1
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Abdioğlu HB, Işık Y, Sevgi M, Demircali AA, Gorkem Kirabali U, Esmer GB, Uvet H. Noninvasive holographic sensor system for measuring stiffness of soft micro samples. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:036501. [PMID: 40093760 PMCID: PMC11907929 DOI: 10.1117/1.jbo.30.3.036501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/02/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Significance: Measuring cell stiffness is essential in cellular biomechanics, particularly in understanding disease progression, including cancer metastasis and tissue mechanics. However, conventional techniques such as atomic force microscopy and optical stretching present limitations, including invasiveness, low throughput, and complex sample preparation. These factors restrict their applicability in dynamic and sensitive biological environments. Aim: This study introduces a noninvasive holographic sensor system for evaluating the stiffness of soft microscale samples. Approach: The proposed system integrates holographic imaging with acoustic stimulation using an off-axis Mach-Zehnder interferometer combined with bulk acoustic waves. This setup allows for label-free, high-throughput measurements while preserving sample integrity. The system was validated with polyacrylamide beads engineered to mimic cellular stiffness, ensuring precise and repeatable stiffness assessments. Results: Measurement errors caused by spatial variations were minimized through a structured imaging approach and a calibration strategy, improving uniformity across different regions. These corrections enhanced the consistency and reliability of stiffness assessments. Experimental validation demonstrated stable stiffness measurements regardless of sample size variations. Repeatability tests further confirmed the system's robustness, producing consistent results across multiple trials. Conclusion: The findings highlight the potential of this holographic sensor system in advancing cell biomechanics research, cancer diagnostics, and mechanobiology. By offering a noninvasive, high-throughput alternative for mechanical property assessments in biological samples, this method contributes to improved characterization of cellular stiffness in biomedical applications.
Collapse
Affiliation(s)
- Hasan Berkay Abdioğlu
- Yıldız Technical University, Department of Mechatronics Engineering, Istanbul, Turkey
| | - Yağmur Işık
- Yıldız Technical University, Department of Mechatronics Engineering, Istanbul, Turkey
| | - Merve Sevgi
- Yıldız Technical University, Department of Bioengineering, Istanbul, Turkey
| | - Ali Anil Demircali
- Imperial College London, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, London, United Kingdom
| | | | - Gokhan Bora Esmer
- Marmara University, Department of Electrical and Electronics Engineering, Faculty of Engineering, Istanbul, Turkey
| | - Huseyin Uvet
- Yıldız Technical University, Department of Mechatronics Engineering, Istanbul, Turkey
| |
Collapse
|
3
|
Koruk H, Rajagopal S. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. SENSORS (BASEL, SWITZERLAND) 2024; 24:6137. [PMID: 39338881 PMCID: PMC11435754 DOI: 10.3390/s24186137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Although the physical properties of a structure, such as stiffness, can be determined using some statical tests, the identification of damping parameters requires a dynamic test. In general, both theoretical prediction and experimental identification of damping are quite difficult. There are many different techniques available for damping identification, and each method gives a different damping parameter. The dynamic indentation method, rheometry, atomic force microscopy, and resonant vibration tests are commonly used to identify the damping of materials, including soft materials. While the viscous damping ratio, loss factor, complex modulus, and viscosity are quite common to describe the damping of materials, there are also other parameters, such as the specific damping capacity, loss angle, half-power bandwidth, and logarithmic decrement, to describe the damping of various materials. Often, one of these parameters is measured, and the measured parameter needs to be converted into another damping parameter for comparison purposes. In this review, the theoretical derivations of different parameters for the description and quantification of damping and their relationships are presented. The expressions for both high damping and low damping are included and evaluated. This study is considered as the first comprehensive review article presenting the theoretical derivations of a large number of damping parameters and the relationships among many damping parameters, with a quantitative evaluation of accurate and approximate formulas. This paper could be a primary resource for damping research and teaching.
Collapse
Affiliation(s)
- Hasan Koruk
- Ultrasound and Underwater Acoustics Group, Department of Medical, Marine and Nuclear, National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK;
| | | |
Collapse
|
4
|
Massey A, Stewart J, Smith C, Parvini C, McCormick M, Do K, Cartagena-Rivera AX. Mechanical properties of human tumour tissues and their implications for cancer development. NATURE REVIEWS. PHYSICS 2024; 6:269-282. [PMID: 38706694 PMCID: PMC11066734 DOI: 10.1038/s42254-024-00707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 05/07/2024]
Abstract
The mechanical properties of cells and tissues help determine their architecture, composition and function. Alterations to these properties are associated with many diseases, including cancer. Tensional, compressive, adhesive, elastic and viscous properties of individual cells and multicellular tissues are mostly regulated by reorganization of the actomyosin and microtubule cytoskeletons and extracellular glycocalyx, which in turn drive many pathophysiological processes, including cancer progression. This Review provides an in-depth collection of quantitative data on diverse mechanical properties of living human cancer cells and tissues. Additionally, the implications of mechanical property changes for cancer development are discussed. An increased knowledge of the mechanical properties of the tumour microenvironment, as collected using biomechanical approaches capable of multi-timescale and multiparametric analyses, will provide a better understanding of the complex mechanical determinants of cancer organization and progression. This information can lead to a further understanding of resistance mechanisms to chemotherapies and immunotherapies and the metastatic cascade.
Collapse
Affiliation(s)
- Andrew Massey
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jamie Stewart
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- These authors contributed equally: Jamie Stewart, Chynna Smith
| | - Cameron Parvini
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Moira McCormick
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kun Do
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X. Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Zhou Q, Zhang Q, Liao L, Li Q, Qu H, Wang X, Zhou Y, Zhang G, Sun M, Zhang K, Zhang B. Isocorydine Exerts Anticancer Activity by Disrupting the Energy Metabolism and Filamentous Actin Structures of Oral Squamous Carcinoma Cells. Curr Issues Mol Biol 2024; 46:650-662. [PMID: 38248344 PMCID: PMC10814041 DOI: 10.3390/cimb46010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Isocorydine (ICD) exhibits strong antitumor effects on numerous human cell lines. However, the anticancer activity of ICD against oral squamous cell carcinoma (OSCC) has not been reported. The anticancer activity, migration and invasion ability, and changes in the cytoskeleton morphology and mechanical properties of ICD in OSCC were determined. Changes in the contents of reactive oxygen species (ROS), the mitochondrial membrane potential (MMP), ATP, and mitochondrial respiratory chain complex enzymes Ⅰ-Ⅳ in cancer cells were studied. ICD significantly inhibited the proliferation of oral tongue squamous cells (Cal-27), with an IC50 of 0.61 mM after 24 h of treatment. The invasion, migration, and adhesion of cancer cells were decreased, and cytoskeletal actin was deformed and depolymerized. In comparison to an untreated group, the activities of mitochondrial respiratory chain complex enzymes I-IV were significantly decreased by 50.72%, 27.39%, 77.27%, and 73.89%, respectively. The ROS production increased, the MMP decreased by 43.65%, and the ATP content decreased to 17.1 ± 0.001 (mmol/mL); ultimately, the apoptosis rate of cancer cells increased up to 10.57% after 24 h of action. These findings suggest that ICD exerted an obvious anticancer activity against OSCC and may inhibit Cal-27 proliferation and growth by causing mitochondrial dysfunction and interrupting cellular energy.
Collapse
Affiliation(s)
- Qiaozhen Zhou
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Qianqian Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Lingzi Liao
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Qian Li
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Huidan Qu
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Xinyu Wang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Ying Zhou
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Guangzeng Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Mingliang Sun
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Kailiang Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
| | - Baoping Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Gupta P, Rai N, Verma A, Gautam V. Microscopy based methods for characterization, drug delivery, and understanding the dynamics of nanoparticles. Med Res Rev 2024; 44:138-168. [PMID: 37294298 DOI: 10.1002/med.21981] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Nanomedicine is an emerging field that exploits nanotechnology for the development of novel therapeutic and diagnostic modalities. Researches are been focussed in nanoimaging to develop noninvasive, highly sensitive, and reliable tools for diagnosis and visualization in nanomedical field. The application of nanomedicine in healthcare requires in-depth understanding of their structural, physical and morphological properties, internalization inside living system, biodistribution and localization, stability, mode of action and possible toxic health effects. Microscopic techniques including fluorescence-based confocal laser scanning microscopy, super-resolution fluorescence microscopy and multiphoton microscopy; optical-based Raman microscopy, photoacoustic microscopy and optical coherence tomography; photothermal microscopy; electron microscopy (transmission electron microscope and scanning electron microscope); atomic force microscopy; X-ray microscopy and, correlative multimodal imaging are recognized as an indispensable tool in material research and aided in numerous discoveries. Microscopy holds great promise in detecting the fundamental structures of nanoparticles (NPs) that determines their performance and applications. Moreover, the intricate details that allows assessment of chemical composition, surface topology and interfacial properties, molecular, microstructure, and micromechanical properties are also elucidated. With plethora of applications, microscopy-based techniques have been used to characterize novel NPs alongwith their proficient designing and adoption of safe strategies to be exploited in nanomedicine. Consequently, microscopic techniques have been extensively used in the characterization of fabricated NPs, and their biomedical application in diagnostics and therapeutics. The present review provides an overview of the microscopy-based techniques for in vitro and in vivo application in nanomedical investigation alongwith their challenges and advancement to meet the limitations of conventional methods.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Chiodini S, Borbone F, Oscurato SL, Garcia PD, Ambrosio A. Light-induced modulation of viscoelastic properties in azobenzene polymers. NANOPHOTONICS 2024; 13:229-238. [PMID: 38283896 PMCID: PMC10808048 DOI: 10.1515/nanoph-2023-0728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
Photo-induced isomerization of azobenzene molecules drives mass migrations in azopolymer samples. The resulting macroscopic directional photo-deformation of the material morphology has found many applications in literature, although the fundamental mechanisms behind this mass transfer are still under debate. Hence, it is of paramount importance to find quantitative observables that could drive the community toward a better understanding of this phenomenon. In this regard, azopolymer mechanical properties have been intensively studied, but the lack of a nanoscale technique capable of quantitative viscoelastic measurements has delayed the progress in the field. Here, we use bimodal atomic force microscopy (AFM) as a powerful technique for nanomechanical characterizations of azopolymers. With this multifrequency AFM approach, we map the azopolymer local elasticity and viscosity, with high resolution, after irradiation. We find that, while in the (previously) illuminated region, a general photo-softening is measured; locally, the Young modulus and the viscosity depend upon the inner structuring of the illuminating light spot. We then propose a possible interpretation based on a light-induced expansion plus a local alignment of the polymer chains (directional hole-burning effect), which explains the experimental observations. The possibility to access, in a reliable and quantitative way, both Young modulus and viscosity could trigger new theoretical-numerical investigations on the azopolymer mass migration dynamics since, as we show, both parameters can be considered measurable. Furthermore, our results provide a route for engineering the nanomechanical properties of azopolymers, which could find interesting applications in cell mechanobiology research.
Collapse
Affiliation(s)
- Stefano Chiodini
- Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via Rubattino 81, 20134, Milan, Italy
| | - Fabio Borbone
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126Naples, Italy
| | - Stefano L. Oscurato
- Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via Rubattino 81, 20134, Milan, Italy
- Physics Department “E. Pancini”, University of Naples “Federico II”, Via Cinthia Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126Naples, Italy
| | - Pablo D. Garcia
- BYM-Ingema, Centro de Empresas del Caudal, Polígono Vega de Arriba, 33600, Mieres, Spain
| | - Antonio Ambrosio
- Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Via Rubattino 81, 20134, Milan, Italy
| |
Collapse
|
8
|
Cho DH, Aguayo S, Cartagena-Rivera AX. Atomic force microscopy-mediated mechanobiological profiling of complex human tissues. Biomaterials 2023; 303:122389. [PMID: 37988897 PMCID: PMC10842832 DOI: 10.1016/j.biomaterials.2023.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Tissue mechanobiology is an emerging field with the overarching goal of understanding the interplay between biophysical and biochemical responses affecting development, physiology, and disease. Changes in mechanical properties including stiffness and viscosity have been shown to describe how cells and tissues respond to mechanical cues and modify critical biological functions. To quantitatively characterize the mechanical properties of tissues at physiologically relevant conditions, atomic force microscopy (AFM) has emerged as a highly versatile biomechanical technology. In this review, we describe the fundamental principles of AFM, typical AFM modalities used for tissue mechanics, and commonly used elastic and viscoelastic contact mechanics models to characterize complex human tissues. Furthermore, we discuss the application of AFM-based mechanobiology to characterize the mechanical responses within complex human tissues to track their developmental, physiological/functional, and diseased states, including oral, hearing, and cancer-related tissues. Finally, we discuss the current outlook and challenges to further advance the field of tissue mechanobiology. Altogether, AFM-based tissue mechanobiology provides a mechanistic understanding of biological processes governing the unique functions of tissues.
Collapse
Affiliation(s)
- David H Cho
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Schools of Engineering, Medicine, and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Alonso Baez L, Bacete L. Cell wall dynamics: novel tools and research questions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6448-6467. [PMID: 37539735 PMCID: PMC10662238 DOI: 10.1093/jxb/erad310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Years ago, a classic textbook would define plant cell walls based on passive features. For instance, a sort of plant exoskeleton of invariable polysaccharide composition, and probably painted in green. However, currently, this view has been expanded to consider plant cell walls as active, heterogeneous, and dynamic structures with a high degree of complexity. However, what do we mean when we refer to a cell wall as a dynamic structure? How can we investigate the different implications of this dynamism? While the first question has been the subject of several recent publications, defining the ideal strategies and tools needed to address the second question has proven to be challenging due to the myriad of techniques available. In this review, we will describe the capacities of several methodologies to study cell wall composition, structure, and other aspects developed or optimized in recent years. Keeping in mind cell wall dynamism and plasticity, the advantages of performing long-term non-invasive live-imaging methods will be emphasized. We specifically focus on techniques developed for Arabidopsis thaliana primary cell walls, but the techniques could be applied to both secondary cell walls and other plant species. We believe this toolset will help researchers in expanding knowledge of these dynamic/evolving structures.
Collapse
Affiliation(s)
- Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, Trondheim, 7491, Norway
| | - Laura Bacete
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, Trondheim, 7491, Norway
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
10
|
Feng X, Li GY, Yun SH. Ultra-wideband optical coherence elastography from acoustic to ultrasonic frequencies. Nat Commun 2023; 14:4949. [PMID: 37587178 PMCID: PMC10432526 DOI: 10.1038/s41467-023-40625-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Visualizing viscoelastic waves in materials and tissues through noninvasive imaging is valuable for analyzing their mechanical properties and detecting internal anomalies. However, traditional elastography techniques have been limited by a maximum wave frequency below 1-10 kHz, which hampers temporal and spatial resolution. Here, we introduce an optical coherence elastography technique that overcomes the limitation by extending the frequency range to MHz. Our system can measure the stiffness of hard materials including bones and extract viscoelastic shear moduli for polymers and hydrogels in conventionally inaccessible ranges between 100 Hz and 1 MHz. The dispersion of Rayleigh surface waves across the ultrawide band allowed us to profile depth-dependent shear modulus in cartilages ex vivo and human skin in vivo with sub-mm anatomical resolution. This technique holds immense potential as a noninvasive measurement tool for material sciences, tissue engineering, and medical diagnostics.
Collapse
Affiliation(s)
- Xu Feng
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA
| | - Guo-Yang Li
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom St. BAR-8, Boston, MA, 02114, USA.
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
Panter PE, Seifert J, Dale M, Pridgeon AJ, Hulme R, Ramsay N, Contera S, Knight H. Cell wall fucosylation in Arabidopsis influences control of leaf water loss and alters stomatal development and mechanical properties. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2680-2691. [PMID: 36715637 PMCID: PMC10112686 DOI: 10.1093/jxb/erad039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/27/2023] [Indexed: 06/06/2023]
Abstract
The Arabidopsis sensitive-to-freezing8 (sfr8) mutant exhibits reduced cell wall (CW) fucose levels and compromised freezing tolerance. To examine whether CW fucosylation also affects the response to desiccation, we tested the effect of leaf excision in sfr8 and the allelic mutant mur1-1. Leaf water loss was strikingly higher than in the wild type in these, but not other, fucosylation mutants. We hypothesized that reduced fucosylation in guard cell (GC) walls might limit stomatal closure through altering mechanical properties. Multifrequency atomic force microscopy (AFM) measurements revealed a reduced elastic modulus (E'), representing reduced stiffness, in sfr8 GC walls. Interestingly, however, we discovered a compensatory mechanism whereby a concomitant reduction in the storage modulus (E'') maintained a wild-type viscoelastic time response (tau) in sfr8. Stomata in intact leaf discs of sfr8 responded normally to a closure stimulus, abscisic acid, suggesting that the time response may relate more to closure properties than stiffness does. sfr8 stomatal pore complexes were larger than those of the wild type, and GCs lacked a fully developed cuticular ledge, both potential contributors to the greater leaf water loss in sfr8. We present data that indicate that fucosylation-dependent dimerization of the CW pectic domain rhamnogalacturonan-II may be essential for normal cuticular ledge development and leaf water retention.
Collapse
Affiliation(s)
- Paige E Panter
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Jacob Seifert
- Department of Physics, University of Oxford, Parks Road, Oxford, UK
| | - Maeve Dale
- Department of Biosciences, Durham University, South Road, Durham, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Rachel Hulme
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Nathan Ramsay
- Department of Biosciences, Durham University, South Road, Durham, UK
| | | | | |
Collapse
|
12
|
Al-Rekabi Z, Dondi C, Faruqui N, Siddiqui NS, Elowsson L, Rissler J, Kåredal M, Mudway I, Larsson-Callerfelt AK, Shaw M. Uncovering the cytotoxic effects of air pollution with multi-modal imaging of in vitro respiratory models. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221426. [PMID: 37063998 PMCID: PMC10090883 DOI: 10.1098/rsos.221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Annually, an estimated seven million deaths are linked to exposure to airborne pollutants. Despite extensive epidemiological evidence supporting clear associations between poor air quality and a range of short- and long-term health effects, there are considerable gaps in our understanding of the specific mechanisms by which pollutant exposure induces adverse biological responses at the cellular and tissue levels. The development of more complex, predictive, in vitro respiratory models, including two- and three-dimensional cell cultures, spheroids, organoids and tissue cultures, along with more realistic aerosol exposure systems, offers new opportunities to investigate the cytotoxic effects of airborne particulates under controlled laboratory conditions. Parallel advances in high-resolution microscopy have resulted in a range of in vitro imaging tools capable of visualizing and analysing biological systems across unprecedented scales of length, time and complexity. This article considers state-of-the-art in vitro respiratory models and aerosol exposure systems and how they can be interrogated using high-resolution microscopy techniques to investigate cell-pollutant interactions, from the uptake and trafficking of particles to structural and functional modification of subcellular organelles and cells. These data can provide a mechanistic basis from which to advance our understanding of the health effects of airborne particulate pollution and develop improved mitigation measures.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Camilla Dondi
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nilofar Faruqui
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
| | - Nazia S. Siddiqui
- Faculty of Medical Sciences, University College London, London, UK
- Kingston Hospital NHS Foundation Trust, Kingston upon Thames, UK
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jenny Rissler
- Bioeconomy and Health, RISE Research Institutes of Sweden, Lund, Sweden
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Monica Kåredal
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Ian Mudway
- MRC Centre for Environment and Health, Imperial College London, London, UK
- National Institute of Health Protection Research Unit in Environmental Exposures and Health, London, UK
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Michael Shaw
- Department of Chemical and Biological Sciences, National Physical Laboratory, Teddington, UK
- Department of Computer Science, University College London, London, UK
| |
Collapse
|
13
|
Kontomaris SV, Stylianou A, Chliveros G, Malamou A. Determining Spatial Variability of Elastic Properties for Biological Samples Using AFM. MICROMACHINES 2023; 14:mi14010182. [PMID: 36677243 PMCID: PMC9862197 DOI: 10.3390/mi14010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 05/29/2023]
Abstract
Measuring the mechanical properties (i.e., elasticity in terms of Young's modulus) of biological samples using Atomic Force Microscopy (AFM) indentation at the nanoscale has opened new horizons in studying and detecting various pathological conditions at early stages, including cancer and osteoarthritis. It is expected that AFM techniques will play a key role in the future in disease diagnosis and modeling using rigorous mathematical criteria (i.e., automated user-independent diagnosis). In this review, AFM techniques and mathematical models for determining the spatial variability of elastic properties of biological materials at the nanoscale are presented and discussed. Significant issues concerning the rationality of the elastic half-space assumption, the possibility of monitoring the depth-dependent mechanical properties, and the construction of 3D Young's modulus maps are also presented.
Collapse
Affiliation(s)
- Stylianos Vasileios Kontomaris
- BioNanoTec Ltd., Nicosia 2043, Cyprus
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Andreas Stylianou
- School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Georgios Chliveros
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Anna Malamou
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
14
|
Riachy L, Ferrand T, Chasserot-Golaz S, Galas L, Alexandre S, Montero-Hadjadje M. Advanced Imaging Approaches to Reveal Molecular Mechanisms Governing Neuroendocrine Secretion. Neuroendocrinology 2023; 113:107-119. [PMID: 34915491 DOI: 10.1159/000521457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
Identification of the molecular mechanisms governing neuroendocrine secretion and resulting intercellular communication is one of the great challenges of cell biology to better understand organism physiology and neurosecretion disruption-related pathologies such as hypertension, neurodegenerative, or metabolic diseases. To visualize molecule distribution and dynamics at the nanoscale, many imaging approaches have been developed and are still emerging. In this review, we provide an overview of the pioneering studies using transmission electron microscopy, atomic force microscopy, total internal reflection microscopy, and super-resolution microscopy in neuroendocrine cells to visualize molecular mechanisms driving neurosecretion processes, including exocytosis and associated fusion pores, endocytosis and associated recycling vesicles, and protein-protein or protein-lipid interactions. Furthermore, the potential and the challenges of these different advanced imaging approaches for application in the study of neuroendocrine cell biology are discussed, aiming to guide researchers to select the best approach for their specific purpose around the crucial but not yet fully understood neurosecretion process.
Collapse
Affiliation(s)
- Lina Riachy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Thomas Ferrand
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg University, Strasbourg, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Stéphane Alexandre
- Polymères, Biopolymères, Surfaces Laboratory, CNRS, Normandie University, UNIROUEN, UMR 6270, Rouen, France
| | - Maité Montero-Hadjadje
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| |
Collapse
|
15
|
Solares SD, Cartagena-Rivera AX. Frequency-dependent nanomechanical profiling for medical diagnosis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1483-1489. [PMID: 36570617 PMCID: PMC9749500 DOI: 10.3762/bjnano.13.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Atomic force microscopy (AFM), developed in the early 1980s, has become a powerful characterization tool in micro- and nanoscale science. In the early 1990s, its relevance within biology and medicine research became evident, although its incorporation into healthcare applications remains relatively limited. Here, we briefly explore the reasons for this low level of technological adoption. We also propose a path forward for the incorporation of frequency-dependent nanomechanical measurements into integrated healthcare strategies that link routine AFM measurements with computer analysis, real-time communication with healthcare providers, and medical databases. This approach would be appropriate for diseases such as cancer, lupus, arteriosclerosis and arthritis, among others, which bring about significant mechanical changes in the affected tissues.
Collapse
Affiliation(s)
- Santiago D Solares
- Department of Mechanical and Aerospace Engineering, The George Washington University, School of Engineering and Applied Science, Washington, District of Columbia, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Taninaka A, Ugajin S, Kurokawa H, Nagoshi Y, Kamiyanagi M, Takeuchi O, Matsui H, Shigekawa H. Direct analysis of the actin-filament formation effect in photodynamic therapy. RSC Adv 2022; 12:5878-5889. [PMID: 35424553 PMCID: PMC8981521 DOI: 10.1039/d1ra09291j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Photodynamic therapy (PDT) is a method in which a photosensitizer is administered in vivo and irradiated with light to generate reactive oxygen species (ROS), thereby causing the selective death of cancer cells. Since PDT is a noninvasive cancer treatment method with few adverse effects, it has attracted considerable attention and is increasingly used. In PDT, there are two dominant processes based on the actin filament (A-filament) formation effect: the destruction of cells by necrosis and vascular shutdown. Despite the importance of its fine control, the mechanism of the reaction process from the generation of reactive oxygen by photoinduction inducing the formation of A-filament and its polymerization to form stress fibers (S-fibers) has not yet been clarified because, for example, it has been difficult to directly observe and quantify such processes in living cells by conventional methods. Here, we have combined atomic force microscopy (AFM) with other techniques to reveal the mechanism of the A-filament and S-fiber formation processes that underlie the cell death process due to PDT. First, it was confirmed that activation of the small G protein RhoA, which is a signal that induces an increase in A-filament production, begins immediately after PDT treatment. The production of A-filament did not increase with increasing light intensity when the amount of light was large. Namely, the activation of RhoA reached an equilibrium state in about 1 min: however, the production of A-filament and its polymerization continued. The observed process corresponds well with the change in the amount of phosphorylated myosin-light chains, which induce A-filament polymerization. The increase in the elastic modulus of cells following the formation of S-fiber was confirmed by AFM for the first time. The distribution of generated A-filament and S-fiber was consistent with the photosensitizer distribution. PDT increases A-filament production, and when the ROS concentration is high, blebbing occurs and cells die, but when it is low, cell death does not occur and S-fiber is formed. That is, it is expected that vascular shutdown can be controlled efficiently by adjusting the amount of photosensitizer and the light intensity. We have combined atomic force microscopy with other techniques to reveal the mechanism of the actin filament and stress fibers formation processes that underlies the cell death process due to photodynamic therapy.![]()
Collapse
Affiliation(s)
- Atsushi Taninaka
- Faculty of Pure and Applied Sciences, University of Tsukuba 305-8573 Ibaraki Japan .,TAKANO Co., LTD. Miyada-mura, Kamiina-gun Nagano 399-4301 Japan
| | - Shunta Ugajin
- Faculty of Pure and Applied Sciences, University of Tsukuba 305-8573 Ibaraki Japan
| | - Hiromi Kurokawa
- Faculty of Medicine, University of Tsukuba 305-8575 Ibaraki Japan
| | - Yu Nagoshi
- Faculty of Pure and Applied Sciences, University of Tsukuba 305-8573 Ibaraki Japan
| | - Mayuka Kamiyanagi
- Faculty of Pure and Applied Sciences, University of Tsukuba 305-8573 Ibaraki Japan
| | - Osamu Takeuchi
- Faculty of Pure and Applied Sciences, University of Tsukuba 305-8573 Ibaraki Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba 305-8575 Ibaraki Japan
| | - Hidemi Shigekawa
- Faculty of Pure and Applied Sciences, University of Tsukuba 305-8573 Ibaraki Japan
| |
Collapse
|
17
|
Petit C, Karkhaneh Yousefi AA, Guilbot M, Barnier V, Avril S. AFM Stiffness Mapping in Human Aortic Smooth Muscle Cells. J Biomech Eng 2022; 144:1133331. [DOI: 10.1115/1.4053657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Abstract
Aortic Smooth Muscle Cells (SMCs) play a vital role in maintaining mechanical homeostasis in the aorta. We recently found that SMCs of aneurysmal aortas apply larger traction forces than SMCs of healthy aortas. This result was explained by the significant increase of hypertrophic SMCs abundance in aneurysms. In the present study, we investigate whether the cytoskeleton stiffness of SMCs may also be altered in aneurysmal aortas. For that, we use Atomic Force Microscopy (AFM) nanoindentation with a specific mode that allows subcellular-resolution mapping of the local stiffness across a specified region of interest of the cell. Aortic SMCs from a commercial human lineage (AoSMCs, Lonza) and primary aneurysmal SMCs (AnevSMCs) are cultured in conditions promoting the development of their contractile apparatus, and seeded on hydrogels with stiffness properties of 12kPa and 25kPa. Results show that all SMC exhibit globally a lognormal stiffness distribution, with medians in the range 10-30 kPa. The mean of stiffness distributions is slightly higher in aneurysmal SMCs than in healthy cells (16 kPa versus 12 kPa) but the differences are not statistically significant due to the large dispersion of AFM nanoindentation stiffness. We conclude that the possible alterations previously found in aneurysmal SMCs do not affect significantly the AFM nanoindentation stiffness of their cytoskeleton.
Collapse
Affiliation(s)
- Claudie Petit
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | | | - Marine Guilbot
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | - Vincent Barnier
- Mines Saint-Etienne, Université de Lyon, CNRS, UMR 5307 LGF, F - 42023 Saint-Etienne France
| | - Stephane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| |
Collapse
|
18
|
Viscoelastic parameterization of human skin cells characterize material behavior at multiple timescales. Commun Biol 2022; 5:17. [PMID: 35017622 PMCID: PMC8752830 DOI: 10.1038/s42003-021-02959-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 01/22/2023] Open
Abstract
Countless biophysical studies have sought distinct markers in the cellular mechanical response that could be linked to morphogenesis, homeostasis, and disease. Here, an iterative-fitting methodology visualizes the time-dependent viscoelastic behavior of human skin cells under physiologically relevant conditions. Past investigations often involved parameterizing elastic relationships and assuming purely Hertzian contact mechanics, which fails to properly account for the rich temporal information available. We demonstrate the performance superiority of the proposed iterative viscoelastic characterization method over standard open-search approaches. Our viscoelastic measurements revealed that 2D adherent metastatic melanoma cells exhibit reduced elasticity compared to their normal counterparts—melanocytes and fibroblasts, and are significantly less viscous than fibroblasts over timescales spanning three orders of magnitude. The measured loss angle indicates clear differential viscoelastic responses across multiple timescales between the measured cells. This method provides insight into the complex viscoelastic behavior of metastatic melanoma cells relevant to better understanding cancer metastasis and aggression. Parvini, Cartagena and Solares introduce an iterative viscoelastic approach based on the generalized Maxwell and Kelvin-Voigt models. The results showed that metastatic melanoma cells had lower elasticity than normal fibroblasts and melanoma cells were less viscous than the fibroblasts over a large frequency range, enhancing the understanding of cellular responses at different frequencies.
Collapse
|
19
|
Efremov YM, Suter DM, Timashev PS, Raman A. 3D nanomechanical mapping of subcellular and sub-nuclear structures of living cells by multi-harmonic AFM with long-tip microcantilevers. Sci Rep 2022; 12:529. [PMID: 35017598 PMCID: PMC8752865 DOI: 10.1038/s41598-021-04443-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Recent developments such as multi-harmonic Atomic Force Microscopy (AFM) techniques have enabled fast, quantitative mapping of nanomechanical properties of living cells. Due to their high spatiotemporal resolution, these methods provide new insights into changes of mechanical properties of subcellular structures due to disease or drug response. Here, we propose three new improvements to significantly improve the resolution, identification, and mechanical property quantification of sub-cellular and sub-nuclear structures using multi-harmonic AFM on living cells. First, microcantilever tips are streamlined using long-carbon tips to minimize long-range hydrodynamic interactions with the cell surface, to enhance the spatial resolution of nanomechanical maps and minimize hydrodynamic artifacts. Second, simultaneous Spinning Disk Confocal Microscopy (SDC) with live-cell fluorescent markers enables the unambiguous correlation between observed heterogeneities in nanomechanical maps with subcellular structures. Third, computational approaches are then used to estimate the mechanical properties of sub-nuclear structures. Results are demonstrated on living NIH 3T3 fibroblasts and breast cancer MDA-MB-231 cells, where properties of nucleoli, a deep intracellular structure, were assessed. The integrated approach opens the door to study the mechanobiology of sub-cellular structures during disease or drug response.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare, Moscow, Russia
| | - Daniel M Suter
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN, USA
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
20
|
Gisbert VG, Garcia R. Accurate Wide-Modulus-Range Nanomechanical Mapping of Ultrathin Interfaces with Bimodal Atomic Force Microscopy. ACS NANO 2021; 15:20574-20581. [PMID: 34851086 DOI: 10.1021/acsnano.1c09178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nanoscale determination of the mechanical properties of interfaces is of paramount relevance in materials science and cell biology. Bimodal atomic force microscopy (AFM) is arguably the most advanced nanoscale method for mapping the elastic modulus of interfaces. Simulations, theory, and experiments have validated bimodal AFM measurements on thick samples (from micrometer to millimeter). However, the bottom-effect artifact, this is, the influence of the rigid support on the determination of the Young's modulus, questions its accuracy for ultrathin materials and interfaces (1-15 nm). Here we develop a bottom-effect correction method that yields the intrinsic Young's modulus value of a material independent of its thickness. Experiments and numerical simulations validate the accuracy of the method for a wide range of materials (1 MPa to 100 GPa). Otherwise, the Young's modulus of an ultrathin material might be overestimated by a 10-fold factor.
Collapse
Affiliation(s)
- Victor G Gisbert
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
21
|
Pan J, Kmieciak T, Liu YT, Wildenradt M, Chen YS, Zhao Y. Quantifying molecular- to cellular-level forces in living cells. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2021; 54:483001. [PMID: 34866655 PMCID: PMC8635116 DOI: 10.1088/1361-6463/ac2170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical cues have been suggested to play an important role in cell functions and cell fate determination, however, such physical quantities are challenging to directly measure in living cells with single molecule sensitivity and resolution. In this review, we focus on two main technologies that are promising in probing forces at the single molecule level. We review their theoretical fundamentals, recent technical advancements, and future directions, tailored specifically for interrogating mechanosensitive molecules in live cells.
Collapse
Affiliation(s)
- Jason Pan
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Tommy Kmieciak
- Department of Engineering Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yen-Ting Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Matthew Wildenradt
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N. Wright Street, Urbana, IL 61801, United States of America
| |
Collapse
|
22
|
Sanchez JG, Espinosa FM, Miguez R, Garcia R. The viscoelasticity of adherent cells follows a single power-law with distinct local variations within a single cell and across cell lines. NANOSCALE 2021; 13:16339-16348. [PMID: 34581722 DOI: 10.1039/d1nr03894j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AFM-based force-distance curves are commonly used to characterize the nanomechanical properties of live cells. The transformation of these curves into nanomechanical properties requires the development of contact mechanics models. Spatially-resolved force-distance curves involving 1 to 2 μm deformations were obtained on HeLa and NIH 3T3 (fibroblast) cells. An elastic and two viscoelastic models were used to describe the experimental force-distance curves. The best agreement was obtained by applying a contact mechanics model that accounts for the geometry of the contact and the finite-thickness of the cell and assumes a single power-law dependence with time. Our findings show the shortcomings of elastic and semi-infinite viscoelastic models to characterize the mechanical response of a mammalian cell under micrometer-scale deformations. The parameters of the 3D power-law viscoelastic model, compressive modulus and fluidity exponent showed local variations within a single cell and across the two cell lines. The corresponding nanomechanical maps revealed structures that were not visible in the AFM topographic maps.
Collapse
Affiliation(s)
- Juan G Sanchez
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Francisco M Espinosa
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Ruben Miguez
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
23
|
Dabigatran Etexilate Induces Cytotoxicity in Rat Gastric Epithelial Cell Line via Mitochondrial Reactive Oxygen Species Production. Cells 2021; 10:cells10102508. [PMID: 34685491 PMCID: PMC8533938 DOI: 10.3390/cells10102508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Dabigatran is a novel oral anticoagulant that directly inhibits free and fibrin-bound thrombins and exerts rapid and predictable anticoagulant effects. While the use of this reagent has been associated with an increased risk of gastrointestinal bleeding, the reason why dabigatran use increases gastrointestinal bleeding risk remains unknown. We investigated the cytotoxicity of dabigatran etexilate and tartaric acid, the two primary components of dabigatran. The cytotoxicity of dabigatran etexilate and tartaric acid was measured in a cell viability assay. Intracellular mitochondrial reactive oxygen species (mitROS) production and lipid peroxidation were measured using fluorescence dyes. Cell membrane viscosity was measured using atomic force microscopy. The potential of ascorbic acid as an inhibitor of dabigatran cytotoxicity was also evaluated. The cytotoxicity of dabigatran etexilate was higher than that of tartaric acid. Dabigatran etexilate induced mitROS production and lipid peroxidation and altered the cell membrane viscosity. Ascorbic acid inhibited the cytotoxicity and mitROS production induced by dabigatran etexilate. Therefore, we attributed the cytotoxicity of dabigatran to dabigatran etexilate, and proposed that the cytotoxic effects of dabigatran etexilate are mediated via mitROS production. Additionally, we demonstrated that dabigatran cytotoxicity can be prevented via antioxidant treatment.
Collapse
|
24
|
Dou Z, Qian J, Li Y, Lin R, Wang T, Wang J, Cheng P, Xu Z. Enhancing higher-order eigenmodes of AFM using bridge/cantilever coupled system. Micron 2021; 150:103147. [PMID: 34534920 DOI: 10.1016/j.micron.2021.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 11/18/2022]
Abstract
The wide application of multi-frequency atomic force microscopy (AFM) places higher demands on the higher-order modes response of the cantilever. The response of the higher modes however is generally weaker than that of the fundamental mode in air. Researchers have proposed many methods, most of which involve cantilever modification, to enhance higher-order eigenmodes response. These previous results are proved to be effective, but the microfabrication is expensive. In this article, we propose a novel model based on bridge/cantilever coupled system to enhance the higher-order modes response of AFM cantilever. The segmented beam model provides a new thinking to explain the appearance of undesired peaks in mode analysis of cantilever. Through theoretical analysis and simulation, we find that higher resonance modes are enhanced by tuning the bridge to match the high resonances of the single clamped cantilever. The length, thickness of the coupled system and the location of excitation can affect the enhancement. In summary, this model provides a new way to improve higher mode response for multi-frequency and other high bandwidth applications of AFM.
Collapse
Affiliation(s)
- Zhipeng Dou
- School of Physics, Beihang University, Beijing 100083, China
| | - Jianqiang Qian
- School of Physics, Beihang University, Beijing 100083, China.
| | - Yingzi Li
- School of Physics, Beihang University, Beijing 100083, China
| | - Rui Lin
- School of Physics, Beihang University, Beijing 100083, China
| | - Tingwei Wang
- School of Physics, Beihang University, Beijing 100083, China
| | - Jianhai Wang
- School of Physics, Beihang University, Beijing 100083, China
| | - Peng Cheng
- School of Physics, Beihang University, Beijing 100083, China
| | - Zeyu Xu
- School of Physics, Beihang University, Beijing 100083, China
| |
Collapse
|
25
|
Ghanbari Kouchaksaraei M, Bahrami A. High-resolution compositional mapping of surfaces in non-contact atomic force microscopy by a new multi-frequency excitation. Ultramicroscopy 2021; 227:113317. [PMID: 34119854 DOI: 10.1016/j.ultramic.2021.113317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/13/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
In this paper, a new multi-frequency excitation method based on combination resonance is introduced to enhance the non-contact atomic force microscopy performance. In combination resonance, excitation frequencies are selected so that summation/subtraction of excitation frequencies is close to the natural frequencies of the microcantilever. Due to the nonlinear nature of this method, the probe response to excitation is very sensitive to change in tip-sample forces. This could be used to generate high-resolution compositional mapping and topographical images of the surface. The present study reveals that both amplitude and phase shift of the combination resonance are sensitive to change in parameters such as Hamaker constant, damping coefficient, Young's modulus and tip-sample initial distance. It is observed that because of high sensitivity to Hamaker constant a small change in the surface material leads to considerable variations in amplitude and phase shift. This sensitivity is employed to improve compositional mapping of the surface materials. It is also found out that the response amplitude in the combination resonance is very sensitive to change in the tip-sample initial distance. This sensitivity may be used to reduce the vertical noise and increase image resolution, especially in environments with low quality factors. Overall, using this technique the image contrast increases significantly and high resolution compositional mapping of surfaces is achieved.
Collapse
Affiliation(s)
| | - Arash Bahrami
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
26
|
Mapping cellular nanoscale viscoelasticity and relaxation times relevant to growth of living Arabidopsis thaliana plants using multifrequency AFM. Acta Biomater 2021; 121:371-382. [PMID: 33309827 DOI: 10.1016/j.actbio.2020.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022]
Abstract
The shapes of living organisms are formed and maintained by precise control in time and space of growth, which is achieved by dynamically fine-tuning the mechanical (viscous and elastic) properties of their hierarchically built structures from the nanometer up. Most organisms on Earth including plants grow by yield (under pressure) of cell walls (bio-polymeric matrices equivalent to extracellular matrix in animal tissues) whose underlying nanoscale viscoelastic properties remain unknown. Multifrequency atomic force microscopy (AFM) techniques exist that are able to map properties to a small subgroup of linear viscoelastic materials (those obeying the Kelvin-Voigt model), but are not applicable to growing materials, and hence are of limited interest to most biological situations. Here, we extend existing dynamic AFM methods to image linear viscoelastic behaviour in general, and relaxation times of cells of multicellular organisms in vivo with nanoscale resolution (~80 nm pixel size in this study), featuring a simple method to test the validity of the mechanical model used to interpret the data. We use this technique to image cells at the surface of living Arabidopsis thaliana hypocotyls to obtain topographical maps of storage E' = 120-200 MPa and loss E″ = 46-111 MPa moduli as well as relaxation times τ = 2.2-2.7 µs of their cell walls. Our results demonstrate that (taken together with previous studies) cell walls, despite their complex molecular composition, display a striking continuity of simple, linear, viscoelastic behaviour across scales-following almost perfectly the standard linear solid model-with characteristic nanometer scale patterns of relaxation times, elasticity and viscosity, whose values correlate linearly with the speed of macroscopic growth. We show that the time-scales probed by dynamic AFM experiments (microseconds) are key to understand macroscopic scale dynamics (e.g. growth) as predicted by physics of polymer dynamics.
Collapse
|
27
|
Gisbert VG, Amo CA, Jaafar M, Asenjo A, Garcia R. Quantitative mapping of magnetic properties at the nanoscale with bimodal AFM. NANOSCALE 2021; 13:2026-2033. [PMID: 33449980 DOI: 10.1039/d0nr08662b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate that a force microscope operated in a bimodal configuration enables the mapping of magnetic interactions with high quantitative accuracy and high-spatial resolution (∼30 nm). Bimodal AFM operation doubles the number of observables with respect to conventional magnetic force microscopy methods which enables to determine quantitatively in a single processing step several magnetic properties. The theory of bimodal AFM provides analytical expressions for different magnetic force models, in particular those characterized by power-law and exponential distance dependences. Bimodal AFM provides a self-evaluation protocol to test the accuracy of the measurements. The agreement obtained between the experiments and theory for two different magnetic samples support the application of bimodal AFM to map quantitatively long-range magnetic interactions.
Collapse
Affiliation(s)
- Victor G Gisbert
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
28
|
Kulkarni T, Mukhopadhyay D, Bhattacharya S. Nanomechanical Insight of Pancreatic Cancer Cell Membrane during Receptor Mediated Endocytosis of Targeted Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2021; 4:984-994. [PMID: 34913031 DOI: 10.1021/acsabm.0c01443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanoscale alterations in the cellular membrane transpire during cellular interactions with the extracellular environment through the endocytosis processes. Although the biological innuendos as well as alterations in cellular morphology during endocytosis are well-known, nanomechanical amendments in the cellular membrane are poorly understood. In this manuscript, atomic force microscope is employed to demonstrate the nanomechanical alterations in membrane dynamics during receptor mediated endocytosis of gold nanoparticles conjugated with either plectin-1 targeted peptide (PTP-GNP) or scrambled peptide (sPEP-GNP). Plectin-1 is aberrantly overexpressed at cell membrane of pancreatic cancer cells and is known to provide and maintain cellular mechanical integrity. During receptor mediated endocytosis of nanoparticles, we demonstrate temporal nanomechanical changes of cell membrane in both immortal pancreatic cancer Panc1 cells and patient derived primary pancreatic cancer cell, 4911. We further confirm the alterations of plectin-1 expression in Panc1 cell membrane during the receptor mediated endocytosis using classical streptavidin-biotin reaction and establish its association with nanomechanical alteration in membrane dynamics. Withdrawal of PTP-GNPs from the cell culture restores the plectin-1 expression at the membrane and reverses the mechanical properties of Panc1. We also show a distinctly opposite trend in nanomechanical behavior in cancer and endothelial cells when treated with sPEP-GNP and PTP-GNP, respectively, signifying receptor independent endocytosis process. This study illustrates the nanomechanical perspective of cell membrane in receptor mediated endocytosis of nanoparticles designed for organ specific drug delivery.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology and Department of Physiology and Biomedical Engineering, Mayo College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology and Department of Physiology and Biomedical Engineering, Mayo College of Medicine and Science, Jacksonville, Florida 32224, United States
| |
Collapse
|
29
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
30
|
Hao Y, Cheng S, Tanaka Y, Hosokawa Y, Yalikun Y, Li M. Mechanical properties of single cells: Measurement methods and applications. Biotechnol Adv 2020; 45:107648. [DOI: 10.1016/j.biotechadv.2020.107648] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
|
31
|
Liu X, Wei Y, Li W, Li B, Liu L. Cytoskeleton induced the changes of microvilli and mechanical properties in living cells by atomic force microscopy. J Cell Physiol 2020; 236:3725-3733. [PMID: 33169846 DOI: 10.1002/jcp.30110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 01/05/2023]
Abstract
The cytoskeleton acts as a scaffold for membrane protrusion, such as microvilli. However, the relationship between the characteristics of microvilli and cytoskeleton remains poorly understood under the physiological state. To investigate the role of the cytoskeleton in regulating microvilli and cellular mechanical properties, atomic force microscopy (AFM) was used to detect the dynamic characteristics of microvillus morphology and elastic modulus of living HeLa cells. First, HeLa and MCF-7 cell lines were stained with Fluor-488-phalloidin and microtubules antibody. Then, the microvilli morphology was analyzed by high-resolution images of AFM in situ. Furthermore, changes in elastic modulus were investigated by the force curve of AFM. Fluorescence microscopy and AFM results revealed that destroyed microfilaments led to a smaller microvilli size, whereas the increase in the aggregation and number of microfilaments led to a larger microvilli size. The destruction and aggregation of microfilaments remarkably affected the mechanical properties of HeLa cells. Microtubule-related drugs induced the change of microtubule, but we failed to note significant differences in microvilli morphology and mechanical properties of cells. In summary, our results unraveled the relationship between microfilaments and the structure of microvilli and Young's modulus in living HeLa cells, which would contribute to the further understanding of the physiological function of the cytoskeleton in vivo.
Collapse
Affiliation(s)
- Xueyan Liu
- Key Laboratory of Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education of China, Wenzhou Medical University, Wenzhou, China
| | - Yuhui Wei
- Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Wei Li
- Key Laboratory of Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education of China, Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, China
| | - Bin Li
- Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lin Liu
- Key Laboratory of Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education of China, Wenzhou Medical University, Wenzhou, China.,Division of Physical Biology and Bioimaging Centre, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Visuo-haptic virtual exploration of single cell morphology and mechanics based on AFM mapping in fast mode. JOURNAL OF MICRO-BIO ROBOTICS 2020. [DOI: 10.1007/s12213-020-00140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
López-Guerra EA, Solares SD. On the frequency dependence of viscoelastic material characterization with intermittent-contact dynamic atomic force microscopy: avoiding mischaracterization across large frequency ranges. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1409-1418. [PMID: 33014681 PMCID: PMC7509376 DOI: 10.3762/bjnano.11.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Atomic force microscopy (AFM) is a widely use technique to acquire topographical, mechanical, or electromagnetic properties of surfaces, as well as to induce surface modifications at the micrometer and nanometer scale. Viscoelastic materials, examples of which include many polymers and biological materials, are an important class of systems, the mechanical response of which depends on the rate of application of the stresses imparted by the AFM tip. The mechanical response of these materials thus depends strongly on the frequency at which the characterization is performed, so much so that important aspects of behavior may be missed if one chooses an arbitrary characterization frequency regardless of the materials properties. In this paper we present a linear viscoelastic analysis of intermittent-contact, nearly resonant dynamic AFM characterization of such materials, considering the possibility of multiple characteristic times. We describe some of the intricacies observed in their mechanical response and alert the reader about situations where mischaracterization may occur as a result of probing the material at frequency ranges or with probes that preclude observation of its viscoelastic behavior. While we do not offer a solution to the formidable problem of inverting the frequency-dependent viscoelastic behavior of a material from dynamic AFM observables, we suggest that a partial solution is offered by recently developed quasi-static force-distance characterization techniques, which incorporate viscoelastic models with multiple characteristic times and can help inform dynamic AFM characterization.
Collapse
Affiliation(s)
- Enrique A López-Guerra
- The George Washington University, Department of Mechanical and Aerospace Engineering, Washington, DC 20052, USA
- Park Systems Inc., Santa Clara, CA, 95054, USA
| | - Santiago D Solares
- The George Washington University, Department of Mechanical and Aerospace Engineering, Washington, DC 20052, USA
| |
Collapse
|
34
|
Wang J, Li X, Zou Q, Su C, Lin NS. Rapid broadband discrete nanomechanical mapping of soft samples on atomic force microscope. NANOTECHNOLOGY 2020; 31:335705. [PMID: 32344391 DOI: 10.1088/1361-6528/ab8deb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, an approach to achieve rapid broadband discrete nanomechanical mapping of soft samples using an atomic force microscope is developed. Nanomechanical mapping (NM) is needed to investigate, for example, dynamic evolution of the nanomechanical distribution of the sample-provided that the mapping is fast enough. The throughput of conventional NM methods, however, is inherently limited by the continuous scanning involved where the probe visits each sampling location continuously. Thus, we propose to significantly reduce the number of measurements through discrete mapping where only discrete sampling locations of interests are visited and measured. An online-searching learning-based technique is utilized to achieve rapid probe engagement and withdrawal with the interaction force minimized at each sampling location. Then, a control-based nanoindentation measurement technique is used to quickly acquire the nanomechanical property at each location, over frequencies that can be chosen arbitrarily in a broad range. Finally, a decomposition-based learning approach is explored to achieve rapid probe transitions between the sampling locations. The proposed technique is demonstrated through experiments using a Polydimethylsiloxane (PDMS) sample and a PDMS-epoxy sample as examples.
Collapse
Affiliation(s)
- Jingren Wang
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States of America
| | | | | | | | | |
Collapse
|
35
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
36
|
Braz JKFS, Martins GM, Morales N, Naulin P, Fuentes C, Barrera NP, O Vitoriano J, Rocha HAO, Oliveira MF, Alves C, Moura CEB. Live endothelial cells on plasma-nitrided and oxidized titanium: An approach for evaluating biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111014. [PMID: 32487415 DOI: 10.1016/j.msec.2020.111014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 02/03/2023]
Abstract
We evaluated the effects of titanium plasma nitriding and oxidation on live endothelial cell viscoelasticity. For this, mechanically polished titanium surfaces and two surfaces treated by planar cathode discharge in nitriding (36N2 and 24H2) and oxidant (36O2 and 24H2). Surfaces were characterized regarding wettability, roughness and chemical composition. Rabbit aortic endothelial cells (RAECs) were cultured on the titanium surfaces. Cell morphology, viability and viscoelasticity were evaluated by scanning electron microscopy (SEM), methyl thiazolyl tetrazolium (MTT) assay and atomic force microscopy (AFM), respectively. Grazing Incidence X-ray Diffraction confirmed the presence of TiN0,26 on the surface (grazing angle theta 1°) of the nitrided samples, decreasing with depth. On the oxidized surface had the formation of TiO3 on the material surface (Theta 1°) and in the deeper layers was noted, with a marked presence of Ti (Theta 3°). Both plasma treatments increased surface roughness and they are hydrophilic (angle <90°). However, oxidation led to a more hydrophilic titanium surface (66.59° ± 3.65 vs. 76.88° ± 2.68; p = 0.001) due to titanium oxide films in their stoichiometric varieties (Ti3O, TiO2, Ti6O), especially Ti3O. Despite focal adhesion on the surfaces, viability was different after 24 h, as cell viability on the oxidized surface was higher than on the nitrided surface (9.1 × 103 vs. 4.5 × 103cells; p < 0.05). This can be explained by analyzing the viscoelastic property of the cellular cytoskeleton (nuclear and peripheral) by AFM. Surface oxidation significantly increased RAECs viscoelasticity at cell periphery, in comparison to the nucleus (2.36 ± 0.3 vs. 1.5 ± 0.4; p < 0.05), and to the RAECs periphery in contact with nitrided surfaces (1.36 ± 0.7; p < 0.05) and polished surfaces (1.55 ± 0.6; p < 0.05). Taken together, our results have shown that titanium plasma treatment directly increased cell viscoelasticity via surface oxidation, and this mechanobiological property subsequently increased biocompatibility.
Collapse
Affiliation(s)
- Janine Karla F S Braz
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil; Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte, Brazil.
| | - Gabriel Moura Martins
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil
| | - Nicole Morales
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Naulin
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Fuentes
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Jussier O Vitoriano
- Laboratório de Plasma Aplicado a Agricultura, Saúde e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Brazil
| | - Hugo A O Rocha
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Brazil.
| | - Moacir F Oliveira
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil.
| | - Clodomiro Alves
- Laboratório de Plasma Aplicado a Agricultura, Saúde e Meio Ambiente, Universidade Federal do Rio Grande do Norte, Brazil.
| | - Carlos Eduardo B Moura
- Department of Animal Science, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil.
| |
Collapse
|
37
|
Harcombe DM, Ruppert MG, Fleming AJ. A review of demodulation techniques for multifrequency atomic force microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:76-91. [PMID: 31976199 PMCID: PMC6964647 DOI: 10.3762/bjnano.11.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/11/2019] [Indexed: 05/29/2023]
Abstract
This article compares the performance of traditional and recently proposed demodulators for multifrequency atomic force microscopy. The compared methods include the lock-in amplifier, coherent demodulator, Kalman filter, Lyapunov filter, and direct-design demodulator. Each method is implemented on a field-programmable gate array (FPGA) with a sampling rate of 1.5 MHz. The metrics for comparison include the sensitivity to other frequency components and the magnitude of demodulation artifacts for a range of demodulator bandwidths. Performance differences are demonstrated through higher harmonic atomic force microscopy imaging.
Collapse
Affiliation(s)
- David M Harcombe
- School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Michael G Ruppert
- School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Andrew J Fleming
- School of Electrical Engineering and Computing, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
38
|
Efremov YM, Okajima T, Raman A. Measuring viscoelasticity of soft biological samples using atomic force microscopy. SOFT MATTER 2020; 16:64-81. [PMID: 31720656 DOI: 10.1039/c9sm01020c] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mechanical properties play important roles at different scales in biology. At the level of a single cell, the mechanical properties mediate mechanosensing and mechanotransduction, while at the tissue and organ levels, changes in mechanical properties are closely connected to disease and physiological processes. Over the past three decades, atomic force microscopy (AFM) has become one of the most widely used tools in the mechanical characterization of soft samples, ranging from molecules, cell organoids and cells to whole tissue. AFM methods can be used to quantify both elastic and viscoelastic properties, and significant recent developments in the latter have been enabled by the introduction of new techniques and models for data analysis. Here, we review AFM techniques developed in recent years for examining the viscoelastic properties of cells and soft gels, describe the main steps in typical data acquisition and analysis protocols, and discuss relevant viscoelastic models and how these have been used to characterize the specific features of cellular and other biological samples. We also discuss recent trends and potential directions for this field.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA and Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Takaharu Okajima
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
39
|
Andrei L, Kasas S, Ochoa Garrido I, Stanković T, Suárez Korsnes M, Vaclavikova R, Assaraf YG, Pešić M. Advanced technological tools to study multidrug resistance in cancer. Drug Resist Updat 2020; 48:100658. [DOI: 10.1016/j.drup.2019.100658] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023]
|
40
|
Moreno-Guerra JA, Romero-Sánchez IC, Martinez-Borquez A, Tassieri M, Stiakakis E, Laurati M. Model-Free Rheo-AFM Probes the Viscoelasticity of Tunable DNA Soft Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904136. [PMID: 31460707 DOI: 10.1002/smll.201904136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Atomic force microscopy rheological measurements (Rheo-AFM) of the linear viscoelastic properties of single, charged colloids having a star-like architecture with a hard core and an extended, deformable double-stranded DNA (dsDNA) corona dispersed in aqueous saline solutions are reported. This is achieved by analyzing indentation and relaxation experiments performed on individual colloidal particles by means of a novel model-free Fourier transform method that allows a direct evaluation of the frequency-dependent linear viscoelastic moduli of the system under investigation. The method provides results that are consistent with those obtained via a conventional fitting procedure of the force-relaxation curves based on a modified Maxwell model. The outcomes show a pronounced softening of the dsDNA colloids, which is described by an exponential decay of both the Young's and the storage modulus as a function of the salt concentration within the dispersing medium. The strong softening is related to a critical reduction of the size of the dsDNA corona, down to ≈70% of its size in a salt-free solution. This can be correlated to significant topological changes of the dense star-like polyelectrolyte forming the corona, which are induced by variations in the density profile of the counterions. Similarly, a significant reduction of the stiffness is obtained by increasing the length of the dsDNA chains, which we attribute to a reduction of the DNA density in the outer region of the corona.
Collapse
Affiliation(s)
- José A Moreno-Guerra
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| | - Ivany C Romero-Sánchez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| | - Alejandro Martinez-Borquez
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| | - Manlio Tassieri
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Emmanuel Stiakakis
- Forschungszentrum Jülich, Institute of Complex Systems 3, Leo-Brandt-Strasse, 52425, Jülich, Germany
| | - Marco Laurati
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, 37150, León, Mexico
| |
Collapse
|
41
|
Aybeke EN, Ployon S, Brulé M, De Fonseca B, Bourillot E, Morzel M, Lesniewska E, Canon F. Nanoscale Mapping of the Physical Surface Properties of Human Buccal Cells and Changes Induced by Saliva. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12647-12655. [PMID: 31448614 DOI: 10.1021/acs.langmuir.9b01979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mucosal pellicle, also called salivary pellicle, is a thin biological layer made of salivary and epithelial constituents, lining oral mucosae. It contributes to their protection against microbiological, chemical, or mechanical insults. Pellicle formation depends on the cells' surface properties, and in turn the pellicle deeply modifies such properties. It has been reported that the expression of the transmembrane mucin MUC1 in oral epithelial cells improves the formation of the mucosal pellicle. Here, we describe an approach combining classical and functionalized tip atomic force microscopy and scanning microwave microscopy to characterize how MUC1 induces changes in buccal cells' morphology, hydrophobicity, and electric properties to elucidate the physicochemical mechanisms involved in the enhancement of the anchoring of salivary proteins. We show that MUC1 expression did not modify drastically the morphology of the epithelial cells' surface. MUC1 expression, however, resulted in the presence of more hydrophobic and more charged areas at the cell surface. The presence of salivary proteins decreased the highest attractive and repulsive forces recorded between the cell surface and a functionalized hydrophobic atomic force microscopy (AFM) tip, suggesting that the most hydrophobic and charged areas participate in the binding of salivary proteins. The cells' dielectric properties were altered by both MUC1 expression and the presence of a mucosal pellicle. We finally show that in the absence of MUC1, the pellicle appeared as a distinct layer poorly interacting with the cells' surface. This integrative AFM/scanning microwave microscopy approach may usefully describe the surface properties of various cell types, with relevance to the bioadhesion or biomimetics fields.
Collapse
Affiliation(s)
- Ece Neslihan Aybeke
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Sarah Ployon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Marine Brulé
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Brice De Fonseca
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté , Dijon F-21078 , France
| | - Eric Bourillot
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté , Dijon F-21078 , France
| | - Martine Morzel
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| | - Eric Lesniewska
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté , Dijon F-21078 , France
| | - Francis Canon
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté , Dijon F-21000 , France
| |
Collapse
|
42
|
Determination of the Elastic Moduli of a Single Cell Cultured on a Rigid Support by Force Microscopy. Biophys J 2019; 114:2923-2932. [PMID: 29925028 DOI: 10.1016/j.bpj.2018.05.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/22/2022] Open
Abstract
The elastic response of a living cell is affected by its physiological state. This property provides mechanical fingerprints of a cell's dysfunctionality. The softness (kilopascal range) and thickness (2-15 μm) of mammalian cells imply that the force exerted by the probe might be affected by the stiffness of the solid support. This observation makes infinite sample thickness models unsuitable to describe quantitatively the forces and deformations on a cell. Here, we report a general theory to determine the true Young's moduli of a single cell from a force-indentation curve. Analytical expressions are deduced for common geometries such as flat punches, paraboloids, cones, needles, and nanowires. For a given cell and indentation, the influence of the solid support on the measurements is reduced by using sharp and high aspect ratio tips. The theory is validated by finite element simulations.
Collapse
|
43
|
Benaglia S, Amo CA, Garcia R. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. NANOSCALE 2019; 11:15289-15297. [PMID: 31386741 DOI: 10.1039/c9nr04396a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Quantitative mapping of viscoelastic properties of soft matter with a nanoscale spatial resolution is an active and relevant research topic in atomic force microscopy (AFM) and nanoscale science characterization. The AFM has demonstrated its accuracy to measure the energy dissipated on a sample surface with an atomic-scale resolution. However, the transformation of energy dissipation values associated with viscoelastic interactions to a material property remains very challenging. A key issue is to establish the relationship between the AFM observables and some material properties such as viscosity coefficient or relaxation time. Another relevant issue is to determine the accuracy of the measurements. We demonstrate that bimodal atomic force microscopy enables the accurate measurement of several viscoelastic parameters such as the Young's modulus, viscosity coefficient, retardation time or loss tangent. The parameters mentioned above are measured at the same time that the true topography. We demonstrate that the loss tangent is proportional to the viscosity coefficient. We show that the mapping of viscoelastic properties neither degrades the spatial resolution nor the imaging speed of AFM. The results are presented for homogeneous polymer and block co-polymer samples with Young's modulus, viscosity and retardation times ranging from 100 MPa to 3 GPa, 10 to 400 Pa s and 50 to 400 ns, respectively. Numerical simulations validate the accuracy of bimodal AFM to determine the viscoelastic parameters.
Collapse
Affiliation(s)
- Simone Benaglia
- Material Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
| | | | | |
Collapse
|
44
|
Starvation effect on the morphology of microvilli in HeLa cells. Biochem Biophys Res Commun 2019; 514:1238-1243. [DOI: 10.1016/j.bbrc.2019.05.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 01/03/2023]
|
45
|
López-Guerra EA, Shen H, Solares SD, Shuai D. Acquisition of time-frequency localized mechanical properties of biofilms and single cells with high spatial resolution. NANOSCALE 2019; 11:8918-8929. [PMID: 31017130 DOI: 10.1039/c8nr10287b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biofilms are a cluster of bacteria embedded in extracellular polymeric substances (EPS) that contain a complex composition of polysaccharides, proteins, and extracellular DNA (eDNA). Desirable mechanical properties of the biofilms are critical for their survival, propagation, and dispersal, and the response of mechanical properties to different treatment conditions also sheds light on biofilm control and eradication in vivo and on engineering surfaces. However, it is challenging yet important to investigate mechanical behaviors of biofilms with a high spatial resolution because biofilms are very heterogeneous. Moreover, biofilms are viscoelastic, and their time-dependent mechanical behavior is difficult to capture. Herein, we develop a powerful technique that combines the high spatial resolution of an atomic force microscope (AFM) with a rigorous history-dependent viscoelastic analysis to deliver highly spatial-localized biofilm properties within a wide time-frequency window. By exploiting the use of static force spectroscopy in combination with an appropriate viscoelastic framework, we highlight the intensive amount of time-dependent information experimentally available that has been largely overlooked. It is shown that this technique provides a detailed nanorheological signature of the biofilms even at the single-cell level. We share the computational routines that would allow any user to perform the analysis from experimental raw data. The detailed localization of mechanical properties in space and in time-frequency domain provides insights into the understanding of biofilm stability, cohesiveness, dispersal, and control.
Collapse
Affiliation(s)
- Enrique A López-Guerra
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA.
| | | | | | | |
Collapse
|
46
|
Plaut JS, Strzelecka-Kiliszek A, Bozycki L, Pikula S, Buchet R, Mebarek S, Chadli M, Bolean M, Simao AMS, Ciancaglini P, Magrini A, Rosato N, Magne D, Girard-Egrot A, Farquharson C, Esener SC, Millan JL, Bottini M. Quantitative atomic force microscopy provides new insight into matrix vesicle mineralization. Arch Biochem Biophys 2019; 667:14-21. [PMID: 30998909 DOI: 10.1016/j.abb.2019.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/22/2022]
Abstract
Matrix vesicles (MVs) are a class of extracellular vesicles that initiate mineralization in cartilage, bone, and other vertebrate tissues by accumulating calcium ions (Ca2+) and inorganic phosphate (Pi) within their lumen and forming a nucleation core (NC). After further sequestration of Ca2+ and Pi, the NC transforms into crystalline complexes. Direct evidence of the existence of the NC and its maturation have been provided solely by analyses of dried samples. We isolated MVs from chicken embryo cartilage and used atomic force microscopy peak force quantitative nanomechanical property mapping (AFM-PFQNM) to measure the nanomechanical and morphological properties of individual MVs under both mineralizing (+Ca2+) and non-mineralizing (-Ca2+) fluid conditions. The elastic modulus of MVs significantly increased by 4-fold after incubation in mineralization buffer. From AFM mapping data, we inferred the morphological changes of MVs as mineralization progresses: prior to mineralization, a punctate feature, the NC, is present within MVs and this feature grows and stiffens during mineralization until it occupies most of the MV lumen. Dynamic light scattering showed a significant increase in hydrodynamic diameter and no change in the zeta potential of hydrated MVs after incubation with Ca2+. This validates that crystalline complexes, which are strongly negative relative to MVs, were forming within the lumen of MVs. These data were substantiated by transmission electron microscopy energy dispersive X-ray and Fourier transform infrared spectroscopic analyses of dried MVs, which provide evidence that the complexes increased in size, crystallinity, and Ca/P ratio within MVs during the mineralization process.
Collapse
Affiliation(s)
- Justin S Plaut
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Lukasz Bozycki
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - René Buchet
- Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, 69 622, Villeurbanne Cedex, France
| | - Saida Mebarek
- Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, 69 622, Villeurbanne Cedex, France
| | - Meriem Chadli
- Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, 69 622, Villeurbanne Cedex, France
| | - Maytê Bolean
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - USP, Departamento de Química, 14040-901, Ribeirão Preto, Brazil
| | - Ana M S Simao
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - USP, Departamento de Química, 14040-901, Ribeirão Preto, Brazil
| | - Pietro Ciancaglini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - USP, Departamento de Química, 14040-901, Ribeirão Preto, Brazil
| | - Andrea Magrini
- Department of Biopathology and Imaging Diagnostics, University of Rome Tor Vergata, Rome, Italy; Nanoscience & Nanotechnology & Innovative Instrumentation (NAST) Centre, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Rosato
- Nanoscience & Nanotechnology & Innovative Instrumentation (NAST) Centre, University of Rome Tor Vergata, Rome, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David Magne
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - USP, Departamento de Química, 14040-901, Ribeirão Preto, Brazil
| | - Agnès Girard-Egrot
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - USP, Departamento de Química, 14040-901, Ribeirão Preto, Brazil
| | - Colin Farquharson
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh, EH25 9RG, UK
| | - Sadik C Esener
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97201, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - José L Millan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Massimo Bottini
- Nanoscience & Nanotechnology & Innovative Instrumentation (NAST) Centre, University of Rome Tor Vergata, Rome, Italy; Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
47
|
Measurement of Radial Elasticity and Original Height of DNA Duplex Using Tapping-Mode Atomic Force Microscopy. NANOMATERIALS 2019; 9:nano9040561. [PMID: 30959929 PMCID: PMC6523151 DOI: 10.3390/nano9040561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/28/2019] [Accepted: 03/30/2019] [Indexed: 11/17/2022]
Abstract
Atomic force microscopy (AFM) can characterize nanomaterial elasticity. However, some one-dimensional nanomaterials, such as DNA, are too small to locate with an AFM tip because of thermal drift and the nonlinearity of piezoelectric actuators. In this study, we propose a novel approach to address the shortcomings of AFM and obtain the radial Young's modulus of a DNA duplex. The elastic properties are evaluated by combining physical calculations and measured experimental results. The initial elasticity of the DNA is first assumed; based on tapping-mode scanning images and tip⁻sample interaction force simulations, the calculated elastic modulus is extracted. By minimizing the error between the assumed and experimental values, the extracted elasticity is assigned as the actual modulus for the material. Furthermore, tapping-mode image scanning avoids the necessity of locating the probe exactly on the target sample. In addition to elasticity measurements, the deformation caused by the tapping force from the AFM tip is compensated and the original height of the DNA is calculated. The results show that the radial compressive Young's modulus of DNA is 125⁻150 MPa under a tapping force of 0.5⁻1.3 nN; its original height is 1.9 nm. This approach can be applied to the measurement of other nanomaterials.
Collapse
|
48
|
Kim S, Moses KJ, Sharma S, Bilal M, Cohen Y. Surface characterization data for tethered polyacrylic acid layers synthesized on polysulfone surfaces. Data Brief 2019; 23:103747. [PMID: 31372412 PMCID: PMC6660637 DOI: 10.1016/j.dib.2019.103747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 11/30/2022] Open
Abstract
The data presented are supplementary to an article [Kim et al., 2019] on synthesis and surface characterization of tethered polyacrylic acid (PAA) layers on polysulfone (PSf) film/membrane surfaces via atmospheric pressure plasma-induced graft polymerization (APPIGP). Data on surface characterization of the synthesized tethered PAA layers includes: AFM topographic surface images and height distributions of surface features, dry layer thickness, chain rupture length distributions determined via AFM based force spectroscopy (AFM-FS), in addition to measurements of water contact angles. Fouling propensity data for ultrafiltration of alginic acid as a model foulant are also provided for native and PAA grafted PSf ultrafiltration (UF) membranes.
Collapse
Affiliation(s)
- Soomin Kim
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Kari J. Moses
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Shivani Sharma
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Muhammad Bilal
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yoram Cohen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Corresponding author.
| |
Collapse
|
49
|
Atomic force microscopy-based cancer diagnosis by detecting cancer-specific biomolecules and cells. Biochim Biophys Acta Rev Cancer 2019; 1871:367-378. [DOI: 10.1016/j.bbcan.2019.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
|
50
|
Kim J, Li B, Scheideler OJ, Kim Y, Sohn LL. Visco-Node-Pore Sensing: A Microfluidic Rheology Platform to Characterize Viscoelastic Properties of Epithelial Cells. iScience 2019; 13:214-228. [PMID: 30870780 PMCID: PMC6416673 DOI: 10.1016/j.isci.2019.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/26/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Viscoelastic properties of cells provide valuable information regarding biological or clinically relevant cellular characteristics. Here, we introduce a new, electronic-based, microfluidic platform-visco-node-pore sensing (visco-NPS)-which quantifies cellular viscoelastic properties under periodic deformation. We measure the storage (G') and loss (G″) moduli (i.e., elasticity and viscosity, respectively) of cells. By applying a wide range of deformation frequencies, our platform quantifies the frequency dependence of viscoelastic properties. G' and G″ measurements show that the viscoelastic properties of malignant breast epithelial cells (MCF-7) are distinctly different from those of non-malignant breast epithelial cells (MCF-10A). With its sensitivity, visco-NPS can dissect the individual contributions of different cytoskeletal components to whole-cell mechanical properties. Moreover, visco-NPS can quantify the mechanical transitions of cells as they traverse the cell cycle or are initiated into an epithelial-mesenchymal transition. Visco-NPS identifies viscoelastic characteristics of cell populations, providing a biophysical understanding of cellular behavior and a potential for clinical applications.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, USA
| | - Brian Li
- Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA
| | - Olivia J Scheideler
- Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA
| | - Youngbin Kim
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA
| | - Lydia L Sohn
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA.
| |
Collapse
|