G, Tabouret H, Pécheyran C, Acolas ML, Daverat F. Juvenile downstream migration patterns of an anadromous fish, allis shad (Alosa alosa), before and after the population collapse in the Gironde system, France. JOURNAL OF FISH BIOLOGY 2024; 104:1054-1066. [PMID: 38168734 DOI: 10.1111/jfb.15647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Diadromous fish have exhibited a dramatic decline since the end of the 20th century. The allis shad (Alosa alosa) population in the Gironde-Garonne-Dordogne (GGD) system, once considered as a reference in Europe, remains low despite a fishing ban in 2008. One hypothesis to explain this decline is that the downstream migration and growth dynamics of young stages have changed due to environmental modifications in the rivers and estuary. We retrospectively analysed juvenile growth and migration patterns using otoliths from adults caught in the GGD system 30 years apart during their spawning migration, in 1987 and 2016. We coupled otolith daily growth increments and laser ablation inductively-coupled plasma mass spectrometry measurements of Sr:Ca, Ba:Ca, and Mn:Ca ratios along the longest growth axis from hatching to an age of 100 days (i.e., during the juvenile stage). A back-calculation allowed us to estimate the size of juveniles at the entrance into the brackish estuary. Based on the geochemistry data, we distinguished four different zones that juveniles encountered during their downstream migration: freshwater, fluvial estuary, brackish estuary, and lower estuary. We identified three migration patterns during the first 100 days of their life: (a) Individuals that reached the lower estuary zone, (b) individuals that reached the brackish estuary zone, and (c) individuals that reached the fluvial estuary zone. On average, juveniles from the 1987 subsample stayed slightly longer in freshwater than juveniles from the 2016 subsample. In addition, juveniles from the 2016 subsample entered the brackish estuary at a smaller size. This result suggests that juveniles from the 2016 subsample might have encountered more difficult conditions during their downstream migration, which we attribute to a longer exposure to the turbid maximum zone. This assumption is supported by the microchemical analyses of the otoliths, which suggests based on wider Mn:Ca peaks that juveniles in 2010s experienced a longer period of physiological stress during their downstream migration than juveniles in 1980s. Finally, juveniles from the 2016 subsample took longer than 100 days to exit the lower estuary than we would have expected from previous studies. Adding a new marker (i.e., Ba:Ca) helped us refine the interpretation of the downstream migration for each individual.
Collapse
Affiliation(s)
- Elodie Boussinet
- INRAE National Institute for Agriculture and Environment, UR EABX, Aquatic Ecosystems and Global Changes Research Unit, Cestas, France
- University of Applied Sciences Trier-Environmental Campus Birkenfeld, Hoppstädten-Weiersbach, Germany
| | - David José Nachón
- INRAE National Institute for Agriculture and Environment, UR EABX, Aquatic Ecosystems and Global Changes Research Unit, Cestas, France
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Vigo, Spain
| | - Aldo Sottolichio
- Université de Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac, France
| | - Aude Lochet
- Lake Champlain Sea Grant-SUNY Plattsburgh, Plattsburgh, New York, USA
| | - Stefan Stoll
- University of Applied Sciences Trier-Environmental Campus Birkenfeld, Hoppstädten-Weiersbach, Germany
| | - Gilles Bareille
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA, Pau, France
| | - Helene Tabouret
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA, Pau, France
| | - Christophe Pécheyran
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, MIRA, Pau, France
| | - Marie-Laure Acolas
- INRAE National Institute for Agriculture and Environment, UR EABX, Aquatic Ecosystems and Global Changes Research Unit, Cestas, France
| | - Françoise Daverat
- INRAE National Institute for Agriculture and Environment, UR EABX, Aquatic Ecosystems and Global Changes Research Unit, Cestas, France
| |
Collapse
|
10
|
Amill F, Gauthier J, Rautio M, Derome N. Characterization of gill bacterial microbiota in wild Arctic char ( Salvelinus alpinus) across lakes, rivers, and bays in the Canadian Arctic ecosystems. Microbiol Spectr 2024; 12:e0294323. [PMID: 38329329 PMCID: PMC10923216 DOI: 10.1128/spectrum.02943-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
Teleost gill mucus has a highly diverse microbiota, which plays an essential role in the host's fitness and is greatly influenced by the environment. Arctic char (Salvelinus alpinus), a salmonid well adapted to northern conditions, faces multiple stressors in the Arctic, including water chemistry modifications, that could negatively impact the gill microbiota dynamics related to the host's health. In the context of increasing environmental disturbances, we aimed to characterize the taxonomic distribution of transcriptionally active taxa within the bacterial gill microbiota of Arctic char in the Canadian Arctic in order to identify active bacterial composition that correlates with environmental factors. For this purpose, a total of 140 adult anadromous individuals were collected from rivers, lakes, and bays belonging to five Inuit communities located in four distinct hydrologic basins in the Canadian Arctic (Nunavut and Nunavik) during spring (May) and autumn (August). Various environmental factors were collected, including latitudes, water and air temperatures, oxygen concentration, pH, dissolved organic carbon (DOC), salinity, and chlorophyll-a concentration. The taxonomic distribution of transcriptionally active taxa within the gill microbiota was quantified by 16S rRNA gene transcripts sequencing. The results showed differential bacterial activity between the different geographical locations, explained by latitude, salinity, and, to a lesser extent, air temperature. Network analysis allowed the detection of a potential dysbiosis signature (i.e., bacterial imbalance) in fish gill microbiota from Duquet Lake in the Hudson Strait and the system Five Mile Inlet connected to the Hudson Bay, both showing the lowest alpha diversity and connectivity between taxa.IMPORTANCEThis paper aims to decipher the complex relationship between Arctic char (Salvelinus alpinus) and its symbiotic microbial consortium in gills. This salmonid is widespread in the Canadian Arctic and is the main protein and polyunsaturated fatty acids source for Inuit people. The influence of environmental parameters on gill microbiota in wild populations remains poorly understood. However, assessing the Arctic char's active gill bacterial community is essential to look for potential pathogens or dysbiosis that could threaten wild populations. Here, we concluded that Arctic char gill microbiota was mainly influenced by latitude and air temperature, the latter being correlated with water temperature. In addition, a dysbiosis signature detected in gill microbiota was potentially associated with poor fish health status recorded in these disturbed environments. With those results, we hypothesized that rapid climate change and increasing anthropic activities in the Arctic might profoundly disturb Arctic char gill microbiota, affecting their survival.
Collapse
Affiliation(s)
- Flora Amill
- Institute of Integrative and Systems Biology, Laval University, Quebec, Canada
| | - Jeff Gauthier
- Institute of Integrative and Systems Biology, Laval University, Quebec, Canada
| | - Milla Rautio
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Nicolas Derome
- Institute of Integrative and Systems Biology, Laval University, Quebec, Canada
| |
Collapse
|
11
|
Godoy M, Coca Y, Suárez R, Montes de Oca M, Bledsoe JW, Burbulis I, Caro D, Pontigo JP, Maracaja-Coutinho V, Arias-Carrasco R, Rodríguez-Córdova L, Sáez-Navarrete C. Salmo salar Skin and Gill Microbiome during Piscirickettsia salmonis Infection. Animals (Basel) 2023; 14:97. [PMID: 38200828 PMCID: PMC10778177 DOI: 10.3390/ani14010097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Maintaining the high overall health of farmed animals is a central tenant of their well-being and care. Intense animal crowding in aquaculture promotes animal morbidity especially in the absence of straightforward methods for monitoring their health. Here, we used bacterial 16S ribosomal RNA gene sequencing to measure bacterial population dynamics during P. salmonis infection. We observed a complex bacterial community consisting of a previously undescribed core pathobiome. Notably, we detected Aliivibrio wodanis and Tenacibaculum dicentrarchi on the skin ulcers of salmon infected with P. salmonis, while Vibrio spp. were enriched on infected gills. The prevalence of these co-occurring networks indicated that coinfection with other pathogens may enhance P. salmonis pathogenicity.
Collapse
Affiliation(s)
- Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile; (M.M.d.O.); (D.C.)
- Laboratorio de Biotecnología, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile
| | - Yoandy Coca
- Doctorado en Ciencias de la Ingeniería, Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Macul, Chile;
| | - Rudy Suárez
- Programa de Magíster en Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1780000, Elqui, Chile;
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile; (M.M.d.O.); (D.C.)
| | - Jacob W. Bledsoe
- Department of Animal, Veterinary, and Food Sciences, Aquaculture Research Institute, University of Idaho, Hagerman, ID 83332, USA;
| | - Ian Burbulis
- Facultad de Medicina y Ciencia, Centro de Investigación Biomédica, Universidad San Sebastián, Sede Patagonia, Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile;
| | - Diego Caro
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile; (M.M.d.O.); (D.C.)
| | - Juan Pablo Pontigo
- Laboratorio Institucional, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Universidad San Sebastián, Sede Patagonia, Lago Panguipulli 1390, Puerto Montt 5480000, Región de Los Lagos, Chile;
| | - Vinicius Maracaja-Coutinho
- Unidad de Genómica Avanzada, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7820436, Macul, Chile;
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7820436, Macul, Chile
- Beagle Bioinformatics, Santiago 7820436, Macul, Chile
| | - Raúl Arias-Carrasco
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 7820436, Macul, Chile;
| | | | - César Sáez-Navarrete
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Macul, Chile;
- Centro de Investigación en Nanotecnología y Materiales Avanzados (CIEN-UC), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Macul, Chile
| |
Collapse
|
12
|
Berggren H, Nordahl O, Yıldırım Y, Larsson P, Tibblin P, Forsman A. Effects of environmental translocation and host characteristics on skin microbiomes of sun-basking fish. Proc Biol Sci 2023; 290:20231608. [PMID: 38113936 PMCID: PMC10730295 DOI: 10.1098/rspb.2023.1608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Variation in the composition of skin-associated microbiomes has been attributed to host species, geographical location and habitat, but the role of intraspecific phenotypic variation among host individuals remains elusive. We explored if and how host environment and different phenotypic traits were associated with microbiome composition. We conducted repeated sampling of dorsal and ventral skin microbiomes of carp individuals (Cyprinus carpio) before and after translocation from laboratory conditions to a semi-natural environment. Both alpha and beta diversity of skin-associated microbiomes increased substantially within and among individuals following translocation, particularly on dorsal body sites. The variation in microbiome composition among hosts was significantly associated with body site, sun-basking, habitat switch and growth, but not temperature gain while basking, sex, personality nor colour morph. We suggest that the overall increase in the alpha and beta diversity estimates among hosts were induced by individuals expressing greater variation in behaviours and thus exposure to potential colonizers in the pond environment compared with the laboratory. Our results exemplify how biological diversity at one level of organization (phenotypic variation among and within fish host individuals) together with the external environment impacts biological diversity at a higher hierarchical level of organization (richness and composition of fish-associated microbial communities).
Collapse
Affiliation(s)
- Hanna Berggren
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Oscar Nordahl
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Yeşerin Yıldırım
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial model Systems, EEMiS Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
13
|
Yan J, Li F. Effects of sediment dredging on freshwater system: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119612-119626. [PMID: 37962757 DOI: 10.1007/s11356-023-30851-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
As a common geo-engineering method to control internal load of nutrients and pollutants, sediment dredging has been used in many freshwater basins and has achieved certain effects. However, dredging can disturb water bodies and substrates and cause secondary pollution. It negatively affects the water environment system mainly from the following aspects. Dredging suddenly changes the hydrological conditions and many physical indicators of the water body, which will cause variations in water physicochemical properties. For example, changes in pH, dissolved oxygen, redox potential, transparency, and temperature can lead to a series of aquatic biological responses. On the other hand, sediment resuspension and deep-layer sediment exposure can affect the cycling of nutrients (e.g., nitrogen, phosphorus), the release and valence conversion of heavy metals, and the desorption and degradation of organic pollutants in the overlying water. This can further affect the community structure of aquatic organisms. The aim of this paper is to analyze the relevant literature on freshwater sediment dredging, and to summarize the current knowledge of the potential environmental risks caused by the dredging and utilization of freshwater sediments. Based on this, the paper attempts to propose suggestions to mitigate these adverse environmental impacts. These are significant contributions to the development of environmentally friendly freshwater sediment dredging technologies.
Collapse
Affiliation(s)
- Jiale Yan
- College of Economics and Management, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Irvine Valley College, Irvine, CA, 92612, USA
| | - Fang Li
- College of Economics and Management, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
14
|
Stenvers VI, Hauss H, Bayer T, Havermans C, Hentschel U, Schmittmann L, Sweetman AK, Hoving HJT. Experimental mining plumes and ocean warming trigger stress in a deep pelagic jellyfish. Nat Commun 2023; 14:7352. [PMID: 37990021 PMCID: PMC10663454 DOI: 10.1038/s41467-023-43023-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
The deep pelagic ocean is increasingly subjected to human-induced environmental change. While pelagic animals provide important ecosystem functions including climate regulation, species-specific responses to stressors remain poorly documented. Here, we investigate the effects of simulated ocean warming and sediment plumes on the cosmopolitan deep-sea jellyfish Periphylla periphylla, combining insights gained from physiology, gene expression and changes in associated microbiota. Metabolic demand was elevated following a 4 °C rise in temperature, promoting genes related to innate immunity but suppressing aerobic respiration. Suspended sediment plumes provoked the most acute and energetically costly response through the production of excess mucus (at ≥17 mg L-1), while inducing genes related to aerobic respiration and wound repair (at ≥167 mg L-1). Microbial symbionts appeared to be unaffected by both stressors, with mucus production maintaining microbial community composition. If these responses are representative for other gelatinous fauna, an abundant component of pelagic ecosystems, the effects of planned exploitation of seafloor resources may impair deep pelagic biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Vanessa I Stenvers
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany.
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, P.O. Box 37012, USA.
| | - Helena Hauss
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
- Norwegian Research Centre AS (NORCE), Stavanger, Norway
| | - Till Bayer
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Charlotte Havermans
- HYIG ARJEL, Functional Ecology, Alfred Wegner Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Ute Hentschel
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Lara Schmittmann
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
| | - Andrew K Sweetman
- Seafloor Ecology and Biogeochemistry Research Group, Scottish Association for Marine Science (SAMS), Oban, Scotland, UK
| | - Henk-Jan T Hoving
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
| |
Collapse
|
15
|
Zulfahmi I, El Rahimi SA, Suherman SD, Almunawarah A, Sardi A, Helmi K, Nafis B, Perdana AW, Adani KH, Admaja Nasution IA, Sumon KA, Rahman MM. Acute toxicity of palm oil mill effluent on zebrafish (Danio rerio Hamilton-Buchanan, 1822): Growth performance, behavioral responses and histopathological lesions. CHEMOSPHERE 2023; 340:139788. [PMID: 37574082 DOI: 10.1016/j.chemosphere.2023.139788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Evaluating the toxicity of Palm Oil Mill Effluent (POME) is critical as part of the effort to develop waste management regulations for the palm oil industry. In this study, we investigated the acute toxicity of POME on growth performance, behavioral response, and histopathology of gill and liver tissues of zebrafish (Danio rerio). In total, 550 adult male zebrafish were used for the toxicity experiment including range finding test, acute toxicity test, growth performance and behaviour test. Static non-renewal acute toxicity bioassays were conducted by exposing fish to POME (1.584-9.968 mL/L) for 96 h. Growth performance, behavior response, and histopathological lesions in untreated and POME treated (96-h LC50: 5.156 mL/L) fish were measured at 24, 48, 72 and 96 h. Time-dependent significant decline in body length and body weight of POME-exposed zebrafish was observed. Furthermore, several behavioral changes were recorded, including hyperactivity, loss of balance, excessive mucus secretion, and depigmentation. Decreasing operculum movement and oxygen consumption rate as well as alterations in gill tissues (i.e. hyperplasia, hypertrophy, hemorrhage, and necrosis) of POME-exposed zebrafish were observed, suggesting a dysfunction in respiratory performance. On the other hand, liver tissue alterations (congestion, hemorrhage, hyperplasia, shrinkage of hepatocytes, hydrophilic degeneration, and necrosis) indicated a disruption in detoxification performance. We conclude that exposure to POME at acute concentration caused histopathological lesions both in gill and liver tissue along with changes in fish behaviors which disrupted respiratory and detoxification performance, resulting in mortality and reduced growth of zebrafish. These findings might provide valuable information for guiding POME management and regulation.
Collapse
Affiliation(s)
- Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia.
| | - Sayyid Afdhal El Rahimi
- Department of Marine Science, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Saed Dedi Suherman
- Center for Aquatic Research and Conservation (CARC), Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Almunawarah Almunawarah
- Center for Aquatic Research and Conservation (CARC), Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Arif Sardi
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Kamaliah Helmi
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Badratun Nafis
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh, 23111, Indonesia
| | - Adli Waliul Perdana
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Khalisah Huwaina Adani
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Ihdina Alfi Admaja Nasution
- Department of Aquaculture, Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
16
|
Ogonowski M, Wagner M, Rogell B, Haave M, Lusher A. Microplastics could be marginally more hazardous than natural suspended solids - A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115406. [PMID: 37639826 DOI: 10.1016/j.ecoenv.2023.115406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Microplastics (MP) are perceived as a threat to aquatic ecosystems but bear many similarities to suspended sediments which are often considered less harmful. It is, therefore pertinent to determine if and to what extent MP are different from other particles occurring in aquatic ecosystems in terms of their adverse effects. We applied meta-regressions to toxicity data extracted from the literature and harmonized the data to construct Species Sensitivity Distributions (SSDs) for both types of particles. The results were largely inconclusive due to high uncertainty but the central tendencies of our estimates still indicate that MP could be marginally more hazardous compared to suspended sediments. In part, the high uncertainty stems from the general lack of comparable experimental studies and dose-dependent point estimates. We therefore argue that until more comparable data is presented, risk assessors should act precautionary and treat MP in the 1-1000 µm size range as marginally more hazardous to aquatic organisms capable of ingesting such particles.
Collapse
Affiliation(s)
- Martin Ogonowski
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, SE-17893 Drottningholm, Sweden.
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway
| | - Björn Rogell
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Stångholmsvägen 2, SE-17893 Drottningholm, Sweden
| | - Marte Haave
- NORCE, Norwegian Research Centre AS, Climate & Environment, Nygårdsporten 112, NO-5008 Bergen, Norway; Department of Chemistry, University of Bergen, NO-5020 Bergen, Norway
| | - Amy Lusher
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway; Department of Biological Sciences, University of Bergen, NO-5020 Bergen, Norway
| |
Collapse
|
17
|
François-Étienne S, Nicolas L, Eric N, Jaqueline C, Pierre-Luc M, Sidki B, Aleicia H, Danilo B, Luis VA, Nicolas D. Important role of endogenous microbial symbionts of fish gills in the challenging but highly biodiverse Amazonian blackwaters. Nat Commun 2023; 14:3903. [PMID: 37414754 PMCID: PMC10326040 DOI: 10.1038/s41467-023-39461-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Amazonian blackwaters are extremely biodiverse systems containing some of Earth's most naturally acidic, dissolved organic carbon -rich and ion-poor waters. Physiological adaptations of fish facing these ionoregulatory challenges are unresolved but could involve microbially-mediated processes. Here, we characterize the physiological response of 964 fish-microbe systems from four blackwater Teleost species along a natural hydrochemical gradient, using dual RNA-Seq and 16 S rRNA of gill samples. We find that host transcriptional responses to blackwaters are species-specific, but occasionally include the overexpression of Toll-receptors and integrins associated to interkingdom communication. Blackwater gill microbiomes are characterized by a transcriptionally-active betaproteobacterial cluster potentially interfering with epithelial permeability. We explore further blackwater fish-microbe interactions by analyzing transcriptomes of axenic zebrafish larvae exposed to sterile, non-sterile and inverted (non-native bacterioplankton) blackwater. We find that axenic zebrafish survive poorly when exposed to sterile/inverted blackwater. Overall, our results suggest a critical role for endogenous symbionts in blackwater fish physiology.
Collapse
Affiliation(s)
- Sylvain François-Étienne
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Médecine, Québec (QC), G1V 0A6, Canada.
- Fisheries and Oceans, Gulf Fisheries Center, 343 University Ave, Moncton, NB, E1C 5K4, Canada.
| | - Leroux Nicolas
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Médecine, Québec (QC), G1V 0A6, Canada
| | - Normandeau Eric
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Médecine, Québec (QC), G1V 0A6, Canada
| | - Custodio Jaqueline
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecofisiologia e Evolução Molecular, Manaus, AM, 69067-375, Brazil
| | - Mercier Pierre-Luc
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Médecine, Québec (QC), G1V 0A6, Canada
| | - Bouslama Sidki
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Médecine, Québec (QC), G1V 0A6, Canada
| | - Holland Aleicia
- La Trobe University, School of Agriculture, Biomedicine and Environment, Department of Environment and Genetics, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Vic, Australia
| | - Barroso Danilo
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecofisiologia e Evolução Molecular, Manaus, AM, 69067-375, Brazil
| | - Val Adalberto Luis
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecofisiologia e Evolução Molecular, Manaus, AM, 69067-375, Brazil
| | - Derome Nicolas
- Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Médecine, Québec (QC), G1V 0A6, Canada
| |
Collapse
|
18
|
Rosado D, Canada P, Marques Silva S, Ribeiro N, Diniz P, Xavier R. Disruption of the skin, gill, and gut mucosae microbiome of gilthead seabream fingerlings after bacterial infection and antibiotic treatment. FEMS MICROBES 2023; 4:xtad011. [PMID: 37389204 PMCID: PMC10306326 DOI: 10.1093/femsmc/xtad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
The activity of the microbiome of fish mucosae provides functions related to immune response, digestion, or metabolism. Several biotic and abiotic factors help maintaining microbial homeostasis, with disruptions leading to dysbiosis. Diseases and antibiotic administration are known to cause dysbiosis in farmed fish. Pathogen infections greatly affect the production of gilthead seabream, and antibiotic treatment is still frequently required. Here, we employed a 16S rRNA high-throughput metataxonomics approach to characterize changes in the gut, skin, and gill microbiomes occurring due to infection with Photobacterium damselae subsp. piscicida and subsequent antibiotic treatment with oxytetracycline (OTC), as well as during recovery. Although microbiota response differed between studied tissues, overall changes in composition, diversity, structure, and predicted function were observed in all mucosae. The skin and gill microbiomes of diseased fish became largely dominated by taxa that have been frequently linked to secondary infections, whereas in the gut the genus Vibrio, known to include pathogenic bacteria, increased with OTC treatment. The study highlights the negative impacts of disease and antibiotic treatment on the microbiome of farmed fish. Our results also suggest that fish transportation operations may have profound effects on the fish microbiome, but further studies are needed to accurately evaluate their impact.
Collapse
Affiliation(s)
- Daniela Rosado
- S2AQUA – Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Avenida Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Paula Canada
- Corresponding author. Paula Canada, CIIMAR – Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros de Leixões. Av. General Norton de Matos, 4450-208 Matosinhos, Portugal, CMC; Centro de Maricultura da Calheta, Direcção Regional do Mar, Av. D. Manuel I, nº 7, 9370-135 Calheta, Madeira, Portugal
| | - Sofia Marques Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal
| | - Nuno Ribeiro
- MVAQUA – Serviços Médico Veterinários dedicados a Aquacultura, Av. do Parque de Campismo Lote 24, Fração C, 3840-264 Gafanha da Boa Hora, Portugal
| | - Pedro Diniz
- Marismar – Aquicultura Marinha, Lda, Rua do Cabrestante 28, 9000-105 Funchal, Portugal
| | - Raquel Xavier
- Raquel Xavier, CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, R. Padre Armando Quintas 7, 4485-661 Vairão, Portugal; E-mail:
| |
Collapse
|
19
|
Elfidasari D, Rijal MS, Shalsabilla SE, Rahma Fadila DS, Cici A, Pikoli MR, Tetriana D, Sugoro I. Intestinal bacteria diversity of suckermouth catfish (Pterygoplichthys pardalis) in the Cd, Hg, and Pb contaminated Ciliwung River, Indonesia. Heliyon 2023; 9:e14842. [PMID: 37025814 PMCID: PMC10070546 DOI: 10.1016/j.heliyon.2023.e14842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
The contamination of aquatic environments with heavy metals poses a serious threat to fish, potentially leading to diseases or even death. Therefore, there is an urgent need for studies to investigate the adaptability of fish in heavy metal-contaminated environments. Several studies have explored the adaptability of suckermouth catfish (P. pardalis) to survive in the contaminated Ciliwung River. The findings obtained showed that the presence of intestinal bacteria helped these fish overcome the heavy metals in their intestines, thereby enabling the fish to survive. Analysis using the Next Generation Sequencing (NGS) technology has succeeded in identifying diversity of these bacteria in P. pardalis living in the Ciliwung River, which contaminated with Cd (0.3-1.6 ppm in the water & 0.9-1.6 ppm in the sediment), Hg (0.6-2 ppm in the water & 0.6-1.8 ppm in the sediment), and Pb (59.9-73.8 ppm in the water & 26.1-58.6 ppm in the sediment). Diversity index of intestinal bacteria in P. pardalis was relatively high, but it had a negative correlation with the presence of these contaminants. Actinobacteria, Firmicutes, and Proteobacteria were abundant in the intestines of P. pardalis from the upstream to downstream of the river, with an overall abundance range of 15-48%. Furthermore, Mycobacterium along with 6 other genera were identified as core intestinal bacteria. The presence of these bacterial communities in all the samples affected their survival in heavy metals-contaminated rivers. The fish's adaptability to live in this harsh environment indicated that it has the potential to be utilized as a bioremediator of heavy metals in river sediments.
Collapse
Affiliation(s)
- Dewi Elfidasari
- Department of Biology, Faculty of Science and Technology, Al Azhar University Indonesia, Jakarta 12110, Indonesia
| | - Mohammad Syamsul Rijal
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Syalwa Ersadiwi Shalsabilla
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Diannisa Syahwa Rahma Fadila
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Ade Cici
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Megga Ratnasari Pikoli
- Department of Biology, Faculty of Science and Technology, UIN Syarif Hidayatullah Jakarta, Banten 15412, Indonesia
| | - Devita Tetriana
- National Research and Innovation Agency (BRIN), Jakarta 12440, Indonesia
| | - Irawan Sugoro
- National Research and Innovation Agency (BRIN), Jakarta 12440, Indonesia
- Corresponding author.
| |
Collapse
|
20
|
Minich JJ, Härer A, Vechinski J, Frable BW, Skelton ZR, Kunselman E, Shane MA, Perry DS, Gonzalez A, McDonald D, Knight R, Michael TP, Allen EE. Host biology, ecology and the environment influence microbial biomass and diversity in 101 marine fish species. Nat Commun 2022; 13:6978. [PMID: 36396943 PMCID: PMC9671965 DOI: 10.1038/s41467-022-34557-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Fish are the most diverse and widely distributed vertebrates, yet little is known about the microbial ecology of fishes nor the biological and environmental factors that influence fish microbiota. To identify factors that explain microbial diversity patterns in a geographical subset of marine fish, we analyzed the microbiota (gill tissue, skin mucus, midgut digesta and hindgut digesta) from 101 species of Southern California marine fishes, spanning 22 orders, 55 families and 83 genera, representing ~25% of local marine fish diversity. We compare alpha, beta and gamma diversity while establishing a method to estimate microbial biomass associated with these host surfaces. We show that body site is the strongest driver of microbial diversity while microbial biomass and diversity is lowest in the gill of larger, pelagic fishes. Patterns of phylosymbiosis are observed across the gill, skin and hindgut. In a quantitative synthesis of vertebrate hindguts (569 species), we also show that mammals have the highest gamma diversity when controlling for host species number while fishes have the highest percent of unique microbial taxa. The composite dataset will be useful to vertebrate microbiota researchers and fish biologists interested in microbial ecology, with applications in aquaculture and fisheries management.
Collapse
Affiliation(s)
- Jeremiah J Minich
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Vechinski
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| | - Benjamin W Frable
- Marine Vertebrate Collection, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| | - Zachary R Skelton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emily Kunselman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
| | - Michael A Shane
- Hubbs-SeaWorld Research Institute, 2595 Ingraham Street, San Diego, CA, 92109, USA
| | - Daniela S Perry
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of San Diego, California, La Jolla, CA, 92093, USA
- Department of Computer Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Todd P Michael
- The Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Eric E Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0244, USA
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of San Diego, California, La Jolla, CA, 92093, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
21
|
Osmotic Gradient Is a Factor That Influences the Gill Microbiota Communities in Oryzias melastigma. BIOLOGY 2022; 11:biology11101528. [PMID: 36290431 PMCID: PMC9598346 DOI: 10.3390/biology11101528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Simple Summary This study was applied to the laboratory medaka to understand how the osmotic gradient could influence the composition of the gill microbiota communities. The data suggested that the shift of the gill microbiota community has relied on the first sense of osmolality differences, and such changes were accomplished by the enriched osmosensing and metabolic pathways. Abstract The fish gill is the first tissue that is exposed to the external media and undergoes continuous osmotic challenges. Recently, our group published an article entitled “Integrated Omics Approaches Revealed the Osmotic Stress-Responsive Genes and Microbiota in Gill of Marine Medaka” in the journal mSystems (e0004722, 2022), and suggested the possible host-bacterium interaction in the fish gill during osmotic stress. The previous study was performed by the progressive fresh water transfer (i.e., seawater to fresh water transfer via 50% seawater (FW)). Our group hypothesized that osmotic gradient could be a factor that determines the microbiota communities in the gill. The current 16S rRNA metagenomic sequencing study found that the direct transfer (i.e., seawater to fresh water (FWd)) could result in different gill microbiota communities in the same fresh water endpoints. Pseduomonas was the dominant bacteria (more than 55%) in the FWd gill. The Kyoto Encyclopedia of Genes and Genomes and MetaCyc analysis further suggested that the FWd group had enhanced osmosensing pathways, such as the ATP-binding cassette transporters, taurine degradation, and energy-related tricarboxylic acid metabolism compared to the FW group.
Collapse
|
22
|
Ferguson LV, Hewins B, Harding W, MacDonald E, Gibson G. Changes in the microbiome and associated host tissue structure in the blue mussel, Mytilus edulis, following exposure to polystyrene microparticles
. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Marine life is increasingly exposed to microplastics, which can be ingested and disrupt the relationship between host tissues and their microbiomes. We investigated the effects of microplastics (5 µm polystyrene beads, PS) on the microbial community and host tissue structure in organs at high risk of exposure (digestive gland and gills) in blue mussels, Mytilus edulis (Linnaeus, 1758). We exposed mussels to concentrations of microplastic consistent with levels found in local coastal waters. High exposures (1000 particles m-3/mussel) decreased the alpha and beta diversity in the microbiome of the digestive gland, with an increase in relative abundance of Polaribacter and a decrease in other species in the Flavobacteriaceae. Both low (10 particles m-3/mussel) and high exposures to PS also changed tissue structure in the hosts, with an increase in immune cells (hemocytes) and reactive lysosomes in the gills, and in the digestive gland, a loss of cell specialization in digestive cells and an increase in cell break-down products. Thus, exposure to particles of polystyrene in concentrations consistent with levels detected in local coastal zones reduces microbial biodiversity of the digestive gland and disrupts host tissues, which may indicate a loss of the host-symbiont interactions that support tissue homeostasis.
Collapse
Affiliation(s)
- Laura V Ferguson
- Acadia University Faculty of Pure and Applied Sciences, 120861, Biology, 33 Westwood Avenue, NS, Wolfville, Nova Scotia, Canada, B4P 2R6
| | - Ben Hewins
- Acadia University, 8689, Biology Department, Wolfville, Canada, B4P 2R6
| | - Wesley Harding
- Acadia University, Biology, Wolfville, Nova Scotia, Canada
| | - Erin MacDonald
- Acadia University, Biology, Wolfville, Nova Scotia, Canada
| | - Glenys Gibson
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada, B0P 1X0, ,
| |
Collapse
|
23
|
Scheifler M, Sanchez-Brosseau S, Magnanou E, Desdevises Y. Diversity and structure of sparids external microbiota (Teleostei) and its link with monogenean ectoparasites. Anim Microbiome 2022; 4:27. [PMID: 35418308 PMCID: PMC9009028 DOI: 10.1186/s42523-022-00180-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/03/2022] [Indexed: 12/31/2022] Open
Abstract
Background Animal-associated microbial communities appear to be key factors in host physiology, ecology, evolution and its interactions with the surrounding environment. Teleost fish have received relatively little attention in the study of surface-associated microbiota. Besides the important role of microbiota in homeostasis and infection prevention, a few recent studies have shown that fish mucus microbiota may interact with and attract some specific parasitic species. However, our understanding of external microbial assemblages, in particular regarding the factors that determine their composition and potential interactions with parasites, is still limited. This is the objective of the present study that focuses on a well-known fish-parasite interaction, involving the Sparidae (Teleostei), and their specific monogenean ectoparasites of the Lamellodiscus genus. We characterized the skin and gill mucus bacterial communities using a 16S rRNA amplicon sequencing, tested how fish ecological traits and host evolutionary history are related to external microbiota, and assessed if some microbial taxa are related to some Lamellodiscus species. Results Our results revealed significant differences between skin and gill microbiota in terms of diversity and structure, and that sparids establish and maintain tissue and species-specific bacterial communities despite continuous exposure to water. No phylosymbiosis pattern was detected for either gill or skin microbiota, suggesting that other host-related and environmental factors are a better regulator of host-microbiota interactions. Diversity and structure of external microbiota were explained by host traits: host species, diet and body part. Numerous correlations between the abundance of given bacterial genera and the abundance of given Lamellodiscus species have been found in gill mucus, including species-specific associations. We also found that the external microbiota of the only unparasitized sparid species in this study, Boops boops, harbored significantly more Fusobacteria and three genera, Shewenella, Cetobacterium and Vibrio, compared to the other sparid species, suggesting their potential involvement in preventing monogenean infection. Conclusions This study is the first to explore the diversity and structure of skin and gill microbiota from a wild fish family and present novel evidence on the links between gill microbiota and monogenean species in diversity and abundance, paving the way for further studies on understanding host-microbiota-parasite interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00180-1.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France.
| | - Sophie Sanchez-Brosseau
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France
| | - Elodie Magnanou
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France
| | - Yves Desdevises
- Biologie Intégrative des Organismes Marins, BIOM, Observatoire Océanologique, Sorbonne Université - CNRS, 66650, Banyuls/Mer, France
| |
Collapse
|
24
|
Berggren H, Tibblin P, Yıldırım Y, Broman E, Larsson P, Lundin D, Forsman A. Fish Skin Microbiomes Are Highly Variable Among Individuals and Populations but Not Within Individuals. Front Microbiol 2022; 12:767770. [PMID: 35126324 PMCID: PMC8813977 DOI: 10.3389/fmicb.2021.767770] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
Fish skin-associated microbial communities are highly variable among populations and species and can impact host fitness. Still, the sources of variation in microbiome composition, and particularly how they vary among and within host individuals, have rarely been investigated. To tackle this issue, we explored patterns of variation in fish skin microbiomes across different spatial scales. We conducted replicate sampling of dorsal and ventral body sites of perch (Perca fluviatilis) from two populations and characterized the variation of fish skin-associated microbial communities with 16S rRNA gene metabarcoding. Results showed a high similarity of microbiome samples taken from the left and right side of the same fish individuals, suggesting that fish skin microbiomes can be reliably assessed and characterized even using a single sample from a specific body site. The microbiome composition of fish skin differed markedly from the bacterioplankton communities in the surrounding water and was highly variable among individuals. No ASV was present in all samples, and the most prevalent phyla, Actinobacteria, Bacteroidetes, and Proteobacteria, varied in relative abundance among fish hosts. Microbiome composition was both individual- and population specific, with most of the variation explained by individual host. At the individual level, we found no diversification in microbiome composition between dorsal and ventral body sites, but the degree of intra-individual heterogeneity varied among individuals. To identify how genetic and phenotypic characteristics of fish hosts impact the rate and nature of intra-individual temporal dynamics of the skin microbiome, and thereby contribute to the host-specific patterns documented here, remains an important task for future research.
Collapse
Affiliation(s)
- Hanna Berggren
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Petter Tibblin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Yeşerin Yıldırım
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Per Larsson
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Daniel Lundin
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
25
|
Xue YH, Feng LS, Xu ZY, Zhao FY, Wen XL, Jin T, Sun ZX. The time-dependent variations of zebrafish intestine and gill after polyethylene microplastics exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1997-2010. [PMID: 34529203 DOI: 10.1007/s10646-021-02469-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are common environmental contaminants that present a growing health concern due to their increasing presence in aquatic and human systems. However, the mechanisms behind MP effects on organisms are unclear. In this study, zebrafish (Danio rerio) were used as an in vivo model to investigate the potential risks and molecular mechanisms of the toxic effects of polyethylene MPs (45-53 μm). In the zebrafish intestine, 6, 5, and 186 genes showed differential expression after MP treatment for 1, 5, and 10 days, respectively. In the gills, 318, 92, and 484 genes showed differential expression after MP treatment for 1, 5, and 10 days, respectively. In both the intestine and the gills, Gene Ontology (GO) annotation showed that the main enriched terms were biological regulation, cellular process, metabolic process, cellular anatomical entity, and binding. KEGG enrichment analysis on DEGs revealed that the dominant pathways were carbohydrate metabolism and lipid metabolism, which were strongly influenced by MPs in the intestine. The dominant pathways in the gills were immune and lipid metabolism. The respiratory rate of gills, the activity of SOD and GSH in the intestine significantly increased after exposure to MPs compared with the control (p < 0.05), while the activity of SOD did not change in the gills. GSH activity was only significantly increased after MP exposure for 5 days. Also, the MDA content was not changed in the intestine but was significantly decreased in the gills after MP exposure. The activity of AChE significantly decreased only after MPs exposure for 5 days. Overall, these results indicated that MPs pollution significantly induced oxidative stress and neurotoxicity, increased respiratory rate, disturbed energy metabolism and stimulated immune function in fish, displaying an environmental risk of MPs to aquatic ecosystems.
Collapse
Affiliation(s)
- Ying-Hao Xue
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, PR China
| | - Liang-Shan Feng
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, PR China
| | - Zhi-Yu Xu
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, PR China
| | - Feng-Yan Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, PR China
| | - Xin-Li Wen
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241000, PR China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, PR China
| | - Zhan-Xiang Sun
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, PR China.
| |
Collapse
|
26
|
Prescott LA, Regish AM, McMahon SJ, McCormick SD, Rummer JL. Rapid embryonic development supports the early onset of gill functions in two coral reef damselfishes. J Exp Biol 2021; 224:272637. [PMID: 34708857 DOI: 10.1242/jeb.242364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
The gill is one of the most important organs for growth and survival of fishes. Early life stages in coral reef fishes often exhibit extreme physiological and demographic characteristics that are linked to well-established respiratory and ionoregulatory processes. However, gill development and function in coral reef fishes is not well understood. Therefore, we investigated gill morphology, oxygen uptake and ionoregulatory systems throughout embryogenesis in two coral reef damselfishes, Acanthochromis polyacanthus and Amphiprion melanopus (Pomacentridae). In both species, we found key gill structures to develop rapidly early in the embryonic phase. Ionoregulatory cells appear on gill filaments 3-4 days post-fertilization and increase in density, whilst disappearing or shrinking in cutaneous locations. Primary respiratory tissue (lamellae) appears 5-7 days post-fertilization, coinciding with a peak in oxygen uptake rates of the developing embryos. Oxygen uptake was unaffected by phenylhydrazine across all ages (pre-hatching), indicating that haemoglobin is not yet required for oxygen uptake. This suggests that gills have limited contribution to respiratory functions during embryonic development, at least until hatching. Rapid gill development in damselfishes, when compared with that in most previously investigated fishes, may reflect preparations for a high-performance, challenging lifestyle on tropical reefs, but may also make reef fishes more vulnerable to anthropogenic stressors.
Collapse
Affiliation(s)
- Leteisha A Prescott
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Amy M Regish
- US Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA
| | - Shannon J McMahon
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia
| | - Stephen D McCormick
- US Geological Survey, Eastern Ecological Science Center, Conte Anadromous Fish Research Laboratory, Turners Falls, MA 01376, USA.,Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, Townsville, QLD 4811, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
27
|
Clinton M, Wyness AJ, Martin SAM, Brierley AS, Ferrier DEK. Sampling the fish gill microbiome: a comparison of tissue biopsies and swabs. BMC Microbiol 2021; 21:313. [PMID: 34758745 PMCID: PMC8579561 DOI: 10.1186/s12866-021-02374-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background Understanding the influence of methodology on results is an essential consideration in experimental design. In the expanding field of fish microbiology, many best practices and targeted techniques remain to be refined. This study aimed to compare microbial assemblages obtained from Atlantic salmon (Salmo salar) gills by swabbing versus biopsy excision. Results demonstrate the variation introduced by altered sampling strategies and enhance the available knowledge of the fish gill microbiome. Results The microbiome was sampled using swabs and biopsies from fish gills, with identical treatment of samples for 16S next generation Illumina sequencing. Results show a clear divergence in microbial communities obtained through the different sampling strategies, with swabbing consistently isolating a more diverse microbial consortia, and suffering less from the technical issue of host DNA contamination associated with biopsy use. Sequencing results from biopsy-derived extractions, however, hint at the potential for more cryptic localisation of some community members. Conclusions Overall, results demonstrate a divergence in the obtained microbial community when different sampling methodology is used. Swabbing appears a superior method for sampling the microbiota of mucosal surfaces for broad ecological research in fish, whilst biopsies might be best applied in exploration of communities beyond the reach of swabs, such as sub-surface and intracellular microbes, as well as in pathogen diagnosis. Most studies on the external microbial communities of aquatic organisms utilise swabbing for sample collection, likely due to convenience. Much of the ultrastructure of gill tissue in live fish is, however, potentially inaccessible to swabbing, meaning swabbing might fail to capture the full diversity of gill microbiota. This work therefore also provides valuable insight into partitioning of the gill microbiota, informing varied applications of different sampling methods in experimental design for future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02374-0.
Collapse
Affiliation(s)
- Morag Clinton
- Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK. .,Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA.
| | - Adam J Wyness
- Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.,Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Makhanda (Grahamstown), 6139, South Africa
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Andrew S Brierley
- Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
28
|
Microbiome of the Successful Freshwater Invader, the Signal Crayfish, and Its Changes along the Invasion Range. Microbiol Spectr 2021; 9:e0038921. [PMID: 34494878 PMCID: PMC8557874 DOI: 10.1128/spectrum.00389-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increasing evidence denotes the role of the microbiome in biological invasions, since it is known that microbes can affect the fitness of the host. Here, we demonstrate differences in the composition of an invader’s microbiome along the invasion range, suggesting that its microbial communities may affect and be affected by range expansion. Using a 16S rRNA gene amplicon sequencing approach, we (i) analyzed the microbiomes of different tissues (exoskeleton, hemolymph, hepatopancreas, and intestine) of a successful freshwater invader, the signal crayfish, (ii) compared them to the surrounding water and sediment, and (iii) explored their changes along the invasion range. Exoskeletal, hepatopancreatic, and intestinal microbiomes varied between invasion core and invasion front populations. This indicates that they may be partly determined by population density, which was higher in the invasion core than in the invasion front. The highly diverse microbiome of exoskeletal biofilm was partly shaped by the environment (due to the similarity with the sediment microbiome) and partly by intrinsic crayfish parameters (due to the high proportion of exoskeleton-unique amplicon sequence variants [ASVs]), including the differences in invasion core and front population structure. Hemolymph had the most distinct microbiome compared to other tissues and differed between upstream (rural) and downstream (urban) river sections, indicating that its microbiome is potentially more driven by the effects of the abiotic environment. Our findings offer an insight into microbiome changes during dispersal of a successful invader and present a baseline for assessment of their contribution to an invader’s overall health and its further invasion success. IMPORTANCE Invasive species are among the major drivers of biodiversity loss and impairment of ecosystem services worldwide, but our understanding of their invasion success and dynamics still has many gaps. For instance, although it is known that host-associated microbial communities may significantly affect an individual’s health and fitness, the current studies on invasive species are mainly focused on pathogenic microbes, while the effects of the remaining majority of microbial communities on the invasion process are almost completely unexplored. We have analyzed the microbiome of one of the most successful crayfish invaders in Europe, the signal crayfish, and explored its changes along the signal crayfish invasion range in the Korana River, Croatia. Our study sets the perspective for future research required to assess the contribution of these changes to an individual’s overall health status and resilience of dispersing populations and their impact on invasion success.
Collapse
|
29
|
Berry KLE, Hess S, Clark TD, Wenger AS, Hoogenboom MO, Negri AP. Effects of suspended coal particles on gill structure and oxygen consumption rates in a coral reef fish. MARINE POLLUTION BULLETIN 2021; 169:112459. [PMID: 34022563 DOI: 10.1016/j.marpolbul.2021.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/15/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Large quantities of coal are transported through tropical regions; however, little is known about the sub-lethal effects of coal contamination on tropical marine organisms, including fish. Here, we measured aerobic metabolism and gill morphology in a planktivorous coral reef damselfish, Acanthochromis polyacanthus to elucidate the sub-lethal effects of suspended coal particles over a range of coal concentrations and exposure durations. Differences in the standard oxygen consumption rates (MO2) between control fish and fish exposed to coal particles (38 and 73 mg L-1) were minimal and generally not dose dependent; however, the MO2 of fish exposed to 38 mg coal L-1 (21 days) and 73 mg coal L-1 (31 days) were both significantly higher than the MO2 of control fish. Chronic coal exposure (31 days) altered gill structure in the higher coal treatments (73 and 275 mg L-1), with fish exposed to 275 mg L-1 exhibiting significant reductions in gill mucous and thinning of lamellar and filament epithelium. These findings contribute to our limited understanding of the potential impacts of coal on tropical reef species; however, most of the observed effects occurred at high coal concentrations that are unlikely under most coal spill scenarios. Future studies should investigate other contamination scenarios such as the impacts of chronic exposures to lower concentrations of coal.
Collapse
Affiliation(s)
- K L E Berry
- AIMS@JCU, James Cook University, Australian Institute of Marine Science, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, Queensland 4810, Australia.
| | - S Hess
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - T D Clark
- Deakin University, School of Life and Environmental Sciences, Geelong, Victoria 3216, Australia
| | - A S Wenger
- School of Earth and Environmental Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - M O Hoogenboom
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - A P Negri
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| |
Collapse
|
30
|
Tretyakova MO, Vardavas AI, Vardavas CI, Iatrou EI, Stivaktakis PD, Burykina TI, Mezhuev YO, Tsatsakis AM, Golokhvast KS. Effects of coal microparticles on marine organisms: A review. Toxicol Rep 2021; 8:1207-1219. [PMID: 34189057 PMCID: PMC8220176 DOI: 10.1016/j.toxrep.2021.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Coal dust is a source of pollution not only for atmospheric air but also for the marine environment. In places of storage and handling of coal near water bodies, visible pollution of the water area can be observed. Coal, despite its natural origin, can be referred to as anthropogenic sources of pollution. If coal microparticles enter the marine environment, it may cause both physical and toxic effects on organisms. The purpose of this review is to assess the stage of knowledge of the impact of coal particles on marine organisms, to identify the main factors affecting them, and to define advanced research directions. The results presented in the review have shown that coal dust in seawater is generally not an inert substance for marine organisms, and there is a need for further study of the impact of coal dust particles on marine ecosystems.
Collapse
Affiliation(s)
- M O Tretyakova
- Far Eastern Federal University, Vladivostok, Russian Federation
| | - A I Vardavas
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - C I Vardavas
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - E I Iatrou
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - P D Stivaktakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - T I Burykina
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Y O Mezhuev
- Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Russian Federation
| | - A M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - K S Golokhvast
- Far Eastern Federal University, Vladivostok, Russian Federation.,Pacific Institute of Geography FEB RAS, Vladivostok, Russian Federation.,Siberian Federal Scientific Center for Agrobiotechnology RAS, Krasnoobsk, Russian Federation
| |
Collapse
|
31
|
Sehnal L, Brammer-Robbins E, Wormington AM, Blaha L, Bisesi J, Larkin I, Martyniuk CJ, Simonin M, Adamovsky O. Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. Front Microbiol 2021; 12:567408. [PMID: 33776947 PMCID: PMC7995652 DOI: 10.3389/fmicb.2021.567408] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/05/2021] [Indexed: 01/03/2023] Open
Abstract
Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.
Collapse
Affiliation(s)
- Ludek Sehnal
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Elizabeth Brammer-Robbins
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Alexis M. Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Joe Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Iske Larkin
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | |
Collapse
|
32
|
Knobloch S, Philip J, Ferrari S, Benhaïm D, Bertrand M, Poirier I. The effect of ultrasonic antifouling control on the growth and microbiota of farmed European sea bass (Dicentrarchus labrax). MARINE POLLUTION BULLETIN 2021; 164:112072. [PMID: 33529875 DOI: 10.1016/j.marpolbul.2021.112072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 05/11/2023]
Abstract
Biofouling is a serious threat to marine renewable energy structures and marine aquaculture operations alike. As an alternative to toxic surface coatings, ultrasonic antifouling control has been proposed as an environmentally friendly means to reduce biofouling. However, the impact of ultrasound on fish farmed in offshore structures or in marine multi-purpose platforms, combining renewable energy production and aquaculture, has not yet been assessed. Here we study the impact of ultrasound on the growth and microbiota of farmed European sea bass (Dicentrarchus labrax) under laboratory conditions. Whereas growth and survival were not reduced by ultrasound exposure, microbiological analysis using plate counts and 16S rRNA gene based metataxonomics showed a perturbation of the gill and skin microbiota, including an increase in putative pathogenic bacteria. This warrants further research into the long-term effects of ultrasonic antifouling control on the health and wellbeing of farmed fish.
Collapse
Affiliation(s)
- Stephen Knobloch
- Matís ohf., Microbiology Group, Vínlandsleid 12, 113 Reykjavík, Iceland
| | - Joris Philip
- Hólar University, Department of Aquaculture and Fish Biology, Háeyri 1, 550 Saudárkrókur, Iceland
| | - Sébastien Ferrari
- Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France
| | - David Benhaïm
- Hólar University, Department of Aquaculture and Fish Biology, Háeyri 1, 550 Saudárkrókur, Iceland; Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France
| | - Martine Bertrand
- Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France
| | - Isabelle Poirier
- Conservatoire National des Arts et Métiers, Institut National des Sciences et Techniques de la Mer, EPN8, Boulevard Collignon, Tourlaville, 50110 Cherbourg en Cotentin, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France.
| |
Collapse
|
33
|
Madeira D, Madeira C, Costa PM, Vinagre C, Pörtner HO, Diniz MS. Different sensitivity to heatwaves across the life cycle of fish reflects phenotypic adaptation to environmental niche. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105192. [PMID: 33142110 DOI: 10.1016/j.marenvres.2020.105192] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Predicting responses of marine organisms to global change requires eco-physiological assessments across the complex life cycles of species. Here, we experimentally tested the vulnerability of a demersal temperate fish (Sparus aurata) to long-lasting heatwaves, on larval, juvenile and adult life-stages. Fish were exposed to simulated coastal (18 °C), estuarine (24 °C) summer temperatures, and heatwave conditions (30 °C) and their physiological responses were assessed based on cellular stress response biomarkers (heat shock protein 70 kDa, ubiquitin, antioxidant enzymes, lipid peroxidation) and phenotypic measures (histopathology, condition and mortality). Life-stage vulnerability can be ranked as larvae > adults > juveniles, based on mortality, tissue pathology and the capacity to employ cellular stress responses, reflecting the different environmental niches of each life stage. While larvae lacked acclimation capacity, which resulted in damage to tissues and elevated mortality, juveniles coped well with elevated temperature. The rapid induction of cytoprotective proteins maintained the integrity of vital organs in juveniles, suggesting adaptive phenotypic plasticity in coastal and estuarine waters. Adults displayed lower plasticity to heatwaves as they transition to deeper habitats for maturation, showing tissue damage in brain, liver and muscle. Life cycle closure of sea breams in coastal habitats will therefore be determined by larval and adult stages.
Collapse
Affiliation(s)
- Diana Madeira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal; ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM, Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| | - Carolina Madeira
- MARE, Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, Lisboa 1749-016, Portugal; UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Pedro M Costa
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Catarina Vinagre
- MARE, Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, Lisboa 1749-016, Portugal; CCMAR, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Hans-Otto Pörtner
- Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Mário S Diniz
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal.
| |
Collapse
|
34
|
Littman RA, Fiorenza EA, Wenger AS, Berry KLE, van de Water JAJM, Nguyen L, Aung ST, Parker DM, Rader DN, Harvell CD, Lamb JB. Coastal urbanization influences human pathogens and microdebris contamination in seafood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139081. [PMID: 32504866 DOI: 10.1016/j.scitotenv.2020.139081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Seafood is one of the leading imported products implicated in foodborne outbreaks worldwide. Coastal marine environments are being increasingly subjected to reduced water quality from urbanization and leading to contamination of important fishery species. Given the importance of seafood exchanged as a global protein source, it is imperative to maintain seafood safety worldwide. To illustrate the potential health risks associated with urbanization in a coastal environment, we use next-generation high-throughput amplicon sequencing of the 16S ribosomal RNA gene combined with infrared spectroscopy to characterize and quantify a vast range of potential human bacterial pathogens and microdebris contaminants in seawater, sediment and an important oyster fishery along the Mergui Archipelago in Myanmar. Through the quantification of >1.25 million high-quality bacterial operational taxonomic unit (OTU) reads, we detected 5459 potential human bacterial pathogens belonging to 87 species that are commonly associated with gut microbiota and an indication of terrestrial runoff of human and agricultural waste. Oyster tissues contained 51% of all sequenced bacterial pathogens that are considered to be both detrimental and of emerging concern to human health. Using infrared spectroscopy, we examined a total of 1225 individual microdebris particles, from which we detected 78 different types of contaminant materials. The predominant microdebris contaminants recovered from oyster tissues included polymers (48%), followed by non-native minerals (20%), oils (14%) and milk supplement powders (14%). Emerging technologies provide novel insights into the impacts of coastal development on food security and risks to human and environmental health.
Collapse
Affiliation(s)
- Raechel A Littman
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Evan A Fiorenza
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Amelia S Wenger
- School of Earth and Environmental Sciences, The University of Queensland, Australia
| | - Kathryn L E Berry
- College of Science and Engineering, James Cook University, Australia
| | | | - Lily Nguyen
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA; Department of Mechanical Engineering, University of California, Irvine, USA
| | - Soe Tint Aung
- Marine Program, Fauna and Flora International, Yangon, Myanmar
| | - Daniel M Parker
- Department of Population Health and Disease Prevention, Department of Epidemiology, University of California, Irvine, USA
| | | | - C Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, New York, USA
| | - Joleah B Lamb
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA.
| |
Collapse
|
35
|
Minich JJ, Power C, Melanson M, Knight R, Webber C, Rough K, Bott NJ, Nowak B, Allen EE. The Southern Bluefin Tuna Mucosal Microbiome Is Influenced by Husbandry Method, Net Pen Location, and Anti-parasite Treatment. Front Microbiol 2020; 11:2015. [PMID: 32983024 PMCID: PMC7476325 DOI: 10.3389/fmicb.2020.02015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Aquaculture is the fastest growing primary industry worldwide. Marine finfish culture in open ocean net pens, or pontoons, is one of the largest growth areas and is currently the only way to rear high value fish such as bluefin tuna. Ranching involves catching wild juveniles, stocking in floating net pens and fattening for 4 to 8 months. Tuna experience several parasite-induced disease challenges in culture that can be mitigated by application of praziquantel (PZQ) as a therapeutic. In this study, we characterized the microbiome of ranched southern Bluefin Tuna, Thunnus maccoyii, across four anatomic sites (gill, skin, digesta, and anterior kidney) and evaluated environmental and pathological factors that influence microbiome composition, including the impact of PZQ treatment on microbiome stability. Southern bluefin tuna gill, skin, and digesta microbiome communities are unique and potentially influenced by husbandry practices, location of pontoon growout pens, and treatment with the antiparasitic PZQ. There was no significant relationship between the fish mucosal microbiome and incidence or abundance of adult blood fluke in the heart or fluke egg density in the gill. An enhanced understanding of microbiome diversity and function in high-value farmed fish species such as bluefin tuna is needed to optimize fish health and improve aquaculture yield. Comparison of the bluefin tuna microbiome to other fish species, including Seriola lalandi (yellowtail kingfish), a common farmed species from Australia, and Scomber japonicus (Pacific mackerel), a wild caught Scombrid relative of tuna, showed the two Scombrids had more similar microbial communities compared to other families. The finding that mucosal microbial communities are more similar in phylogenetically related fish species exposes an opportunity to develop mackerel as a model for tuna microbiome and parasite research.
Collapse
Affiliation(s)
- Jeremiah J. Minich
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Cecilia Power
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Michaela Melanson
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Claire Webber
- Australian Southern Bluefin Tuna Industry Association, Port Lincoln, SA, Australia
| | - Kirsten Rough
- Australian Southern Bluefin Tuna Industry Association, Port Lincoln, SA, Australia
| | - Nathan J. Bott
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Barbara Nowak
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Eric E. Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
36
|
Dodd ET, Pierce ML, Lee JSF, Poretsky RS. Influences of claywater and greenwater on the skin microbiome of cultured larval sablefish (Anoplopoma fimbria). Anim Microbiome 2020; 2:27. [PMID: 33499990 PMCID: PMC7807797 DOI: 10.1186/s42523-020-00045-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/24/2020] [Indexed: 01/13/2023] Open
Abstract
Background The skin microbiome of marine fish is thought to come from bacteria in the surrounding water during the larval stages, although it is not clear how different water conditions affect the microbial communities in the water and, in turn, the composition and development of the larval skin microbiome. In aquaculture, water conditions are especially important; claywater and greenwater are often used in larval rearing tanks to increase water turbidity. Here, we explored the effects of these water additives on microbial communities in rearing water and on the skin of first-feeding sablefish larvae using 16S rRNA gene sequencing. We evaluated three treatments: greenwater, claywater, and greenwater with a switch to claywater after 1 week. Results We observed additive-specific effects on rearing water microbial communities that coincided with the addition of larvae and rotifer feed to the tanks, such as an increase in Vibrionaceae in greenwater tanks. Additionally, microbial communities from experimental tank water, especially those in claywater, began to resemble larval skin microbiomes by the end of the experiment. The differential effects of the additives on larval sablefish skin microbiomes were largest during the first week, post-first feed. Bacteria associated with greenwater, including Vibrionaceae and Pseudoalteromonas spp., were found on larval skin a week after the switch to claywater. In addition to additive-specific effects, larval skin microbiomes also retained bacterial families likely acquired from their hatchery silos. Conclusions Our results suggest that larval sablefish skin microbiomes are most sensitive to the surrounding seawater up to 1 week following the yolk-sac stage and that claywater substituted for greenwater after 1 week post-first feed does not significantly impact skin-associated microbial communities. However, the larval skin microbiome changes over time under all experimental conditions. Furthermore, our findings suggest a potential two-way interaction between microbial communities on the host and the surrounding environment. To our knowledge, this is one of the few studies to suggest that fish might influence the microbial community of the seawater.
Collapse
Affiliation(s)
- Emily T Dodd
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607, USA
| | - Melissa L Pierce
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607, USA.
| | - Jonathan S F Lee
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7305 Beach Drive E, Port Orchard, WA, 98366, USA
| | - Rachel S Poretsky
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL, 60607, USA
| |
Collapse
|
37
|
Reverter M, Sasal P, Suzuki MT, Raviglione D, Inguimbert N, Pare A, Banaigs B, Voisin SN, Bulet P, Tapissier-Bontemps N. Insights into the Natural Defenses of a Coral Reef Fish Against Gill Ectoparasites: Integrated Metabolome and Microbiome Approach. Metabolites 2020; 10:E227. [PMID: 32486312 PMCID: PMC7345202 DOI: 10.3390/metabo10060227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding natural defense mechanisms against parasites can be a valuable tool for the development of innovative therapies. We have previously identified a butterflyfish species (Chaetodon lunulatus) that avoids gill monogenean parasites while living amongst closely related parasitized species. The metabolome and microbiome of several sympatric butterflyfish species from the island of Moorea (French Polynesia) were previously described. In this study, we used the previously generated datasets in an attempt to identify metabolites and bacteria potentially involved in parasite defense mechanisms. We investigated the interplay between the gill mucus metabolome and microbiome of the non-susceptible C. lunulatus versus sympatric butterflyfish species that were always found parasitized in the Central and Eastern Indo-Pacific. After observing significant differences between the metabolome and bacteria of susceptible versus non-susceptible fish, we obtained the discriminant metabolites and operational taxonomic units (OTUs) using a supervised analysis. Some of the most important discriminant metabolites were identified as peptides, and three new peptides derived from β-subunit hemoglobin from C. lunulatus (CLHbβ-1, CLHbβ-2, and CLHbβ-3) were purified, characterized and synthesized to confirm their structures. We also identified specific bacterial families and OTUs typical from low-oxygen habitats in C. lunulatus gill mucus. By using a correlation network between the two datasets, we found a Fusobacteriaceae strain exclusively present in C. lunulatus and highly correlated to the peptides. Finally, we discuss the possible involvement of these peptides and Fusobacteriaceae in monogenean avoidance by this fish species.
Collapse
Affiliation(s)
- Miriam Reverter
- Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität Oldenburg, 26382 Wilhelmshaven, Germany
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| | - Pierre Sasal
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| | - Marcelino T. Suzuki
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Sorbonne Université, CNRS, USR3579, Observatoire Océanologique, 66650 Banyuls-sur-mer, France;
| | - Delphine Raviglione
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
| | - Nicolas Inguimbert
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| | - Alan Pare
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
| | - Bernard Banaigs
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| | - Sébastien N. Voisin
- Plateforme BioPark d’Archamps, ArchParc, 74160 Archamps, France; (S.N.V.); (P.B.)
| | - Philippe Bulet
- Plateforme BioPark d’Archamps, ArchParc, 74160 Archamps, France; (S.N.V.); (P.B.)
- CR UGA, IAB, InsermU1209, CNRS UMR 5309, 38700 La Tronche, France
| | - Nathalie Tapissier-Bontemps
- CRIOBE, USR3278-EPHE/CNRS/UPVD/PSL, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France; (P.S.); (D.R.); (N.I.); (A.P.); (B.B.)
- Laboratoire d’Excellence ‘CORAIL’, Moorea 98729, French Polynesia
| |
Collapse
|
38
|
Chu SO, Lee C, Noh J, Song SJ, Hong S, Ryu J, Lee JS, Nam J, Kwon BO, Khim JS. Effects of polluted and non-polluted suspended sediments on the oxygen consumption rate of olive flounder, Paralichthys olivaceus. MARINE POLLUTION BULLETIN 2020; 154:111113. [PMID: 32319928 DOI: 10.1016/j.marpolbul.2020.111113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
The potential ecological impacts of elevated suspended sediments (SS) in coastal areas due to human activities remain unclear. In particular, physiological response of benthic fish to SS exposure in polluted environment has not been documented. We determined sub-lethal toxicity of polluted and non-polluted SS to olive flounder. Test organism was exposed to varying concentrations of SS (0-4000 mg L-1) and real-time oxygen consumption rate (OCR) was measured for 12 h. The early-juvenile was sensitive to SS, particularly at >500 mg L-1, but late-juvenile was tolerant up to 4000 mg SS L-1. Metal polluted SS (HQmetal > 1) increased OCR in general, particularly at >1000 SS mg L-1. Combined effect of copper and SS exposure on fish was either synergistic or antagonistic. Overall, potential adverse effect of polluted SS on fish greatly varied at different life stage and/or by metal pollution gradients.
Collapse
Affiliation(s)
- Seung Oh Chu
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Junsung Noh
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Sung Joon Song
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Ganghwa-gun, Incheon, Republic of Korea
| | - Jung-Suk Lee
- Neo Environmental Business Co. (NeoEnBiz), Bucheon 14523, Republic of Korea
| | - Jungho Nam
- Korea Maritime Institute, Busan 49111, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
39
|
Chase TJ, Pratchett MS, McWilliam MJ, Hein MY, Tebbett SB, Hoogenboom MO. Damselfishes alleviate the impacts of sediments on host corals. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192074. [PMID: 32431885 PMCID: PMC7211878 DOI: 10.1098/rsos.192074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Mutualisms play a critical role in ecological communities; however, the importance and prevalence of mutualistic associations can be modified by external stressors. On coral reefs, elevated sediment deposition can be a major stressor reducing the health of corals and reef resilience. Here, we investigated the influence of severe sedimentation on the mutualistic relationship between small damselfishes (Pomacentrus moluccensis and Dascyllus aruanus) and their coral host (Pocillopora damicornis). In an aquarium experiment, corals were exposed to sedimentation rates of approximately 100 mg cm-2 d-1, with and without fishes present, to test whether: (i) fishes influence the accumulation of sediments on coral hosts, and (ii) fishes moderate partial colony mortality and/or coral tissue condition. Colonies with fishes accumulated much less sediment compared with colonies without fishes, and this effect was strongest for colonies with D. aruanus (fivefold less sediment than controls) as opposed to P. moluccensis (twofold less sediment than controls). Colonies with symbiont fishes also had up to 10-fold less sediment-induced partial mortality, as well as higher chlorophyll and protein concentrations. These results demonstrate that fish mutualisms vary in the strength of their benefits, and indicate that some mutualistic or facilitative interactions might become more important for species health and resilience at high-stress levels.
Collapse
Affiliation(s)
- T. J. Chase
- Marine Biology and Aquaculture Group, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - M. S. Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - M. J. McWilliam
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe, HI, 96744, USA
| | - M. Y. Hein
- Marine Biology and Aquaculture Group, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - S. B. Tebbett
- Marine Biology and Aquaculture Group, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - M. O. Hoogenboom
- Marine Biology and Aquaculture Group, College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
40
|
Rosado D, Xavier R, Severino R, Tavares F, Cable J, Pérez-Losada M. Effects of disease, antibiotic treatment and recovery trajectory on the microbiome of farmed seabass (Dicentrarchus labrax). Sci Rep 2019; 9:18946. [PMID: 31831775 PMCID: PMC6908611 DOI: 10.1038/s41598-019-55314-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
The mucosal surfaces of fish harbour microbial communities that can act as the first-line of defense against pathogens. Infectious diseases are one of the main constraints to aquaculture growth leading to huge economic losses. Despite their negative impacts on microbial diversity and overall fish health, antibiotics are still the method of choice to treat many such diseases. Here, we use 16 rRNA V4 metataxonomics to study over a 6 week period the dynamics of the gill and skin microbiomes of farmed seabass before, during and after a natural disease outbreak and subsequent antibiotic treatment with oxytetracycline. Photobacterium damselae was identified as the most probable causative agent of disease. Both infection and antibiotic treatment caused significant, although asymmetrical, changes in the microbiome composition of the gills and skin. The most dramatic changes in microbial taxonomic abundance occurred between healthy and diseased fish. Disease led to a decrease in the bacterial core diversity in the skin, whereas in the gills there was both an increase and a shift in core diversity. Oxytetracycline caused a decrease in core diversity in the gill and an increase in the skin. Severe loss of core diversity in fish mucosae demonstrates the disruptive impact of disease and antibiotic treatment on the microbial communities of healthy fish.
Collapse
Affiliation(s)
- Daniela Rosado
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Raquel Xavier
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| | - Ricardo Severino
- Piscicultura Vale da Lama, Sapal do Vale da Lama, Odiáxere, 8600-258, Lagos, Portugal
| | - Fernando Tavares
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Faculdade de Ciências, Departmento de Biologia, Universidade do Porto, 4169-007, Porto, Portugal
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Marcos Pérez-Losada
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Computational Biology Institute, Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington DC, 20052, USA
| |
Collapse
|
41
|
Reinhart EM, Korry BJ, Rowan-Nash AD, Belenky P. Defining the Distinct Skin and Gut Microbiomes of the Northern Pike ( Esox lucius). Front Microbiol 2019; 10:2118. [PMID: 31572326 PMCID: PMC6751255 DOI: 10.3389/fmicb.2019.02118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
The microbiome of freshwater fish has important implications for both commercial and recreational fishing because it can have significant impacts on host heath, spoilage rates, and susceptibility to disease. The aqueous environment serves as a possible avenue for continuous introduction of microbes to an animal host, but little is known about how the surrounding microbiota contribute to piscine microbiomes. To better understand the composition of the fish microbiome exposed to the natural environment, we profiled the microbial composition of the gut and the skin mucosal surface (SMS) of northern pike (Esox lucius) and the surrounding river water. We collected fish samples from eight sites along a single river in southwestern Quebec, Canada and analyzed the microbial composition via 16S rRNA sequencing. Our results reveal robust taxonomic differences between the SMS and the gut, indicating a divergence between the microbiomes. The gut community was characterized by a lower alpha diversity compared to the SMS and a large proportion of Cetobacterium, a genus previously linked to carnivorous species. On the other hand, the SMS was more similar to the water than the gut at the family level but divergent at lower taxonomic levels, with fewer than 30% of amplicon sequence variants (ASVs) shared between the SMS and water. In total, our results suggest the establishment of distinct communities across the two fish sites, as well as a clear separation from the microbes in surrounding waters. These data indicate that despite continuous exposure to water, pike are able to establish and maintain unique microbial communities.
Collapse
Affiliation(s)
| | | | | | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
42
|
Lehmann R, Lightfoot DJ, Schunter C, Michell CT, Ohyanagi H, Mineta K, Foret S, Berumen ML, Miller DJ, Aranda M, Gojobori T, Munday PL, Ravasi T. Finding Nemo's Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula. Mol Ecol Resour 2018; 19:570-585. [PMID: 30203521 PMCID: PMC7379943 DOI: 10.1111/1755-0998.12939] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C-based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein-coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.
Collapse
Affiliation(s)
- Robert Lehmann
- KAUST Environmental Epigenetic Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Damien J Lightfoot
- KAUST Environmental Epigenetic Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Celia Schunter
- KAUST Environmental Epigenetic Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Craig T Michell
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hajime Ohyanagi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Katsuhiko Mineta
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sylvain Foret
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Manuel Aranda
- Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
43
|
Galbraith H, Iwanowicz D, Spooner D, Iwanowicz L, Keller D, Zelanko P, Adams C. Exposure to synthetic hydraulic fracturing waste influences the mucosal bacterial community structure of the brook trout ( Salvelinus fontinalis) epidermis. AIMS Microbiol 2018; 4:413-427. [PMID: 31294224 PMCID: PMC6604949 DOI: 10.3934/microbiol.2018.3.413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022] Open
Abstract
Production of natural gas using unconventional technologies has risen as demand for alternative fuels has increased. Impacts on the environment from waste generated from these processes are largely unexplored. In particular, the outcomes of organismal exposure to hydraulic fracturing waste have not been rigorously evaluated. We evaluated the effects of exposure to surrogate hydraulic fracturing waste (HF waste) on mucosal bacterial community structure of the brook trout (Salvelinus fontinalis) epidermis. Brook trout are fish native to streams at risk to HF waste exposure. Here, fish were exposed to four treatments (control, 0.00%; low, 0.01%; medium, 0.10%; and high, 1.0% concentrations) of surrogate HF waste synthesized to mimic concentrations documented in the field. Epidermal mucus samples were collected and assessed 15 days post-exposure to determine if the associated bacterial community varied among treatments. We observed differences in epidermal mucosal bacterial community composition at multiple taxonomic scales among treatments. These community changes reflected compositional differences in taxa dominance and community similarity rather than losses or gains in taxonomic richness. The dominant bacterial genus that explained the greatest variation in community structure between exposed and unexposed fish was Flavobacterium. Two genera associated with salmonid diseases, Flavobacterium and Pseudomonas, were statistically more abundant in high treatments than controls. These results suggest that exposure to low levels of HF waste influences bacterial colonization and may lead to a disruption that favors bacterial populations associated with fish disease.
Collapse
Affiliation(s)
- Heather Galbraith
- U.S. Geological Survey, Leetown Science Center, Northern Appalachian Research Laboratory, 176 Straight Run Road, Wellsboro, PA, USA
| | - Deborah Iwanowicz
- U.S. Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, 11649 Leetown Road, Kearneysville, WV, USA
| | - Daniel Spooner
- U.S. Geological Survey, Leetown Science Center, Northern Appalachian Research Laboratory, 176 Straight Run Road, Wellsboro, PA, USA.,George Mason University, Department of Environmental Science and Policy, 4400 University Drive, Fairfax, VA, USA
| | - Luke Iwanowicz
- U.S. Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, 11649 Leetown Road, Kearneysville, WV, USA
| | - David Keller
- The Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Pkwy, Philadelphia, PA, USA
| | - Paula Zelanko
- George Mason University, Department of Environmental Science and Policy, 4400 University Drive, Fairfax, VA, USA
| | - Cynthia Adams
- U.S. Geological Survey, Leetown Science Center, National Fish Health Research Laboratory, 11649 Leetown Road, Kearneysville, WV, USA
| |
Collapse
|
44
|
Hess S, Prescott LJ, Hoey AS, McMahon SA, Wenger AS, Rummer JL. Species-specific impacts of suspended sediments on gill structure and function in coral reef fishes. Proc Biol Sci 2018; 284:rspb.2017.1279. [PMID: 29093217 DOI: 10.1098/rspb.2017.1279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/03/2017] [Indexed: 01/01/2023] Open
Abstract
Reduced water quality, in particular increases in suspended sediments, has been linked to declines in fish abundance on coral reefs. Changes in gill structure induced by suspended sediments have been hypothesized to impair gill function and may provide a mechanistic basis for the observed declines; yet, evidence for this is lacking. We exposed juveniles of three reef fish species (Amphiprion melanopus, Amphiprion percula and Acanthochromis polyacanthus) to suspended sediments (0-180 mg l-1) for 7 days and examined changes in gill structure and metabolic performance (i.e. oxygen consumption). Exposure to suspended sediments led to shorter gill lamellae in A. melanopus and A. polyacanthus and reduced oxygen diffusion distances in all three species. While A. melanopus exhibited impaired oxygen uptake after suspended sediment exposure, i.e. decreased maximum and increased resting oxygen consumption rates resulting in decreased aerobic scope, the oxygen consumption rates of the other two species remained unaffected. These findings imply that species sensitive to changes in gill structure such as A. melanopus may decline in abundance as reefs become more turbid, whereas species that are able to maintain metabolic performance despite suspended sediment exposure, such as A. polyacanthus or A. percula, may be able to persist or gain a competitive advantage.
Collapse
Affiliation(s)
- Sybille Hess
- ARC Centre of Excellence for Coral Reef Studies, Townsville, 4811 Queensland, Australia .,College of Science and Engineering, James Cook University, Townsville, 4811 Queensland, Australia
| | - Leteisha J Prescott
- ARC Centre of Excellence for Coral Reef Studies, Townsville, 4811 Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, 4811 Queensland, Australia
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, Townsville, 4811 Queensland, Australia
| | - Shannon A McMahon
- ARC Centre of Excellence for Coral Reef Studies, Townsville, 4811 Queensland, Australia.,College of Science and Engineering, James Cook University, Townsville, 4811 Queensland, Australia
| | - Amelia S Wenger
- School of Earth and Environmental Sciences, University of Queensland, St Lucia, 4072 Queensland, Australia
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, Townsville, 4811 Queensland, Australia
| |
Collapse
|
45
|
The Gills of Reef Fish Support a Distinct Microbiome Influenced by Host-Specific Factors. Appl Environ Microbiol 2018; 84:AEM.00063-18. [PMID: 29453266 DOI: 10.1128/aem.00063-18] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 01/17/2023] Open
Abstract
Teleost fish represent the most diverse of the vertebrate groups and play important roles in food webs, as ecosystem engineers, and as vectors for microorganisms. However, the microbial ecology of fishes remains underexplored for most host taxa and for certain niches on the fish body. This is particularly true for the gills, the key sites of respiration and waste exchange in fishes. Here we provide a comprehensive analysis of the gill microbiome. We focus on ecologically diverse taxa from coral reefs around Moorea, sampling the gills and intestines of adults and juveniles representing 15 families. The gill microbiome composition differed significantly from that of the gut for both adults and juveniles, with fish-associated niches having lower alpha diversity values and higher beta diversity values than those for seawater, sediment, and alga-associated microbiomes. Of ∼45,000 operational taxonomic units (OTUs) detected across all samples, 11% and 13% were detected only in the gill and the intestine, respectively. OTUs most enriched in the gill included members of the gammaproteobacterial genus Shewanella and the family Endozoicimonaceae In adult fish, both gill and intestinal microbiomes varied significantly among host species grouped by diet category. Gill and intestinal microbiomes from the same individual were more similar to one another than to gill and intestinal microbiomes from different individuals. These results demonstrate that distinct body sites are jointly influenced by host-specific organizing factors operating at the level of the host individual. The results also identify taxonomic signatures unique to the gill and the intestine, confirming fish-associated niches as distinct reservoirs of marine microbial diversity.IMPORTANCE Fish breathe and excrete waste through their gills. The gills are also potential sites of pathogen invasion and colonization by other microbes. However, we know little about the microbial communities that live on the gill and the factors shaping their diversity. Focusing on ecologically distinct types of coral reef fish, we provide a comprehensive analysis of the fish gill microbiome. By comparison to microbiomes of the gut and the surrounding environment, we identify microbes unique to the gill niche. These microbes may be targets for further studies to determine the contribution of the microbiome to waste exchange or host immunity. We also show that despite exhibiting a unique taxonomic signature, the gill microbiome is influenced by factors that also influence the gut microbiome. These factors include the specific identity of the host individual. These results suggest basic principles describing how association with fishes structures the composition of microbial communities.
Collapse
|
46
|
Killen SS, Marras S, Nadler L, Domenici P. The role of physiological traits in assortment among and within fish shoals. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0233. [PMID: 28673911 PMCID: PMC5498295 DOI: 10.1098/rstb.2016.0233] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
Individuals of gregarious species often group with conspecifics to which they are phenotypically similar. This among-group assortment has been studied for body size, sex and relatedness. However, the role of physiological traits has been largely overlooked. Here, we discuss mechanisms by which physiological traits—particularly those related to metabolism and locomotor performance—may result in phenotypic assortment not only among but also within animal groups. At the among-group level, varying combinations of passive assortment, active assortment, phenotypic plasticity and selective mortality may generate phenotypic differences among groups. Even within groups, however, individual variation in energy requirements, aerobic and anaerobic capacity, neurological lateralization and tolerance to environmental stressors are likely to produce differences in the spatial location of individuals or associations between group-mates with specific physiological phenotypes. Owing to the greater availability of empirical research, we focus on groups of fishes (i.e. shoals and schools). Increased knowledge of physiological mechanisms influencing among- and within-group assortment will enhance our understanding of fundamental concepts regarding optimal group size, predator avoidance, group cohesion, information transfer, life-history strategies and the evolutionary effects of group membership. In a broader perspective, predicting animal responses to environmental change will be impossible without a comprehensive understanding of the physiological basis of the formation and functioning of animal social groups. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Stefano Marras
- IAMC-CNR, Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - Lauren Nadler
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | - Paolo Domenici
- IAMC-CNR, Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| |
Collapse
|
47
|
Legrand TPRA, Catalano SR, Wos-Oxley ML, Stephens F, Landos M, Bansemer MS, Stone DAJ, Qin JG, Oxley APA. The Inner Workings of the Outer Surface: Skin and Gill Microbiota as Indicators of Changing Gut Health in Yellowtail Kingfish. Front Microbiol 2018; 8:2664. [PMID: 29379473 PMCID: PMC5775239 DOI: 10.3389/fmicb.2017.02664] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/21/2017] [Indexed: 11/13/2022] Open
Abstract
The mucosal surfaces and associated microbiota of fish are an important primary barrier and provide the first line of defense against potential pathogens. An understanding of the skin and gill microbial assemblages and the factors which drive their composition may provide useful insights into the broad dynamics of fish host–microbial relationships, and may reveal underlying changes in health status. This is particularly pertinent to cultivated systems whereby various stressors may led to conditions (like enteritis) which impinge on productivity. As an economically important species, we assessed whether the outer-surface bacterial communities reflect a change in gut health status of cultivated Yellowtail Kingfish (Seriola lalandi). Active bacterial assemblages were surveyed from RNA extracts from swabs of the skin and gills by constructing Illumina 16S rRNA gene amplicon libraries. Proteobacteria and Bacteroidetes were predominant in both the skin and gills, with enrichment of key β-proteobacteria in the gills (Nitrosomonadales and Ferrovales). Fish exhibiting early stage chronic lymphocytic enteritis comprised markedly different global bacterial assemblages compared to those deemed healthy and exhibiting late stages of the disease. This corresponded to an overall loss of diversity and enrichment of Proteobacteria and Actinobacteria, particularly in the gills. In contrast, bacterial assemblages of fish with late stage enteritis were generally similar to those of healthy individuals, though with some distinct taxa. In conclusion, gut health status is an important factor which defines the skin and gill bacterial assemblages of fish and likely reflects changes in immune states and barrier systems during the early onset of conditions like enteritis. This study represents the first to investigate the microbiota of the outer mucosal surfaces of fish in response to underlying chronic gut enteritis, revealing potential biomarkers for assessing fish health in commercial aquaculture systems.
Collapse
Affiliation(s)
- Thibault P R A Legrand
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia.,School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Sarah R Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Melissa L Wos-Oxley
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany.,South Australian Museum, Adelaide, SA, Australia
| | | | - Matt Landos
- Future Fisheries Veterinary Service Pty Ltd., East Ballina, NSW, Australia
| | - Matthew S Bansemer
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - David A J Stone
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia.,School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Andrew P A Oxley
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| |
Collapse
|
48
|
Kerry JT, Bellwood DR. Environmental drivers of sheltering behaviour in large reef fishes. MARINE POLLUTION BULLETIN 2017; 125:254-259. [PMID: 28830627 DOI: 10.1016/j.marpolbul.2017.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Studies of shelter use can provide key insights into the ecology, and structural needs of mobile organisms. Using videos, we examined the usage of tabular corals by large reef fishes, over a 10week period, compared to multiple environmental drivers: visibility, tide (and depth), irradiance, wind speed (as a proxy for wave energy) and water temperature. We found that two of these predictor variables (visibility and wind speed) had a significant effect and together accounted for almost half of the variation in tabular coral usage by fishes. Increases in both variables correlated with increased shelter use. To date use of shelters by fishes has primarily been attributed to UV avoidance. Our results support this notion as more turbid conditions (reduced visibility) have an attenuating effect on UV irradiance. Additionally, tabular corals may reduce the energetic costs of increased wave energy by reducing incidental water velocity beneath the structure.
Collapse
Affiliation(s)
- James T Kerry
- Australian Research Council Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - David R Bellwood
- Australian Research Council Centre of Excellence for Coral Reef Studies, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
49
|
Cooke SJ, Birnie-Gauvin K, Lennox RJ, Taylor JJ, Rytwinski T, Rummer JL, Franklin CE, Bennett JR, Haddaway NR. How experimental biology and ecology can support evidence-based decision-making in conservation: avoiding pitfalls and enabling application. CONSERVATION PHYSIOLOGY 2017; 5:cox043. [PMID: 28835842 PMCID: PMC5550808 DOI: 10.1093/conphys/cox043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/21/2017] [Accepted: 07/15/2017] [Indexed: 05/14/2023]
Abstract
Policy development and management decisions should be based upon the best available evidence. In recent years, approaches to evidence synthesis, originating in the medical realm (such as systematic reviews), have been applied to conservation to promote evidence-based conservation and environmental management. Systematic reviews involve a critical appraisal of evidence, but studies that lack the necessary rigour (e.g. experimental, technical and analytical aspects) to justify their conclusions are typically excluded from systematic reviews or down-weighted in terms of their influence. One of the strengths of conservation physiology is the reliance on experimental approaches that help to more clearly establish cause-and-effect relationships. Indeed, experimental biology and ecology have much to offer in terms of building the evidence base that is needed to inform policy and management options related to pressing issues such as enacting endangered species recovery plans or evaluating the effectiveness of conservation interventions. Here, we identify a number of pitfalls that can prevent experimental findings from being relevant to conservation or would lead to their exclusion or down-weighting during critical appraisal in a systematic review. We conclude that conservation physiology is well positioned to support evidence-based conservation, provided that experimental designs are robust and that conservation physiologists understand the nuances associated with informing decision-making processes so that they can be more relevant.
Collapse
Affiliation(s)
- Steven J. Cooke
- Canadian Centre for Evidence-Based Conservation and Environmental Management, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Kim Birnie-Gauvin
- Canadian Centre for Evidence-Based Conservation and Environmental Management, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Robert J. Lennox
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Jessica J. Taylor
- Canadian Centre for Evidence-Based Conservation and Environmental Management, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Trina Rytwinski
- Canadian Centre for Evidence-Based Conservation and Environmental Management, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Jodie L. Rummer
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Craig E. Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joseph R. Bennett
- Canadian Centre for Evidence-Based Conservation and Environmental Management, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Neal R. Haddaway
- EviEM, Stockholm Environment Institute, Box 24218, 10451 Stockholm, Sweden
| |
Collapse
|
50
|
Reverter M, Sasal P, Tapissier-Bontemps N, Lecchini D, Suzuki M. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems. FEMS Microbiol Ecol 2017; 93:3738480. [DOI: 10.1093/femsec/fix051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/17/2017] [Indexed: 12/26/2022] Open
|