1
|
Hunyenyiwa T, Kyi P, Scheer M, Joshi M, Gasparri M, Mammoto T, Mammoto A. Inhibition of angiogenesis and regenerative lung growth in Lepob/ob mice through adiponectin-VEGF/VEGFR2 signaling. Front Cardiovasc Med 2024; 11:1491971. [PMID: 39479393 PMCID: PMC11521822 DOI: 10.3389/fcvm.2024.1491971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Obesity is associated with impairment of wound healing and tissue regeneration. Angiogenesis, the formation of new blood capillaries, plays a key role in regenerative lung growth after unilateral pneumonectomy (PNX). We have reported that obesity inhibits angiogenesis. The effects of obesity on post-PNX lung vascular and alveolar regeneration remain unclear. Methods Unilateral PNX is performed on Lep o b / o b obese mice to examine vascular and alveolar regeneration. Results Regenerative lung growth and expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR2 induced after PNX are inhibited in Lep o b / o b obese mice. The levels of adiponectin that exhibits pro-angiogenic and vascular protective properties increase after unilateral PNX, while the effects are attenuated in Lep o b / o b obese mice. Post-PNX regenerative lung growth and increases in the levels of VEGF and VEGFR2 are inhibited in adiponectin knockout mice. Adiponectin stimulates angiogenic activities in human lung endothelial cells (ECs), which is inhibited by decreasing the levels of transcription factor Twist1. Adiponectin agonist, AdipoRon restores post-PNX lung growth and vascular and alveolar regeneration in Lep o b / o b obese mice. Discussion These findings suggest that obesity impairs lung vascular and alveolar regeneration and adiponectin is one of the key factors to improve lung regeneration in obese people.
Collapse
Affiliation(s)
- Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mikaela Scheer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mrudula Joshi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mario Gasparri
- Department of Thoracic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Lou Q. Impact of obesity on outcomes of patients with acute respiratory distress syndrome: a retrospective analysis of a large clinical database. Med Klin Intensivmed Notfmed 2024; 119:220-226. [PMID: 37584723 PMCID: PMC10995076 DOI: 10.1007/s00063-023-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/07/2023] [Accepted: 06/16/2023] [Indexed: 08/17/2023]
Abstract
OBJECTIVE To evaluate the link between obesity and mortality in patients with acute respiratory distress syndrome (ARDS). METHODS We performed a retrospective cohort study of a large clinical database. A Cox proportional hazards regression model was used to calculate the hazard ratio (HR) and 95% confidence interval (CI) for the relationship between body mass index (BMI) and mortality. The primary endpoint was 30-day death rate and the secondary endpoints were 90-day and 1‑year mortality. RESULTS Overall, 418 patients with ARDS were enrolled in the study, including 185 women and 233 men (age: 70.7 ± 44.1 years; BMI: 28.7 ± 8.1 kg/m2). Compared with patients with normal weight, obese patients were younger (60.1 ± 13.7, p = 0.003) and a higher percentage of these patients were women (51.3% vs. 49.0%, p = 0.001). The HRs (95% CI) of 30-day mortality in the underweight, overweight, and obese populations were 1.82 (0.85, 3.90), 0.59 (0.29, 1.20), and 3.85 (1.73, 8.57), respectively, after adjustment for other confounding factors. A similar pattern was also seen for death after 90 days and after 1 year. A U-shaped association between BMI and 30-day mortality was discovered by curve fitting. CONCLUSION Obesity had a significant impact on the short- and long-term mortality in patients with ARDS. There was a U-shaped relationship between BMI and mortality, while a higher BMI was associated with an increased risk of death in patients with ARDS.
Collapse
Affiliation(s)
- Qiyan Lou
- Department of Respiratory Medicine, Zhuji Affiliated Hospital of Wenzhou Medical University, No. 9 Jianmin Road Taozhu Street, 311800, Zhuji, China.
| |
Collapse
|
3
|
Saalbach A, Seitz AT, Kohlmann J, Kalweit L, Vogt L, Selig L, Engel KM, Simon JC. Modulation of Dietary Fatty Acids in an Open-Label Study Improves Psoriasis and Dampens the Inflammatory Activation Status. Nutrients 2023; 15:nu15071698. [PMID: 37049538 PMCID: PMC10097201 DOI: 10.3390/nu15071698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Obesity and high abdominal fat mass are risk factors for developing the chronic inflammatory skin disease psoriasis. They are associated with increased incidence, prevalence and severity of the disease. A positive effect of weight loss on psoriasis activity has been shown in several studies. Obesity-related factors such as the dysregulation of glucose and lipid metabolism, the activation of adipose tissue and resultant persistent low-grade inflammation have been discussed as links of obesity and inflammatory diseases. Recently, we demonstrated a critical role of free fatty acids (FFAs) in obesity-mediated exacerbation of psoriatic skin inflammation in both mice and humans. In the present study, we translated these findings into a therapeutic intervention. An open-label study focusing on the dietary reduction of FFAs was conducted in patients with mild-to-moderate plaque psoriasis, and disease severity and serum markers of inflammation were analyzed. Here, we show that such a dietary intervention improves psoriatic disease activity independently of weight loss. Diet-related metabolic changes, such as a reduction in saturated free fatty acids (SFAs), may thus be more important than weight loss itself. Moreover, dietary intervention inhibited the overall pro-inflammatory activation status in patients, as shown by analysis of serum inflammatory parameters using the Olink platform. From our pilot study, we conclude that dietary intervention focusing on SFA reduction has the capacity to reduce disease activity and general inflammatory status in psoriasis patients.
Collapse
Affiliation(s)
- Anja Saalbach
- Department of Dermatology, Venerology and Allergology, Faculty of Medicine, Leipzig University, Philipp Rosenthal Str. 23, 04103 Leipzig, Germany
| | - Anna-Theresa Seitz
- Department of Dermatology, Venerology and Allergology, Faculty of Medicine, Leipzig University, Philipp Rosenthal Str. 23, 04103 Leipzig, Germany
| | - Johannes Kohlmann
- Department of Dermatology, Venerology and Allergology, Faculty of Medicine, Leipzig University, Philipp Rosenthal Str. 23, 04103 Leipzig, Germany
| | - Lena Kalweit
- Department of Dermatology, Venerology and Allergology, Faculty of Medicine, Leipzig University, Philipp Rosenthal Str. 23, 04103 Leipzig, Germany
| | - Lisa Vogt
- Department of Dermatology, Venerology and Allergology, Faculty of Medicine, Leipzig University, Philipp Rosenthal Str. 23, 04103 Leipzig, Germany
| | - Lars Selig
- Department of Medicine, Division of Nutritional Medicine, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany
| | - Kathrin M. Engel
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, 04107 Leipzig, Germany
| | - Jan C. Simon
- Department of Dermatology, Venerology and Allergology, Faculty of Medicine, Leipzig University, Philipp Rosenthal Str. 23, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Yoon H, Seo JK, Park TE. Microphysiological system recapitulating the pathophysiology of adipose tissue in obesity. Acta Biomater 2023; 159:188-200. [PMID: 36724863 DOI: 10.1016/j.actbio.2023.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/30/2023]
Abstract
A growing body of evidence has indicated that white adipose tissue (AT) remodeling is a major trigger for obesity-associated metabolic complications. However, the scarcity of translational models is an obstacle to the development of medicines that act on adipose restoration. Here, we describe a microphysiological system (MPS) that emulates the unique features of reprogrammed AT as a new in vitro tool for studying AT pathophysiology in obesity. The AT MPS contained mature adipocytes embedded in an extracellular matrix (ECM) hydrogel interfaced with AT microvascular endothelium, which was constantly perfused with fresh media. The unique biochemical signals due to the remodeled ECM in obesity were recapitulated using a decellularized AT ECM (AT dECM) hydrogel, which preserves the features of altered ECM composition in obesity. The mature adipocytes embedded in the AT dECM hydrogel maintained their function and morphology for a week without dedifferentiation. Using the AT MPS, we successfully modeled inflammation-induced AT microvascular dysfunction, the recruitment of immune cells due to the upregulation of cell adhesion molecules, and higher cancer cell adhesion as an indicator of metastasis, which are observed in obese individuals. The AT MPS may therefore represent a promising platform for understanding the dynamic cellular interplay in obesity-induced AT remodeling and validating the efficacy of drugs targeting AT in obesity. STATEMENT OF SIGNIFICANCE: The lack of translational in vitro white adipose tissue (AT) models is one of the main obstacles for understanding the obesity-induced reprogramming and the development of medicines. We report herein the AT microphysiological system (MPS), which recapitulates obesity and normal conditions and yields cell- and AT dECM-derived signals, thereby allowing accurate comparative in vitro analyses. Using the AT MPS, we successfully modeled reprogrammed AT in obesity conditions, including inflammation-induced AT vascular dysfunction, the recruitment of immune cells, and higher cancer cell metastasis, which are observed in obese individuals. Our proposed adipose tissue model providing physiological relevance and complexity may therefore enhance the understanding of obesity-associated disorders and be used to investigate their underlying molecular mechanisms to develop pharmacologic treatment strategies.
Collapse
Affiliation(s)
- Heejeong Yoon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
5
|
ter Ellen BM, Niewold J, Flikweert A, Muller Kobold AC, Heeringa P, van Meurs M, Smit JM, van der Voort PHJ, Rodenhuis-Zybert IA, Moser J. Mediators of Obesity Do Not Influence SARS-CoV-2 Infection or Activation of Primary Human Lung Microvascular Endothelial Cells In Vitro. Front Immunol 2022; 13:879033. [PMID: 35837388 PMCID: PMC9273911 DOI: 10.3389/fimmu.2022.879033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/02/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical observations have shown that obesity is associated with the severe outcome of SARS-CoV-2 infection hallmarked by microvascular dysfunction in the lungs and other organs. Excess visceral fat and high systemic levels of adipose tissue (AT) derived mediators such as leptin and other adipokines have also been linked to endothelial dysfunction. Consequently, we hypothesized that AT-derived mediators may exacerbate microvascular dysfunction during of SARS-CoV-2 infection and tested this in a primary human lung microvascular endothelial (HLMVEC) cell model. Our results indicate that HLMVEC are not susceptible to SARS-CoV-2 infection since no expression of viral proteins and no newly produced virus was detected. In addition, exposure to the virus did not induce endothelial activation as evidenced by a lack of adhesion molecule, E-selectin, VCAM-1, ICAM-1, and inflammatory cytokine IL-6 induction. Incubation of endothelial cells with the pro-inflammatory AT-derived mediator, leptin, prior to virus inoculation, did not alter the expression of endothelial SARS-CoV-2 entry receptors and did not alter their susceptibility to infection. Furthermore, it did not induce inflammatory activation of endothelial cells. To verify if the lack of activated phenotype in the presence of adipokines was not leptin-specific, we exposed endothelial cells to plasma obtained from critically ill obese COVID-19 patients. Plasma exposure did not result in E-selectin, VCAM-1, ICAM-1, or IL-6 induction. Together our results strongly suggest that aberrant inflammatory endothelial responses are not mounted by direct SARS-CoV-2 infection of endothelial cells, even in the presence of leptin and other mediators of obesity. Instead, endothelial activation associated with COVID-19 is likely a result of inflammatory responses initiated by other cells. Further studies are required to investigate the mechanisms regulating endothelial behavior in COVID-19 and the mechanisms driving severe disease in obese individuals.
Collapse
Affiliation(s)
- Bram M. ter Ellen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Niewold
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Antine Flikweert
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pulmonary Medicine, Amphia Hospital, Breda, Netherlands
| | - Anneke C. Muller Kobold
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter H. J. van der Voort
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Jill Moser,
| |
Collapse
|
6
|
Chiang MD, Chang CY, Shih HJ, Le VL, Huang YH, Huang CJ. Exosomes from Human Placenta Choriodecidual Membrane-Derived Mesenchymal Stem Cells Mitigate Endoplasmic Reticulum Stress, Inflammation, and Lung Injury in Lipopolysaccharide-Treated Obese Mice. Antioxidants (Basel) 2022; 11:antiox11040615. [PMID: 35453300 PMCID: PMC9029526 DOI: 10.3390/antiox11040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Endoplasmic reticulum (ER) stress mediates the effects of obesity on aggravating sepsis-induced lung injury. We investigated whether exosomes from human placenta choriodecidual membrane-derived mesenchymal stem cells (pcMSCs) can mitigate pulmonary ER stress, lung injury, and the mechanisms of inflammation, oxidation, and apoptosis in lipopolysaccharide-treated obese mice. Diet-induced obese (DIO) mice (adult male C57BL/6J mice fed with a 12-week high-fat diet) received lipopolysaccharide (10 mg/kg, i.p.; DIOLPS group) or lipopolysaccharide plus exosomes (1 × 108 particles/mouse, i.p.; DIOLPSExo group). Our data demonstrated lower levels of ER stress (upregulation of glucose-regulated protein 78, phosphorylated eukaryotic initiation factor 2α, and C/EBP homologous protein; p = 0.038, <0.001, and <0.001, respectively), inflammation (activation of nuclear factor-kB, hypoxia-inducible factor-1α, macrophages, and NLR family pyrin domain containing 3; upregulation of tumor necrosis factor-α, interleukin-1β, and interleukin-6; p = 0.03, <0.001, <0.001, <0.001, <0.001, <0.001, and <0.001, respectively), lipid peroxidation (p < 0.001), and apoptosis (DNA fragmentation, p = 0.003) in lung tissues, as well as lower lung injury level (decreases in tidal volume, peak inspiratory flow, and end expiratory volume; increases in resistance, injury score, and tissue water content; p < 0.001, <0.001, <0.001, <0.001, <0.001, and =0.002, respectively) in the DIOLPSExo group than in the DIOLPS group. In conclusion, exosomes from human pcMSCs mitigate pulmonary ER stress, inflammation, oxidation, apoptosis, and lung injury in lipopolysaccharide-treated obese mice.
Collapse
Affiliation(s)
- Milton D. Chiang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.D.C.); (V.L.L.)
| | - Chao-Yuan Chang
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Jen Shih
- Division of Urology, Department of Surgery, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Recreation and Holistic Wellness, MinDao University, Changhua 523, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Van Long Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.D.C.); (V.L.L.)
- Department of Anesthesiology and Critical Care, Hue University of Medicine and Pharmacy, Hue City 52000, Vietnam
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Jen Huang
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-2-29307930 (ext. 2160); Fax: +886-2-29302448
| |
Collapse
|
7
|
Kuczborska K, Buda P, Książyk JB. Different Course of SARS-CoV-2 Infection in Two Adolescents With Other Immunosuppressive Factors. Cureus 2022; 14:e22710. [PMID: 35386177 PMCID: PMC8967115 DOI: 10.7759/cureus.22710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2022] [Indexed: 12/31/2022] Open
Abstract
Even after two years of the Coronavirus Disease 2019 (COVID-19) pandemic, despite known risk factors, we are still unable to predict the severity of the infection in specific patients. Due to the contradictory data, the protective role of immunosuppression in preventing the severe course of the infection remains uncertain. Therefore, we want to discuss the influence of several immunosuppressive factors on the COVID-19 pattern in children, based on two case reports regarding 17-year-old boys with other immunosuppressive factors and a completely different course of the disease. The first patient suffered from AIDS, syphilis and primary central nervous system B-cell lymphoma, treated with radiotherapy. He experienced a light path of the infection, presenting only periodically appearing cough with no X-ray inflammatory changes. Nevertheless, due to the risk of severe COVID-19 and transient hypoxia, remdesivir was administered. He remained in a generally good condition and his follow-up did not reveal any noticeable complications. The second patient was characterised by Down syndrome, obesity, polyarteritis nodosa and chronic immunosuppressive therapy. He developed massive pneumonia, required treatment in the intensive care unit with the use of mechanical ventilation, remdesivir and anakinra. Despite the initial improvement of his general condition, including the degree of lung involvement and respiratory function, he developed an intracerebral haemorrhage, leading to brain herniation and ultimately death. In conclusion, HIV infection, oncological and immunosuppressive treatment do not seem to predispose to the severe course of COVID-19, whereas Down syndrome and obesity do.
Collapse
Affiliation(s)
- Karolina Kuczborska
- Pediatrics, Nutrition and Metabolic Disorders, Children's Memorial Health Institute, Warsaw, POL
| | - Piotr Buda
- Pediatrics, Nutrition and Metabolic Disorders, Children's Memorial Health Institute, Warsaw, POL
| | - Janusz B Książyk
- Pediatrics, Nutrition and Metabolic Disorders, Children's Memorial Health Institute, Warsaw, POL
| |
Collapse
|
8
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
9
|
Thompson JA, Johnston RA, Price RE, Hubbs AF, Kashon ML, McKinney W, Fedan JS. High-fat Western diet consumption exacerbates silica-induced pulmonary inflammation and fibrosis. Toxicol Rep 2022; 9:1045-1053. [PMID: 35936059 PMCID: PMC9350629 DOI: 10.1016/j.toxrep.2022.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Consumption of a high-fat Western diet (HFWD) contributes to obesity, disrupted adipose endocrine function, and development of metabolic dysfunction (MetDys). Impaired lung function, pulmonary hypertension, and asthma are all associated with MetDys. Over 35% of adults in the U.S. have MetDys, yet interactions between MetDys and hazardous occupational inhalation exposures are largely unknown. Occupational silica-inhalation leads to chronic lung inflammation, progressive fibrosis, and significant respiratory morbidity and mortality. In this study, we aim to determine the potential of HFWD-consumption to alter silica-induced inflammatory responses in the lung. Six-wk old male F344 rats fed a high fat Western diet (HFWD; 45 kcal % fat, sucrose 22.2% by weight) to induce MetDys, or standard rat chow (STD, controls) for 16 wk were subsequently exposed to silica (6 h/d, 5 d/wk, 39 d; Min-U-Sil 5®, 15 mg/m3) or filtered air; animals remained on their assigned diet for the study duration. Indices of lung inflammation and histopathologic assessment of lung tissue were quantified at 0, 4, and 8 wk after cessation of exposure. Combined HFWD+silica exposure increased bronchoalveolar lavage (BAL) total cells, leukocytes, and BAL lactate dehydrogenase compared to STD+silica exposure controls at all timepoints. HFWD+silica exposure increased BAL proinflammatory cytokines at 4 and 8 wk compared to STD+silica exposure. At 8 wk, histopathological analysis confirmed that alveolitis, epithelial cell hypertrophy and hyperplasia, lipoproteinosis, fibrosis, bronchoalveolar lymphoid hyperplasia and granulomas were exacerbated in the HFWD+silica-exposed group compared to STD+silica-exposed controls. Our results suggest an increased susceptibility to silica-induced lung disease caused by HFWD consumption. HFWD exacerbates silica (SIL)-induced lung injury at 8 wk post-exposure. HFWD+SIL increases BAL cells and LDH compared to STD+SIL. HFWD+SIL increases BAL proinflammatory cytokines compared to STD+SIL. Histopathology confirms exacerbated lung injury HFWD+silica treatment.
Collapse
|
10
|
Kokoszynska M, Ubags ND, Bivona JJ, Ventrone S, Reed LF, Dixon AE, Wargo MJ, Poynter ME, Suratt BT. Storage conditions of high-fat diets affect pulmonary inflammation. Physiol Rep 2021; 9:e15116. [PMID: 34822216 PMCID: PMC8614184 DOI: 10.14814/phy2.15116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity alters the risks and outcomes of inflammatory lung diseases. It is important to accurately recapitulate the obese state in animal models to understand these effects on the pathogenesis of disease. Diet-induced obesity is a commonly used model of obesity, but when applied to other disease models like acute respiratory distress syndrome, pneumonia, and asthma, it yields widely divergent. We hypothesized high-fat chow storage conditions would affect lipid oxidation and inflammatory response in the lungs of lipopolysaccharide (LPS)-challenged mice. For 6 weeks, C57BL/6crl mice were fed either a 10% (low-fat diet, LFD) or 60% (high-fat diet, HFD) stored at room temperature (RT, 23°C) for up to 7, 14, 21, or 42 days. Mice were treated with nebulized LPS to induce lung inflammation, and neutrophil levels in bronchoalveolar lavage were determined 24 h later. Lipid oxidation (malondialdehyde, MDA) was assayed by thiobarbituric acid reactive substances in chow and mouse plasma. Concentrations of MDA in chow and plasma rose in proportion to the duration of RT chow storage. Mice fed a HFD stored <2 weeks at RT had an attenuated response 24 h after LPS compared with mice fed an LFD. This effect was reversed after 2 weeks of chow storage at RT. Chow stored above freezing underwent lipid oxidation associated with significant alterations in the LPS-induced pulmonary inflammatory response. Our data show that storage conditions affect lipid peroxidation, which in turn affects pulmonary inflammatory responses in a mouse model of disease. It also suggests changes in the microbiome, although not significantly different suggests decreased variety and richness of bacteria in the gut, a large aspect of the immune system. Dietary composition and storage of chow may also affect pulmonary inflammation and the gut microbiome in humans.
Collapse
Affiliation(s)
- Marta Kokoszynska
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Niki D. Ubags
- Faculty of Biology and MedicineUniversity of LausanneService de PneumologieCHUVLausanneSwitzerland
| | - Joseph J. Bivona
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
- Cellular, Molecular, and Biomedical Sciences Doctoral ProgramUniversity of VermontBurlingtonVermontUSA
| | - Sebastian Ventrone
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Leah F. Reed
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Anne E. Dixon
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Matthew J. Wargo
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Matthew E. Poynter
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| | - Benjamin T. Suratt
- Department of MedicinePulmonary Disease and Critical Care MedicineUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
- Vermont Lung CenterBurlingtonVermontUSA
| |
Collapse
|
11
|
Heil LBB, Cruz FF, Antunes MA, Braga CL, Agra LC, Bose Leão RM, Abreu SC, Pelosi P, Silva PL, Rocco PRM. Effects of propofol and its formulation components on macrophages and neutrophils in obese and lean animals. Pharmacol Res Perspect 2021; 9:e00873. [PMID: 34632734 PMCID: PMC8503301 DOI: 10.1002/prp2.873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
We hypothesized whether propofol or active propofol component (2,6-diisopropylphenol [DIPPH] and lipid excipient [LIP-EXC]) separately may alter inflammatory mediators expressed by macrophages and neutrophils in lean and obese rats. Male Wistar rats (n = 10) were randomly assigned to receive a standard (lean) or obesity-inducing diet (obese) for 12 weeks. Animals were euthanized, and alveolar macrophages and neutrophils from lean and obese animals were exposed to propofol (50 µM), active propofol component (50 µM, 2,6-DIPPH), and lipid excipient (soybean oil, purified egg phospholipid, and glycerol) for 1 h. The primary outcome was IL-6 expression after propofol and its components exposure by alveolar macrophages extracted from bronchoalveolar lavage fluid. The secondary outcomes were the production of mediators released by macrophages from adipose tissue, and neutrophils from lung and adipose tissues, and neutrophil migration. IL-6 increased after the exposure to both propofol (median [interquartile range] 4.14[1.95-5.20]; p = .04) and its active component (2,6-DIPPH) (4.09[1.67-5.91]; p = .04) in alveolar macrophages from obese animals. However, only 2,6-DIPPH increased IL-10 expression (7.59[6.28-12.95]; p = .001) in adipose tissue-derived macrophages. Additionally, 2,6-DIPPH increased C-X-C chemokine receptor 2 and 4 (CXCR2 and CXCR4, respectively) in lung (10.08[8.23-29.01]; p = .02; 1.55[1.49-3.43]; p = .02) and adipose tissues (8.78[4.15-11.57]; p = .03; 2.86[2.17-3.71]; p = .01), as well as improved lung-derived neutrophil migration (28.00[-3.42 to 45.07]; p = .001). In obesity, the active component of propofol affected both the M1 and M2 markers as well as neutrophils in both alveolar and adipose tissue cells, suggesting that lipid excipient may hinder the effects of active propofol.
Collapse
Affiliation(s)
- Luciana Boavista Barros Heil
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Mariana Alves Antunes
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Cassia Lisboa Braga
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Lais Costa Agra
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Rebecca Madureira Bose Leão
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Soraia Carvalho Abreu
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated DiagnosticsUniversity of GenoaGenoaItaly
- Anesthesia and Intensive CareSan Martino Policlinico Hospital – IRCCS for Oncology and NeurosciencesUniversity of GenoaGenoaItaly
| | - Pedro Leme Silva
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary InvestigationCarlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
12
|
Zhang Z, Li X, Yan X, Qiu H, Li G, Guo X, Lu Y, Yang J, Jiao M, Chen X, Zhu S, Dang C, Wang W, Chu D. Delta-like ligand 4 level in colorectal cancer is associated with tumor aggressiveness, body mass index and clinical outcome. Cancer Biomark 2021; 33:415-422. [PMID: 34487019 DOI: 10.3233/cbm-200986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The Notch signaling regulates numerous cell growth, differentiation, and death. However, the expression pattern of its ligand Delta-like 4 (DLL4) in tumors is still uncertain. OBJECTIVE In the present study, we examined DLL4 expression in colorectal cancer as well as assessed its role as a prognostic indicator in the present study. METHODS DLL4 expression was examined by immunohistochemistry in 265 surgically resected specimens of colorectal cancer and adjacent normal tissues. The relationship between DLL4 expression and clinicopathological characteristics was analyzed. The association of DLL4 expression with the patients' overall survival rate was assessed by Kaplan-Meier and Cox proportional-hazards regression. RESULTS Increased DLL4 level was detected in colorectal cancer compared with that of normal tissues. Elevated DLL4 level in colorectal cancer was associated with increased body mass index of patients. Moreover, increased DLL4 level was also found to be correlated with tumor invasion, metastases and unfavorable clinical outcom of patients. CONCLUSIONS DLL4 level is increased in colorectal cancer, especially in patients with increased body mass index, indicating potential involvement of obesity-related tumorigenesis and development. It might also serve as a novel molecular marker to predicate outcome of patients.
Collapse
Affiliation(s)
- Zixi Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiao Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xueli Yan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - He Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gai Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowen Guo
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jingyi Yang
- Information Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Jiao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xue Chen
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine and Regenerative Medicine and Surgical Engineering Research Center of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaojun Zhu
- Department of Pathology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | - Weizhong Wang
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Kuperberg SJ, Navetta-Modrov B. The Role of Obesity in the Immunopathogenesis of COVID-19 Respiratory Disease and Critical Illness. Am J Respir Cell Mol Biol 2021; 65:13-21. [PMID: 33797351 PMCID: PMC8320126 DOI: 10.1165/rcmb.2020-0236tr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease (COVID-19), the clinical syndrome caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global health pandemic with substantial morbidity and mortality. COVID-19 has cast a shadow on nearly every aspect of society, straining health systems and economies across the world. Although it is widely accepted that a close relationship exists between obesity, cardiovascular disease, and metabolic disorders on infection, we are only beginning to understand ways in which the immunological sequelae of obesity functions as a predisposing factor related to poor clinical outcomes in COVID-19. As both the innate and adaptive immune systems are each primed by obesity, the alteration of key pathways results in both an immunosuppressed and hyperinflammatory state. The present review will discuss the cellular and molecular immunology of obesity in the context of its role as a risk factor for severe COVID-19, discuss the role of cytokine storm, and draw parallels to prior viral epidemics such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and 2009 H1N1.
Collapse
Affiliation(s)
- Stephen J Kuperberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Brianne Navetta-Modrov
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Stony Brook University Hospital/Renaissance School of Medicine, Stony Brook, New York
| |
Collapse
|
14
|
Retraction: Obesity-induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury. Am J Respir Cell Mol Biol 2021; 63:716. [PMID: 33480824 PMCID: PMC7605169 DOI: 10.1165/rcmb.v63retraction3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Cuevas-Mora K, Roque W, Shaghaghi H, Gochuico BR, Rosas IO, Summer R, Romero F. Hermansky-Pudlak syndrome-2 alters mitochondrial homeostasis in the alveolar epithelium of the lung. Respir Res 2021; 22:49. [PMID: 33557836 PMCID: PMC7871590 DOI: 10.1186/s12931-021-01640-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction has emerged as an important player in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a common cause of idiopathic interstitial lung disease in adults. Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder that causes a similar type of pulmonary fibrosis in younger adults, although the role of mitochondrial dysfunction in this condition is not understood. METHODS We performed a detailed characterization of mitochondrial structure and function in lung tissues and alveolar epithelial cells deficient in the adaptor protein complex 3 beta 1 (Ap3b1) subunit, the gene responsible for causing subtype 2 of HPS (HPS-2). RESULTS We observed widespread changes in mitochondrial homeostasis in HPS-2 cells, including the acquisition of abnormally shaped mitochondria, with reduced number of cristae, and markedly reduced activity of the electron transport chain and the tricarboxylic acid cycle. We also found that mitochondrial redox imbalance and activity of the mitochondrial unfolded protein response were dysregulated in HPS-2 cells and this associated with various other changes that appeared to be compensatory to mitochondrial dysfunction. This included an increase in glycolytic activity, an upregulation in the expression of mitochondrial biogenesis factors and enhanced activation of the energy-conserving enzyme AMP-activated protein kinase. CONCLUSION In summary, our findings indicate that mitochondrial function is dramatically altered in HPS-2 lung tissues, suggesting dysfunction of this organelle might be a driver of HPS lung disease.
Collapse
Affiliation(s)
- Karina Cuevas-Mora
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and the Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, PA USA
| | - Willy Roque
- grid.430387.b0000 0004 1936 8796Department of Medicine, Rutgers – New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103 USA
| | - Hoora Shaghaghi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and the Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, PA USA
| | - Bernadette R. Gochuico
- grid.280128.10000 0001 2233 9230Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Ivan O. Rosas
- grid.39382.330000 0001 2160 926XPulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX USA
| | - Ross Summer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and the Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, PA USA
| | - Freddy Romero
- grid.39382.330000 0001 2160 926XPulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
16
|
Zhu Z, Hasegawa K, Ma B, Fujiogi M, Camargo CA, Liang L. Association of obesity and its genetic predisposition with the risk of severe COVID-19: Analysis of population-based cohort data. Metabolism 2020; 112:154345. [PMID: 32835759 PMCID: PMC7442576 DOI: 10.1016/j.metabol.2020.154345] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We aimed to examine the associations of obesity-related traits (body mass index [BMI], central obesity) and their genetic predisposition with the risk of developing severe COVID-19 in a population-based data. RESEARCH DESIGN AND METHODS We analyzed data from 489,769 adults enrolled in the UK Biobank-a population-based cohort study. The exposures of interest are BMI categories and central obesity (e.g., larger waist circumference). Using genome-wide genotyping data, we also computed polygenic risk scores (PRSs) that represent an individual's overall genetic risk for each obesity trait. The outcome was severe COVID-19, defined by hospitalization for laboratory-confirmed COVID-19. RESULTS Of 489,769 individuals, 33% were normal weight (BMI, 18.5-24.9 kg/m2), 43% overweight (25.0-29.9 kg/m2), and 24% obese (≥30.0 kg/m2). The UK Biobank identified 641 patients with severe COVID-19. Compared to adults with normal weight, those with a higher BMI had a dose-response increases in the risk of severe COVID-19, with the following adjusted ORs: for 25.0-29.9 kg/m2, 1.40 (95%CI 1.14-1.73; P = 0.002); for 30.0-34.9 kg/m2, 1.73 (95%CI 1.36-2.20; P < 0.001); for 35.0-39.9 kg/m2, 2.82 (95%CI 2.08-3.83; P < 0.001); and for ≥40.0 kg/m2, 3.30 (95%CI 2.17-5.03; P < 0.001). Likewise, central obesity was associated with significantly higher risk of severe COVID-19 (P < 0.001). Furthermore, larger PRS for BMI was associated with higher risk of outcome (adjusted OR per BMI PRS Z-score 1.14, 95%CI 1.05-1.24; P = 0.004). CONCLUSIONS In this large population-based cohort, individuals with more-severe obesity, central obesity, or genetic predisposition for obesity are at higher risk of developing severe-COVID-19.
Collapse
Affiliation(s)
- Zhaozhong Zhu
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Baoshan Ma
- College of Information Science and Technology, Dalian Maritime University, Dalian, Liaoning, China
| | - Michimasa Fujiogi
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Liming Liang
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
17
|
Terrosu P. Relapse of chronic obstructive pulmonary disease and myocardial infarction: what is the connection? Eur Heart J Suppl 2020; 22:L151-L154. [PMID: 33239991 PMCID: PMC7673614 DOI: 10.1093/eurheartj/suaa156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Albeit largely underappreciated, chronic obstructive pulmonary disease (COPD) constitutes a major risk factor for cardiovascular diseases in general and for coronary disease in particular. The incidence of myocardial infarction, in fact increases rapidly, after relapse of COPD, with a peak event rate during the first week in the worst forms (those requiring hospitalization). Even though the precise mechanism is not completely defined, it is likely derived from two pathogenetic causes: (i) mismatch between myocardial demand and offer of O2 (not fully demonstrated and limited to few cases); (ii) acute coronary thrombosis, probably due to a systemic inflammatory reaction, brought upon by multiple interaction between the infective agent and the host immune system.
Collapse
|
18
|
Rychter AM, Zawada A, Ratajczak AE, Dobrowolska A, Krela‐Kaźmierczak I. Should patients with obesity be more afraid of COVID-19? Obes Rev 2020; 21:e13083. [PMID: 32583537 PMCID: PMC7362042 DOI: 10.1111/obr.13083] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 crisis has lasted since the late 2019 to the present day. The severity of the disease is positively correlated with several factors, such as age and coexisting diseases. Furthermore, obesity is increasingly considered as a yet another risk factor, particularly, because it has been observed that people suffering from excessive body weight may experience a more severe course of COVID-19 infection. On the basis of current research, in our nonsystematic review, we have investigated the extent to which obesity can affect the SARS-CoV-2 course and identify the potential mechanisms of the disease. We have also described the role of proper nutrition, physical activity and other aspects relevant to the management of obesity.
Collapse
Affiliation(s)
- Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal DiseasesUniversity of Medical Sciences PoznanPoznanPoland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal DiseasesUniversity of Medical Sciences PoznanPoznanPoland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal DiseasesUniversity of Medical Sciences PoznanPoznanPoland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal DiseasesUniversity of Medical Sciences PoznanPoznanPoland
| | | |
Collapse
|
19
|
Ramirez DC, Gomez Mejiba SE. Pulmonary Neutrophilic Inflammation and Noncommunicable Diseases: Pathophysiology, Redox Mechanisms, Biomarkers, and Therapeutics. Antioxid Redox Signal 2020; 33:211-227. [PMID: 32319787 DOI: 10.1089/ars.2020.8098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Pulmonary neurophilic inflammation (PNI) is the homing and activation of neutrophil with damage to the microvasculature. This process is involved in pulmonary damage in patients exposed to airborne pollutants (exogenous stressors) and also to systemic inflammation/oxidative stress (endogenous stressors) associated with noncommunicable diseases (NCDs). Recent Advances: PNI is an important trigger of the early onset and progression of NCD in susceptible patients exposed to airborne pollutants. Irritation of the lung microvasculature by exogenous and endogenous stressors causes PNI. Circulating endogenous stressors in NCD can cause PNI. Critical Issues: Air pollution-triggered PNI causes increased circulating endogenous stressors that can trigger NCD in susceptible patients. Systemic inflammation/oxidative stress associated with NCD can cause PNI. Inflammation/end-oxidation products of macromolecules are also potential biomarkers and therapeutic targets for NCD-triggered PNI- and PNI-triggered NCD. Future Directions: Understanding the molecular mechanism of PNI triggered by exogenous or endogenous stressors will help explain the early onset of NCD in susceptible patients exposed to air pollution. It can also help undercover biomarkers and mechanism-based therapeutic targets in air pollutant-triggered PNI, PNI-triggered NCD, and NCD-triggered PNI.
Collapse
Affiliation(s)
- Dario C Ramirez
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL, CCT-San Luis, CONICET, School of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Sandra E Gomez Mejiba
- Laboratory of Experimental Therapeutics and Nutrition, IMIBIO-SL, CCT-San Luis, CONICET, School of Health Sciences, National University of San Luis, San Luis, Argentina
| |
Collapse
|
20
|
Ahrendt N, Steingrüber T, Rajces A, Lopez-Rodriguez E, Eisenberg T, Magnes C, Madeo F, Sedej S, Schmiedl A, Ochs M, Mühlfeld C, Schipke J. Spermidine supplementation and voluntary activity differentially affect obesity-related structural changes in the mouse lung. Am J Physiol Lung Cell Mol Physiol 2020; 319:L312-L324. [PMID: 32521164 DOI: 10.1152/ajplung.00423.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obesity is associated with lung function impairment and respiratory diseases; however, the underlying pathophysiological mechanisms are still elusive, and therapeutic options are limited. This study examined the effects of prolonged excess fat intake on lung mechanics and microstructure and tested spermidine supplementation and physical activity as intervention strategies. C57BL/6N mice fed control diet (10% fat) or high-fat diet (HFD; 60% fat) were left untreated or were supplemented with 3 mM spermidine, had access to running wheels for voluntary activity, or a combination of both. After 30 wk, lung mechanics was assessed, and left lungs were analyzed by design-based stereology. HFD exerted minor effects on lung mechanics and resulted in higher body weight and elevated lung, air, and septal volumes. The number of alveoli was higher in HFD-fed animals. This was accompanied by an increase in epithelial, but not endothelial, surface area. Moreover, air-blood barrier and endothelium were significantly thicker. Neither treatment affected HFD-related body weights. Spermidine lowered lung volumes as well as endothelial and air-blood barrier thicknesses toward control levels and substantially increased the endothelial surface area under HFD. Activity resulted in decreased volumes of lung, septa, and septal compartments but did not affect vascular changes in HFD-fed mice. The combination treatment showed no additive effect. In conclusion, excess fat consumption induced alveolar capillary remodeling indicative of impaired perfusion and gas diffusion. Spermidine alleviated obesity-related endothelial alterations, indicating a beneficial effect, whereas physical activity reduced lung volumes apparently by other, possibly systemic effects.
Collapse
Affiliation(s)
- Nancy Ahrendt
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Tobias Steingrüber
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Alexandra Rajces
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Christoph Magnes
- Joanneum Research, HEALTH-Institute for Biomedicine and Health Sciences, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Andreas Schmiedl
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany.,Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
21
|
An increase in alveolar fluid clearance induced by hyperinsulinemia in obese rats with LPS-induced acute lung injury. Respir Physiol Neurobiol 2020; 279:103470. [PMID: 32474115 DOI: 10.1016/j.resp.2020.103470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 01/11/2023]
Abstract
A lower mortality rate is observed in obese patients with acute lung injury (ALI), which is referred to as the obesity paradox, in several studies and recent meta-analyses. Hyperinsulinemia is characterized as the primary effect of obesity, and exogenous insulin attenuates LPS-induced pulmonary edema. The detailed mechanism responsible for the effect of hyperinsulinemia on pulmonary edema and alveolar filling needs to be elucidated. SD rats were fed with a high-fat diet (HFD) for a total of 14 weeks. SD rats were anesthetized and intraperitoneally injected with 10 mg/kg lipopolysaccharide (LPS), while control rats received only saline vehicle. Insulin receptor antagonist S961 (20 nmol/kg) was given by the tail vein and serum, and glucocorticoid-induced protein kinase-1 (SGK-1) inhibitor EMD638683 (20 mg/kg) was administrated intragastrically prior to LPS exposure. The lungs were isolated for the measurement of alveolar fluid clearance. The protein expression of epithelial sodium channel (ENaC) was detected by Western blot. Insulin level in serum was significantly higher in HFD rats compared with normal diet rats in the presence or absence of LPS pretreatment. Hyperinsulinemia induced by high fat feeding increased alveolar fluid clearance and the abundance of α-ENaC, β-ENaC, and γ-ENaC in both normal rats and ALI rats. Moreover, these effects were reversed in response to S961. EMD638683 prevented the simulation of alveolar fluid clearance and protein expression of ENaC in HFD rats with ALI. These findings suggest that hyperinsulinemia induced by obesity results in the stimulation of alveolar fluid clearance via the upregulation of the abundance of ENaC in clinical acute lung injury, whereas theses effects are prevented by an SGK-1 inhibitor.
Collapse
|
22
|
Summer R, Mora AL. Lipid Metabolism: A New Player in the Conundrum of Lung Fibrosis. Am J Respir Cell Mol Biol 2020; 61:669-670. [PMID: 31499006 PMCID: PMC6890398 DOI: 10.1165/rcmb.2019-0098ed] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ross Summer
- Jane and Leonard Korman Respiratory InstituteThomas Jefferson UniversityPhiladelphia, Pennsylvaniaand
| | - Ana L Mora
- Aging InstituteDivision of Pulmonary, Allergy and Critical Care MedicineDepartment of MedicineUniversity of PittsburghPittsburgh, Pennsylvania
| |
Collapse
|
23
|
Wei K, Luo J, Cao J, Peng L, Ren L, Zhang F. Adiponectin Protects Obese Rats from Aggravated Acute Lung Injury via Suppression of Endoplasmic Reticulum Stress. Diabetes Metab Syndr Obes 2020; 13:4179-4190. [PMID: 33192080 PMCID: PMC7653273 DOI: 10.2147/dmso.s278684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress seems to mediate the obesity-induced susceptibility to acute lung injury (ALI). The present study was designed to evaluate the role of ER stress in adiponectin (APN)-induced lung protection in an obese rat model treated with lipopolysaccharide (LPS). METHODS Four-week-old male Sprague-Dawley rats fed either a normal chow diet or a high-fat diet for 12 weeks were randomly assigned to one of the following groups: lean rats, diet-induced obesity rats, lean rats with ALI, obese rats with ALI, obese rats pretreated with 4-phenylbutyric acid (4-PBA) before ALI or obese rats pretreated with APN before ALI. At 24 h after instillation of LPS into the lungs, cell counts in the bronchoalveolar lavage fluid (BALF) were determined. Lung tissues were separated to assess the degree of inflammation, pulmonary oedema, epithelial apoptosis and the expression of ER stress marker proteins. RESULTS The 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) expression in the lung tissues of obese rats was upregulated before ALI, as well as the elevated apoptosis in epithelial cells. During ALI, the expression of ER stress marker proteins was similarly increased in both lean and obese rats, while significant downregulation of Mitofusin 2 (MFN2) was detected in obese epithelial cells. The lung tissues of obese rats showed higher concentrations of tumor necrosis factor-alpha (TNF-α), Interleukin 6 (IL-6) and IL-10, enhanced neutrophil counts and elevated wet/dry weight ratios. APN and 4-PBA decreased the degree of ER stress and suppressed LPS-induced lung inflammation, pulmonary oedema and epithelial apoptosis. CONCLUSION APN may exert protective effects against the exacerbated lung injuries in obese rats by attenuating ER stress, which operates as a key molecular pathway in the progression of ALI.
Collapse
Affiliation(s)
- Ke Wei
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Ke Wei Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1# Youyi Road, Yuzhong District, Chongqing, People’s Republic of ChinaTel +86 23 89011069Fax +86 23 89011062 Email
| | - Jie Luo
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Lihua Peng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Fan Zhang
- Department of Anesthesiology, Jianyang People’s Hospital, Jianyang, Sichuan641400, People’s Republic of China
| |
Collapse
|
24
|
Shah D, Das P, Alam MA, Mahajan N, Romero F, Shahid M, Singh H, Bhandari V. MicroRNA-34a Promotes Endothelial Dysfunction and Mitochondrial-mediated Apoptosis in Murine Models of Acute Lung Injury. Am J Respir Cell Mol Biol 2019; 60:465-477. [PMID: 30512967 DOI: 10.1165/rcmb.2018-0194oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent evidence has shown that microRNAs (miRs) are involved in endothelial dysfunction and vascular injury in lung-related diseases. However, the potential role of miR-34a in the regulation of pulmonary endothelial dysfunction, vascular injury, and endothelial cells (ECs) apoptosis in acute lung injury (ALI)/acute lung respiratory distress syndrome is largely unknown. Here, we show that miR-34a-5p was upregulated in whole lungs, isolated ECs from lungs, and ECs stimulated with various insults (LPS and hyperoxia). Overexpression of miR-34a-5p in ECs exacerbated endothelial dysfunction, inflammation, and vascular injury, whereas the suppression of miR-34a-5p expression in ECs and miR-34a-null mutant mice showed protection against LPS- and hyperoxia-induced ALI. Furthermore, we observed that miR-34a-mediated endothelial dysfunction is associated with decreased miR-34a direct-target protein, sirtuin-1, and increased p53 expression in whole lungs and ECs. Mechanistically, we show that miR-34a leads to translocation of p53 and Bax to the mitochondrial compartment with disruption of mitochondrial membrane potential to release cytochrome C into the cytosol, initiating a cascade of mitochondrial-mediated apoptosis in lungs. Collectively, these data show that downregulating miR-34a expression or modulating its target proteins may improve endothelial dysfunction and attenuate ALI.
Collapse
Affiliation(s)
- Dilip Shah
- 1 Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pragnya Das
- 1 Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Mohammad Afaque Alam
- 1 Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Nidhi Mahajan
- 2 Department of Biochemistry, Panjab University, India
| | - Freddy Romero
- 3 Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mohd Shahid
- 4 Department of Pharmaceutical Sciences, Chicago State University College of Pharmacy, Chicago, Illinois; and
| | - Harpreet Singh
- 5 Department of Physiology and Cell Biology, the Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Vineet Bhandari
- 1 Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Khaing P, Pandit P, Awsare B, Summer R. Pulmonary Circulation in Obesity, Diabetes, and Metabolic Syndrome. Compr Physiol 2019; 10:297-316. [DOI: 10.1002/cphy.c190018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Anderson MR, Udupa JK, Edwin E, Diamond JM, Singer JP, Kukreja J, Hays SR, Greenland JR, Ferrante A, Lippel M, Blue T, McBurnie A, Oyster M, Kalman L, Rushefski M, Wu C, Pednekar G, Liu W, Arcasoy S, Sonett J, D'Ovidio F, Bacchetta M, Newell JD, Torigian D, Cantu E, Farber DL, Giles JT, Tong Y, Palmer S, Ware LB, Hancock WW, Christie JD, Lederer DJ. Adipose tissue quantification and primary graft dysfunction after lung transplantation: The Lung Transplant Body Composition study. J Heart Lung Transplant 2019; 38:1246-1256. [PMID: 31474492 PMCID: PMC6883162 DOI: 10.1016/j.healun.2019.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Obesity is associated with an increased risk of primary graft dysfunction (PGD) after lung transplantation. The contribution of specific adipose tissue depots is unknown. METHODS We performed a prospective cohort study of adult lung transplant recipients at 4 U.S. transplant centers. We measured cross-sectional areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) on chest and abdominal computed tomography (CT) scans and indexed each measurement to height.2 We used logistic regression to examine the associations of adipose indices and adipose classes with grade 3 PGD at 48 or 72 hours, and Cox proportional hazards models to examine survival. We used latent class analyses to identify the patterns of adipose distribution. We examined the associations of adipose indices with plasma biomarkers of obesity and PGD. RESULTS A total of 262 and 117 subjects had available chest CT scans and underwent protocol abdominal CT scans, respectively. In the adjusted models, a greater abdominal SAT index was associated with an increased risk of PGD (odds ratio 1.9, 95% CI 1.02-3.4, p = 0.04) but not with survival time. VAT indices were not associated with PGD risk or survival time. A greater abdominal SAT index correlated with greater pre- and post-transplant leptin (r = 0.61, p < 0.001, and r = 0.44, p < 0.001), pre-transplant IL-1RA (r = 0.25, p = 0.04), and post-transplant ICAM-1 (r = 0.25, p = 0.04). We identified 3 latent patterns of adiposity. The class defined by high thoracic and abdominal SAT had the greatest risk of PGD. CONCLUSIONS Subcutaneous, but not visceral, adiposity is associated with an increased risk of PGD after lung transplantation.
Collapse
Affiliation(s)
- Michaela R Anderson
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Jayaram K Udupa
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ethan Edwin
- Columbia Institute of Human Nutrition, Columbia University Medical Center, New York, New York
| | - Joshua M Diamond
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan P Singer
- Department of Medicine University of California at San Francisco, San Francisco, California
| | - Jasleen Kukreja
- Department of Surgery, University of California at San Francisco, San Francisco, California
| | - Steven R Hays
- Department of Medicine University of California at San Francisco, San Francisco, California
| | - John R Greenland
- Department of Medicine University of California at San Francisco, San Francisco, California
| | - Anthony Ferrante
- Columbia Institute of Human Nutrition, Columbia University Medical Center, New York, New York
| | - Matthew Lippel
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Tatiana Blue
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Amika McBurnie
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Michelle Oyster
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laurel Kalman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Melanie Rushefski
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caiyun Wu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gargi Pednekar
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wen Liu
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Selim Arcasoy
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Joshua Sonett
- Department of Surgery, Columbia University Medical Center, New York, New York
| | - Frank D'Ovidio
- Department of Surgery, Columbia University Medical Center, New York, New York
| | - Matthew Bacchetta
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John D Newell
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Drew Torigian
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donna L Farber
- Department of Surgery, University of California at San Francisco, San Francisco, California; Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York; Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York
| | - Jon T Giles
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Yubing Tong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott Palmer
- Department of Medicine, Duke University & Duke Clinical Research Institute, Durham, North Carolina
| | - Lorraine B Ware
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason D Christie
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J Lederer
- Department of Medicine, Columbia University Medical Center, New York, New York; Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, New York, New York.
| |
Collapse
|
27
|
Shah D, Torres C, Bhandari V. Adiponectin deficiency induces mitochondrial dysfunction and promotes endothelial activation and pulmonary vascular injury. FASEB J 2019; 33:13617-13631. [PMID: 31585050 PMCID: PMC6894062 DOI: 10.1096/fj.201901123r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/03/2019] [Indexed: 01/15/2023]
Abstract
Adiponectin (APN), an adipocyte-derived adipokine, has been shown to limit lung injury originating from endothelial cell (EC) damage. Previously we reported that obese mice with low circulatory APN levels exhibited pulmonary vascular endothelial dysfunction. This study was designed to investigate the cellular and molecular mechanisms underlying the pulmonary endothelium-dependent protective effects of APN. Our results demonstrated that in APN-/- mice, there was an inherent state of endothelium mitochondrial dysfunction that could contribute to endothelial activation and increased susceptibility to LPS-induced acute lung injury (ALI). We noted that APN-/- mice showed decreased expression of mitochondrial biogenesis regulatory protein peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and its downstream proteins nuclear respiratory factor 1, transcription factor A, mitochondrial, and Sirtuin (Sirt)3 and Sirt1 expression in whole lungs and in freshly isolated lung ECs from these mice at baseline and subjected to LPS-induced ALI. We further showed that treating APN-/- mice with PGC-1α activator pyrroloquinoline quinone enhances mitochondrial biogenesis and function in lung endothelium and attenuation of ALI. These results suggest that the pulmonary endothelium-protective properties of APN are mediated, at least in part, by an enhancement of mitochondrial biogenesis through a mechanism involving PGC-1α activation.-Shah, D., Torres, C., Bhandari, V. Adiponectin deficiency induces mitochondrial dysfunction and promotes endothelial activation and pulmonary vascular injury.
Collapse
Affiliation(s)
- Dilip Shah
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Claudio Torres
- Department of Neurobiology and Anatomy, Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
McDowell SAC, Quail DF. Immunological Regulation of Vascular Inflammation During Cancer Metastasis. Front Immunol 2019; 10:1984. [PMID: 31497019 PMCID: PMC6712555 DOI: 10.3389/fimmu.2019.01984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/06/2019] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the predominant cause of cancer-related mortality, despite being a highly inefficient process overall. The vasculature is the gatekeeper for tumor cell seeding within the secondary tissue microenvironment—the rate limiting step of the metastatic cascade. Therefore, factors that regulate vascular physiology dramatically influence cancer outcomes. There are a myriad of physiologic circumstances that not only influence the intrinsic capacity of tumor cells to cross the endothelial barrier, but also that regulate vascular inflammation and barrier integrity to enable extravasation into the metastatic niche. These processes are highly dependent on inflammatory cues largely initiated by the innate immune compartment, that are meant to help re-establish tissue homeostasis, but instead become hijacked by cancer cells. Here, we discuss the scientific advances in understanding the interactions between innate immune cells and the endothelium, describe their influence on cancer metastasis, and evaluate potential therapeutic interventions for the alleviation of metastatic disease. By triangulating the relationship between immune cells, endothelial cells, and tumor cells, we will gain greater insight into how to impede the metastatic process by focusing on its most vulnerable phases, thereby reducing metastatic spread and cancer-related mortality.
Collapse
Affiliation(s)
- Sheri A C McDowell
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Daniela F Quail
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
29
|
Plataki M, Fan L, Sanchez E, Huang Z, Torres LK, Imamura M, Zhu Y, Cohen DE, Cloonan SM, Choi AM. Fatty acid synthase downregulation contributes to acute lung injury in murine diet-induced obesity. JCI Insight 2019; 5:127823. [PMID: 31287803 DOI: 10.1172/jci.insight.127823] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity is rising worldwide and obese patients comprise a specific population in the intensive care unit. Acute respiratory distress syndrome (ARDS) incidence is increased in obese patients. Exposure of rodents to hyperoxia mimics many of the features of ARDS. In this report, we demonstrate that high fat diet induced obesity increases the severity of hyperoxic acute lung injury in mice in part by altering fatty acid synthase (FASN) levels in the lung. Obese mice exposed to hyperoxia had significantly reduced survival and increased lung damage. Transcriptomic analysis of lung homogenates identified Fasn as one of the most significantly altered mitochondrial associated genes in mice receiving 60% compared to 10% fat diet. FASN protein levels in the lung of high fat diet mice were lower by immunoblotting and immunohistochemistry. Depletion of FASN in type II alveolar epithelial cells resulted in altered mitochondrial bioenergetics and more severe lung injury with hyperoxic exposure, even upon the administration of a 60% fat diet. This is the first study to show that a high fat diet leads to altered FASN expression in the lung and that both a high fat diet and reduced FASN expression in alveolar epithelial cells promote lung injury.
Collapse
Affiliation(s)
- Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - LiChao Fan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Elizabeth Sanchez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Ziling Huang
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Lisa K Torres
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Mitsuru Imamura
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yizhang Zhu
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Augustine Mk Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| |
Collapse
|
30
|
Piao C, Kim G, Ha J, Lee M. Inhalable Gene Delivery System Using a Cationic RAGE-Antagonist Peptide for Gene Delivery to Inflammatory Lung Cells. ACS Biomater Sci Eng 2019; 5:2247-2257. [PMID: 33405776 DOI: 10.1021/acsbiomaterials.9b00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Acute lung injury (ALI) is a severe lung inflammatory disease. In ALI, the receptor for advanced glycation end-products (RAGE) is overexpressed in lung epithelial cells and involved in inflammatory reactions. A previous report showed that a RAGE-antagonist peptide (RAP), from high-mobility group box-1, bound to RAGE and reduced inflammatory reactions. RAP has high levels of positive amino acids, which suggests that RAP may form a complex with plasmid DNA (pDNA) by charge interactions. Because the charge density of RAP is lower than polyethylenimine (25 kDa, PEI25k), it may be able to avoid capture by the negatively charged mucus layer more easily and deliver pDNA into RAGE-positive lung cells of ALI animals by RAGE-mediated endocytosis. To prove this hypothesis, RAP was evaluated as a delivery carrier of adiponectin plasmid (pAPN) in lipopolysaccharide (LPS)-induced ALI animal models. In vitro transfection assays showed that RAP had lower transfection efficiency than PEI25k in L2 lung epithelial cells. However, in vivo administration to ALI animal models by inhalation showed that RAP had higher gene delivery efficiency than PEI25k. Particularly, due to a higher expression of RAGE in lung cells of ALI animals, the gene delivery efficiency of RAP was higher in ALI animals than that in normal animals. Delivery of the pAPN/RAP complex had anti-inflammatory effects, reducing pro-inflammatory cytokines. Hematoxylin and eosin staining confirmed that pAPN/RAP decreased inflammation in ALI models. Therefore, the results suggest that RAP may be useful as a carrier of pDNA into the lungs for ALI gene therapy.
Collapse
Affiliation(s)
- Chunxian Piao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Gyeungyun Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Junkyu Ha
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
31
|
Honce R, Schultz-Cherry S. Impact of Obesity on Influenza A Virus Pathogenesis, Immune Response, and Evolution. Front Immunol 2019; 10:1071. [PMID: 31134099 PMCID: PMC6523028 DOI: 10.3389/fimmu.2019.01071] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
With the rising prevalence of obesity has come an increasing awareness of its impact on communicable disease. As a consequence of the 2009 H1N1 influenza A virus pandemic, obesity was identified for the first time as a risk factor for increased disease severity and mortality in infected individuals. Over-nutrition that results in obesity causes a chronic state of meta-inflammation with systemic implications for immunity. Obese hosts exhibit delayed and blunted antiviral responses to influenza virus infection, and they experience poor recovery from the disease. Furthermore, the efficacy of antivirals and vaccines is reduced in this population and obesity may also play a role in altering the viral life cycle, thus complementing the already weakened immune response and leading to severe pathogenesis. Case studies and basic research in human cohorts and animal models have highlighted the prolonged viral shed in the obese host, as well as a microenvironment that permits the emergence of virulent minor variants. This review focuses on influenza A virus pathogenesis in the obese host, and on the impact of obesity on the antiviral response, viral shed, and viral evolution. We comprehensively analyze the recent literature on how and why viral pathogenesis is altered in the obese host along with the impact of the altered host and pathogenic state on viral evolutionary dynamics in multiple models. Finally, we summarized the effectiveness of current vaccines and antivirals in this populations and the questions that remain to be answered. If current trends continue, nearly 50% of the worldwide population is projected to be obese by 2050. This population will have a growing impact on both non-communicable and communicable diseases and may affect global evolutionary trends of influenza virus.
Collapse
Affiliation(s)
- Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
- Integrated Program in Biomedical Sciences, Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
32
|
Bonatti G, Robba C, Ball L, Silva PL, Rocco PRM, Pelosi P. Controversies when using mechanical ventilation in obese patients with and without acute distress respiratory syndrome. Expert Rev Respir Med 2019; 13:471-479. [PMID: 30919705 DOI: 10.1080/17476348.2019.1599285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION As the prevalence of obesity increases, so does the number of obese patients undergoing surgical procedures and being admitted into intensive care units. Obesity per se is associated with reduced lung volume. The combination of general anaesthesia and supine positioning involved in most surgeries causes further reductions in lung volumes, thus resulting in alveolar collapse, decreased lung compliance, increased airway resistance, and hypoxemia. These complications can be amplified by common obesity-related comorbidities. In otherwise healthy obese patients, mechanical ventilation strategies should be optimised to prevent lung damage; in those with acute distress respiratory syndrome (ARDS), strategies should seek to mitigate further lung damage. Areas covered: This review discusses non-invasive and invasive mechanical ventilation strategies for surgical and critically ill adult obese patients with and without ARDS and proposes practical clinical insights to be implemented at bedside both in the operating theatre and in intensive care units. Expert opinion: Large multicentre trials on respiratory management of obese patients are required. Although the indication of lung protective ventilation with low tidal volume is apparently translated to obese patients, optimal PEEP level and recruitment manoeuvres remain controversial. The use of non-invasive respiratory support after extubation must be considered in individual cases.
Collapse
Affiliation(s)
- Giulia Bonatti
- a Department of Surgical Sciences and Integrated Diagnostics , University of Genoa , Genoa , Italy
| | - Chiara Robba
- b Department of Anaesthesiology and Intensive Care , San Martino Policlinico Hospital , Genoa , Italy
| | - Lorenzo Ball
- a Department of Surgical Sciences and Integrated Diagnostics , University of Genoa , Genoa , Italy
| | - Pedro Leme Silva
- c Laboratory of Pulmonary Investigation - Carlos Chagas Filho Institute of Biophysics , Federal University of Rio de Janeiro , Rio de Janeiro , Brazil.,d National Institute of Science and Technology for Regenerative Medicine , Rio de Janeiro , Brazil
| | - Patricia Rieken Macêdo Rocco
- c Laboratory of Pulmonary Investigation - Carlos Chagas Filho Institute of Biophysics , Federal University of Rio de Janeiro , Rio de Janeiro , Brazil.,d National Institute of Science and Technology for Regenerative Medicine , Rio de Janeiro , Brazil
| | - Paolo Pelosi
- a Department of Surgical Sciences and Integrated Diagnostics , University of Genoa , Genoa , Italy.,b Department of Anaesthesiology and Intensive Care , San Martino Policlinico Hospital , Genoa , Italy
| |
Collapse
|
33
|
The Basic Science and Molecular Mechanisms of Lung Injury and Acute Respiratory Distress Syndrome. Int Anesthesiol Clin 2019; 56:1-25. [PMID: 29227309 DOI: 10.1097/aia.0000000000000177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Participation of NADPH Oxidase-Related Reactive Oxygen Species in Leptin-Promoted Pulmonary Inflammation: Regulation of cPLA2α and COX-2 Expression. Int J Mol Sci 2019; 20:ijms20051078. [PMID: 30832310 PMCID: PMC6429300 DOI: 10.3390/ijms20051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is a worldwide epidemic problem and correlates to varieties of acute or chronic lung diseases such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis. An increase of leptin, a kind of adipokine, in lean mice plasma has been found to impair immune responses and facilitate the infection of Klebsiella pneumoniae, resulting in increased pneumonia severity. Also, a higher leptin level is found in exhaled breath condensates of obese or asthmatic subjects, compared to healthy ones, suggesting that leptin is involved in the occurrence or exacerbation of lung injury. In previous studies, we showed that leptin stimulated cytosolic phospholipase A2-α (cPLA2α) gene expression in lung alveolar type II cells via mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB)-activated coactivator p300. Herein, we show that the in vivo application of leptin in the respiratory system upregulated the expression of inflammatory proteins cPLA2α and cyclooxygenase-2 (COX-2) together with leukocyte infiltration. Treatment with an ROS scavenger (N-acetylcysteine, NAC), an NADPH oxidase inhibitor (apocynin), or an activating protein (AP)-1 inhibitor (tanshinone IIA) attenuated leptin-mediated cPLA2α/COX-2 expression and leukocyte recruitment in the lung. Leptin increased intracellular oxidative stress in a leptin receptor (OB-R) and NADPH oxidase-dependent manner, leading to the phosphorylation of the AP-1 subunit c-Jun. In summation, leptin increased lung cPLA2α/COX-2 expression and leukocyte recruitment via the NADPH oxidase/ROS/AP-1 pathway. Understanding the inflammatory effects of leptin on the pulmonary system provides opportunities to develop strategies against lung injury related to metabolic syndrome or obesity.
Collapse
|
35
|
Abstract
Obesity is associated with both increased cancer incidence and progression in multiple tumour types, and is estimated to contribute to up to 20% of cancer-related deaths. These associations are driven, in part, by metabolic and inflammatory changes in adipose tissue that disrupt physiological homeostasis both within local tissues and systemically. However, the mechanisms underlying the obesity-cancer relationship are poorly understood. In this Review, we describe how the adipose tissue microenvironment (ATME) evolves during body-weight gain, and how these changes might influence tumour initiation and progression. We focus on multiple facets of ATME physiology, including inflammation, vascularity and fibrosis, and discuss therapeutic interventions that have the potential to normalize the ATME, which might be translationally relevant for cancer prevention and therapy. Given that the prevalence of obesity is increasing on an international scale, translational research initiatives are urgently needed to provide mechanistic explanations for the obesity-cancer relationship, and how to best identify high-risk individuals without relying on crude measures, such as BMI.
Collapse
Affiliation(s)
- Daniela F Quail
- Goodman Cancer Research Centre, Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
36
|
Hoffmeister AD, Lima KSD, Cavalli NP, Callegaro CC. Metaborreflexo inspiratório eleva a pressão arterial em indivíduos obesos e eutróficos. FISIOTERAPIA EM MOVIMENTO 2019. [DOI: 10.1590/1980-5918.0032.ao42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Introdução: O metaborreflexo, ativado pelo acúmulo de metabólitos durante o exercício, ocasiona vasoconstrição periférica, resultando em elevação da pressão arterial. Indivíduos obesos apresentam redução da endurance muscular inspiratória, sugerindo um acúmulo precoce de metabólitos e, consequentemente, alterações no metaborreflexo inspiratório. Objetivo: Comparar as respostas hemodinâmicas mediadas pelo metaborreflexo inspiratório em indivíduos obesos e em eutróficos. Método: Participaram do estudo vinte indivíduos obesos (31 ± 6 anos, dez homens, 37,5 ± 4,7 kg/m 2 ) e vinte eutróficos (29 ± 8 anos, dez homens, 23,2 ± 1,5 kg/m 2 ) submetidos a avaliação da força muscular respiratória através de manovacuometria. O metaborreflexo inspiratório foi induzido através de exercício resistido a 60% da pressão inspiratória máxima mantido até a exaustão. O protocolo controle consistiu na respiração sem resistência inspiratória (zero cmH 2 O) mantida durante 30 minutos. A pressão arterial e a frequência cardíaca foram mensuradas ao longo dos protocolos, realizados em dias distintos e em ordem randomizada. Resultados: O protocolo de indução do metaborreflexo inspiratório induziu aumento das pressões arteriais sistólica, diastólica e média, bem como da frequência cardíaca semelhante em indivíduos obesos e eutróficos. Conforme esperado, no protocolo controle as variáveis hemodinâmicas permaneceram inalteradas. Conclusão: A força muscular inspiratória não variou (p = 0,814) entre indivíduos obesos e eutróficos. Este estudo sugere que indivíduos obesos apresentam respostas hemodinâmicas, induzidas pelo metaborreflexo inspiratório, semelhantes aos indivíduos eutróficos.
Collapse
|
37
|
Abstract
The lung is often overlooked as a metabolically active organ, yet biochemical studies have long demonstrated that glucose utilization surpasses that of many other organs, including the heart, kidney, and brain. For most cells in the lung, energy consumption is relegated to performing common cellular tasks, like mRNA transcription and protein translation. However, certain lung cell populations engage in more specialized types of energy-consuming behaviors, such as the beating of cilia or the production of surfactant. While many extrapulmonary diseases are now linked to abnormalities in cellular metabolism, the pulmonary community has only recently embraced the concept of metabolic dysfunction as a driver of respiratory pathology. Herein, we provide an overview of the major metabolic pathways in the lung and discuss how cells sense and adapt to low-energy states. Moreover, we review some of the emerging evidence that links alterations in cellular metabolism to the pathobiology of several common respiratory diseases.
Collapse
Affiliation(s)
- Gang Liu
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA;
| |
Collapse
|
38
|
Histopathological Changes Caused by Inflammation and Oxidative Stress in Diet-Induced-Obese Mouse following Experimental Lung Injury. Sci Rep 2018; 8:14250. [PMID: 30250258 PMCID: PMC6155136 DOI: 10.1038/s41598-018-32420-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/09/2018] [Indexed: 01/03/2023] Open
Abstract
Obesity has been identified as a risk factor for adverse outcomes of various diseases. However, information regarding the difference between the response of obese and normal subjects to pulmonary inflammation is limited. Mice were fed with the control or high-fat diet to establish the lean and diet-induced obese (DIO) mice. Escherichia coli was intranasally instilled to reproduce non-fatal acute pneumonia model. After infection, serum samples and lung tissues were obtained at 0, 12, 24, and 72 h. DIO mice exhibited increased serum triglyceride (TG) and total cholesterol (TC) contents as well as pulmonary resistin, IL-6, and leptin levels compared with lean mice. E. coli infection caused an acute suppurative inflammation in the lung with increased lung index and serum TG and TC contents; elevated pulmonary tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-8, and leptin levels; and oxidative stress in mice. Interestingly, almost all the above-mentioned parameters peaked at 12 h after infection in the lean-E. coli group but after 12 h in the DIO-E. coli group. These results indicated that the DIO mice presented a delayed inflammatory response and oxidative stress in non-fatal acute pneumonia induced by E. coli infection.
Collapse
|
39
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
40
|
Abstract
INTRODUCTION There is a major epidemic of obesity, and many obese patients suffer with respiratory symptoms and disease. The overall impact of obesity on lung function is multifactorial, related to mechanical and inflammatory aspects of obesity. Areas covered: Obesity causes substantial changes to the mechanics of the lungs and chest wall, and these mechanical changes cause asthma and asthma-like symptoms such as dyspnea, wheeze, and airway hyperresponsiveness. Excess adiposity is also associated with increased production of inflammatory cytokines and immune cells that may also lead to disease. This article reviews the literature addressing the relationship between obesity and lung function, and studies addressing how the mechanical and inflammatory effects of obesity might lead to changes in lung mechanics and pulmonary function in obese adults and children. Expert commentary: Obesity has significant effects on respiratory function, which contribute significantly to the burden of respiratory disease. These mechanical effects are not readily quantified with conventional pulmonary function testing and measurement of body mass index. Changes in mediators produced by adipose tissue likely also contribute to altered lung function, though as of yet this is poorly understood.
Collapse
Affiliation(s)
- Anne E Dixon
- a Division of Pulmonary and Critical Care Medicine , University of Vermont Larner College of Medicine , Burlington , Vermont , USA
| | - Ubong Peters
- a Division of Pulmonary and Critical Care Medicine , University of Vermont Larner College of Medicine , Burlington , Vermont , USA
| |
Collapse
|
41
|
Guivarch E, Voiriot G, Rouzé A, Kerbrat S, Tran Van Nhieu J, Montravers P, Maitre B, Mekontso Dessap A, Desmard M, Boczkowski J. Pulmonary Effects of Adjusting Tidal Volume to Actual or Ideal Body Weight in Ventilated Obese Mice. Sci Rep 2018; 8:6439. [PMID: 29691422 PMCID: PMC5915403 DOI: 10.1038/s41598-018-24615-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
Obese patients could be more susceptible to mechanical ventilation (MV)-induced lung injury than non-obese patients due to weight-dependent changes in lung properties. The aim of this study was therefore to evaluate the pulmonary effects of 2 hours low VT MV in a diet-induced obese mice model, with VT calculated on either the actual body weight (VTaw) or the ideal body weight (VTiw) . First, we hypothesized that a MV with VTaw would be associated with altered lung mechanics and an increased lung inflammation. Second, we hypothesised that a MV with a VTiw would preserve lung mechanics and limit lung inflammation. We analyzed lung mechanics and inflammation using bronchoalveolar lavage (BAL) cell counts, flow cytometry tissue analysis and histology. Lung mechanics and inflammation were comparable in control and obese mice receiving VTiw. By contrast, obese mice receiving VTaw had significantly more alterations in lung mechanics, BAL cellularity and lung influx of monocytes as compared to control mice. Their monocyte expression of Gr1 and CD62L was also increased. Alveolar neutrophil infiltration was significantly increased in all obese mice as compared to controls. In conclusion, our findings suggest that protective MV with a VTaw is deleterious, with a marked alteration in lung mechanics and associated lung inflammation as compared to lean mice. With VTiw, lung mechanics and inflammation were close to that of control mice, except for an increased alveolar infiltrate of polymorphonuclear neutrophils. This inflammation might be attenuated by a blunted recruitment of inflammatory cells associated with obesity.
Collapse
Affiliation(s)
- Elise Guivarch
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France. .,AP-HP, HU Hôpital Bichat-Claude Bernard, Département d'anesthésie-réanimation, 75018, Paris, France. .,Hôpital Paris Saint Joseph, Service d'anesthésie, 75014, Paris, France.
| | - Guillaume Voiriot
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France.,AP-HP, HU Hôpital Tenon, Service de réanimation, 75020, Paris, France.,Université Paris Est Créteil (UPEC), Faculté de Médecine de Créteil, IMRB, GRC CARMAS, Créteil, 94000, France
| | - Anahita Rouzé
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France.,CHU Lille, Centre de Réanimation, Lille, 59000, France
| | - Stéphane Kerbrat
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France
| | | | - Philippe Montravers
- AP-HP, HU Hôpital Bichat-Claude Bernard, Département d'anesthésie-réanimation, 75018, Paris, France.,INSERM UMR 1152, Faculté de médecine Paris Diderot Paris 7, 94000, Paris, France
| | - Bernard Maitre
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France.,Université Paris Est Créteil (UPEC), Faculté de Médecine de Créteil, IMRB, GRC CARMAS, Créteil, 94000, France.,AP-HP, HU Hôpital Henri Mondor, DHU A-TVB, Antenne de Pneumologie, 94000, Créteil, France.,AP-HP, HU Hôpital Henri Mondor, DHU A-TVB, Service de réanimation médicale, 94000, Créteil, France
| | - Armand Mekontso Dessap
- Université Paris Est Créteil (UPEC), Faculté de Médecine de Créteil, IMRB, GRC CARMAS, Créteil, 94000, France.,AP-HP, HU Hôpital Henri Mondor, DHU A-TVB, Service de réanimation médicale, 94000, Créteil, France
| | - Mathieu Desmard
- AP-HP, HU Hôpital Bichat-Claude Bernard, Département d'anesthésie-réanimation, 75018, Paris, France.,Centre hospitalier sud francilien, Service de réanimation, 91100, Corbeil-Essonnes, France
| | - Jorge Boczkowski
- INSERM U955, Université Paris Est (UPEC), Faculté de Médecine, 94000, Créteil, France.,AP-HP, HU Hôpital Henri Mondor, DHU A-TVB, Service de réanimation médicale, 94000, Créteil, France
| |
Collapse
|
42
|
An Official American Thoracic Society Workshop Report: Obesity and Metabolism. An Emerging Frontier in Lung Health and Disease. Ann Am Thorac Soc 2018; 14:1050-1059. [PMID: 28570148 DOI: 10.1513/annalsats.201703-263ws] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The world is in the midst of an unprecedented epidemic of obesity. This epidemic has changed the presentation and etiology of common diseases. For example, steatohepatitis, directly attributable to obesity, is now the most common cause of cirrhosis in the United States. Type 2 diabetes is increasingly being diagnosed in children. Pulmonary researchers and clinicians are just beginning to appreciate the impact of obesity and altered metabolism on common pulmonary diseases. Obesity has recently been identified as a major risk factor for the development of asthma and for acute respiratory distress syndrome. Obesity is associated with profound changes in pulmonary physiology, the development of pulmonary hypertension, sleep-disordered breathing, and altered susceptibility to pulmonary infection. In short, obesity is leading to dramatic changes in lung health and disease. Simultaneously, the rapidly developing field of metabolism, including mitochondrial function, is shifting the paradigms by which the pathophysiology of many pulmonary diseases is understood. Altered metabolism can lead to profound changes in both innate and adaptive immunity, as well as the function of structural cells. To address this emerging field, a 3-day meeting on obesity, metabolism, and lung disease was convened in October 2015 to discuss recent findings, foster research initiatives, and ultimately guide clinical care. The major findings arising from this meeting are reported in this document.
Collapse
|
43
|
Qi D, Wang D, Zhang C, Tang X, He J, Zhao Y, Deng W, Deng X. Vaspin protects against LPS‑induced ARDS by inhibiting inflammation, apoptosis and reactive oxygen species generation in pulmonary endothelial cells via the Akt/GSK‑3β pathway. Int J Mol Med 2017; 40:1803-1817. [PMID: 29039444 PMCID: PMC5716428 DOI: 10.3892/ijmm.2017.3176] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/27/2017] [Indexed: 11/06/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by uncontrolled extravasation of protein-rich fluids, which is caused by disruption and dysfunction of the barrier of pulmonary endothelial cells (ECs). Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a novel adipokine with pleiotropic properties, which has been reported to exert beneficial effects against obesity-associated systemic vascular diseases; however, its effects on ARDS remain unknown. In the present study, mice were subjected to systemic administration of adenoviral vector expressing vaspin (Ad-vaspin) to examine its effects on lipopolysaccharide (LPS)-induced ARDS in vivo. Histological analysis was then conducted, and cytokine [tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10] levels, and intercellular cell adhesion molecule-1 (ICAM-1) and adherens junctions (AJs) expression were detected. In addition, human pulmonary microvascular ECs (HPMECs) were treated with recombinant human (rh)-vaspin to further investigate its molecular basis and underlying mechanism. The mRNA expression levels of inflammatory cytokines (TNF-α and IL-6) and endothelial-specific adhesion markers [vascular cell adhesion molecule-1 and E-selectin], activation of nuclear factor-κB, and cell viability and apoptosis were then examined. Furthermore, the expression of AJs and organization of the cytoskeleton, as well as expression and activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and generation of reactive oxygen species (ROS) were determined. The results indicated that Ad-vaspin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and pulmonary EC barrier dysfunction in mice, which was accompanied by activation of the protein kinase B (Akt)/glycogen synthase kinase (GSK)-3β pathway. In addition, pretreatment of HPMECs with rh-vaspin attenuated inflammation, apoptosis and ROS generation without alterations in AJs and cytoskeletal organization following LPS insult, which was accompanied by activation of the Akt/GSK3β pathway. In conclusion, the present study demonstrated that vaspin protects against LPS-induced ARDS by reversing EC barrier dysfunction via the suppression of inflammation, apoptosis and ROS production in pulmonary ECs, at least partially via activation of the Akt/GSK3β pathway. These findings provide evidence of a causal link between vaspin and EC dysfunction in ARDS, and suggest a potential therapeutic intervention for patients with ARDS.
Collapse
Affiliation(s)
- Di Qi
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Daoxin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Chunrong Zhang
- Department of Emergency, Yongchuan Affiliated Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Xumao Tang
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jing He
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Yan Zhao
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wang Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xinyu Deng
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
44
|
Wang X, Zhang ZF, Zheng GH, Wang AM, Sun CH, Qin SP, Zhuang J, Lu J, Ma DF, Zheng YL. Attenuation of hepatic steatosis by purple sweet potato colour is associated with blocking Src/ERK/C/EBPβ signalling in high-fat-diet–treated mice. Appl Physiol Nutr Metab 2017. [DOI: 10.1139/apnm-2016-0635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our previous work showed that purple sweet potato colour (PSPC), a class of naturally occurring anthocyanins, effectively improved hepatic glucose metabolic dysfunction in high-fat-diet (HFD)–treated mice. This study investigated the effects of PSPC on HFD-induced hepatic steatosis and the signalling events associated with these effects. Mice were divided into 4 groups: control group, HFD group, HFD+PSPC group, and PSPC group. PSPC was administered daily for 20 weeks at oral doses of 700 mg/(kg·day)−1). Our results showed that PSPC significantly improved obesity and related metabolic parameters, as well as liver injury in HFD-treated mice. Moreover, PSPC dramatically attenuated hepatic steatosis in HFD-treated mice. PSPC markedly prevented oxidative stress-mediated Src activation in HFD-treated mouse livers. Furthermore, PSPC feeding remarkably suppressed mitogen-activated protein kinase kinase/extracellular-signal-regulated kinase (MEK/ERK) signalling and consequent CCAAT/enhancer binding protein β (C/EBPβ) activation and restored AMPK activation in HFD-treated mouse livers, which was confirmed by U0126 treatment. Ultimately, PSPC feeding dramatically reduced protein expression of FAS and CD36 and the activation of ACC, and increased the protein expression of CPT1A in the livers of HFD-treated mice, indicating decreased lipogenesis and fatty acid uptake and enhanced fatty acid oxidation. In conclusion, PSPC exhibited beneficial effects on hepatic steatosis, which were associated with blocking Src and C/EBPβ activation.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province 221116, PR China
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou 221131, Jiangsu Province, PR China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province 221116, PR China
| | - Gui-Hong Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province 221116, PR China
| | - Ai-Min Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province 221116, PR China
| | - Chun-Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province 221116, PR China
| | - Su-Ping Qin
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province 221116, PR China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province 221116, PR China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province 221116, PR China
| | - Dai-Fu Ma
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou 221131, Jiangsu Province, PR China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province 221116, PR China
| |
Collapse
|
45
|
Shah D, Romero F, Guo Z, Sun J, Li J, Kallen CB, Naik UP, Summer R. Obesity-Induced Endoplasmic Reticulum Stress Causes Lung Endothelial Dysfunction and Promotes Acute Lung Injury. Am J Respir Cell Mol Biol 2017; 57:204-215. [PMID: 28277743 DOI: 10.1165/rcmb.2016-0310oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RETRACTED: Obesity is a significant risk factor for acute respiratory distress syndrome. The mechanisms underlying this association are unknown. We recently showed that diet-induced obese mice exhibit pulmonary vascular endothelial dysfunction, which is associated with enhanced susceptibility to LPS-induced acute lung injury. Here, we demonstrate that lung endothelial dysfunction in diet-induced obese mice coincides with increased endoplasmic reticulum (ER) stress. Specifically, we observed enhanced expression of the major sensors of misfolded proteins, including protein kinase R-like ER kinase, inositol-requiring enzyme α, and activating transcription factor 6, in whole lung and in primary lung endothelial cells isolated from diet-induced obese mice. Furthermore, we found that primary lung endothelial cells exposed to serum from obese mice, or to saturated fatty acids that mimic obese serum, resulted in enhanced expression of markers of ER stress and the induction of other biological responses that typify the lung endothelium of diet-induced obese mice, including an increase in expression of endothelial adhesion molecules and a decrease in expression of endothelial cell-cell junctional proteins. Similar changes were observed in lung endothelial cells and in whole-lung tissue after exposure to tunicamycin, a compound that causes ER stress by blocking N-linked glycosylation, indicating that ER stress causes endothelial dysfunction in the lung. Treatment with 4-phenylbutyric acid, a chemical protein chaperone that reduces ER stress, restored vascular endothelial cell expression of adhesion molecules and protected against LPS-induced acute lung injury in diet-induced obese mice. Our work indicates that fatty acids in obese serum induce ER stress in the pulmonary endothelium, leading to pulmonary endothelial cell dysfunction. Our work suggests that reducing protein load in the ER of pulmonary endothelial cells might protect against acute respiratory distress syndrome in obese individuals.
Collapse
Affiliation(s)
- Dilip Shah
- 1 Center for Translational Medicine and Jane and Leonard Korman Lung Center
| | - Freddy Romero
- 1 Center for Translational Medicine and Jane and Leonard Korman Lung Center
| | - Zhi Guo
- 1 Center for Translational Medicine and Jane and Leonard Korman Lung Center
| | - Jianxin Sun
- 1 Center for Translational Medicine and Jane and Leonard Korman Lung Center
| | - Jonathan Li
- 1 Center for Translational Medicine and Jane and Leonard Korman Lung Center
| | | | - Ulhas P Naik
- 3 Cardeza Center for Vascular Biology Research, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ross Summer
- 1 Center for Translational Medicine and Jane and Leonard Korman Lung Center
| |
Collapse
|
46
|
High-Fat Feeding Protects Mice From Ventilator-Induced Lung Injury, Via Neutrophil-Independent Mechanisms. Crit Care Med 2017; 45:e831-e839. [PMID: 28426531 DOI: 10.1097/ccm.0000000000002403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity has a complex impact on acute respiratory distress syndrome patients, being associated with increased likelihood of developing the syndrome but reduced likelihood of dying. We propose that such observations are potentially explained by a model in which obesity influences the iatrogenic injury that occurs subsequent to intensive care admission. This study therefore investigated whether fat feeding protected mice from ventilator-induced lung injury. DESIGN In vivo study. SETTING University research laboratory. SUBJECTS Wild-type C57Bl/6 mice or tumor necrosis factor receptor 2 knockout mice, either fed a high-fat diet for 12-14 weeks, or age-matched lean controls. INTERVENTIONS Anesthetized mice were ventilated with injurious high tidal volume ventilation for periods up to 180 minutes. MEASUREMENTS AND MAIN RESULTS Fat-fed mice showed clear attenuation of ventilator-induced lung injury in terms of respiratory mechanics, blood gases, and pulmonary edema. Leukocyte recruitment and activation within the lungs were not significantly attenuated nor were a host of circulating or intra-alveolar inflammatory cytokines. However, intra-alveolar matrix metalloproteinase activity and levels of the matrix metalloproteinase cleavage product soluble receptor for advanced glycation end products were significantly attenuated in fat-fed mice. This was associated with reduced stretch-induced CD147 expression on lung epithelial cells. CONCLUSIONS Consumption of a high-fat diet protects mice from ventilator-induced lung injury in a manner independent of neutrophil recruitment, which we postulate instead arises through blunted up-regulation of CD147 expression and subsequent activation of intra-alveolar matrix metalloproteinases. These findings may open avenues for therapeutic manipulation in acute respiratory distress syndrome and could have implications for understanding the pathogenesis of lung disease in obese patients.
Collapse
|
47
|
Heil LBB, Silva PL, Pelosi P, Rocco PRM. Immunomodulatory effects of anesthetics in obese patients. World J Crit Care Med 2017; 6:140-152. [PMID: 28828299 PMCID: PMC5547428 DOI: 10.5492/wjccm.v6.i3.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/27/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Anesthesia and surgery have an impact on inflammatory responses, which influences perioperative homeostasis. Inhalational and intravenous anesthesia can alter immune-system homeostasis through multiple processes that include activation of immune cells (such as monocytes, neutrophils, and specific tissue macrophages) with release of pro- or anti-inflammatory interleukins, upregulation of cell adhesion molecules, and overproduction of oxidative radicals. The response depends on the timing of anesthesia, anesthetic agents used, and mechanisms involved in the development of inflammation or immunosuppression. Obese patients are at increased risk for chronic diseases and may have the metabolic syndrome, which features insulin resistance and chronic low-grade inflammation. Evidence has shown that obesity has adverse impacts on surgical outcome, and that immune cells play an important role in this process. Understanding the effects of anesthetics on immune-system cells in obese patients is important to support proper selection of anesthetic agents, which may affect postoperative outcomes. This review article aims to integrate current knowledge regarding the effects of commonly used anesthetic agents on the lungs and immune response with the underlying immunology of obesity. Additionally, it identifies knowledge gaps for future research to guide optimal selection of anesthetic agents for obese patients from an immunomodulatory standpoint.
Collapse
|
48
|
Peters U, Suratt BT, Bates JHT, Dixon AE. Beyond BMI: Obesity and Lung Disease. Chest 2017; 153:702-709. [PMID: 28728934 DOI: 10.1016/j.chest.2017.07.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022] Open
Abstract
The worldwide prevalence of obesity has increased rapidly in the last 3 decades, and this increase has led to important changes in the pathogenesis and clinical presentation of many common diseases. This review article examines the relationship between obesity and lung disease, highlighting some of the major findings that have advanced our understanding of the mechanisms contributing to this relationship. Changes in pulmonary function related to fat mass are important, but obesity is much more than simply a state of mass loading, and BMI is only a very indirect measure of metabolic health. The obese state is associated with changes in the gut microbiome, cellular metabolism, lipid handling, immune function, insulin resistance, and circulating factors produced by adipose tissue. Together, these factors can fundamentally alter the pathogenesis and pathophysiology of lung health and disease.
Collapse
|
49
|
Suratt BT. Mouse Modeling of Obese Lung Disease. Insights and Caveats. Am J Respir Cell Mol Biol 2017; 55:153-8. [PMID: 27163945 DOI: 10.1165/rcmb.2016-0063ps] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the obesity epidemic has worsened, its impact on lung health and disease has become progressively evident. The interactions between obesity and the accompanying metabolic syndrome and diseases such as asthma, pneumonia, and acute respiratory distress syndrome (ARDS) have proven complex and often counterintuitive in human studies. Hence, there is a growing need for relevant experimental approaches to understand the interactions between obesity and the lung. To this end, researchers have increasingly exploited mouse models combining both obesity and lung diseases, including ARDS, pneumonia, and asthma. Such models have both complemented and advanced the understanding we have gained from clinical studies and have allowed elegant dissections of obesity's effects on the pathogenesis of lung disease. Yet these models come with several critically important caveats that we must reflect on when interpreting their results.
Collapse
Affiliation(s)
- Benjamin T Suratt
- University of Vermont College of Medicine, Department of Medicine, Burlington, Vermont
| |
Collapse
|
50
|
Myers CJ, Lu B. Decreased Survival After Combining Thoracic Irradiation and an Anti-PD-1 Antibody Correlated With Increased T-cell Infiltration Into Cardiac and Lung Tissues. Int J Radiat Oncol Biol Phys 2017; 99:1129-1136. [PMID: 29165283 DOI: 10.1016/j.ijrobp.2017.06.2452] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/11/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Carey J Myers
- Department of Radiation Oncology, Bodine Center for Cancer Treatment, Philadelphia, Pennsylvania.
| | - Bo Lu
- Department of Radiation Oncology, Bodine Center for Cancer Treatment, Philadelphia, Pennsylvania
| |
Collapse
|