1
|
Krasnovskaya O, Abramchuk D, Vaneev A, Gorelkin P, Abakumov M, Timoshenko R, Kuzmichev I, Chmelyuk N, Vadehina V, Kuanaeva R, Dubrovin E, Kolmogorov V, Beloglazkina E, Kechko O, Mitkevich V, Varshavskaya K, Salikhov S, Erofeev A. Bifunctional Copper Chelators Capable of Reducing Aβ Aggregation and Aβ-Induced Oxidative Stress. ACS OMEGA 2024; 9:43376-43384. [PMID: 39493999 PMCID: PMC11525521 DOI: 10.1021/acsomega.4c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Five bifunctional copper chelating agents, Alz-(1-5), designed to prevent beta-amyloid (Aβ) aggregation, were synthesized, and the leader compound (Alz-5) was chosen. Alz-5 acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity. Reactive oxygen species measurements provided by the Pt-nanoelectrode technique in single Aβ42-affected human neuroblastoma SH-SY5Y cells revealed significant antioxidant activity of Alz-5. AFM data obtained on Aβ42 fibrils clearly indicate the antiaggregating property of Alz-5. To gain insights into the changes in the physiomechanical properties of Aβ42-affected cells, as well as in order to evaluate the antiaggregating ability of Alz-5, Young's modulus mapping on living SH-SY5Y cells affected consequently by Aβ42 and Alz-5 was conducted, and the ability of Alz-5 to decrease cell rigidity induced by Aβ42 was indisputably proven. Low cell toxicity and antioxidating properties, in conjunction with AFM and SICM-based biophysical provided on Aβ42-affected SH-SY5Y cells, support Alz-5 as a potential inhibitor of Aβ aggregation.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Daniil Abramchuk
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Alexander Vaneev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr Gorelkin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Maxim Abakumov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
| | - Roman Timoshenko
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Ilia Kuzmichev
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Nelly Chmelyuk
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Veronika Vadehina
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Regina Kuanaeva
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Evgeniy Dubrovin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 2, Moscow 119991, Russia
| | - Vasilii Kolmogorov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Olga Kechko
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Vladimir Mitkevich
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Kseniya Varshavskaya
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Sergey Salikhov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander Erofeev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
2
|
Xiao R, Zhang Y, Li M. Automated High-Throughput Atomic Force Microscopy Single-Cell Nanomechanical Assay Enabled by Deep Learning-Based Optical Image Recognition. NANO LETTERS 2024; 24:12323-12332. [PMID: 39302697 DOI: 10.1021/acs.nanolett.4c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Mechanical forces are essential for life activities, and the mechanical phenotypes of single cells are increasingly gaining attention. Atomic force microscopy (AFM) has been a standard method for single-cell nanomechanical assays, but its efficiency is limited due to its reliance on manual operation. Here, we present a study of deep learning image recognition-assisted AFM that enables automated high-throughput single-cell nanomechanical measurements. On the basis of the label-free identification of the cell structures and the AFM probe in optical bright-field images as well as the consequent automated movement of the sample stage and AFM probe, the AFM probe tip could be accurately and sequentially moved onto the specific parts of individual living cells to perform a single-cell indentation assay or single-cell force spectroscopy in a time-efficient manner. The study illustrates a promising method based on deep learning for achieving operator-independent high-throughput AFM single-cell nanomechanics, which will benefit the application of AFM in mechanobiology.
Collapse
Affiliation(s)
- Rui Xiao
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanzhu Zhang
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
3
|
曹 祎, 高 志, 石 怡, 李 芬, 宋 辉, 张 倩, 赵 雅, 陈 凌, 李 晓, 陈 维. [Study on methods measuring mechanical properties of arterial wall by macroscopic indentation]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:469-475. [PMID: 38932532 PMCID: PMC11208641 DOI: 10.7507/1001-5515.202310062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Indexed: 06/28/2024]
Abstract
Accurately evaluating the local biomechanics of arterial wall is crucial for diagnosing and treating arterial diseases. Indentation measurement can be used to evaluate the local mechanical properties of the artery. However, the effects of the indenter's geometric structure and the analysis theory on measurement results remain uncertain. In this paper, four kinds of indenters were used to measure the pulmonary aorta, the proximal thoracic aorta and the distal thoracic aorta in pigs, and the arterial elastic modulus was calculated by Sneddon and Sirghi theory to explore the influence of the indenter geometry and analysis theory on the measured elastic modulus. The results showed that the arterial elastic modulus measured by cylindrical indenter was lower than that measured by spherical indenter. In addition, compared with the calculated results of Sirghi theory, the Sneddon theory, which does not take adhesion forces in account, resulted in slightly larger elastic modulus values. In conclusion, this study provides parametric support for effective measurement of arterial local mechanical properties by millimeter indentation technique.
Collapse
Affiliation(s)
- 祎凡 曹
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 志鹏 高
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 怡柯 石
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 芬 李
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
- 太原理工大学 机械与运载工程学院 (太原 030024)College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 辉 宋
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
- 太原理工大学 机械与运载工程学院 (太原 030024)College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 倩倩 张
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 雅威 赵
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 凌峰 陈
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 晓娜 李
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - 维毅 陈
- 太原理工大学 生物医学工程学院 (太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| |
Collapse
|
4
|
Tao C, Li Y, An N, Liu H, Liu Z, Sun Y, Qian Y, Li N, Xing Y, Gao Y. Pathological mechanisms and future therapeutic directions of thrombin in intracerebral hemorrhage: a systematic review. Front Pharmacol 2024; 15:1293428. [PMID: 38698822 PMCID: PMC11063263 DOI: 10.3389/fphar.2024.1293428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/05/2024] [Indexed: 05/05/2024] Open
Abstract
Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.
Collapse
Affiliation(s)
- Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Li M. Harnessing atomic force microscopy-based single-cell analysis to advance physical oncology. Microsc Res Tech 2024; 87:631-659. [PMID: 38053519 DOI: 10.1002/jemt.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Single-cell analysis is an emerging and promising frontier in the field of life sciences, which is expected to facilitate the exploration of fundamental laws of physiological and pathological processes. Single-cell analysis allows experimental access to cell-to-cell heterogeneity to reveal the distinctive behaviors of individual cells, offering novel opportunities to dissect the complexity of severe human diseases such as cancers. Among the single-cell analysis tools, atomic force microscopy (AFM) is a powerful and versatile one which is able to nondestructively image the fine topographies and quantitatively measure multiple mechanical properties of single living cancer cells in their native states under aqueous conditions with unprecedented spatiotemporal resolution. Over the past few decades, AFM has been widely utilized to detect the structural and mechanical behaviors of individual cancer cells during the process of tumor formation, invasion, and metastasis, yielding numerous unique insights into tumor pathogenesis from the biomechanical perspective and contributing much to the field of cancer mechanobiology. Here, the achievements of AFM-based analysis of single cancer cells to advance physical oncology are comprehensively summarized, and challenges and future perspectives are also discussed. RESEARCH HIGHLIGHTS: Achievements of AFM in characterizing the structural and mechanical behaviors of single cancer cells are summarized, and future directions are discussed. AFM is not only capable of visualizing cellular fine structures, but can also measure multiple cellular mechanical properties as well as cell-generated mechanical forces. There is still plenty of room for harnessing AFM-based single-cell analysis to advance physical oncology.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Gao C, Lai Y, Cheng L, Cheng Y, Miao A, Chen J, Yang R, Xiong F. PIP2 Alteration Caused by Elastic Modulus and Tropism of Electrospun Scaffolds Facilitates Altered BMSCs Proliferation and Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212272. [PMID: 36866457 DOI: 10.1002/adma.202212272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Indexed: 05/05/2023]
Abstract
Aligned submicron fibers have played an essential role in inducing stem cell proliferation and differentiation. In this study, it is aimed to identify the differential causes of stem cell proliferation and differentiation between bone marrow mesenchymal stem cells (BMSCs) on aligned-random fibers with different elastic modulus, and to change the differential levels through a regulatory mechanism mediated by B-cell lymphoma 6 protein(BCL-6) and miRNA-126-5p(miR-126-5p). The results showed that phosphatidylinositol(4,5)bisphosphate alterations are found in the aligned fibers compared with the random fibers, which has a regular and oriented structure, excellent cytocompatibility, regular cytoskeleton, and high differentiation potential. The same trend is actual for the aligned fibers with a lower elastic modulus. The level of proliferative differentiation genes in cells is altered by BCL-6 and miR-126-5p mediated regulatory mechanisms to make the cell distribution nearly consistent with the cell state on low elastic modulus aligned fibers. This work demonstrates the reason for the difference of cells between the two kinds of fibers and on fibers with different elastic modulus. These findings provide more insights for understanding the gene-level regulation of cell growth in tissue engineering.
Collapse
Affiliation(s)
- Chen Gao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yulin Lai
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Liang Cheng
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Yifan Cheng
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Anqi Miao
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Jialong Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Runhuai Yang
- Key Lab of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, 230022, China
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
7
|
Lekka M. Applicability of atomic force microscopy to determine cancer-related changes in cells. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210346. [PMID: 35909354 DOI: 10.1098/rsta.2021.0346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 06/15/2023]
Abstract
The determination of mechanical properties of living cells as an indicator of cancer progression has become possible with the development of local measurement techniques such as atomic force microscopy (AFM). Its most important advantage is a nanoscopic character, implying that very local alterations can be quantified. The results gathered from AFM measurements of various cancers show that, for most cancers, individual cells are characterized by the lower apparent Young's modulus, denoting higher cell deformability. The measured value depends on various factors, like the properties of substrates used for cell growth, force loading rate or indentation depth. Despite this, the results proved the AFM capability to recognize mechanically altered cells. This can significantly impact the development of methodological approaches toward the precise identification of pathological cells. This article is part of the theme issue 'Nanocracks in nature and industry'.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Department of Biophysical Microstructures, Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
8
|
Belvitch P, Casanova N, Sun X, Camp SM, Sammani S, Brown ME, Mascarhenas J, Lynn H, Adyshev D, Siegler J, Desai A, Seyed-Saadat L, Rizzo A, Bime C, Shekhawat GS, Dravid VP, Reilly JP, Jones TK, Feng R, Letsiou E, Meyer NJ, Ellis N, Garcia JGN, Dudek SM. A cortactin CTTN coding SNP contributes to lung vascular permeability and inflammatory disease severity in African descent subjects. Transl Res 2022; 244:56-74. [PMID: 35181549 PMCID: PMC9119916 DOI: 10.1016/j.trsl.2022.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022]
Abstract
The cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. In a separate cohort of sickle cell disease (SCD) subjects with and without ACS (177 SCD Black subjects), significantly increased risk of ACS and increased ACS severity (need for mechanical ventilation) was observed in carriers of the A allele. Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.
Collapse
Affiliation(s)
- Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nancy Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | | - Joseph Mascarhenas
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Heather Lynn
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Djanybek Adyshev
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jessica Siegler
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ankit Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Laleh Seyed-Saadat
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alicia Rizzo
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Gajendra S Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - John P Reilly
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tiffanie K Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Rui Feng
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nathan Ellis
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
9
|
Konar M, Ghosh D, Samanta S, Govindaraju T. Combating amyloid-induced cellular toxicity and stiffness by designer peptidomimetics. RSC Chem Biol 2022; 3:220-226. [PMID: 35360886 PMCID: PMC8827053 DOI: 10.1039/d1cb00235j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Amyloid beta (Aβ) aggregation species-associated cellular stress instigates cytotoxicity and adverse cellular stiffness in neuronal cells. The study and modulation of these adverse effects demand immediate attention to tackle Alzheimer's disease (AD). We present a de novo design, synthesis and evaluation of Aβ14-23 peptidomimetics with cyclic dipeptide (CDP) units at defined positions. Our study identified AkdNMC with CDP units at the middle, N- and C-termini as a potent candidate to understand and ameliorate Aβ aggregation-induced cellular toxicity and adverse stiffness. Aβ14-23 peptidomimetics incorporated with cyclic dipeptide-based unnatural amino acid at defined positions serve as potential candidates to understand and ameliorate amyloid-induced cellular toxicity and physio-mechanical anomalies.![]()
Collapse
Affiliation(s)
- Mouli Konar
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
10
|
Strauss RE, Mezache L, Veeraraghavan R, Gourdie RG. The Cx43 Carboxyl-Terminal Mimetic Peptide αCT1 Protects Endothelial Barrier Function in a ZO1 Binding-Competent Manner. Biomolecules 2021; 11:1192. [PMID: 34439858 PMCID: PMC8393261 DOI: 10.3390/biom11081192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
The Cx43 carboxyl-terminus (CT) mimetic peptide, αCT1, originally designed to bind to Zonula Occludens 1 (ZO1) and thereby inhibit Cx43/ZO1 interaction, was used as a tool to probe the role of Cx43/ZO1 association in regulation of epithelial/endothelial barrier function. Using both in vitro and ex vivo methods of barrier function measurement, including Electric Cell-Substrate Impedance Sensing (ECIS), a TRITC-dextran Transwell permeability assay, and a FITC-dextran cardiovascular leakage protocol involving Langendorff-perfused mouse hearts, αCT1 was found to protect the endothelium from thrombin-induced breakdown in cell-cell contacts. Barrier protection was accompanied by significant remodeling of the F-actin cytoskeleton, characterized by a redistribution of F-actin away from the cytoplasmic and nuclear regions of the cell, towards the endothelial cell periphery, in association with alterations in cellular chiral orientation distribution. In line with observations of increased cortical F-actin, αCT1 upregulated cell-cell border localization of endothelial VE-cadherin, the tight junction protein Zonula Occludens 1 (ZO1), and the Gap Junction Protein (GJ) Connexin43 (Cx43). A ZO1 binding-incompetent variant of αCT1, αCT1-I, indicated that these effects on barrier function and barrier-associated proteins, were likely associated with Cx43 CT sequences retaining ability to interact with ZO1. These results implicate the Cx43 CT and its interaction with ZO1, in the regulation of endothelial barrier function, while revealing the therapeutic potential of αCT1 in the treatment of vascular edema.
Collapse
Affiliation(s)
- Randy E. Strauss
- Virginia Tech, Translational Biology Medicine and Health (TBMH) Program, Roanoke, VA 24016, USA
| | - Louisa Mezache
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 460 Medical Center Dr., Rm 415A, IBMR, Columbus, OH 43210, USA; (L.M.); (R.V.)
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, 460 Medical Center Dr., Rm 415A, IBMR, Columbus, OH 43210, USA; (L.M.); (R.V.)
- The Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Robert G. Gourdie
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
11
|
Starodubtseva MN, Nadyrov EA, Shkliarava NM, Tsukanava AU, Starodubtsev IE, Kondrachyk AN, Matveyenkau MV, Nedoseikina MS. Heterogeneity of nanomechanical properties of the human umbilical vein endothelial cell surface. Microvasc Res 2021; 136:104168. [PMID: 33845104 DOI: 10.1016/j.mvr.2021.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
Endothelial cells, due to heterogeneity in the cell structure, can potentially form an inhomogeneous on structural and mechanical properties of the inner layer of the capillaries. Using quantitative nanomechanical mapping mode of atomic force microscopy, the parameters of the structural, elastic, and adhesive properties of the cell surface for living and glutaraldehyde-fixed human umbilical vein endothelial cells were studied. A significant difference in the studied parameters for three cell surface zones (peripheral, perinuclear, and nuclear zones) was established. The perinuclear zone appeared to be the softest zone of the endothelial cell surface. The heterogeneity of the endothelial cell mechanical properties at the nanoscale level can be an important mechanism in regulating the endothelium functions in blood vessels.
Collapse
Affiliation(s)
- Maria N Starodubtseva
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus; Gomel State Medical University, 5 Lange str., Gomel BY-246000, Belarus.
| | - Eldar A Nadyrov
- Gomel State Medical University, 5 Lange str., Gomel BY-246000, Belarus
| | - Nastassia M Shkliarava
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | - Alena U Tsukanava
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | | | | | - Matsvei V Matveyenkau
- Institute of Radiobiology of NAS of Belarus, 4 Fedyuninskogo str., Gomel BY-246007, Belarus
| | | |
Collapse
|
12
|
Methods for Studying Endometrial Pathology and the Potential of Atomic Force Microscopy in the Research of Endometrium. Cells 2021; 10:cells10020219. [PMID: 33499261 PMCID: PMC7911798 DOI: 10.3390/cells10020219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 01/21/2023] Open
Abstract
The endometrium lines the uterine cavity, enables implantation of the embryo, and provides an environment for its development and growth. Numerous methods, including microscopic and immunoenzymatic techniques, have been used to study the properties of the cells and tissue of the endometrium to understand changes during, e.g., the menstrual cycle or implantation. Taking into account the existing state of knowledge on the endometrium and the research carried out using other tissues, it can be concluded that the mechanical properties of the tissue and its cells are crucial for their proper functioning. This review intends to emphasize the potential of atomic force microscopy (AFM) in the research of endometrium properties. AFM enables imaging of tissues or single cells, roughness analysis, and determination of the mechanical properties (Young’s modulus) of single cells or tissues, or their adhesion. AFM has been previously shown to be useful to derive force maps. Combining the information regarding cell mechanics with the alternations of cell morphology or gene/protein expression provides deeper insight into the uterine pathology. The determination of the elastic modulus of cells in pathological states, such as cancer, has been proved to be useful in diagnostics.
Collapse
|
13
|
Xu Y, Huang D, Lü S, Zhang Y, Long M. Mechanical features of endothelium regulate cell adhesive molecule-induced calcium response in neutrophils. APL Bioeng 2019; 3:016104. [PMID: 31069337 PMCID: PMC6481737 DOI: 10.1063/1.5045115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 04/01/2019] [Accepted: 03/11/2019] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is caused by chronic inflammation associated with the adhesion of neutrophils and endothelial cells (ECs) that is mediated by their respective cellular adhesive molecules to stiffened blood vessel walls. However, the stiffness dependence of calcium flux on neutrophils remains unclear yet. Here, the effect of substrate stiffness by ECs on neutrophils' calcium spike was quantified when the individual neutrophils that adhered to the human umbilical vascular endothelial cell (HUVEC) monolayer were pre-placed onto a stiffness-varied polyacrylamide substrate (5 or 34.88 kPa) or glass surface. Our data indicated that E-/P-selectins and intercellular adhesion molecule 1 (ICAM-1) on HUVECs and β2-integrins, P-selectin glycoprotein ligand 1 (PSGL-1), and CD44s on neutrophils were all involved in mediating neutrophil calcium spike in a stiffness-dependent manner, in which the increase in substrate stiffness enhanced the calcium intensity and the oscillation frequency (spike number). Such stiffness-dependent calcium response is associated with the induced selectin related to β2-integrin activation through the Syk/Src signaling pathway, and F-actin/myosin II are also involved in this. Moreover, tension-activated calcium ion channels displayed critical roles in initiating stiffness-dependent calcium spike. These results provide an insight into understanding how the stiffening of vascular walls could regulate the calcium flux of adhered neutrophils, and thus the immune responses in atherosclerosis.
Collapse
Affiliation(s)
| | | | | | - Yan Zhang
- Authors to whom correspondence should be addressed: and
| | - Mian Long
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
14
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
15
|
Karki P, Birukova AA. Substrate stiffness-dependent exacerbation of endothelial permeability and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover Conference Series). Pulm Circ 2018; 8:2045894018773044. [PMID: 29714090 PMCID: PMC5987909 DOI: 10.1177/2045894018773044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH.
Collapse
Affiliation(s)
- Pratap Karki
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- 12264 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Hall AR, Geoghegan M. Polymers and biopolymers at interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:036601. [PMID: 29368695 DOI: 10.1088/1361-6633/aa9e9c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and 'smart' materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application.
Collapse
Affiliation(s)
- A R Hall
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom. Fraunhofer Project Centre for Embedded Bioanalytical Systems, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | |
Collapse
|
17
|
Wang T, Brown ME, Kelly GT, Camp SM, Mascarenhas JB, Sun X, Dudek SM, Garcia JGN. Myosin light chain kinase ( MYLK) coding polymorphisms modulate human lung endothelial cell barrier responses via altered tyrosine phosphorylation, spatial localization, and lamellipodial protrusions. Pulm Circ 2018; 8:2045894018764171. [PMID: 29480069 PMCID: PMC5846938 DOI: 10.1177/2045894018764171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent bioactive endogenous lipid that signals a rearrangement of the actin cytoskeleton via the regulation of non-muscle myosin light chain kinase isoform (nmMLCK). S1P induces critical nmMLCK Y464 and Y471 phosphorylation resulting in translocation of nmMLCK to the periphery where spatially-directed increases in myosin light chain (MLC) phosphorylation and tension result in lamellipodia protrusion, increased cell-cell adhesion, and enhanced vascular barrier integrity. MYLK, the gene encoding nmMLCK, is a known candidate gene in lung inflammatory diseases, with coding genetic variants (Pro21His, Ser147Pro, Val261Ala) that confer risk for inflammatory lung injury and influence disease severity. The functional mechanisms by which these MYLK coding single nucleotide polymorphisms (SNPs) affect biologic processes to increase disease risk and severity remain elusive. In the current study, we utilized quantifiable cell immunofluorescence assays to determine the influence of MYLK coding SNPs on S1P-mediated nmMLCK phosphorylation and translocation to the human lung endothelial cell (EC) periphery . These disease-associated MYLK variants result in reduced levels of S1P-induced Y464 phosphorylation, a key site for nmMLCK enzymatic regulation and activation. Reduced Y464 phosphorylation resulted in attenuated nmMLCK protein translocation to the cell periphery. We further conducted EC kymographic assays which confirmed that lamellipodial protrusion in response to S1P challenge was retarded by expression of a MYLK transgene harboring the three MYLK coding SNPs. These data suggest that ARDS/severe asthma-associated MYLK SNPs functionally influence vascular barrier-regulatory cytoskeletal responses via direct alterations in the levels of nmMLCK tyrosine phosphorylation, spatial localization, and lamellipodial protrusions.
Collapse
Affiliation(s)
- Ting Wang
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Mary E Brown
- 2 Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Gabriel T Kelly
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joseph B Mascarenhas
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Xiaoguang Sun
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Steven M Dudek
- 2 Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joe G N Garcia
- 1 Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| |
Collapse
|
18
|
Wang X, Wang L, Garcia JGN, Dudek SM, Shekhawat GS, Dravid VP. The Significant Role of c-Abl Kinase in Barrier Altering Agonists-mediated Cytoskeletal Biomechanics. Sci Rep 2018; 8:1002. [PMID: 29343719 PMCID: PMC5772358 DOI: 10.1038/s41598-018-19423-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022] Open
Abstract
Exploration of human pulmonary artery endothelial cell (EC) as a prototypical biomechanical system has important pathophysiologic relevance because this cell type plays a key role in the development of a wide variety of clinical conditions. The complex hierarchical organization ranging from the molecular scale up to the cellular level has an intimate and intricate relationship to the barrier function between lung tissue and blood. To understand the innate molecule-cell-tissue relationship across varied length-scales, the functional role of c-Abl kinase in the cytoskeletal nano-biomechanics of ECs in response to barrier-altering agonists was investigated using atomic force microscopy. Concurrently, the spatially specific arrangement of cytoskeleton structure and dynamic distribution of critical proteins were examined using scanning electron microscopy and immunofluorescence. Reduction in c-Abl expression by siRNA attenuates both thrombin- and sphingosine 1-phosphate (S1P)-mediated structural changes in ECs, specifically spatially-defined changes in elastic modulus and distribution of critical proteins. These results indicate that c-Abl kinase is an important determinant of cortical actin-based cytoskeletal rearrangement. Our findings directly bridge the gap between kinase activity, structural complexity, and functional connectivity across varied length-scales, and suggest that manipulation of c-Abl kinase activity may be a potential target for the treatment of pulmonary barrier disorders.
Collapse
Affiliation(s)
- X Wang
- Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin, 300384, China.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, 300384, China.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - L Wang
- Department of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - J G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - S M Dudek
- Department of Medicine, University of Illinois, Chicago, IL, 60612, USA.
| | - G S Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - V P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
19
|
Katara GK, Kulshrestha A, Mao L, Wang X, Sahoo M, Ibrahim S, Pamarthy S, Suzue K, Shekhawat GS, Gilman-Sachs A, Beaman KD. Mammary epithelium-specific inactivation of V-ATPase reduces stiffness of extracellular matrix and enhances metastasis of breast cancer. Mol Oncol 2017; 12:208-223. [PMID: 29178186 PMCID: PMC5792725 DOI: 10.1002/1878-0261.12159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/25/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023] Open
Abstract
Extracellular matrix (ECM) critically impacts tumor progression and is influenced by both cancer and host tissue cells. While our understanding of cancer cell ECM remodeling is widespread, the importance of host tissue ECM, which provides initial congenial environment for primary tumor formation, is partly understood. Here, we report a novel role of epithelial cell-associated vacuolar ATPase 'a2' isoform (a2V) in regulating breast tissue ECM stiffness to control metastasis. Using a mammary gland-specific a2V-knockout model, we show that in the absence of a2V, breast tumors exhibit atypically soft tumor phenotype, less tumor rigidity, and necrotic tumor microenvironment. These tumors contain a decreased number of cancer cells at primary tumor site, but showed extensive metastases compared to control. Nanomechanical evaluation of normal breast tissues revealed a decrease in stiffness and collagen content in ECM of a2V-deleted breast tissues. Mechanistically, inhibition of a2V expression caused dispersed Golgi morphology with relocation of glycosyltransferase enzymes to early endosomes in mammary epithelial cells. This resulted in defective glycosylation of ECM proteins and production of compromised ECM that further influenced tumor metastasis. Clinically, in patients with cancer, low a2V expression levels in normal breast tissue correlated with lymph node metastasis. Thus, using a new knockout mouse model, we have identified a2V expression in epithelial cells as a key requirement for proper ECM formation in breast tissue and its expression levels can significantly modulate breast tumor dissemination. Evaluation of a2V expression in normal breast tissues can help in identifying patients with high risk of developing metastases.
Collapse
Affiliation(s)
- Gajendra K Katara
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Arpita Kulshrestha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Liqun Mao
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Xin Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Manoranjan Sahoo
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Safaa Ibrahim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Sahithi Pamarthy
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kimiko Suzue
- Department of Pathology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,Advocate Lutheran General Hospital, Park Ridge, IL, USA
| | - Gajendra S Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
20
|
Wang X, Bleher R, Wang L, Garcia JGN, Dudek SM, Shekhawat GS, Dravid VP. Imatinib Alters Agonists-mediated Cytoskeletal Biomechanics in Lung Endothelium. Sci Rep 2017; 7:14152. [PMID: 29075042 PMCID: PMC5658337 DOI: 10.1038/s41598-017-14722-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/16/2017] [Indexed: 01/11/2023] Open
Abstract
The endothelium serves as a size-selective barrier and tightly controls the fluid exchange from the circulation to the surrounding tissues. In this study, a multiplexed microscopy characterization is developed to study the spatio-temporal effects of Abl kinases on endothelial cytoskeletal structure using AFM, SEM, and immunofluorescence. Sphingosine 1-phosphate (S1P) produces significant endothelial barrier enhancement by means of peripheral actin rearrangement. However, Abl kinase inhibition by imatinib reduces rapid redistribution of the important cytoskeletal proteins to the periphery and their association with the cortical actin ring. Herein, it moderates the thickness of the cortical actin ring, and diminishes the increase in elastic modulus at the periphery and cytoplasm. These findings demonstrate that imatinib attenuates multiple cytoskeletal changes associated with S1P-mediated endothelial barrier enhancement and suggest a novel role for Abl kinases in mediating these S1P effects. These observations bridge the gap between molecule dynamics, structure complexity and function connectivity across varied length-scales to improve our understanding on human pulmonary endothelial barrier regulation. Moreover, our study suggests a framework for understanding form-function relationships in other biomechanical subsystems, wherein complex hierarchical organization programmed from the molecular scale to the cellular and tissue levels has an intimate relationship to the overall physiological function.
Collapse
Affiliation(s)
- X Wang
- Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin, China, 300384.,National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China, 300384.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA, 60208
| | - R Bleher
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA, 60208
| | - L Wang
- Department of Medicine, University of Illinois, Chicago, IL, USA, 60612
| | - J G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, USA, 85721
| | - S M Dudek
- Department of Medicine, University of Illinois, Chicago, IL, USA, 60612.
| | - G S Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA, 60208.
| | - V P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA, 60208.
| |
Collapse
|
21
|
Shekhawat GS, Dudek SM, Dravid VP. Development of ultrasound bioprobe for biological imaging. SCIENCE ADVANCES 2017; 3:e1701176. [PMID: 29075667 PMCID: PMC5656426 DOI: 10.1126/sciadv.1701176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/22/2017] [Indexed: 05/05/2023]
Abstract
We report the development of an ultrasound bioprobe for in vitro molecular imaging. In this method, the phase of the scattered ultrasound wave is mapped to provide in vitro and intracellular imaging with nanometer-scale resolution under physiological conditions. We demonstrated the technique by successfully imaging a magnetic core in silica core shells and the stiffness image of intracellular fibers in endothelial cells that were stimulated with thrombin. The findings demonstrate a significant advancement in high-resolution ultrasound imaging of biological systems with acoustics under physiological conditions. These will open up various applications in biomedical and molecular imaging with subsurface resolution down to the nanometer scale.
Collapse
Affiliation(s)
- Gajendra S. Shekhawat
- Department of Materials Science and Engineering and NUANCE Center, Northwestern University, Evanston, IL 60208, USA
- Corresponding author.
| | - Steven M. Dudek
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Vinayak P. Dravid
- Department of Materials Science and Engineering and NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
22
|
Li M, Dang D, Liu L, Xi N, Wang Y. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Trans Nanobioscience 2017; 16:523-540. [PMID: 28613180 DOI: 10.1109/tnb.2017.2714462] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.
Collapse
|
23
|
Wang C, Shan S, Wang C, Wang J, Li J, Hu G, Dai K, Li Q, Zhang X. Mechanical stimulation promote the osteogenic differentiation of bone marrow stromal cells through epigenetic regulation of Sonic Hedgehog. Exp Cell Res 2017; 352:346-356. [PMID: 28215635 DOI: 10.1016/j.yexcr.2017.02.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/18/2022]
Abstract
Mechanical unloading leads to bone loss and disuse osteoporosis partly due to impaired osteoblastogenesis of bone marrow stromal cells (BMSCs). However, the underlying molecular mechanisms of this phenomenon are not fully understood. In this study, we demonstrated that cyclic mechanical stretch (CMS) promotes osteoblastogenesis of BMSCs both in vivo and in vitro. Besides, we found that Hedgehog (Hh) signaling pathway was activated in this process. Inhibition of which by either knockdown of Sonic hedgehog (Shh) or treating BMSCs with Hh inhibitors attenuated the osteogenic effect of CMS on BMSCs, suggesting that Hh signaling pathway acts as an endogenous mediator of mechanical stimuli on BMSCs. Furthermore, we demonstrated that Shh expression level was regulated by DNA methylation mechanism. Chromatin Immunoprecipitation (ChIP) assay showed that DNA methyltransferase 3b (Dnmt3b) binds to Shh gene promoter, leading to DNA hypermethylation in mechanical unloading BMSCs. However, mechanical stimulation down-regulates the protein level of Dnmt3b, results in DNA demethylation and Shh expression. More importantly, we found that inhibition of Dnmt3b partly rescued bone loss in HU mice by mechanical unloading. Our results demonstrate, for the first time, that mechanical stimulation regulates osteoblastic genes expression via direct regulation of Dnmt3b, and the therapeutic inhibition of Dnmt3b may be an efficient strategy for enhancing bone formation under mechanical unloading.
Collapse
Affiliation(s)
- Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shengzhou Shan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jing Wang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiao Li
- Department of cell biology, Zunyi Medical College, Zunyi 563000, China
| | - Guoli Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Kerong Dai
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| |
Collapse
|
24
|
Brailoiu E, Shipsky MM, Yan G, Abood ME, Brailoiu GC. Mechanisms of modulation of brain microvascular endothelial cells function by thrombin. Brain Res 2016; 1657:167-175. [PMID: 27998795 DOI: 10.1016/j.brainres.2016.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/22/2016] [Accepted: 12/10/2016] [Indexed: 01/08/2023]
Abstract
Brain microvascular endothelial cells are a critical component of the blood-brain barrier. They form a tight monolayer which is essential for maintaining the brain homeostasis. Blood-derived proteases such as thrombin may enter the brain during pathological conditions like trauma, stroke, and inflammation and further disrupts the permeability of the blood-brain barrier, via incompletely characterized mechanisms. We examined the underlying mechanisms evoked by thrombin in rat brain microvascular endothelial cells (RBMVEC). Our results indicate that thrombin, acting on protease-activated receptor 1 (PAR1) increases cytosolic Ca2+ concentration in RBMVEC via Ca2+ release from endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors and Ca2+ influx from extracellular space. Thrombin increases nitric oxide production; the effect is abolished by inhibition of the nitric oxide synthase or by antagonism of PAR1 receptors. In addition, thrombin increases mitochondrial and cytosolic reactive oxygen species production via PAR1-dependent mechanisms. Immunocytochemistry studies indicate that thrombin increases F-actin stress fibers, and disrupts the tight junctions. Thrombin increased the RBMVEC permeability assessed by a fluorescent flux assay. Taken together, our results indicate multiple mechanisms by which thrombin modulates the function of RBMVEC and may contribute to the blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - Megan M Shipsky
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Guang Yan
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140, United States
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States.
| |
Collapse
|
25
|
Cheng T, Yue M, Aslam MN, Wang X, Shekhawat G, Varani J, Schuger L. Neuronal Protein 3.1 Deficiency Leads to Reduced Cutaneous Scar Collagen Deposition and Tensile Strength due to Impaired Transforming Growth Factor-β1 to -β3 Translation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:292-303. [PMID: 27939132 DOI: 10.1016/j.ajpath.2016.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 01/17/2023]
Abstract
Neuronal protein 3.1 (P311), a conserved RNA-binding protein, represents the first documented protein known to stimulate transforming growth factor (TGF)-β1 to -β3 translation in vitro and in vivo. Because TGF-βs play critical roles in fibrogenesis, we initiated efforts to define the role of P311 in skin scar formation. Here, we show that P311 is up-regulated in skin wounds and in normal and hypertrophic scars. Genetic ablation of p311 resulted in a significant decrease in skin scar collagen deposition. Lentiviral transfer of P311 corrected the deficits, whereas down-regulation of P311 levels by lentiviral RNA interference reproduced the deficits seen in P311-/- mice. The decrease in collagen deposition resulted in scars with reduced stiffness but also reduced scar tensile strength. In vitro studies using murine and human dermal fibroblasts showed that P311 stimulated TGF-β1 to -β3 translation, a process that involved eukaryotic translation initiation factor 3 subunit b as a P311 binding partner. This resulted in increased TGF-β levels/activity and increased collagen production. In addition, P311 induced dermal fibroblast activation and proliferation. Finally, exogenous TGF-β1 to -β3, each restituted the normal scar phenotype. These studies demonstrate that P311 is required for the production of normal cutaneous scars and place P311 immediately up-stream of TGF-βs in the process of fibrogenesis. Conditions that decrease P311 levels could result in less tensile scars, which could potentially lead to higher incidence of dehiscence after surgery.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Pathology, The University of Chicago Medical School, Chicago, Illinois
| | - Michael Yue
- Department of Pathology, The University of Chicago Medical School, Chicago, Illinois
| | - Muhammad Nadeem Aslam
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Xin Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - Gajendra Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois
| | - James Varani
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Lucia Schuger
- Department of Pathology, The University of Chicago Medical School, Chicago, Illinois.
| |
Collapse
|
26
|
Targosz-Korecka M, Malek-Zietek KE, Brzezinka GD, Jaglarz M. Morphological and nanomechanical changes in mechanosensitive endothelial cells induced by colloidal AFM probes. SCANNING 2016; 38:654-664. [PMID: 26991882 DOI: 10.1002/sca.21313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Mechanotransduction is one of the main properties of endothelial cells (ECs) phenotype. Hemodynamic forces like flow-generated endothelial shear stress play a fundamental role in ECs cytoskeletal remodeling and activate signaling cascades in ECs. AFM methods are widely used to characterize morphology as well as mechanical properties of cells. In both cases AFM probes directly interact with cell surface exerting mechanical forces on the cellular membrane, which in turn may stimulate mechanosensitive receptors present in EC. This article presents examples of how the colloidal AFM probes influence ECs during multiple scans. The results revealed that multiple scans of the ECs significantly influenced the morphology and elasticity of cells. Moreover, changes in the cell shape and mechanical properties were dependent on the scan direction (across or along the main axis of the cell). Multiple scans with a colloidal probe leaded to reorientation of the cell main axis and this effect was similar to the action of the shear stress induced by flow conditions. Furthermore, the correlation between the tip-induced modification of the cell properties and the remodeling of the cell's glycocalyx was observed. SCANNING 38:654-664, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marta Targosz-Korecka
- Research Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Advanced Computer Science, Jagiellonian University, Kraków, Poland
| | - Katarzyna E Malek-Zietek
- Research Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Advanced Computer Science, Jagiellonian University, Kraków, Poland
| | - Grzegorz D Brzezinka
- Research Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Advanced Computer Science, Jagiellonian University, Kraków, Poland
| | - Magdalena Jaglarz
- Research Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Advanced Computer Science, Jagiellonian University, Kraków, Poland
| |
Collapse
|
27
|
Zhou P, Yu H, Shi J, Jiao N, Wang Z, Wang Y, Liu L. A rapid and automated relocation method of an AFM probe for high-resolution imaging. NANOTECHNOLOGY 2016; 27:395705. [PMID: 27559679 DOI: 10.1088/0957-4484/27/39/395705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The atomic force microscope (AFM) is one of the most powerful tools for high-resolution imaging and high-precision positioning for nanomanipulation. The selection of the scanning area of the AFM depends on the use of the optical microscope. However, the resolution of an optical microscope is generally no larger than 200 nm owing to wavelength limitations of visible light. Taking into consideration the two determinants of relocation-relative angular rotation and positional offset between the AFM probe and nano target-it is therefore extremely challenging to precisely relocate the AFM probe to the initial scan/manipulation area for the same nano target after the AFM probe has been replaced, or after the sample has been moved. In this paper, we investigate a rapid automated relocation method for the nano target of an AFM using a coordinate transformation. The relocation process is both simple and rapid; moreover, multiple nano targets can be relocated by only identifying a pair of reference points. It possesses a centimeter-scale location range and nano-scale precision. The main advantages of this method are that it overcomes the limitations associated with the resolution of optical microscopes, and that it is label-free on the target areas, which means that it does not require the use of special artificial markers on the target sample areas. Relocation experiments using nanospheres, DNA, SWCNTs, and nano patterns amply demonstrate the practicality and efficiency of the proposed method, which provides technical support for mass nanomanipulation and detection based on AFM for multiple nano targets that are widely distributed in a large area.
Collapse
Affiliation(s)
- Peilin Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Viswanathan P, Ephstein Y, Garcia JGN, Cho M, Dudek SM. Differential elastic responses to barrier-altering agonists in two types of human lung endothelium. Biochem Biophys Res Commun 2016; 478:599-605. [PMID: 27473658 DOI: 10.1016/j.bbrc.2016.07.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 01/21/2023]
Abstract
Vascular integrity is primarily determined by endothelial cell (EC) cytoskeletal structure that is differentially regulated by various stimuli. In this study, atomic force microscopy (AFM) was used to characterize structural and mechanical properties in the cytoskeleton of cultured human pulmonary artery EC (HPAEC) and human lung microvascular EC (HLMVEC) by determining elastic properties (Young's modulus) in response to endogenous barrier protective agents sphingosine 1-phosphate (S1P) and hepatocyte growth factor (HGF), or the barrier disruptive molecule thrombin. Initial studies in unstimulated cells indicate higher baseline peripheral elastic modulus values in HPAEC (mean 2.9 KPa) than in HLMVEC (1.8 KPa). After 30 min of stimulation, S1P induced the highest Young's modulus increase (6.1 KPa) compared to the other barrier enhancing stimuli, HGF (5.8 KPa) and the pharmaceutical agent and S1P analog FTY720 (4.1 KPa). In contrast, the barrier disruptive agent thrombin decreased values from 2.5 KPa to 0.7 KPa depending on the cell type and treatment time. AFM topographical imaging supports these quantitative biophysical data regarding differential peripheral elastic properties in EC. Overall, these AFM studies provide novel insights into the biomechanical properties of human lung EC that regulate vascular barrier function and have potential applicability to pathophysiologic vascular leak syndromes such as acute lung injury.
Collapse
Affiliation(s)
- P Viswanathan
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Y Ephstein
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - J G N Garcia
- Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - M Cho
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - S M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy. J Biol Phys 2016; 42:551-569. [PMID: 27438703 DOI: 10.1007/s10867-016-9423-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
Methotrexate is a commonly used anti-cancer chemotherapy drug. Cellular mechanical properties are fundamental parameters that reflect the physiological state of a cell. However, so far the role of cellular mechanical properties in the actions of methotrexate is still unclear. In recent years, probing the behaviors of single cells with the use of atomic force microscopy (AFM) has contributed much to the field of cell biomechanics. In this work, with the use of AFM, the effects of methotrexate on the viscoelastic properties of four types of cells were quantitatively investigated. The inhibitory and cytotoxic effects of methotrexate on the proliferation of cells were observed by optical and fluorescence microscopy. AFM indenting was used to measure the changes of cellular viscoelastic properties (Young's modulus and relaxation time) by using both conical tip and spherical tip, quantitatively showing that the stimulation of methotrexate resulted in a significant decrease of both cellular Young's modulus and relaxation times. The morphological changes of cells induced by methotrexate were visualized by AFM imaging. The study improves our understanding of methotrexate action and offers a novel way to quantify drug actions at the single-cell level by measuring cellular viscoelastic properties, which may have potential impacts on developing label-free methods for drug evaluation.
Collapse
|
30
|
Tantakitti F, Boekhoven J, Wang X, Kazantsev R, Yu T, Li J, Zhuang E, Zandi R, Ortony JH, Newcomb CJ, Palmer LC, Shekhawat GS, de la Cruz MO, Schatz GC, Stupp SI. Energy landscapes and functions of supramolecular systems. NATURE MATERIALS 2016; 15:469-76. [PMID: 26779883 PMCID: PMC4805452 DOI: 10.1038/nmat4538] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 12/09/2015] [Indexed: 05/11/2023]
Abstract
By means of two supramolecular systems--peptide amphiphiles engaged in hydrogen-bonded β-sheets, and chromophore amphiphiles driven to assemble by π-orbital overlaps--we show that the minima in the energy landscapes of supramolecular systems are defined by electrostatic repulsion and the ability of the dominant attractive forces to trap molecules in thermodynamically unfavourable configurations. These competing interactions can be selectively switched on and off, with the order of doing so determining the position of the final product in the energy landscape. Within the same energy landscape, the peptide-amphiphile system forms a thermodynamically favoured product characterized by long bundled fibres that promote biological cell adhesion and survival, and a metastable product characterized by short monodisperse fibres that interfere with adhesion and can lead to cell death. Our findings suggest that, in supramolecular systems, functions and energy landscapes are linked, superseding the more traditional connection between molecular design and function.
Collapse
Affiliation(s)
- Faifan Tantakitti
- Simpson Querrey Institute of BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Job Boekhoven
- Simpson Querrey Institute of BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Xin Wang
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Roman Kazantsev
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Tao Yu
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Jiahe Li
- Department of Chemical and Biological Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Ellen Zhuang
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Roya Zandi
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Julia H. Ortony
- Simpson Querrey Institute of BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Christina J. Newcomb
- Simpson Querrey Institute of BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
| | - Liam C. Palmer
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Gajendra S. Shekhawat
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute of BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Department of Medicine, Northwestern University, 251 East Huron Street, Chicago, Illinois 60611, USA
- Correspondence and requests for materials should be addressed to S.I.S.,
| |
Collapse
|
31
|
Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax 2016; 71:462-73. [DOI: 10.1136/thoraxjnl-2015-207461] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/12/2016] [Indexed: 01/23/2023]
|