1
|
Chen WH, Liang PC, Wang WY, Chiang PC, Ryšavý J, Čespiva J, Chang JS. Applications, life cycle assessment, and circular economy of bamboo torrefaction for sustainability: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2025; 431:132629. [PMID: 40339997 DOI: 10.1016/j.biortech.2025.132629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
This review comprehensively explores the characteristics and applications of torrefied bamboo. Bamboo has a high volatile matter (VM) content (73.9-93.0 %), which results in substantial liquid byproducts during torrefaction. The higher heating value (HHV) of biochar produced from wet torrefaction (WT) is greater than that made from dry torrefaction (DT). When the torrefaction severity factor is 8.7, the bamboo hydrochar's HHV from WT can achieve 29.3 MJ⋅kg-1, whereas bamboo biochar from DT only have 23.3 MJ⋅kg-1. Bamboo vinegar and tar, byproducts from bamboo torrefaction, are effective biopesticides and have diverse applications, including polyurethane coatings and insecticides. Life cycle assessments reveal that bamboo-based building materials can reduce carbon footprints by 46.2 % to 87.6 % compared to traditional construction materials. Furthermore, bamboo materials are highly beneficial for the circular economy and environmental sustainability. In summary, bamboo biochar's applications are extensive, and its derived products are commercially competitive and environmentally friendly.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| | - Pin-Chun Liang
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Yi Wang
- International Business, College of Management, National Taiwan University, Taipei 106, Taiwan
| | - Pen-Chi Chiang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jiří Ryšavý
- Energy Research Centre, Centre for Energy and Environmental Technologies, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, Czech Republic
| | - Jakub Čespiva
- Energy Research Centre, Centre for Energy and Environmental Technologies, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, Czech Republic
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan
| |
Collapse
|
2
|
Wei X, Chen Z, Li L, Qin Z, Wang G. Bamboo as a substitute for plastic: Effects of moisture content on the flexibility and flexural toughness of bamboo with cellulose fibers at multiple scales. Int J Biol Macromol 2025; 305:141193. [PMID: 39971039 DOI: 10.1016/j.ijbiomac.2025.141193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/08/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
To develop curved bamboo-based products for promoting "bamboo as a substitute for plastic" by deep-molding and high-curvature winding technology, it is urgent to fully understand the effects of moisture content (MC) on flexural properties of bamboo with cellulose fibers at multiple scales. Here, we tested the 3-point flexural behavior of bamboo with cellulose fibers at different MC (0, 5 %, 10 %, 25 % and 50 %), in conjunction with in situ nanoindentation (NI) and environmental scanning electron microscopy (ESEM) to investigate its flexibility and toughness mechanisms. The results showed that gradient distribution of cellulose fibers embedded in soft parenchyma cells adapted to external stresses resulting in bamboo's excellent flexibility and toughness. Low MC (5 %, 10 %) made bamboo more flexible and tougher. The flexibility mechanism acting at the molecular scale was moisture-promoted softening of the lignin-carbohydrate (LCC) complex in the cell wall, and interface slip between the cellulose/LCC caused by water molecules aggregating verified by in situ NI and FTIR spectra, whereas toughness mechanisms originated from the coupling of transwall fracture and fibrils-exposed cellwall tearing, as well as tortuous crack propagation. High MC (25 % and 50 %) impaired flexibility and toughness via intercellular and fibrils-LCC interfacial debonding at multiple scales.
Collapse
Affiliation(s)
- Xin Wei
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, PR China
| | - Zujie Chen
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, Hunan, PR China
| | - Lei Li
- Collage of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, PR China
| | - Zhuokai Qin
- Yongan Institute of Bamboo Industry, Sanming 353000, Fujian, PR China
| | - Ge Wang
- International Center for Bamboo and Rattan, Beijing 100102, PR China.
| |
Collapse
|
3
|
Hu J, Zhang Y, He Y, Su Z, Lao W, Zhang S, Yu Y, Yu W, Huang Y. Transformation of Bamboo: From Multiscale Fibers to Robust and Degradable Cellulose-Based Materials for Plastic Substitution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411339. [PMID: 40256834 DOI: 10.1002/smll.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Bamboo is an ideal candidate to replace traditional plastics, reduce environmental pollution, and promote harmony between nature and humanity owing to its rapid growth and renewability. However, achieving arbitrary shape-shifting of bamboo while retaining its high strength and degradability remains challenging. This study uses multiscale interface engineering to transform bamboo into a robust, biodegradable, and moldable bamboo cellulose-based material. First, natural bamboo is deconstructed into cellulose fibers, including macro- and nanofibers. Subsequently, the fibers are constructed into high-performance materials using physical and chemical methods, such as surface charge treatment, ion cross-linking, and dense hydrogen bonding networks. The prepared multiscale bamboo cellulose-based materials exhibit excellent properties, with a high specific strength (≈271.8 kN m kg-1), high impact toughness (≈58 kJ m-2), low thermal expansion coefficient (1.19 × 10-6 K-1), excellent formability and biodegradability, and minimal environmental impacts. These properties are superior to those of current commercial plastics and other biomass-derived structural materials. Furthermore, the mechanical properties of the materials can be customized by adjusting the layup configuration, enabling a transition from anisotropic to isotropic characteristics. This transformation demonstrates the significant potential of bamboo for plastic substitution and advances the development of environmentally friendly materials.
Collapse
Affiliation(s)
- Juan Hu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Haidian, Beijing, 100083, China
| | - Yahui Zhang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
| | - Yingqi He
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
| | - Zhitao Su
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
| | - Wanli Lao
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
| | - Shaodi Zhang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
| | - Yanglun Yu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
| | - Wenji Yu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
| | - Yuxiang Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, Beijing, 100091, China
| |
Collapse
|
4
|
Kolya H, Kang CW. Save Forests Through Sustainable Papermaking: Repurposing Herbal Waste and Maple Leaves as Alternative Fibers. MATERIALS (BASEL, SWITZERLAND) 2025; 18:910. [PMID: 40004433 PMCID: PMC11857096 DOI: 10.3390/ma18040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
This study explores a sustainable papermaking approach to contribute to forest conservation by repurposing delignified herbal waste and maple leaves as alternative cellulose sources. By reducing reliance on traditional wood-based materials, this method supports forest conservation while promoting environmental sustainability and creating economic opportunities from agricultural byproducts. Controlled experiments were conducted to extract cellulose and form paper using four fiber compositions: 100% leaf (P1), 100% herbal waste (P2), 75% leaf + 25% herbal waste (P3), and 75% leaf + 25% wood pulp (P4). Both treated and untreated herbal waste and leaves were characterized using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD) to analyze chemical functionality and structural changes. The Kürschner cellulose content (22.4% in herbal waste and 15.2% in maple leaves) was determined through concentrated nitric acid and ethanol treatments, confirming high cellulose levels suitable for papermaking. Papers produced from these compositions exhibited enhanced mechanical properties, with the P2 sample (100% herbal waste) demonstrating the highest tensile strength (with P2 exhibiting a tensile strength of 1.84 kN/m) due to its elevated cellulose content. This innovative recycling approach contributes to deforestation reduction by valorizing agricultural waste materials, highlighting the feasibility of integrating alternative fibers into paper manufacturing. These findings present a promising pathway toward an eco-friendly, forest-saving paper industry while adding economic value to agro-waste resources.
Collapse
Affiliation(s)
| | - Chun-Won Kang
- Department of Housing Environmental Design, Research Institute of Human Ecology, College of Human Ecology, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea;
| |
Collapse
|
5
|
Qin Z, Destree AP. The Structure-Mechanics Relationship of Bamboo-Epidermis and Inspired Composite Design by Artificial Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2414970. [PMID: 39726349 DOI: 10.1002/adma.202414970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Bamboo culm has been widely used in engineering for its high strength, lightweight, and low cost. Its outermost epidermis is a smooth and dense layer that contains cellulose, silica particles, and stomata and acts as a water and mechanical barrier. Recent experimental studies have shown that the layer has a higher mechanical strength than other inside regions. Still, the mechanism is unclear, especially for how the low silica concentration (<10%) can effectively reinforce the layer and prevent the inner fibers from splitting. Here, theoretical analysis is combined with experimental imaging and 3D printing to investigate the effect of the distribution of silica particles on composite mechanics. The anisotropic partial distribution function of silica particles in bamboo skin yields higher toughness (>10%) than randomly distributed particles. A generative artificial intelligence (AI) model inspired by bamboo epidermis is developed to generate particle-reinforced composites. Besides the visual similarity, it is found that the samples by the generative model show failure processes and fracture toughness identical to the actual bamboo epidermis. This work reveals the micromechanics of the bamboo epidermis. It illustrates that generative AI can help design bio-inspired composites of a complex structure that cannot be uniformly represented by a simple building block or optimized around local boundaries. It expands the design space of particle-reinforced composites for enhanced toughness modulus, offering advantages in industries where mechanical reliability is critical.
Collapse
Affiliation(s)
- Zhao Qin
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA
- Department of Civil and Environmental Engineering, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - Aymeric Pierre Destree
- Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA
- Department of Civil and Environmental Engineering, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA
| |
Collapse
|
6
|
Zhang S, Bension Y, Shimizu M, Ge T. Atomistic Simulations of Mechanical Properties of Lignin. Polymers (Basel) 2024; 16:3552. [PMID: 39771403 PMCID: PMC11678064 DOI: 10.3390/polym16243552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The mechanical properties of lignin, an aromatic heteropolymer constituting 20-30% plant biomass, are important to the fabrication and processing of lignin-based sustainable polymeric materials. In this study, atomistic simulations are performed to provide microscopic insights into the mechanics of lignin. Representative samples of miscanthus, spruce, and birch lignin are studied. At room temperature below the glass transition temperature, the stress-strain curves for uniaxial compression and tensile loading are calculated and analyzed. The results show that lignin possesses rigidity with a Young's modulus in the order of GPa and exhibits strain hardening under strong compression. Meanwhile, lignin is brittle and fails through the microscopic mechanism of cavitation and chain pullout under local tensile loading. In addition to the three common lignin samples, minimalist model systems of monodisperse linear chains consisting of only guaiacyl units and β-O-4 linkages are simulated. Systematic variation of the model lignin chain length allows a focused examination of the molecular weight effects. The results show that the molecular weight does not affect the Young's modulus much, but higher molecular weight results in stronger strain hardening under compression. In the range of molecular weight studied, the lignin chains are not long enough to arrest the catastrophic chain pullout, explaining the brittleness of real lignin samples. This work demonstrates that the recently modified CHARMM force fields and the accompanying structural information of real lignin samples properly capture the mechanics of lignin, offering an in silico microscope to explore the atomistic details necessary for the valorizaiton of lignin.
Collapse
Affiliation(s)
| | | | | | - Ting Ge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA; (S.Z.); (Y.B.); (M.S.)
| |
Collapse
|
7
|
Chen C, Yuan T, Zhou W, Wu B, Zhou Y, Xiao N. Effects of straw structure and component on feeding efficiency of yellow mealworm for insect protein production. BIORESOURCE TECHNOLOGY 2024; 414:131630. [PMID: 39401658 DOI: 10.1016/j.biortech.2024.131630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Elucidating the influence of straw structure and component on the feeding efficacy of yellow mealworm is pivotal for improving insect protein production from straw. This research utilized four distinct types of straws-water hyacinth straw (WHS), corn straw (CS), rape straw (RAS), and rice straw (RIS)-as the sole substrate for larvae. Results indicated that the straw utilization rate and fresh larval weight gain rate followed the order of WHS > CS > RAS > RIS. Analysis of straw structural characteristics demonstrated that decreasing straw hardness and cellulose crystallinity, while enhancing straw chewability, facilitated the ingestion of larvae. Feeding efficiency of yellow mealworm was positively correlated with the hemicellulose and crude protein content, and inversely correlated with lignin content in the straw. Additionally, the structural characteristics and components of straw significantly influenced the composition of the gut microbiota. These results offer valuable insights for optimizing yellow mealworm feeding on straw.
Collapse
Affiliation(s)
- Chunlin Chen
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Yuan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenbing Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Biliu Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Naidong Xiao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China.
| |
Collapse
|
8
|
Khodayari A, Hirn U, Spirk S, Ogawa Y, Seveno D, Thielemans W. Advancing plant cell wall modelling: Atomistic insights into cellulose, disordered cellulose, and hemicelluloses - A review. Carbohydr Polym 2024; 343:122415. [PMID: 39174111 DOI: 10.1016/j.carbpol.2024.122415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/27/2024] [Accepted: 06/16/2024] [Indexed: 08/24/2024]
Abstract
The complexity of plant cell walls on different hierarchical levels still impedes the detailed understanding of biosynthetic pathways, interferes with processing in industry and finally limits applicability of cellulose materials. While there exist many challenges to readily accessing these hierarchies at (sub-) angström resolution, the development of advanced computational methods has the potential to unravel important questions in this field. Here, we summarize the contributions of molecular dynamics simulations in advancing the understanding of the physico-chemical properties of natural fibres. We aim to present a comprehensive view of the advancements and insights gained from molecular dynamics simulations in the field of carbohydrate polymers research. The review holds immense value as a vital reference for researchers seeking to undertake atomistic simulations of plant cell wall constituents. Its significance extends beyond the realm of molecular modeling and chemistry, as it offers a pathway to develop a more profound comprehension of plant cell wall chemistry, interactions, and behavior. By delving into these fundamental aspects, the review provides invaluable insights into future perspectives for exploration. Researchers within the molecular modeling and carbohydrates community can greatly benefit from this resource, enabling them to make significant strides in unraveling the intricacies of plant cell wall dynamics.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, TU Graz, Inffeldgasse 23, Graz 8010, Austria
| | - Yu Ogawa
- Centre de recherches sur les macromolécules végétales, CERMAV-CNRS, CS40700, 38041 Grenoble cedex 9, France
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
9
|
Arantes V, Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Nogueira CFO, Marcondes WF. Enzymatic approaches for diversifying bioproducts from cellulosic biomass. Chem Commun (Camb) 2024; 60:9704-9732. [PMID: 39132917 DOI: 10.1039/d4cc02114b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cellulosic biomass is the most abundantly available natural carbon-based renewable resource on Earth. Its widespread availability, combined with rising awareness, evolving policies, and changing regulations supporting sustainable practices, has propelled its role as a crucial renewable feedstock to meet the escalating demand for eco-friendly and renewable materials, chemicals, and fuels. Initially, biorefinery models using cellulosic biomass had focused on single-product platform, primarily monomeric sugars for biofuel. However, since the launch of the first pioneering cellulosic plants in 2014, these models have undergone significant revisions to adapt their biomass upgrading strategy. These changes aim to diversify the bioproduct portfolio and improve the revenue streams of cellulosic biomass biorefineries. Within this area of research and development, enzyme-based technologies can play a significant role by contributing to eco-design in producing and creating innovative bioproducts. This Feature Article highlights our strategies and recent progress in utilizing the biological diversity and inherent selectivity of enzymes to develop and continuously optimize sustainable enzyme-based technologies with distinct application approaches. We have advanced technologies for standalone platforms, which produce various forms of cellulose nanomaterials engineered with customized and enhanced properties and high yields. Additionally, we have tailored technologies for integration within a biorefinery concept. This biorefinery approach prioritizes designing tailored processes to establish bionanomaterials, such as cellulose and lignin nanoparticles, and bioactive molecules as part of a new multi-bioproduct platform for cellulosic biomass biorefineries. These innovations expand the range of bioproducts that can be produced from cellulosic biomass, transcending the conventional focus on monomeric sugars for biofuel production to include biomaterials biorefinery. This shift thereby contributes to strengthening the Bioeconomy strategy and supporting the achievement of several Sustainable Development Goals (SDGs) of the 2030 Agenda for Sustainable Development.
Collapse
Affiliation(s)
- Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Carlaile F O Nogueira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| | - Wilian F Marcondes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
10
|
Rucker G, Zhang L. Comparison of the Interaction and Structure of Lignin in Pure Systems and in Asphalt Media by Molecular Dynamics Simulations. Biomacromolecules 2024; 25:626-643. [PMID: 38157476 DOI: 10.1021/acs.biomac.3c00776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Lignin is a class of organic aromatic polymers contributing to the rigidity and strength of plants and has been proposed as a modifier to improve asphalt performance on road pavement. However, contradicting experimental results on the lignin miscibility in asphalt were found from different studies, and lignin has been found to self-assemble in different solutions. Thus, investigating the interaction and microstructure of lignin in asphalt media in molecular detail is necessary. Molecular dynamics (MD) simulations using both the LAMMPS program with the OPLS-aa force field and the NAMD program with the CHARMM force field have been conducted on pure lignin (including lignin monomer, dimer, and polymer with 17 and 31 units) and their mixtures with model asphalt molecules at different temperatures. Consistent results were observed from both programs and force fields in terms of density, hydrogen bonds, diffusion coefficient, radius of gyration, and radial distribution function. Glass transition was observed in the pure lignin systems based on density and diffusion coefficient calculations at different temperatures. Lignin can form intramolecular hydrogen bonds and intermolecular hydrogen bonds with other lignin and 1,7-dimethylnapthalene in the asphalt mixture, which has dependence on temperature and lignin chain length. Correlating the lignin size and chain length using the power-law relationship showed that lignin polymers in pure systems are in quasi-relaxed structures at different temperatures; lignin molecules stay in quasi-relaxed structures in asphalt mixtures at high temperatures but in collapsed structures at low temperatures. Implementing lignin monomer, dimer, and polymer into the model asphalt mixture can improve its density. Although lignin in different chain lengths aggregates in asphalt, lignin can modify the packing between different components in asphalt media at different temperatures. The work suggests that temperature can significantly influence the miscibility of lignin polymer in asphalt and that lignin can function as both a modifier and a resin in asphalt.
Collapse
Affiliation(s)
- George Rucker
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| | - Liqun Zhang
- Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, United States
| |
Collapse
|
11
|
Alshangiti DM, Ghobashy MM, Alqahtani HA, El-Damhougy TK, Madani M. The energetic and physical concept of gold nanorod-dependent fluorescence in cancer treatment and development of new photonic compounds|review. RSC Adv 2023; 13:32223-32265. [PMID: 37928851 PMCID: PMC10620648 DOI: 10.1039/d3ra05487j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
The optical features of gold nanorods (GNR) may be precisely controlled by manipulating their size, shape, and aspect ratio. This review explores the impact of these parameters on the optical tuning of (GNR). By altering the experimental conditions, like the addition of silver ions during the seed-mediated growth process, the aspect ratio of (GNR) may be regulated. The shape is trans from spherical to rod-like structures resulting in noticeable changes in the nanoparticles surface plasmons resonance (SPR) bands. The longitudinal SPR band, associated with electron oscillations along the long axis, exhibits a pronounced red shift into the (NIR) region as the aspect ratio increases. In contrast, the transverse SPR band remains relate unchanged. Using computational methods like the discrete dipole approximation (DDA) allows for analyzing absorption, scattering, and total extinction features of gold (G) nanoparticles. Studies have shown that increasing the aspect ratio enhances the scattering efficiency, indicating a higher scattering quantum yield (QY). These findings highlight the importance of size, shape, and aspect ratio in controlling the optical features of (GNR) providing valuable insights for various uses in nanophotonics and plasmonic-dependent fluorescence in cancer treatment and developing new photonic compound NRs.
Collapse
Affiliation(s)
- Dalal Mohamed Alshangiti
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29, Nasr City Cairo Egypt
| | - Haifa A Alqahtani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box 11754, Yousef Abbas Str., Nasr City Cairo Egypt
| | - Mohamed Madani
- College of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| |
Collapse
|
12
|
Yu L, Dai F, Zhang K, Jiang Z, Xia M, Wang Y, Tian G. Fiber Characteristics and Mechanical Properties of Oxytenanthera abyssinica. PLANTS (BASEL, SWITZERLAND) 2023; 12:2987. [PMID: 37631198 PMCID: PMC10457926 DOI: 10.3390/plants12162987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Unlike the culm hollow structure of most bamboo species, Oxytenanthera abyssinica has a unique solid or semi-solid culm, which may endow it with superior mechanical performance. In this study, the variation in fiber morphology and micro-mechanical properties across the radial regions of bamboo culm was examined by optical microscopy, scanning electron microscopy, X-ray diffraction, and nanoindentation. Results showed that the mean values of vascular bundle frequency and fiber tissue proportion were 1.76 pcs/mm2 and 21.04%, respectively, both of which increased gradually from inner to outer. The mean length, diameter, and length-diameter ratio of the fiber were 2.10 mm, 21.54 μm, and 101.41 respectively. The mean indentation modulus of elasticity (IMOE) and hardness were 21.34 GPa and 545.88 MPa. The IMOE exhibited a significant increase from the inner to the middle region, and little change was observed from the middle to the outer region. There were slight fluctuations in hardness along the radial direction. The mean crystallinity and microfibril angle(MFA) of the fibers was 68.12% and 11.26 degrees, respectively. There is a positive correlation between cellulose crystallinity and the IMOE and hardness, while there is a negative correlation between the MFA and the IMOE and the hardness.
Collapse
Affiliation(s)
- Linpeng Yu
- Institute of New Bamboo and Rattan Based Biomaterials, International Center for Bamboo and Rattan, Beijing 100102, China; (L.Y.); (F.D.); (Z.J.)
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; (K.Z.); (Y.W.)
| | - Fukuan Dai
- Institute of New Bamboo and Rattan Based Biomaterials, International Center for Bamboo and Rattan, Beijing 100102, China; (L.Y.); (F.D.); (Z.J.)
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Kangjian Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; (K.Z.); (Y.W.)
| | - Zehui Jiang
- Institute of New Bamboo and Rattan Based Biomaterials, International Center for Bamboo and Rattan, Beijing 100102, China; (L.Y.); (F.D.); (Z.J.)
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Mingsong Xia
- Institute of New Bamboo and Rattan Based Biomaterials, International Center for Bamboo and Rattan, Beijing 100102, China; (L.Y.); (F.D.); (Z.J.)
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Youhong Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; (K.Z.); (Y.W.)
| | - Genlin Tian
- Institute of New Bamboo and Rattan Based Biomaterials, International Center for Bamboo and Rattan, Beijing 100102, China; (L.Y.); (F.D.); (Z.J.)
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| |
Collapse
|
13
|
Mazumder S, Zhang N. Cellulose-Hemicellulose-Lignin Interaction in the Secondary Cell Wall of Coconut Endocarp. Biomimetics (Basel) 2023; 8:biomimetics8020188. [PMID: 37218775 DOI: 10.3390/biomimetics8020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The coconut shell consists of three distinct layers: the skin-like outermost exocarp, the thick fibrous mesocarp, and the hard and tough inner endocarp. In this work, we focused on the endocarp because it features a unique combination of superior properties, including low weight, high strength, high hardness, and high toughness. These properties are usually mutually exclusive in synthesized composites. The microstructures of the secondary cell wall of the endocarp at the nanoscale, in which cellulose microfibrils are surrounded by hemicellulose and lignin, were generated. All-atom molecular dynamics simulations with PCFF force field were conducted to investigate the deformation and failure mechanisms under uniaxial shear and tension. Steered molecular dynamics simulations were carried out to study the interaction between different types of polymer chains. The results demonstrated that cellulose-hemicellulose and cellulose-lignin exhibit the strongest and weakest interactions, respectively. This conclusion was further validated against the DFT calculations. Additionally, through shear simulations of sandwiched polymer models, it was found that cellulose-hemicellulose-cellulose exhibits the highest strength and toughness, while cellulose-lignin-cellulose shows the lowest strength and toughness among all tested cases. This conclusion was further confirmed by uniaxial tension simulations of sandwiched polymer models. It was revealed that hydrogen bonds formed between the polymer chains are responsible for the observed strengthening and toughening behaviors. Additionally, it was interesting to note that failure mode under tension varies with the density of amorphous polymers located between cellulose bundles. The failure mode of multilayer polymer models under tension was also investigated. The findings of this work could potentially provide guidelines for the design of coconut-inspired lightweight cellular materials.
Collapse
Affiliation(s)
- Sharmi Mazumder
- Department of Mechanical Engineering, Baylor University, Waco, TX 76706, USA
| | - Ning Zhang
- Department of Mechanical Engineering, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
14
|
Ding Y, Pang Z, Lan K, Yao Y, Panzarasa G, Xu L, Lo Ricco M, Rammer DR, Zhu JY, Hu M, Pan X, Li T, Burgert I, Hu L. Emerging Engineered Wood for Building Applications. Chem Rev 2023; 123:1843-1888. [PMID: 36260771 DOI: 10.1021/acs.chemrev.2c00450] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The building sector, including building operations and materials, was responsible for the emission of ∼11.9 gigatons of global energy-related CO2 in 2020, accounting for 37% of the total CO2 emissions, the largest share among different sectors. Lowering the carbon footprint of buildings requires the development of carbon-storage materials as well as novel designs that could enable multifunctional components to achieve widespread applications. Wood is one of the most abundant biomaterials on Earth and has been used for construction historically. Recent research breakthroughs on advanced engineered wood products epitomize this material's tremendous yet largely untapped potential for addressing global sustainability challenges. In this review, we explore recent developments in chemically modified wood that will produce a new generation of engineered wood products for building applications. Traditionally, engineered wood products have primarily had a structural purpose, but this review broadens the classification to encompass more aspects of building performance. We begin by providing multiscale design principles of wood products from a computational point of view, followed by discussion of the chemical modifications and structural engineering methods used to modify wood in terms of its mechanical, thermal, optical, and energy-related performance. Additionally, we explore life cycle assessment and techno-economic analysis tools for guiding future research toward environmentally friendly and economically feasible directions for engineered wood products. Finally, this review highlights the current challenges and perspectives on future directions in this research field. By leveraging these new wood-based technologies and analysis tools for the fabrication of carbon-storage materials, it is possible to design sustainable and carbon-negative buildings, which could have a significant impact on mitigating climate change.
Collapse
Affiliation(s)
- Yu Ding
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Kai Lan
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Yuan Yao
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Guido Panzarasa
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Marco Lo Ricco
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Douglas R Rammer
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - J Y Zhu
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Ming Hu
- School of Architecture, Planning and Preservation, University of Maryland, College Park, Maryland20742, United States
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin53706, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,Center for Materials Innovation, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
15
|
Robust flexural performance and fracture behavior of TiO 2 decorated densified bamboo as sustainable structural materials. Nat Commun 2023; 14:1234. [PMID: 36871036 PMCID: PMC9985615 DOI: 10.1038/s41467-023-36939-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
High-performance, fast-growing natural materials with sustainable and functional features currently arouse significant attention. Here, facile processing, involving delignification, in situ hydrothermal synthesis of TiO2 and pressure densification, is employed to transform natural bamboo into a high-performance structural material. The resulting TiO2-decorated densified bamboo exhibits high flexural strength and elastic stiffness, with both properties more than double that of natural bamboo. Real-time acoustic emission reveals the key role of the TiO2 nanoparticles in enhancing the flexural properties. The introduction of nanoscale TiO2 is found to markedly increase the degree of oxidation and the formation of hydrogen bonds in bamboo materials, leading to extensive interfacial failure between the microfibers, a micro-fibrillation process that results in substantial energy consumption and high fracture resistance. This work furthers the strategy of the synthetic reinforcement of fast-growing natural materials, which could lead to the expanded applications of sustainable materials for high-performance structural applications.
Collapse
|
16
|
Zanker H, Rajabipour A, Huang D, Bazli M, Tang S, Cui Z, Zhu J, Kennaway J, Diaz LH. Creep Analysis of Bamboo Composite for Structural Applications. Polymers (Basel) 2023; 15:polym15030711. [PMID: 36772012 PMCID: PMC9919674 DOI: 10.3390/polym15030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
The present study investigates the phenomena of creep in a bamboo composite. The material was tested under tensile and compressive loading and simulated in finite element analysis software to estimate the creep coefficients. The presented findings have displayed the material's propensity to fail at loads lower than the recorded ultimate strength, as early as 65% of this strength within 100 h, showing the importance of considering creep when designing structural components. Larger resistance to creep was observed under tensile stresses. Coefficients of the time-hardening creep model were estimated, which were found to be different under compression and tension. The findings provide insight into the reliable strength value of the Bamboo Composite. They could be also essential in estimating the long-term deflations in Bamboo Composite structures.
Collapse
Affiliation(s)
- Hayden Zanker
- College of Engineering, IT & Environment, Charles Darwin University, Darwin 0801, Australia
| | - Ali Rajabipour
- College of Engineering, IT & Environment, Charles Darwin University, Darwin 0801, Australia
- Correspondence: (A.R.); (M.B.)
| | - Dongsheng Huang
- National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Milad Bazli
- College of Engineering, IT & Environment, Charles Darwin University, Darwin 0801, Australia
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane 4000, Australia
- Correspondence: (A.R.); (M.B.)
| | - Siyuan Tang
- National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyan Cui
- National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Zhu
- National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing 210037, China
| | - Joel Kennaway
- College of Engineering, IT & Environment, Charles Darwin University, Darwin 0801, Australia
| | - Luis Herrera Diaz
- College of Engineering, IT & Environment, Charles Darwin University, Darwin 0801, Australia
| |
Collapse
|
17
|
Nukala SG, Kong I, Patel VI, Kakarla AB, Kong W, Buddrick O. Development of Biodegradable Composites Using Polycaprolactone and Bamboo Powder. Polymers (Basel) 2022; 14:4169. [PMID: 36236115 PMCID: PMC9573369 DOI: 10.3390/polym14194169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
The use of biodegradable polymers in daily life is increasing to reduce environmental hazards. In line with this, the present study aimed to develop a fully biodegradable polymer composite that was environmentally friendly and exhibited promising mechanical and thermal properties. Bamboo powder (BP)-reinforced polycaprolactone (PCL) composites were prepared using the solvent casting method. The influence of BP content on the morphology, wettability, and mechanical and thermal properties of the neat matrix was evaluated. In addition, the degradation properties of the composites were analysed through soil burial and acidic degradation tests. It was revealed that BP contents had an evident influence on the properties of the composites. The increase in the BP content has significantly improved the tensile strength of the PCL matrix. A similar trend is observed for thermal stability. Scanning electron micrographs demonstrated uniform dispersion of the BP in the PCL matrix. The degradation tests revealed that the biocomposites with 40 wt·% of BP degraded by more than 20% within 4 weeks in the acidic degradation test and more than 5% in the soil burial degradation test. It was noticed that there was a considerable difference in the degradation between the PCL matrix and the biocomposites of PCL and BP. These results suggest that biodegradable composites could be a promising alternative material to the existing synthetic polymer composites.
Collapse
Affiliation(s)
- Satya Guha Nukala
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Ing Kong
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Vipulkumar Ishvarbhai Patel
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Akesh Babu Kakarla
- School of Computing, Engineering and Mathematical Sciences, La Trobe University, Bendigo, VIC 3550, Australia
| | - Wei Kong
- Centre for Foundation and General Studies, Infrastructure University Kuala Lumpur, Block 11, De Centrum City, Jalan Ikram-Uniten, Kajang 43000, Selangor, Malaysia
| | - Oliver Buddrick
- Faculty of Higher Education, William Angliss Institute, Melbourne, VIC 3000, Australia
| |
Collapse
|
18
|
Influence of hemicellulose content and cellulose crystal change on cellulose nanofibers properties. Int J Biol Macromol 2022; 213:780-790. [PMID: 35690158 DOI: 10.1016/j.ijbiomac.2022.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/25/2022] [Accepted: 06/05/2022] [Indexed: 01/09/2023]
Abstract
This study aimed to evaluate the properties of cellulose nanofibers (CNFs) with different hemicellulose contents and cellulose II polymorphs. A link was found between these polysaccharides and the properties of CNFs. A decrease in crystallinity (from 69 to 63%) and changes in the crystalline structure of cellulose subjected to an alkaline environment were observed, promoting the partial conversion of cellulose I to cellulose II (from 2 to 42%) and preventing CNFs production at NaOH concentrations higher than 5%. Most treatments showed pseudoplastic fluid behavior, except for the 10% NaOH treatment over 2 h, which showed Newtonian fluid behavior. The quality index of the reference CNFs (TEMPO-oxidized) was the highest (80 ± 3), followed by that of the 5% NaOH-treated (68 ± 3 and 22% energy savings compared to the untreated sample), and the untreated (63 ± 3) samples; and the 10% NaOH treatments had quality indices of 51 ± 3 and 32 ± 1, respectively.
Collapse
|
19
|
Abstract
Interlaminar shear strength in bamboo composite (BC) is mainly provided by epoxy resin as the matrix in BC. This may greatly change due to humidity. This study aims at evaluating the shear strength of BC by testing and developing probabilistic relationships. The interlaminar shear strength of bamboo composite (BC) in different moisture conditions was tested according to ASTM D2344. The results show that the maximum shear stress does not generally occur at the centroid of samples, which could be associated with imperfections in BC layers. An extreme value theory-based model is suggested to evaluate the probability of shear failure in BC samples. The shear capacity decreased from 20.4 MPa to 14 MPa as the humidity increased from 60% to 90%. A summary of findings is as follows: It was found that under transient moisture conditions, local failure is likely to happen before the first significant crack occurs. Local failure is suggested to be considered in the design for serviceability. Stress drop caused by the local failure could exceed 10% of total shear strength and, therefore, should be regarded as a serviceability design. The probabilistic model developed in this study could be used for developing structural design safety factors.
Collapse
|
20
|
Liu Y, Wu H, Li R, Wang J, Kong Y, Guo Z, Jiang H, Ren Y, Pu Y, Liang X, Pan F, Cao Y, Song S, He G, Jiang Z. MOF-COF "Alloy" Membranes for Efficient Propylene/Propane Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201423. [PMID: 35417619 DOI: 10.1002/adma.202201423] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Molecular-sieving membranes from metal-organic frameworks (MOFs) are promising candidates for separating olefin/paraffin mixtures, a critical demand in sustainable chemical processes and a grand challenge in molecular separation. Currently, the inherent lattice flexibility of MOFs severely compromises their precise sieving ability. Here, a proof-of-concept of "alloy" membranes (AMs), which are fabricated by incorporating quaternary ammonium (QA)-functionalized covalent organic frameworks (COFs) into a zeolitic imidazolate framework-8 (ZIF-8) matrix is demonstrated. The Coulomb force between the COFs and the ZIF-8 restricts the linker rotation of the ZIF-8, generating a distinct alloying effect, by which the lattice rigidity of ZIF-8 can be conveniently tuned through varying the content of the COFs, similar to the flexible-to-rigid transition in aluminum alloy manufacturing. Such an alloying effect confers the AM's superior propylene/propane separation performance, with a propylene/propane separation factor surpassing 200 and a propylene permeance of 168 GPU. Hopefully, the AMs concept and the concomitant alloying effect can update the connotation of mixed matrix membranes and stimulate the re-envisioning about the design paradigm and development of advanced membranes for energy-efficient separations.
Collapse
Affiliation(s)
- Yutao Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Runlai Li
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Jianyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yan Kong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zheyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Haifei Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yunchuan Pu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shuqing Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
21
|
A Review on Bamboo as an Adsorbent for Removal of Pollutants for Wastewater Treatment. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/7218759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water and wastewater treatment are very important for obtaining clean and sanitary water as well as protecting the environment from toxic pollutants. Not only enriched with cellulose and carbon but the abundant resources of bamboo also make it suitable to be utilized as an adsorbent. With the right processing technologies and improvements, the potential of bamboo is unlimited. This study review provides knowledge on the use of bamboo-based adsorbents for the removal of contaminants and pollutants in wastewater in the form of activated carbon, biochar, and aerogel. This review highlighted bamboo utilization and its relevance as an adsorbent for wastewater treatment. The technologies for the processing and improvement of bamboo as well as the performance of the bamboo-based adsorbents are also discussed in this study. The adsorption capacity of bamboo has shown improvement with modification and good adsorption capacity achieved with some of the adsorbent being able to be recycled and reused.
Collapse
|
22
|
Khan RJ, Lau CY, Guan J, Lam CH, Zhao J, Ji Y, Wang H, Xu J, Lee DJ, Leu SY. Recent advances of lignin valorization techniques toward sustainable aromatics and potential benchmarks to fossil refinery products. BIORESOURCE TECHNOLOGY 2022; 346:126419. [PMID: 34838966 DOI: 10.1016/j.biortech.2021.126419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Aromatic compounds are important fuels and key chemical precursors for organic synthesis, however the current aromatics market are mainly relying on fossil resources which will eventually contribute to carbon emissions. Lignin has been recognized as a drop-in substitution to conventional aromatics, with its values gradually realized after tremendous research efforts in the recent five years. To facilitate the development of a possible lignin economics, this study overviewed the recent advances of various biorefinery techniques and the remaining challenging for lignin valorization. Starting with recent discovery of unexplored lignin structures, the potential functions of lignin related chemical structures were emphasized. The important breakthrough of lignin-first pretreatment, catalytic lignin depolymerization, and the high value products with possible benchmark with modern aromatics were reviewed with possible future targets. Possible retrofit of conventional petroleum refinery for lignin products were also introduced and hopefully paving a way to progressively migrate the industry towards carbon neutrality.
Collapse
Affiliation(s)
- Rabia Jalil Khan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Yin Lau
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Jun Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ying Ji
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Huaimin Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
23
|
Yoon J, Hou Y, Knoepfel AM, Yang D, Ye T, Zheng L, Yennawar N, Sanghadasa M, Priya S, Wang K. Bio-inspired strategies for next-generation perovskite solar mobile power sources. Chem Soc Rev 2021; 50:12915-12984. [PMID: 34622260 DOI: 10.1039/d0cs01493a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Smart electronic devices are becoming ubiquitous due to many appealing attributes including portability, long operational time, rechargeability and compatibility with the user-desired form factor. Integration of mobile power sources (MPS) based on photovoltaic technologies with smart electronics will continue to drive improved sustainability and independence. With high efficiency, low cost, flexibility and lightweight features, halide perovskite photovoltaics have become promising candidates for MPS. Realization of these photovoltaic MPS (PV-MPS) with unconventionally extraordinary attributes requires new 'out-of-box' designs. Natural materials have provided promising designing solutions to engineer properties under a broad range of boundary conditions, ranging from molecules, proteins, cells, tissues, apparatus to systems in animals, plants, and humans optimized through billions of years of evolution. Applying bio-inspired strategies in PV-MPS could be biomolecular modification on crystallization at the atomic/meso-scale, bio-structural duplication at the device/system level and bio-mimicking at the functional level to render efficient charge delivery, energy transport/utilization, as well as stronger resistance against environmental stimuli (e.g., self-healing and self-cleaning). In this review, we discuss the bio-inspired/-mimetic structures, experimental models, and working principles, with the goal of revealing physics and bio-microstructures relevant for PV-MPS. Here the emphasis is on identifying the strategies and material designs towards improvement of the performance of emerging halide perovskite PVs and strategizing their bridge to future MPS.
Collapse
Affiliation(s)
- Jungjin Yoon
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Yuchen Hou
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Abbey Marie Knoepfel
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Dong Yang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Tao Ye
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Luyao Zheng
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Neela Yennawar
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, 16802, PA, USA
| | - Mohan Sanghadasa
- U.S. Army Combat Capabilities Development Command Aviation & Missile Center, Redstone Arsenal, Alabama, 35898, USA
| | - Shashank Priya
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| | - Kai Wang
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, 16802, PA, USA.
| |
Collapse
|
24
|
Zhang C, Chen M, Keten S, Coasne B, Derome D, Carmeliet J. Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. SCIENCE ADVANCES 2021; 7:eabi8919. [PMID: 34516889 PMCID: PMC8442895 DOI: 10.1126/sciadv.abi8919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/16/2021] [Indexed: 05/21/2023]
Abstract
Despite the thousands of years of wood utilization, the mechanisms of wood hygromechanics remain barely elucidated, owing to the nanoscopic system size and highly coupled physics. This study uses molecular dynamics simulations to systematically characterize wood polymers, their mixtures, interface, and composites, yielding an unprecedented micromechanical dataset including swelling, mechanical weakening, and hydrogen bonding, over the full hydration range. The rich data reveal the mechanism of wood cell wall hygromechanics: Cellulose fiber dominates the mechanics of cell wall along the longitudinal direction. Hemicellulose glues lignin and cellulose fiber together defining the cell wall mechanics along the transverse direction, and water severely disturbs the hemicellulose-related hydrogen bonds. In contrast, lignin is rather hydration independent and serves mainly as a space filler. The moisture-induced highly anisotropic swelling and weakening of wood cell wall is governed by the interplay of cellulose reinforcement, mechanical degradation of matrix, and fiber-matrix interface.
Collapse
Affiliation(s)
- Chi Zhang
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Corresponding author.
| | - Mingyang Chen
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Sinan Keten
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208-3109, USA
| | - Benoit Coasne
- Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Dominique Derome
- Department of Civil and Building Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
25
|
Chen W, Li T, Yan X, Wu X, Zhang Y, Wang X, Zhang F, Zhang S, He G. Constructing ionic channels in anion exchange membrane via a Zn2+ soft template: Experiment and molecular dynamics simulation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Zhou S, Jin K, Buehler MJ. Understanding Plant Biomass via Computational Modeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003206. [PMID: 32945027 DOI: 10.1002/adma.202003206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Plant biomass, especially wood, has been used for structural materials since ancient times. It is also showing great potential for new structural materials and it is the major feedstock for the emerging biorefineries for building a sustainable society. The plant cell wall is a hierarchical matrix of mainly cellulose, hemicellulose, and lignin. Herein, the structure, properties, and reactions of cellulose, lignin, and wood cell walls, studied using density functional theory (DFT) and molecular dynamics (MD), which are the widely used computational modeling approaches, are reviewed. Computational modeling, which has played a crucial role in understanding the structure and properties of plant biomass and its nanomaterials, may serve a leading role on developing new hierarchical materials from biomass in the future.
Collapse
Affiliation(s)
- Shengfei Zhou
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Kai Jin
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
27
|
Azimi B, Milazzo M, Danti S. Cellulose-Based Fibrous Materials From Bacteria to Repair Tympanic Membrane Perforations. Front Bioeng Biotechnol 2021; 9:669863. [PMID: 34164386 PMCID: PMC8215662 DOI: 10.3389/fbioe.2021.669863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Perforation is the most common illness of the tympanic membrane (TM), which is commonly treated with surgical procedures. The success rate of the treatment could be improved by novel bioengineering approaches. In fact, a successful restoration of a damaged TM needs a supporting biomaterial or scaffold able to meet mechano-acoustic properties similar to those of the native TM, along with optimal biocompatibility. Traditionally, a large number of biological-based materials, including paper, silk, Gelfoam®, hyaluronic acid, collagen, and chitosan, have been used for TM repair. A novel biopolymer with promising features for tissue engineering applications is cellulose. It is a highly biocompatible, mechanically and chemically strong polysaccharide, abundant in the environment, with the ability to promote cellular growth and differentiation. Bacterial cellulose (BC), in particular, is produced by microorganisms as a nanofibrous three-dimensional structure of highly pure cellulose, which has thus become a popular graft material for wound healing due to a number of remarkable properties, such as water retention, elasticity, mechanical strength, thermal stability, and transparency. This review paper provides a comprehensive overview of the current experimental studies of BC, focusing on the application of BC patches in the treatment of TM perforations. In addition, computational approaches to model cellulose and TM are summarized, with the aim to synergize the available tools toward the best design and exploitation of BC patches and scaffolds for TM repair and regeneration.
Collapse
Affiliation(s)
- Bahareh Azimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Mario Milazzo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Serena Danti
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| |
Collapse
|
28
|
Abstract
Desoxyribosenucleic acid, DNA, and cellulose molecules self-assemble in aqueous systems. This aggregation is the basis of the important functions of these biological macromolecules. Both DNA and cellulose have significant polar and nonpolar parts and there is a delicate balance between hydrophilic and hydrophobic interactions. The hydrophilic interactions related to net charges have been thoroughly studied and are well understood. On the other hand, the detailed roles of hydrogen bonding and hydrophobic interactions have remained controversial. It is found that the contributions of hydrophobic interactions in driving important processes, like the double-helix formation of DNA and the aqueous dissolution of cellulose, are dominating whereas the net contribution from hydrogen bonding is small. In reviewing the roles of different interactions for DNA and cellulose it is useful to compare with the self-assembly features of surfactants, the simplest case of amphiphilic molecules. Pertinent information on the amphiphilic character of cellulose and DNA can be obtained from the association with surfactants, as well as on modifying the hydrophobic interactions by additives.
Collapse
|
29
|
Aguilera-Segura SM, Di Renzo F, Mineva T. Molecular Insight into the Cosolvent Effect on Lignin-Cellulose Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14403-14416. [PMID: 33202139 DOI: 10.1021/acs.langmuir.0c02794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding and controlling the physical adsorption of lignin compounds on cellulose pulp are key parameters in the successful optimization of organosolv processes. The effect of binary organic-aqueous solvents on the coordination of lignin to cellulose was studied with molecular dynamics simulations, considering ethanol and acetonitrile to be organic cosolvents in aqueous solutions in comparison to their monocomponent counterparts. The structures of the solvation shells around cellulose and lignin and the energetics of lignin-cellulose adhesion indicate a more effective disruption of lignin-cellulose binding by binary solvents. The synergic effect between solvent components is explained by their preferential interactions with lignin-cellulose complexes. In the presence of pure water, long-lasting H-bonds in the lignin-cellulose complex are observed, promoted by the nonfavorable interactions of lignin with water. Ethanol and acetonitrile compete with water and lignin for cellulose oxygen binding sites, causing a nonlinear decrease in the lignin-cellulose interactions with the amount of the organic component. This effect is modulated by the water exclusion from the cellulose solvation shell by the organic solvent component. The amount and rate of water exclusion depend on the type of organic cosolvent and its concentration.
Collapse
Affiliation(s)
| | | | - Tzonka Mineva
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
30
|
Investigation of the Effect of Inhomogeneous Material on the Fracture Mechanisms of Bamboo by Finite Element Method. MATERIALS 2020; 13:ma13215039. [PMID: 33182322 PMCID: PMC7664894 DOI: 10.3390/ma13215039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022]
Abstract
Bamboo is a remarkably strong and sustainable material available for construction. It exhibits optimized mechanical characteristics based on a hollow-inhomogeneous structure which also affects its fracture behavior. In this study, the aim is to investigate the effect of material composition and geometrical attributes on the fracture mechanisms of bamboo in various modes of loading by the finite element method. In the first part of the investigation, the optimized transverse isotropy of bamboo to resist transverse deformation was numerically determined to represent its noticeable orthotropic characteristics which prevail in the axial direction. In the second part of this study, a numerical investigation of fracture mechanisms in four fundamental modes of loading, namely bending, compression, torsion, and shear, were conducted by considering the failure criterion of maximum principal strain. A crack initiation stage was simulated and compared by implementing an element erosion technique. Results showed that the characteristics of bamboo’s crack initiation differed greatly from solid geometry and homogeneous material-type models. Splitting patterns, which were discerned in bending and shear modes, differed in terms of location and occurred in the outside-center position and inside-lowermost position of the culm, respectively. The results of this study can be useful in order to achieve optimized strength in bamboo-inspired bionic designs.
Collapse
|
31
|
Application of Bamboo Plants in Nine Aspects. ScientificWorldJournal 2020; 2020:7284203. [PMID: 33061861 PMCID: PMC7555460 DOI: 10.1155/2020/7284203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/18/2020] [Indexed: 01/16/2023] Open
Abstract
Bamboo forests are undoubtedly one of the most abundant nontimber plants on Earth and cover a wide area of tropical and subtropical regions around the world. This amazing plant has unique rapid growth and can play an important role in protecting our planet from pollution and improving the soil. Bamboo can be used as a biofuel, food, and for architecture and construction applications and plays a large role in the local economy by creating job opportunities. The aim of this paper is to review the extraordinary tropical plant bamboo by explaining the mechanisms related to the growth and strength of bamboo and identifying ways to utilize bamboo in industry, employment, climate change mitigation, and soil erosion reduction.
Collapse
|
32
|
Peil S, Beckers S, Fischer J, Wurm F. Biodegradable, lignin-based encapsulation enables delivery of Trichoderma reesei with programmed enzymatic release against grapevine trunk diseases. Mater Today Bio 2020; 7:100061. [PMID: 32637910 PMCID: PMC7327927 DOI: 10.1016/j.mtbio.2020.100061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022] Open
Abstract
Antagonistic fungi such as Trichoderma reesei are promising alternatives to conventional fungicides in agriculture. This is especially true for worldwide occurring grapevine trunk diseases, causing losses of US$1.5 billion every year, at which conventional fungicides are mostly ineffective or prohibited by law. Yet, applications of Trichoderma against grapevine trunk diseases are limited to preventive measures, suffer from poor shelf life, or uncontrolled germination. Therefore, we developed a mild and spore-compatible layer-by-layer assembly to encapsulate spores of a new mycoparasitic strain of T. reesei IBWF 034-05 in a bio-based and biodegradable lignin shell. The encapsulation inhibits undesired premature germination and enables the application as an aqueous dispersion via trunk injection. First injected into a plant, the spores remain in a resting state. Second, when lignin-degrading fungi infect the plant, enzymatic degradation of the shell occurs and germination is selectively triggered by the pathogenic fungi itself, which was proven in vitro. Germinated Trichoderma antagonizes the fungal pathogens and finally supplants them from the plant. This concept enables Trichoderma spores for curative treatment of esca, one of the most infective grapevine trunk diseases worldwide.
Collapse
Affiliation(s)
- S. Peil
- Max-Planck-Insitute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - S.J. Beckers
- Max-Planck-Insitute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - J. Fischer
- Institute for Biotechnology and Drug Research, Erwin-Schrödinger-Str. 56, 67663, Kaiserslautern, Germany
| | - F.R. Wurm
- Max-Planck-Insitute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
33
|
Atomic force microscopy reveals how relative humidity impacts the Young’s modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. Int J Biol Macromol 2020; 147:1064-1075. [DOI: 10.1016/j.ijbiomac.2019.10.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 11/23/2022]
|
34
|
Youssefian S. Conformational Transformation of pH-Responsive Hairy Cellulose NanoCrystalloids in Salt-Free Dilute Solutions. Biomacromolecules 2019; 20:2839-2851. [PMID: 31241307 DOI: 10.1021/acs.biomac.9b00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among biomaterials, pH-responsive nanoparticles have promising potential for overcoming nonspecific therapeutic delivery by taking advantage of the pH gradient between physiological and pathological states. This article discusses pH-dependent conformations of an organic nanoparticle that has a needle-shaped body from crystalline cellulose, sandwiched between two amorphous regions from chemically nanoengineered dicarboxylated cellulose (DCC). Computational study on a single free DCC chain elucidated that in a salt-free dilute solution, the chain undergoes a major transformation between pH ∼ 3 and ∼6.3. Through this transformation, the DCC chain nature varies from globular neutral polymer to coiled quasi-neutral polymer and finally to rodlike polyelectrolyte. Study on the particle nanostructure indicated that, at pH ∼ 3, the conformation of the amorphous regions is analogous to that of polymer brushes in poor solvents, whereas at pH ∼ 5, the conformation changes to that of quasi-neutral polymer brushes in good solvents. For pH > 6.3, the conformation transforms into that of star-like polyelectrolytes. The height of the amorphous region exhibits a regressive trend up to pH ∼ 6.3, followed by a progressive trend up to pH ∼ 10. Study on the hydrodynamic properties revealed a sharp decline in the diffusion rate as the pH varies from ∼3 to ∼5, followed by a plateau for higher pH. It was demonstrated that, at pH ∼ 3, the nanoparticle may form a coherent nanophase with a rodlike structure. These results may provide insight into designing pH-responsive nanocelluloses with a controlled expansion and diffusion coefficient.
Collapse
Affiliation(s)
- Sina Youssefian
- Department of Civil Engineering , Johns Hopkins University , Baltimore , Maryland , United States.,Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Cambridge , Massachusetts , United States.,Department of Mechanical Engineering , Worcester Polytechnic Institute , Worcester , Massachusetts , United States
| |
Collapse
|
35
|
Walker KT, Goosens VJ, Das A, Graham AE, Ellis T. Engineered cell-to-cell signalling within growing bacterial cellulose pellicles. Microb Biotechnol 2019; 12:611-619. [PMID: 30461206 PMCID: PMC6559020 DOI: 10.1111/1751-7915.13340] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022] Open
Abstract
Bacterial cellulose is a strong and flexible biomaterial produced at high yields by Acetobacter species and has applications in health care, biotechnology and electronics. Naturally, bacterial cellulose grows as a large unstructured polymer network around the bacteria that produce it, and tools to enable these bacteria to respond to different locations are required to grow more complex structured materials. Here, we introduce engineered cell-to-cell communication into a bacterial cellulose-producing strain of Komagataeibacter rhaeticus to enable different cells to detect their proximity within growing material and trigger differential gene expression in response. Using synthetic biology tools, we engineer Sender and Receiver strains of K. rhaeticus to produce and respond to the diffusible signalling molecule, acyl-homoserine lactone. We demonstrate that communication can occur both within and between growing pellicles and use this in a boundary detection experiment, where spliced and joined pellicles sense and reveal their original boundary. This work sets the basis for synthetic cell-to-cell communication within bacterial cellulose and is an important step forward for pattern formation within engineered living materials.
Collapse
Affiliation(s)
- Kenneth T. Walker
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Centre for Synthetic BiologyImperial College LondonLondonSW7 2AZUK
| | - Vivianne J. Goosens
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Centre for Synthetic BiologyImperial College LondonLondonSW7 2AZUK
| | - Akashaditya Das
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Alicia E. Graham
- Centre for Synthetic BiologyImperial College LondonLondonSW7 2AZUK
| | - Tom Ellis
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Centre for Synthetic BiologyImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
36
|
Wang XQ, Chow CL, Lau D. A Review on Modeling Techniques of Cementitious Materials under Different Length Scales: Development and Future Prospects. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xing Quan Wang
- Department of Architecture and Civil EngineeringCity University of Hong Kong Hong Kong China
| | - Cheuk Lun Chow
- Department of Architecture and Civil EngineeringCity University of Hong Kong Hong Kong China
| | - Denvid Lau
- Department of Architecture and Civil EngineeringCity University of Hong Kong Hong Kong China
- Department of Civil and Environmental EngineeringMassachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
37
|
Bone-inspired enhanced fracture toughness of de novo fiber reinforced composites. Sci Rep 2019; 9:3142. [PMID: 30816162 PMCID: PMC6395722 DOI: 10.1038/s41598-019-39030-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Amplification in toughness and balance with stiffness and strength are fundamental characteristics of biological structural composites, and a long sought-after objective for engineering design. Nature achieves these properties through a combination of multiscale key features. Yet, emulating all these features into synthetic de novo materials is rather challenging. Here, we fine-tune manual lamination, to implement a newly designed bone-inspired structure into fiber-reinforced composites. An integrated approach, combining numerical simulations, ad hoc manufacturing techniques, and testing, yields a novel composite with enhanced fracture toughness and balance with stiffness and strength, offering an optimal lightweight material solution with better performance than conventional materials such as metals and alloys. The results also show how the new design significantly boosts the fracture toughness compared to a classic laminated composite, made of the same building blocks, also offering an optimal tradeoff with stiffness and strength. The predominant mechanism, responsible for the enhancement of fracture toughness in the new material, is the continuous deviation of the crack from a straight path, promoting large energy dissipation and preventing a catastrophic failure. The new insights resulting from this study can guide the design of de novo fiber-reinforced composites toward better mechanical performance to reach the level of synergy of their natural counterparts.
Collapse
|
38
|
Research on the Physico-Mechanical Properties of Moso Bamboo with Thermal Treatment in Tung Oil and Its Influencing Factors. MATERIALS 2019; 12:ma12040599. [PMID: 30781544 PMCID: PMC6416738 DOI: 10.3390/ma12040599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022]
Abstract
In this study, the effects of tung oil heat treatment on the physico-mechanical properties of moso bamboo were investigated. Here, heat treatment in tung oil at 100–200 °C was used to modify natural bamboo materials. The changes in the nanostructures of cell walls in bamboo caused by oil heat treatment, like density, chemical compositions, and cellulose crystalline, were evaluated to study their correlation with mechanical properties. Results showed that the mechanical performance of bamboo, such as ultimate stress, modulus of elasticity (MOE), and modulus of rupture (MOR), didn’t reduce after heat treatment below 200 °C, compared with the untreated bamboo, which was mainly due to the tung oil uptake, stable cellulose content, and the increment of cellulose crystalline. No remarkable change in the ultimate strain occurred for bamboo materials thermally treated below 140 °C, but it decreased obviously at the heating temperature over 180 °C, mainly due to the degradation of hemicellulose resulting in a decrease in the viscoelasticity of cell wall.
Collapse
|
39
|
Mishra PK, Ekielski A. The Self-Assembly of Lignin and Its Application in Nanoparticle Synthesis: A Short Review. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E243. [PMID: 30754724 PMCID: PMC6410071 DOI: 10.3390/nano9020243] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 01/16/2023]
Abstract
Lignin serves as a significant contributor to the natural stock of non-fossilized carbon, second only to cellulose in the biosphere. In this review article, we focus on the self-assembly properties of lignin and their contribution to its effective utilization and valorization. Traditionally, investigations on self-assembly properties of lignin have aimed at understanding the lignification process of the cell wall and using it for efficient delignification for commercial purposes. In recent years (mainly the last three years), an increased number of attempts and reports of technical-lignin nanostructure synthesis with controlled particle size and morphology have been published. This has renewed the interests in the self-assembly properties of technical lignins and their possible applications. Based on the sources and processing methods of lignin, there are significant differences between its structure and properties, which is the primary obstacle in the generalized understanding of the lignin structure and the lignification process occurring within cell walls. The reported studies are also specific to source and processing methods. This work has been divided into two parts. In the first part, the aggregation propensity of lignin based on type, source and extraction method, temperature, and pH of solution is discussed. This is followed by a critical overview of non-covalent interactions and their contribution to the self-associative properties of lignin. The role of self-assembly towards the understanding of xylogenesis and nanoparticle synthesis is also discussed. A particular emphasis is placed on the interaction and forces involved that are used to explain the self-association of lignin.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Department of Wood Processing Technology, Mendel University in Brno, 61300 Brno, Czech Republic.
| | - Adam Ekielski
- Department of Production Management and Engineering, Warsaw University Of Life Sciences, 02-787 Warsaw, Poland.
| |
Collapse
|
40
|
Zhang Z, Mulyadi A, Kuang X, Liu W, Li V, Gogoi P, Liu X, Deng Y. Lignin‐polystyrene composite foams through high internal phase emulsion polymerization. POLYM ENG SCI 2018. [DOI: 10.1002/pen.25046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhe Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30318
- Renewable Bioproducts Institute, Georgia Institute of Technology Atlanta Georgia 30318
| | - Arie Mulyadi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30318
- Renewable Bioproducts Institute, Georgia Institute of Technology Atlanta Georgia 30318
| | - Xiao Kuang
- Renewable Bioproducts Institute, Georgia Institute of Technology Atlanta Georgia 30318
- The George Woodruff School of Mechanical Engineering, Georgia Institute of Technology Atlanta Georgia 30318
| | - Wei Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30318
- Renewable Bioproducts Institute, Georgia Institute of Technology Atlanta Georgia 30318
| | - Vincent Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30318
- Renewable Bioproducts Institute, Georgia Institute of Technology Atlanta Georgia 30318
| | - Parikshit Gogoi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30318
- Department of ChemistryNowgon College Nagaon 782001 Assam India
| | - Xinliang Liu
- Renewable Bioproducts Institute, Georgia Institute of Technology Atlanta Georgia 30318
- School of Light Industrial and Food Engineering, Guangxi University Nanning Guangxi 530004 People's Republic of China
| | - Yulin Deng
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta Georgia 30318
- Renewable Bioproducts Institute, Georgia Institute of Technology Atlanta Georgia 30318
| |
Collapse
|
41
|
Tarasov D, Leitch M, Fatehi P. Lignin-carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:269. [PMID: 30288174 PMCID: PMC6162904 DOI: 10.1186/s13068-018-1262-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/19/2018] [Indexed: 05/06/2023]
Abstract
The complexity of lignin and hemicellulose segmentation has been known since the middle of the ninetieth century. Studies confirmed that all lignin units in coniferous species and 47-66% of lignin moieties in deciduous species are bound to hemicelluloses or cellulose molecules in lignin-carbohydrate complexes (LCC). Different types and proportions of lignin and polysaccharides present in biomass lead to the formation of LCC with a great variety of compositions and structures. The nature and amount of LCC linkages and lignin substructures affect the efficiency of pulping, hydrolysis, and digestibility of biomass. This review paper discusses the structures, compositions, and properties of LCC present in biomass and in the products obtained via pretreating biomass. Methods for extracting, fractionating, and analyzing LCC of biomass, pulp, and spent pulping liquors are critically reviewed. The main perspectives and challenges associated with these technologies are extensively discussed. LCC could be extracted from biomass following varied methods, among which dimethyl sulfoxide or dioxane (Björkman's) and acetic acid (LCC-AcOH) processes are the most widely applied. The oxidation and methylation treatments of LCC materials elucidate the locations and frequency of binding sites of hemicelluloses to lignin. The two-dimensional nuclear magnetic resonance analysis allows the identification of the structure and the quantity of lignin-carbohydrate bonds involved in LCC. LCC application seems promising in medicine due to its high anti-HIV, anti-herpes, and anti-microbial activity. In addition, LCC was successfully employed as a precursor for the preparation of spherical biocarriers.
Collapse
Affiliation(s)
- Dmitry Tarasov
- Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
- Natural Resource Management Faculty, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
| | - Mathew Leitch
- Natural Resource Management Faculty, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
| | - Pedram Fatehi
- Chemical Engineering Department, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1 Canada
| |
Collapse
|
42
|
Multiscale analysis of bamboo deformation mechanisms following NaOH treatment using X-ray and correlative microscopy. Acta Biomater 2018; 72:329-341. [PMID: 29627678 DOI: 10.1016/j.actbio.2018.03.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
Abstract
For hundreds of years, bamboo has been employed for a variety of applications ranging from load-bearing structures to textiles. Thanks to its hierarchical structure that is functionally graded and naturally optimised, bamboo displays a variation in properties across its stem that ensures exceptional flexural performance. Often, alkaline solutions are employed for the treatment of bamboo in order to alter its natural elastic behaviour and make it suitable for particular applications. In this work we study the effect of NaOH solutions of five different concentrations (up to 25%) on the elastic properties of bamboo. By exploiting the capabilities of modern experimental techniques such as in situ synchrotron X-ray scattering and Digital Image Correlation, we present detailed analysis of the deformation mechanisms taking place in the main constituents of bamboo, i.e. fibres and matrix (Parenchyma). The principal achievement of this study is the elucidation of the deformation mechanisms at the fibre scale, where the relative sliding of fibrils plays a crucial role in the property modification of the whole bamboo stem. Furthermore, we shed light on the parenchyma toughness variation as a consequence of alkali treatments. STATEMENT OF SIGNIFICANCE Alkaline solutions are often employed for the treatment of bamboo in order to alter its natural elastic behaviour. In this work we study the effect of alkaline solutions on the elastic properties of bamboo. Using state of the art experimental techniques allowed shedding light on the deformation mechanisms occurring in the bamboo main constituents, i.e. fibres and matrix (parenchyma cells). Enhancement of fibre stiffness was experienced when up to 20% NaOH solution was employed, while for higher concentration a decay was observed. This effect was imputed to the modification of adhesion between fibrils induced by disruption of ligand elements (e.g. lignin). Modification of the matrix toughness was also experienced, that indicated an improved resistance to cracking when the concentration of NaOH is 25%, while reduction of toughness was revealed for lower concentrations.
Collapse
|
43
|
Isaac A, de Paula J, Viana CM, Henriques AB, Malachias A, Montoro LA. From nano- to micrometer scale: the role of microwave-assisted acid and alkali pretreatments in the sugarcane biomass structure. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:73. [PMID: 29588658 PMCID: PMC5863382 DOI: 10.1186/s13068-018-1071-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/08/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND To date, great strides have been made in elucidating the role of thermochemical pretreatments in the chemical and structural features of plant cell walls; however, there is no clear picture of the plant recalcitrance and its relationship to deconstruction. Previous studies precluded full answers due to the challenge of multiscale features of plant cell wall organization. Complementing the previous efforts, we undertook a systematic, multiscale, and integrated approach to track the effect of microwave-assisted H2SO4 and NaOH treatments on the hierarchical structure of plants, i.e., from a nano- to micrometer scale. We focused on the investigation of the highly recalcitrant sclerenchyma cell walls from sugarcane bagasse. RESULTS Through atomic force microscopy and X-ray diffraction analyses, remarkable details of the assembly of cellulose microfibrils not previously seen were revealed. Following the H2SO4 treatment, we observed that cellulose microfibrils were almost double the width of the alkali pretreated sample at the temperature of 160 °C. Such enlargement led to a greater contact between cellulose chains, with a subsequent molecule alignment, as indicated by the X-ray diffraction (XRD) results with the conspicuous expansion of the average crystallite size. The delignification process had little effect on the local nanometer-sized arrangement of cellulose molecules. However, the rigidity and parallel alignment of cellulose microfibrils were partially degraded. The XRD analysis also agrees with these findings as evidenced by large momentum transfer vectors (q > 20 nm-1), interpreted as indicators of the long-range order of cell wall components, which were similar for all the studied samples except with application of the NaOH treatment at 160 °C. These changes were followed by the eventual swelling of the fiber cell walls. CONCLUSIONS Based on an integrated approach, we presented multidimensional architectural models of cell wall deconstruction resulting from microwave-assisted pretreatments. We provided direct evidence supporting the idea that hemicellulose is the main barrier for the swelling of cellulose microfibrils, whereas lignin adds rigidity to cell walls. Our findings shed light on the design of more efficient strategies, not only for the conversion of biomass to fuels but also for the production of nanocellulose, which has great potential for several applications such as composites, rheology modifiers, and pharmaceuticals.
Collapse
Affiliation(s)
- Augusta Isaac
- Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Jéssica de Paula
- Microscopy Center, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Carlos Martins Viana
- Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Andréia Bicalho Henriques
- Mining Engineering Department, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Angelo Malachias
- Department of Physics, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| | - Luciano A. Montoro
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Brazil
| |
Collapse
|
44
|
Youssefian S, Rahbar N, Lambert CR, Van Dessel S. Variation of thermal conductivity of DPPC lipid bilayer membranes around the phase transition temperature. J R Soc Interface 2018; 14:rsif.2017.0127. [PMID: 28539484 PMCID: PMC5454301 DOI: 10.1098/rsif.2017.0127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/26/2017] [Indexed: 01/28/2023] Open
Abstract
Given their amphiphilic nature and chemical structure, phospholipids exhibit a strong thermotropic and lyotropic phase behaviour in an aqueous environment. Around the phase transition temperature, phospholipids transform from a gel-like state to a fluid crystalline structure. In this transition, many key characteristics of the lipid bilayers such as structure and thermal properties alter. In this study, we employed atomistic simulation techniques to study the structure and underlying mechanisms of heat transfer in dipalmitoylphosphatidylcholine (DPPC) lipid bilayers around the fluid–gel phase transformation. To investigate this phenomenon, we performed non-equilibrium molecular dynamics simulations for a range of different temperature gradients. The results show that the thermal properties of the DPPC bilayer are highly dependent on the temperature gradient. Higher temperature gradients cause an increase in the thermal conductivity of the DPPC lipid bilayer. We also found that the thermal conductivity of DPPC is lowest at the transition temperature whereby one lipid leaflet is in the gel phase and the other is in the liquid crystalline phase. This is essentially related to a growth in thermal resistance between the two leaflets of lipid at the transition temperature. These results provide significant new insights into developing new thermal insulation for engineering applications.
Collapse
Affiliation(s)
- Sina Youssefian
- Civil and Environmental Engineering Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Nima Rahbar
- Civil and Environmental Engineering Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Christopher R Lambert
- Chemistry and Biochemistry Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Steven Van Dessel
- Civil and Environmental Engineering Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| |
Collapse
|
45
|
3D printed structures for modeling the Young's modulus of bamboo parenchyma. Acta Biomater 2018; 68:90-98. [PMID: 29294375 DOI: 10.1016/j.actbio.2017.12.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022]
Abstract
Bamboo is a sustainable, lightweight material that is widely used in structural applications. To fully develop micromechanical models for plants, such as bamboo, the mechanical properties of each individual type of tissue are needed. However, separating individual tissues and testing them mechanically is challenging. Here, we report an alternative approach in which micro X-ray computed tomography (µ-CT) is used to image moso bamboo (Phyllostachys pubescens). The acquired images, which correspond to the 3D structure of the parenchyma, are then transformed into physical, albeit larger scale, structures by 3D printing, and their mechanical properties are characterized. The normalized longitudinal Young's moduli of the fabricated structures depend on relative density raised to a power between 2 and 3, suggesting that elastic deformation of the parenchyma cellular structure involves considerable cell wall bending. The mechanical behavior of other biological tissues may also be elucidated using this approach. STATEMENT OF SIGNIFICANCE Bamboo is a lightweight, sustainable engineering material widely used in structural applications. By combining micro X-ray computed tomography and 3D printing, we have produced bamboo parenchyma mimics and characterized their stiffness. Using this approach, we gained insight into bamboo parenchyma tissue mechanics, specifically the cellular geometry's role in longitudinal elasticity.
Collapse
|
46
|
Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo. Acta Biomater 2018; 65:203-215. [PMID: 28987785 DOI: 10.1016/j.actbio.2017.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Natural bamboo with different water weight contents (0%, 6% and 22%) had distinguishingly different mechanical properties, where samples with water contents of 22% had tensile strength and elongations increased by ∼30% and ∼200% than the dry (0%), respectively. The deformation and fracture process was synchronously recorded and analyzed with the aid of the acoustic emission (AE), during which there were three kinds of real time fracture behaviors recognized: matrix (multi-walled parenchyma cells) failure, interfacial (fiber/fiber or fiber/parenchyma cell walls) dissociations and fiber breakage. More interfacial dissociations and higher fracture energy were detected as more water was added, since water molecules can make great differences on the bamboo's inner micro-structures and the mechanical properties. During the fracture process of the wet bamboo detected by AE, matrix failure and interfacial dissociations contributed most of the elongation, and the strength were mainly depended on the fiber breakage and interfacial dissociations. The discovered structural toughening mechanisms within the multi-scaled structures were microfiber bridging, multi-walled fiber pull-out, micro warts buckling and crack deflection. The micro-structural toughening effects were strengthened by the cellulose-hemicellulose-lignin complexes and a certain content of water molecules within the multi-scaled fibrous cellular structures, which are collaboratively working and ensuring the high mechanical performance of the natural bamboo. STATEMENT OF SIGNIFICANCE The mechanical behaviors during the whole fracture process of bamboo were investigated by acoustic emission (AE). During the fracture process there were three kinds of fracture behaviors recognized by AE: matrix (parenchyma cells) failure, interfacial (fiber/fiber or fiber/parenchyma cell walls) dissociations and fiber breakage. The mechanical performance was greatly influenced by water contents (0%, 6% and 22%). Wet bamboos had higher fracture energy than the dry ones. There was more interfacial dissociation behaviors detected as more water was absorbed within the multi-scaled structures. The micro structural toughening mechanisms were strengthened by the macromolecular complexes and water molecules, which are working together and ensuring the excellent mechanical properties of the natural bamboo.
Collapse
|
47
|
Hydrogen bonding energy determined by molecular dynamics simulation and correlation to properties of thermoplastic starch films. Carbohydr Polym 2017; 166:256-263. [DOI: 10.1016/j.carbpol.2017.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
|
48
|
Youssefian S, Jakes JE, Rahbar N. Variation of Nanostructures, Molecular Interactions, and Anisotropic Elastic Moduli of Lignocellulosic Cell Walls with Moisture. Sci Rep 2017; 7:2054. [PMID: 28515461 PMCID: PMC5435739 DOI: 10.1038/s41598-017-02288-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/18/2017] [Indexed: 11/08/2022] Open
Abstract
A combination of experimental, theoretical and numerical studies is used to investigate the variation of elastic moduli of lignocellulosic (bamboo) fiber cell walls with moisture content (MC). Our Nanoindentation results show that the longitudinal elastic modulus initially increased to a maximum value at about 3% MC and then decreased linearly with increasing MC. In contrast, the transverse moduli decrease linearly with MC. We showed that amorphous materials in cell walls have key roles in the variation of elastic modulus with increasing MC. Elastic modulus of lignin, calculated by molecular dynamics simulations, increases initially with increasing MC, and then decreases. In contrast, elastic modulus of hemicellulose decreases constantly with MC. Below 10% MC, water molecules tend to break hydrogen bonds between polymer chains and form new hydrogen bond bridges between the polymer chains, while above 10% MC, water molecules aggregate together and create nano-droplets inside the materials. During the process of bridging, the fractional free volume of lignin decreases. The free volume reduction along with formation of hydrogen bond bridges causes a growth in elastic modulus of lignin at low MC. The constant increase of hemicellulose free volume, however, causes the aggregation of voids in the system and diminution of elastic properties.
Collapse
Affiliation(s)
- S Youssefian
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - J E Jakes
- Forest Biopolymers Science and Engineering, USDA Forest Service, Forest Products Laboratory, Madison, WI, 53726, USA
| | - N Rahbar
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
49
|
Sato M, Inoue A, Shima H. Bamboo-inspired optimal design for functionally graded hollow cylinders. PLoS One 2017; 12:e0175029. [PMID: 28467441 PMCID: PMC5414991 DOI: 10.1371/journal.pone.0175029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/20/2017] [Indexed: 11/18/2022] Open
Abstract
The optimal distribution of the reinforcing fibers for stiffening hollow cylindrical composites is explored using the linear elasticity theory. The spatial distribution of the vascular bundles in wild bamboo, a nature-designed functionally graded material, is the basis for the design. Our results suggest that wild bamboos maximize their flexural rigidity by optimally regulating the radial gradation of their vascular bundle distribution. This fact provides us with a plant-mimetic design principle that enables the realization of high-stiffness and lightweight cylindrical composites.
Collapse
Affiliation(s)
- Motohiro Sato
- Division of Engineering and Policy for Sustainable Environment, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akio Inoue
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, Japan
| | - Hiroyuki Shima
- Department of Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
- * E-mail:
| |
Collapse
|
50
|
Farahi RH, Charrier AM, Tolbert A, Lereu AL, Ragauskas A, Davison BH, Passian A. Plasticity, elasticity, and adhesion energy of plant cell walls: nanometrology of lignin loss using atomic force microscopy. Sci Rep 2017; 7:152. [PMID: 28273953 PMCID: PMC5428038 DOI: 10.1038/s41598-017-00234-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/15/2017] [Indexed: 11/10/2022] Open
Abstract
The complex organic polymer, lignin, abundant in plants, prevents the efficient extraction of sugars from the cell walls that is required for large scale biofuel production. Because lignin removal is crucial in overcoming this challenge, the question of how the nanoscale properties of the plant cell ultrastructure correlate with delignification processes is important. Here, we report how distinct molecular domains can be identified and how physical quantities of adhesion energy, elasticity, and plasticity undergo changes, and whether such quantitative observations can be used to characterize delignification. By chemically processing biomass, and employing nanometrology, the various stages of lignin removal are shown to be distinguished through the observed morphochemical and nanomechanical variations. Such spatially resolved correlations between chemistry and nanomechanics during deconstruction not only provide a better understanding of the cell wall architecture but also is vital for devising optimum chemical treatments.
Collapse
Affiliation(s)
- R H Farahi
- Quantum Information Science, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- BioEnergy Science Center (BESC), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - A M Charrier
- Aix Marseille Univ, CNRS, CINaM, Marseille, France
| | - A Tolbert
- BioEnergy Science Center (BESC), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - A L Lereu
- Quantum Information Science, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Aix Marseille Univ, CNRS, CINaM, Marseille, France
| | - A Ragauskas
- BioEnergy Science Center (BESC), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - B H Davison
- BioEnergy Science Center (BESC), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - A Passian
- Quantum Information Science, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
- BioEnergy Science Center (BESC), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Physics, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|