1
|
Duan J, Lin G, Jiao K, Hong X, Lin X. Fully automated in vivo screening system for multi-organ imaging and pharmaceutical evaluation. MICROSYSTEMS & NANOENGINEERING 2025; 11:22. [PMID: 39865104 PMCID: PMC11770100 DOI: 10.1038/s41378-024-00852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/06/2024] [Accepted: 10/29/2024] [Indexed: 01/28/2025]
Abstract
Advancements in screening technologies employing small organisms have enabled deep profiling of compounds in vivo. However, current strategies for phenotyping of behaving animals, such as zebrafish, typically involve tedious manipulations. Here, we develop and validate a fully automated in vivo screening system (AISS) that integrates microfluidic technology and computer-vision-based control methods to enable rapid evaluation of biological responses of non-anesthetized zebrafish to molecular gradients. Via precise fluidic control, the AISS allows automatic loading, encapsulation, transportation and immobilization of single-larva in droplets for multi-organ imaging and chemical gradients generation inaccessible in previous systems. Using this platform, we examine the cardiac sensitivity of an antipsychotic drug with multiple concentration gradients, and reveal dramatic diversity and complexity in the accurate chemical regulation of cardiac functions in vivo. This proposed system expands the arsenal of tools available for in vivo screening and facilitates comprehensive profiling of pharmaceuticals.
Collapse
Affiliation(s)
- Junhan Duan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China
| | - Guanming Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China
| | - Kangjian Jiao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China
| | - Xiaohui Hong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China
| | - Xudong Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China.
| |
Collapse
|
2
|
Liu Z, Luo X, Yan-Do R, Wang Y, Xie X, Li Z, Cheng SH, Shi P. Vertebrates on a Chip: Noninvasive Electrical and Optical Mapping of Whole Brain Activity Associated with Pharmacological Treatments. ACS Chem Neurosci 2024; 15:2121-2131. [PMID: 38775291 DOI: 10.1021/acschemneuro.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Mapping brain activities is necessary for understanding brain physiology and discovering new treatments for neurological disorders. Such efforts have greatly benefited from the advancement in technologies for analyzing neural activity with improving temporal or spatial resolution. Here, we constructed a multielectrode array based brain activity mapping (BAM) system capable of stabilizing and orienting zebrafish larvae for recording electroencephalogram (EEG) like local field potential (LFP) signals and brain-wide calcium dynamics in awake zebrafish. Particularly, we designed a zebrafish trap chip that integrates with an eight-by-eight surface electrode array, so that brain electrophysiology can be noninvasively recorded in an agarose-free and anesthetic-free format with a high temporal resolution of 40 μs, matching the capability typically achieved by invasive LFP recording. Benefiting from the specially designed hybrid system, we can also conduct calcium imaging directly on immobilized awake larval zebrafish, which further supplies us with high spatial resolution brain-wide activity data. All of these innovations reconcile the limitations of sole LFP recording or calcium imaging, emphasizing a synergy of combining electrical and optical modalities within one unified device for activity mapping across a whole vertebrate brain with both improved spatial and temporal resolutions. The compatibility with in vivo drug treatment further makes it suitable for pharmacology studies based on multimodal measurement of brain-wide physiology.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xuan Luo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Richard Yan-Do
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering Hong Kong Science Park, Hong Kong SAR
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhongping Li
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shuk Han Cheng
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering Hong Kong Science Park, Hong Kong SAR
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Kowloon, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong Shenzhen, Guangdong 518057, China
| |
Collapse
|
3
|
Xin L, Huang M, Huang Z. Quantitative assessment and monitoring of microplastics and nanoplastics distributions and lipid metabolism in live zebrafish using hyperspectral stimulated Raman scattering microscopy. ENVIRONMENT INTERNATIONAL 2024; 187:108679. [PMID: 38657405 DOI: 10.1016/j.envint.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MP) and nanoplastics (NP) pollutions pose a rising environmental threat to humans and other living species, given their escalating presence in essential resources that living subjects ingest and/or inhale. Herein, to elucidate the potential health implications of MP/NP, we report for the first time by using label-free hyperspectral stimulated Raman scattering (SRS) imaging technique developed to quantitatively monitor the bioaccumulation and metabolic toxicity of MP/NP within live zebrafish larvae during their early developmental stages. Zebrafish embryos are exposed to environmentally related concentrations (3-60 μg/ml) of polystyrene (PS) beads with two typical sizes (2 μm and 50 nm). Zebrafish are administered isotope-tagged fatty acids through microinjection and dietary intake for in vivo tracking of lipid metabolism dynamics. In vivo 3D quantitative vibrational imaging of PS beads and intrinsic biomolecules across key zebrafish organs reveals that gut and liver are the primary target organs of MP/NP, while only 50 nm PS beads readily aggregate and adhere to the brain and blood vessels. The 50 nm PS beads are also found to induce more pronounced hepatic inflammatory response compared to 2 μm counterparts, characterized by increased biogenesis of lipid droplets and upregulation of arachidonic acid detected in zebrafish liver. Furthermore, Raman-tagged SRS imaging of fatty acids uncovers that MP/NP exposure significantly reduces yolk lipid utilization and promotes dietary lipid storage in zebrafish, possibly associated with developmental delays and more pronounced food dilution effects in zebrafish larvae exposed to 2 μm PS beads. The hyperspectral SRS imaging in this work shows that MP/NP exposure perturbs the development and lipid metabolism in zebrafish larvae, furthering the understanding of MP/NP ingestions and consequent toxicity in different organs in living species.
Collapse
Affiliation(s)
- Le Xin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Meizhen Huang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
4
|
Kalathil Balakrishnan H, Schultz AG, Lee SM, Alexander R, Dumée LF, Doeven EH, Yuan D, Guijt RM. 3D printed porous membrane integrated devices to study the chemoattractant induced behavioural response of aquatic organisms. LAB ON A CHIP 2024; 24:505-516. [PMID: 38165774 DOI: 10.1039/d3lc00488k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Biological models with genetic similarities to humans are used for exploratory research to develop behavioral screening tools and understand sensory-motor interactions. Their small, often mm-sized appearance raises challenges in the straightforward quantification of their subtle behavioral responses and calls for new, customisable research tools. 3D printing provides an attractive approach for the manufacture of custom designs at low cost; however, challenges remain in the integration of functional materials like porous membranes. Nanoporous membranes have been integrated with resin exchange using purpose-designed resins by digital light projection 3D printing to yield functionally integrated devices using a simple, economical and semi-automated process. Here, the impact of the layer thickness and layer number on the porous properties - parameters unique for 3D printing - are investigated, showing decreases in mean pore diameter and porosity with increasing layer height and layer number. From the same resin formulation, materials with average pore size between 200 and 600 nm and porosity between 45% and 61% were printed. Membrane-integrated devices were used to study the chemoattractant induced behavioural response of zebrafish embryos and planarians, both demonstrating a predominant behavioral response towards the chemoattractant, spending >85% of experiment time in the attractant side of the observation chamber. The presented 3D printing method can be used for printing custom designed membrane-integrated devices using affordable 3D printers and enable fine-tuning of porous properties through adjustment of layer height and number. This accessible approach is expected to be adopted for applications including behavioural studies, early-stage pre-clinical drug discovery and (environmental) toxicology.
Collapse
Affiliation(s)
- Hari Kalathil Balakrishnan
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
- Institute for Frontier Materials, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Soo Min Lee
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
| | - Richard Alexander
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
| | - Ludovic F Dumée
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Centre on CO2 and Hydrogen, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Egan H Doeven
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia
| | - Dan Yuan
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Rosanne M Guijt
- Centre for Rural and Regional Futures, Deakin University, Locked Bag 20000, Geelong, VIC 3320, Australia.
| |
Collapse
|
5
|
Buentello DC, Garcia-Corral M, Trujillo-de Santiago G, Alvarez MM. Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Rev Biomed Eng 2024; 17:243-263. [PMID: 36301779 DOI: 10.1109/rbme.2022.3217486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuron-on-chip (NoC) systems-microfluidic devices in which neurons are cultured-have become a promising alternative to replace or minimize the use of animal models and have greatly facilitated in vitro research. Here, we review and discuss current developments in neuron-on-chip platforms, with a particular emphasis on existing biological models, culturing techniques, biomaterials, and topologies. We also discuss how the architecture, flow, and gradients affect neuronal growth, differentiation, and development. Finally, we discuss some of the most recent applications of NoCs in fundamental research (i.e., studies on the effects of electrical, mechanical/topological, or chemical stimuli) and in disease modeling.
Collapse
|
6
|
Uribe-Arias A, Rozenblat R, Vinepinsky E, Marachlian E, Kulkarni A, Zada D, Privat M, Topsakalian D, Charpy S, Candat V, Nourin S, Appelbaum L, Sumbre G. Radial astrocyte synchronization modulates the visual system during behavioral-state transitions. Neuron 2023; 111:4040-4057.e6. [PMID: 37863038 PMCID: PMC10783638 DOI: 10.1016/j.neuron.2023.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023]
Abstract
Glial cells support the function of neurons. Recent evidence shows that astrocytes are also involved in brain computations. To explore whether and how their excitable nature affects brain computations and motor behaviors, we used two-photon Ca2+ imaging of zebrafish larvae expressing GCaMP in both neurons and radial astrocytes (RAs). We found that in the optic tectum, RAs synchronize their Ca2+ transients immediately after the end of an escape behavior. Using optogenetics, ablations, and a genetically encoded norepinephrine sensor, we observed that RA synchronous Ca2+ events are mediated by the locus coeruleus (LC)-norepinephrine circuit. RA synchronization did not induce direct excitation or inhibition of tectal neurons. Nevertheless, it modulated the direction selectivity and the long-distance functional correlations among neurons. This mechanism supports freezing behavior following a switch to an alerted state. These results show that LC-mediated neuro-glial interactions modulate the visual system during transitions between behavioral states.
Collapse
Affiliation(s)
- Alejandro Uribe-Arias
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Rotem Rozenblat
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ehud Vinepinsky
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emiliano Marachlian
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Anirudh Kulkarni
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David Zada
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Martin Privat
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Diego Topsakalian
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sarah Charpy
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Virginie Candat
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Sarah Nourin
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Lior Appelbaum
- The Faculty of Life Sciences and The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Germán Sumbre
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
7
|
Dong K, Liu WC, Su Y, Lyu Y, Huang H, Zheng N, Rogers JA, Nan K. Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices. BME FRONTIERS 2023; 4:0034. [PMID: 38435343 PMCID: PMC10907027 DOI: 10.34133/bmef.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Millimeter-scale animals such as Caenorhabditis elegans, Drosophila larvae, zebrafish, and bees serve as powerful model organisms in the fields of neurobiology and neuroethology. Various methods exist for recording large-scale electrophysiological signals from these animals. Existing approaches often lack, however, real-time, uninterrupted investigations due to their rigid constructs, geometric constraints, and mechanical mismatch in integration with soft organisms. The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability, offering unique capabilities for chronic, stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs. This review summarizes the most advanced technologies for electrophysiological studies, based on methods of 3-dimensional flexible bioelectronics. A concluding section addresses the challenges of these devices in achieving freestanding, robust, and multifunctional biointerfaces.
Collapse
Affiliation(s)
- Kairu Dong
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, 310027, China
| | - Wen-Che Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
| | - Yuyan Su
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
| | - Yidan Lyu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies,
Zhejiang University, Hangzhou 310027, China
- College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China
- State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou 310058, China
- CCAI by MOE and Zhejiang Provincial Government (ZJU), Hangzhou 310027, China
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics,
Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA
| | - Kewang Nan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
8
|
Sy SKH, Chan DCW, Chan RCH, Lyu J, Li Z, Wong KKY, Choi CHJ, Mok VCT, Lai HM, Randlett O, Hu Y, Ko H. An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish. Nat Commun 2023; 14:227. [PMID: 36641479 PMCID: PMC9840631 DOI: 10.1038/s41467-023-35836-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Studying chemosensory processing desires precise chemical cue presentation, behavioral response monitoring, and large-scale neuronal activity recording. Here we present Fish-on-Chips, a set of optofluidic tools for highly-controlled chemical delivery while simultaneously imaging behavioral outputs and whole-brain neuronal activities at cellular resolution in larval zebrafish. These include a fluidics-based swimming arena and an integrated microfluidics-light sheet fluorescence microscopy (µfluidics-LSFM) system, both of which utilize laminar fluid flows to achieve spatiotemporally precise chemical cue presentation. To demonstrate the strengths of the platform, we used the navigation arena to reveal binasal input-dependent behavioral strategies that larval zebrafish adopt to evade cadaverine, a death-associated odor. The µfluidics-LSFM system enables sequential presentation of odor stimuli to individual or both nasal cavities separated by only ~100 µm. This allowed us to uncover brainwide neural representations of cadaverine sensing and binasal input summation in the vertebrate model. Fish-on-Chips is readily generalizable and will empower the investigation of neural coding in the chemical senses.
Collapse
Affiliation(s)
- Samuel K H Sy
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Danny C W Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Roy C H Chan
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jing Lyu
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhongqi Li
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kenneth K Y Wong
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong Island, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Hei-Ming Lai
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Owen Randlett
- Institut national de la santé et de la recherche médicale, Université Claude Bernard Lyon 1, Lyon, France
| | - Yu Hu
- Department of Mathematics and Division of Life Science, Faculty of Science, Hong Kong University of Science and Technology, Clear Water Bay, New Territories, Hong Kong SAR, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
9
|
Loganathan D, Wu SH, Chen CY. Behavioural responses of zebrafish with sound stimuli in microfluidics. LAB ON A CHIP 2022; 23:106-114. [PMID: 36453125 DOI: 10.1039/d2lc00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neuronal activities of the human brain responsible for cognitive features have been theorized through several animal models that exhibited various complementary spatial learning modes by generating a flexible repertoire of behavioral strategies. However, for such studies associated with a neurodegenerative disease, which can be further manipulated to provide therapeutic strategies, the animal models employed in their developmental stages have been preferred over the adult ones. This pilot work was incepted to underscore the spatial memory capabilities that strengthened the intricate mechanism of memory acquisition potential in one of the low-order evolutionarily conserved species, such as zebrafish larvae. Initially, a reliable and more easily reproducible microfluidic platform integrating simple and intricate paths was designed to learn and test the spatial information in zebrafish larvae of 4-6 d.p.f. under non-invasive acoustic stimuli. Further, to acquire spatial information as the representation of spatial memory formation in zebrafish larvae, the acoustic startle responses were evaluated by quantifying various dynamic behaviors under distinct operating parameters. After significant conditioning sessions, the spatial memory was tested by employing variable 'freezing'. By the end of the 30 min-long test session, 6 d.p.f. larvae were found to exhibit the highest value of freezing of approximately 43% and 20% in the short and long paths, respectively. Even though a substantial rate of memory loss was observed, it can be envisaged to serve several behavioral strategies that process the dynamic cognitive memory among distinct spatiotemporal environments. Further, the proposed behavioral paradigm had the advantage of being more adaptable and reliably replicable by other researchers. As a consequence, different hypotheses can be readily tested to generate more reproducible findings towards distinct neurobehavioral characteristics. Therefore, the proposed paradigm for the consolidation of spatial memory based on the non-invasive spatial avoidance strategies could provide an enduring framework of reference for behavioral studies using zebrafish larvae.
Collapse
Affiliation(s)
- Dineshkumar Loganathan
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Shu-Heng Wu
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | - Chia-Yuan Chen
- Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
10
|
Khalili A, van Wijngaarden E, Zoidl GR, Rezai P. Simultaneous screening of zebrafish larvae cardiac and respiratory functions: a microfluidic multi-phenotypic approach. INTEGRATIVE BIOLOGY : QUANTITATIVE BIOSCIENCES FROM NANO TO MACRO 2022; 14:162-170. [PMID: 36416255 DOI: 10.1093/intbio/zyac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
Abstract
Multi-phenotypic screening of multiple zebrafish larvae plays an important role in enhancing the quality and speed of biological assays. Many microfluidic platforms have been presented for zebrafish phenotypic assays, but multi-organ screening of multiple larvae, from different needed orientations, in a single device that can enable rapid and large-sample testing is yet to be achieved. Here, we propose a multi-phenotypic quadruple-fish microfluidic chip for simultaneous monitoring of heart activity and fin movement of 5-7-day postfertilization zebrafish larvae trapped in the chip. In each experiment, fin movements of four larvae were quantified in the dorsal view in terms of fin beat frequency (FBF). Positioning of four optical prisms next to the traps provided the lateral views of the four larvae and enabled heart rate (HR) monitoring. The device's functionality in chemical testing was validated by assessing the impacts of ethanol on heart and fin activities. Larvae treated with 3% ethanol displayed a significant drop of 13.2 and 35.8% in HR and FBF, respectively. Subsequent tests with cadmium chloride highlighted the novel application of our device for screening the effect of heavy metals on cardiac and respiratory function at the same time. Exposure to 5 $\mu$g/l cadmium chloride revealed a significant increase of 8.2% and 39.2% in HR and FBF, respectively. The device can be employed to monitor multi-phenotypic behavioral responses of zebrafish larvae induced by chemical stimuli in various chemical screening assays, in applications such as ecotoxicology and drug discovery.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
11
|
Gallois B, Pontani LL, Debrégeas G, Candelier R. A scalable assay for chemical preference of small freshwater fish. Front Behav Neurosci 2022; 16:990792. [PMID: 36212190 PMCID: PMC9541871 DOI: 10.3389/fnbeh.2022.990792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Sensing the chemical world is of primary importance for aquatic organisms, and small freshwater fish are increasingly used in toxicology, ethology, and neuroscience by virtue of their ease of manipulation, tissue imaging amenability, and genetic tractability. However, precise behavioral analyses are generally challenging to perform due to the lack of knowledge of what chemical the fish are exposed to at any given moment. Here we developed a behavioral assay and a specific infrared dye to probe the preference of young zebrafish for virtually any compound. We found that the innate aversion of zebrafish to citric acid is not mediated by modulation of the swim but rather by immediate avoidance reactions when the product is sensed and that the preference of juvenile zebrafish for ATP changes from repulsion to attraction during successive exposures. We propose an information-based behavioral model for which an exploration index emerges as a relevant behavioral descriptor, complementary to the standard preference index. Our setup features a high versatility in protocols and is automatic and scalable, which paves the way for high-throughput preference compound screening at different ages.
Collapse
|
12
|
|
13
|
Tomasello DL, Wlodkowic D. Noninvasive Electrophysiology: Emerging Prospects in Aquatic Neurotoxicity Testing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4788-4794. [PMID: 35196004 DOI: 10.1021/acs.est.1c08471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The significance of neurotoxicological risks associated with anthropogenic pollution is gaining increasing recognition worldwide. In this regard, perturbations in behavioral traits upon exposure to environmentally relevant concentrations of neurotoxic and neuro-modulating contaminants have been linked to diminished ecological fitness of many aquatic species. Despite an increasing interest in behavioral testing in aquatic ecotoxicology there is, however, a notable gap in understanding of the neurophysiological foundations responsible for the altered behavioral phenotypes. One of the canonical approaches to explain the mechanisms of neuro-behavioral changes is functional analysis of neuronal transmission. In aquatic animals it requires, however, invasive, complex, and time-consuming electrophysiology techniques. In this perspective, we highlight emerging prospects of noninvasive, in situ electrophysiology based on multielectrode arrays (MEAs). This technology has only recently been pioneered for the detection and analysis of transient electrical signals in the central nervous system of small model organisms such as zebrafish. The analysis resembles electroencephalography (EEG) applications and provides an appealing strategy for mechanistic explorative studies as well as routine neurotoxicity risk assessment. We outline the prospective future applications and existing challenges of this emerging analytical strategy that is poised to bring new vistas for aquatic ecotoxicology such as greater mechanistic understanding of eco-neurotoxicity and thus more robust risk assessment protocols.
Collapse
Affiliation(s)
- Danielle L Tomasello
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
14
|
Reddy G, Desban L, Tanaka H, Roussel J, Mirat O, Wyart C. A lexical approach for identifying behavioural action sequences. PLoS Comput Biol 2022; 18:e1009672. [PMID: 35007275 PMCID: PMC8782473 DOI: 10.1371/journal.pcbi.1009672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/21/2022] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Animals display characteristic behavioural patterns when performing a task, such as the spiraling of a soaring bird or the surge-and-cast of a male moth searching for a female. Identifying such recurring sequences occurring rarely in noisy behavioural data is key to understanding the behavioural response to a distributed stimulus in unrestrained animals. Existing models seek to describe the dynamics of behaviour or segment individual locomotor episodes rather than to identify the rare and transient sequences of locomotor episodes that make up the behavioural response. To fill this gap, we develop a lexical, hierarchical model of behaviour. We designed an unsupervised algorithm called "BASS" to efficiently identify and segment recurring behavioural action sequences transiently occurring in long behavioural recordings. When applied to navigating larval zebrafish, BASS extracts a dictionary of remarkably long, non-Markovian sequences consisting of repeats and mixtures of slow forward and turn bouts. Applied to a novel chemotaxis assay, BASS uncovers chemotactic strategies deployed by zebrafish to avoid aversive cues consisting of sequences of fast large-angle turns and burst swims. In a simulated dataset of soaring gliders climbing thermals, BASS finds the spiraling patterns characteristic of soaring behaviour. In both cases, BASS succeeds in identifying rare action sequences in the behaviour deployed by freely moving animals. BASS can be easily incorporated into the pipelines of existing behavioural analyses across diverse species, and even more broadly used as a generic algorithm for pattern recognition in low-dimensional sequential data.
Collapse
Affiliation(s)
- Gautam Reddy
- NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Laura Desban
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Hidenori Tanaka
- Physics & Informatics Laboratories, NTT Research, Inc., East Palo Alto, California, United States of America
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Inserm U 1127, CNRS UMR 7225, Paris, France
| |
Collapse
|
15
|
Kim Y, Song J, Lee Y, Cho S, Kim S, Lee SR, Park S, Shin Y, Jeon NL. High-throughput injection molded microfluidic device for single-cell analysis of spatiotemporal dynamics. LAB ON A CHIP 2021; 21:3150-3158. [PMID: 34180916 DOI: 10.1039/d0lc01245a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Single-cell level analysis of various cellular behaviors has been aided by recent developments in microfluidic technology. Polydimethylsiloxane (PDMS)-based microfluidic devices have been widely used to elucidate cell differentiation and migration under spatiotemporal stimulation. However, microfluidic devices fabricated with PDMS have inherent limitations due to material issues and non-scalable fabrication process. In this study, we designed and fabricated an injection molded microfluidic device that enables real-time chemical profile control. This device is made of polystyrene (PS), engineered with channel dimensions optimized for injection molding to achieve functionality and compatibility with single cell observation. We demonstrated the spatiotemporal dynamics in the device with computational simulation and experiments. In temporal dynamics, we observed extracellular signal-regulated kinase (ERK) activation of PC12 cells by stimulating the cells with growth factors (GFs). Also, we confirmed yes-associated protein (YAP) phase separation of HEK293 cells under stimulation using sorbitol. In spatial dynamics, we observed the migration of NIH 3T3 cells (transfected with Lifeact-GFP) under different spatiotemporal stimulations of PDGF. Using the injection molded plastic devices, we obtained comprehensive data more easily than before while using less time compared to previous PDMS models. This easy-to-use plastic microfluidic device promises to open a new approach for investigating the mechanisms of cell behavior at the single-cell level.
Collapse
Affiliation(s)
- Youngtaek Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Jiyoung Song
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Younggyun Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Sunghyun Cho
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Suryong Kim
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Seung-Ryeol Lee
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Seonghyuk Park
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea. and Institute of BioEngineering, Seoul National University, Seoul, Republic of Korea
| | - Noo Li Jeon
- Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea. and Institute of BioEngineering, Seoul National University, Seoul, Republic of Korea and Institute of Advanced Machinery and Design, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Zhang G, Yu X, Huang G, Lei D, Tong M. An improved automated zebrafish larva high-throughput imaging system. Comput Biol Med 2021; 136:104702. [PMID: 34352455 DOI: 10.1016/j.compbiomed.2021.104702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022]
Abstract
As a typical multicellular model organism, the zebrafish has been increasingly used in biological research. Despite the efforts to develop automated zebrafish larva imaging systems, existing ones are still defective in terms of reliability and automation. This paper presents an improved zebrafish larva high-throughput imaging system, which makes improvements to the existing designs in the following aspects. Firstly, a single larva extraction strategy is developed to make larva loading more reliable. The aggregated larvae are identified, classified by their numbers and patterns, and separated by the aspiration pipette or water stream. Secondly, the dynamic model of larva motion in the capillary is established and an adaptive robust controller is designed for decelerating the fast-moving larva to ensure the survival rate. Thirdly, rotating the larva to the desired orientation is automated by developing an algorithm to estimate the larva's initial rotation angle. For validating the improved larva imaging system, a real-time heart rate monitoring experiment is conducted as an application example. Experimental results demonstrate that the goals of the improvements have been achieved. With these improvements, the improved zebrafish larva imaging system remarkably reduces human intervention and increases the efficiency and success/survival rates of larva imaging.
Collapse
Affiliation(s)
- Gefei Zhang
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinghu Yu
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China; Ningbo Institute of Intelligent Equipment Technology Co. Ltd., Ningbo, China
| | - Gang Huang
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Dongxu Lei
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China
| | - Mingsi Tong
- Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
17
|
Neuroscience Research using Small Animals on a Chip: From Nematodes to Zebrafish Larvae. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Gosse C, Stanescu S, Frederick J, Lefrançois S, Vecchiola A, Moskura M, Swaraj S, Belkhou R, Watts B, Haltebourg P, Blot C, Daillant J, Guenoun P, Chevallard C. A pressure-actuated flow cell for soft X-ray spectromicroscopy in liquid media. LAB ON A CHIP 2020; 20:3213-3229. [PMID: 32735308 DOI: 10.1039/c9lc01127g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present and fully characterize a flow cell dedicated to imaging in liquid at the nanoscale. Its use as a routine sample environment for soft X-ray spectromicroscopy is demonstrated, in particular through the spectral analysis of inorganic particles in water. The care taken in delineating the fluidic pathways and the precision associated with pressure actuation ensure the efficiency of fluid renewal under the beam, which in turn guarantees a successful utilization of this microfluidic tool for in situ kinetic studies. The assembly of the described flow cell necessitates no sophisticated microfabrication and can be easily implemented in any laboratory. Furthermore, the design principles we relied on are transposable to all microscopies involving strongly absorbed radiation (e.g. X-ray, electron), as well as to all kinds of X-ray diffraction/scattering techniques.
Collapse
Affiliation(s)
- Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France.
| | - Stefan Stanescu
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Joni Frederick
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Stéphane Lefrançois
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Aymeric Vecchiola
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Mélanie Moskura
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Sufal Swaraj
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Rachid Belkhou
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Benjamin Watts
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Patrick Haltebourg
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Christian Blot
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Jean Daillant
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Corinne Chevallard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Tomasello DL, Sive H. Noninvasive Multielectrode Array for Brain and Spinal Cord Local Field Potential Recordings from Live Zebrafish Larvae. Zebrafish 2020; 17:271-277. [PMID: 32758083 PMCID: PMC7455471 DOI: 10.1089/zeb.2020.1874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Zebrafish are an important and expanding experimental system for brain research. We describe a noninvasive electrophysiology technique that can be used in living larvae to measure spontaneous activity in the brain and spinal cord simultaneously. This easy-to-use method uses a commercially available multielectrode array to detect local field potential parameters, and allows for relative coordinated (network) measurements of activity. We demonstrate sensitivity of this system by measuring activity in larvae treated with the antiepileptic drug valproic acid. Valproic acid decreased larval movement and startle response, and decreased spontaneous brain activity. Spinal cord activity did not change after treatment, suggesting valproic acid primarily affects brain function. The observed differences in brain activity, but not spinal cord activity, after valproic acid treatment indicates that brain activity differences are not a secondary effect of decreased startle response and movement. We provide a step-by-step protocol for experiments presented that a novice could easily follow. This electrophysiological method will be useful to the zebrafish neuroscience community.
Collapse
Affiliation(s)
| | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
NeuroExaminer: an all-glass microfluidic device for whole-brain in vivo imaging in zebrafish. Commun Biol 2020; 3:311. [PMID: 32546816 PMCID: PMC7298014 DOI: 10.1038/s42003-020-1029-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/18/2020] [Indexed: 11/29/2022] Open
Abstract
While microfluidics enables chemical stimuli application with high spatio-temporal precision, light-sheet microscopy allows rapid imaging of entire zebrafish brains with cellular resolution. Both techniques, however, have not been combined to monitor whole-brain neural activity yet. Unlike conventional microfluidics, we report here an all-glass device (NeuroExaminer) that is compatible with whole-brain in vivo imaging using light-sheet microscopy and can thus provide insights into brain function in health and disease. Kai Mattern, Jakob W. von Trotha, et al. develop NeuroExaminer, an all glass device for whole-brain in vivo imaging in zebrafish. The method is based on light-sheet microscopy and microfluidics and provides insights on brain function in live zebrafish.
Collapse
|
21
|
Khalili A, Peimani AR, Safarian N, Youssef K, Zoidl G, Rezai P. Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation. Integr Biol (Camb) 2020; 11:373-383. [PMID: 31851358 DOI: 10.1093/intbio/zyz031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Behavioral responses of zebrafish larvae to environmental cues are important functional readouts that should be evoked on-demand and studied phenotypically in behavioral, genetical and developmental investigations. Very recently, it was shown that zebrafish larvae execute a voluntary and oriented movement toward the positive electrode of an electric field along a microchannel. Phenotypic characterization of this response was not feasible due to larva's rapid movement along the channel. To overcome this challenge, a microfluidic device was introduced to partially immobilize the larva's head while leaving its mid-body and tail unrestrained in a chamber to image motor behaviors in response to electric stimulation, hence achieving quantitative phenotyping of the electrically evoked movement in zebrafish larvae. The effect of electric current on the tail-beat frequency and response duration of 5-7 days postfertilization zebrafish larvae was studied. Investigations were also performed on zebrafish exposed to neurotoxin 6-hydroxydopamine and larvae carrying a pannexin1a (panx1a) gene knockout, as a proof of principle applications to demonstrate on-demand movement behavior screening in chemical and mutant assays. We demonstrated for the first time that 6-hydroxydopamine leads to electric response impairment, levodopa treatment rescues the response and panx1a is involved in the electrically evoked movement of zebrafish larvae. We envision that our technique is broadly applicable as a screening tool to quantitatively examine zebrafish larvae's movements in response to physical and chemical stimulations in investigations of Parkinson's and other neurodegenerative diseases, and as a tool to combine recent advances in genome engineering of model organisms to uncover the biology of electric response.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Amir Reza Peimani
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Khaled Youssef
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
22
|
Sonnen KF, Merten CA. Microfluidics as an Emerging Precision Tool in Developmental Biology. Dev Cell 2019; 48:293-311. [PMID: 30753835 DOI: 10.1016/j.devcel.2019.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
Microfluidics has become a precision tool in modern biology. It enables omics data to be obtained from individual cells, as compared to averaged signals from cell populations, and it allows manipulation of biological specimens in entirely new ways. Cells and organisms can be perturbed at extraordinary spatiotemporal resolution, revealing mechanistic insights that would otherwise remain hidden. In this perspective article, we discuss the current and future impact of microfluidic technology in the field of developmental biology. In addition, we provide detailed information on how to start using this technology even without prior experience.
Collapse
Affiliation(s)
| | - Christoph A Merten
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
23
|
Khalili A, Rezai P. Microfluidic devices for embryonic and larval zebrafish studies. Brief Funct Genomics 2019; 18:419-432. [DOI: 10.1093/bfgp/elz006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/09/2019] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Abstract
Zebrafish or Danio rerio is an established model organism for studying the genetic, neuronal and behavioral bases of diseases and for toxicology and drug screening. The embryonic and larval stages of zebrafish have been used extensively in fundamental and applied research due to advantages offered such as body transparency, small size, low cost of cultivation and high genetic homology with humans. However, the manual experimental methods used for handling and investigating this organism are limited due to their low throughput, labor intensiveness and inaccuracy in delivering external stimuli to the zebrafish while quantifying various neuronal and behavioral responses. Microfluidic and lab-on-a-chip devices have emerged as ideal technologies to overcome these challenges. In this review paper, the current microfluidic approaches for investigation of behavior and neurobiology of zebrafish at embryonic and larval stages will be reviewed. Our focus will be to provide an overview of the microfluidic methods used to manipulate (deliver and orient), immobilize and expose or inject zebrafish embryos or larvae, followed by quantification of their responses in terms of neuron activities and movement. We will also provide our opinion in terms of the direction that the field of zebrafish microfluidics is heading toward in the area of biomedical engineering.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
24
|
Migault G, van der Plas TL, Trentesaux H, Panier T, Candelier R, Proville R, Englitz B, Debrégeas G, Bormuth V. Whole-Brain Calcium Imaging during Physiological Vestibular Stimulation in Larval Zebrafish. Curr Biol 2018; 28:3723-3735.e6. [PMID: 30449666 PMCID: PMC6288061 DOI: 10.1016/j.cub.2018.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/25/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
The vestibular apparatus provides animals with postural and movement-related information that is essential to adequately execute numerous sensorimotor tasks. In order to activate this sensory system in a physiological manner, one needs to macroscopically rotate or translate the animal's head, which in turn renders simultaneous neural recordings highly challenging. Here we report on a novel miniaturized, light-sheet microscope that can be dynamically co-rotated with a head-restrained zebrafish larva, enabling controlled vestibular stimulation. The mechanical rigidity of the microscope allows one to perform whole-brain functional imaging with state-of-the-art resolution and signal-to-noise ratio while imposing up to 25° in angular position and 6,000°/s2 in rotational acceleration. We illustrate the potential of this novel setup by producing the first whole-brain response maps to sinusoidal and stepwise vestibular stimulation. The responsive population spans multiple brain areas and displays bilateral symmetry, and its organization is highly stereotypic across individuals. Using Fourier and regression analysis, we identified three major functional clusters that exhibit well-defined phasic and tonic response patterns to vestibular stimulation. Our rotatable light-sheet microscope provides a unique tool for systematically studying vestibular processing in the vertebrate brain and extends the potential of virtual-reality systems to explore complex multisensory and motor integration during simulated 3D navigation.
Collapse
Affiliation(s)
- Geoffrey Migault
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Thijs L van der Plas
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Donders Centre for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, the Netherlands
| | - Hugo Trentesaux
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Thomas Panier
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Raphaël Candelier
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Rémi Proville
- Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, INSERM, U1215, 33077 Bordeaux Cedex, France
| | - Bernhard Englitz
- Donders Centre for Neuroscience, Department of Neurophysiology, Radboud University, Nijmegen, the Netherlands
| | - Georges Debrégeas
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France
| | - Volker Bormuth
- Laboratoire Jean Perrin, Sorbonne Université, UMR 8237, 75005 Paris, France; Laboratoire Jean Perrin, CNRS, UMR 8237, 75005 Paris, France.
| |
Collapse
|
25
|
Chartier TF, Deschamps J, Dürichen W, Jékely G, Arendt D. Whole-head recording of chemosensory activity in the marine annelid Platynereis dumerilii. Open Biol 2018; 8:180139. [PMID: 30381362 PMCID: PMC6223215 DOI: 10.1098/rsob.180139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023] Open
Abstract
Chemical detection is key to various behaviours in both marine and terrestrial animals. Marine species, though highly diverse, have been underrepresented so far in studies on chemosensory systems, and our knowledge mostly concerns the detection of airborne cues. A broader comparative approach is therefore desirable. Marine annelid worms with their rich behavioural repertoire represent attractive models for chemosensation. Here, we study the marine worm Platynereis dumerilii to provide the first comprehensive investigation of head chemosensory organ physiology in an annelid. By combining microfluidics and calcium imaging, we record neuronal activity in the entire head of early juveniles upon chemical stimulation. We find that Platynereis uses four types of organs to detect stimuli such as alcohols, esters, amino acids and sugars. Antennae are the main chemosensory organs, compared to the more differentially responding nuchal organs or palps. We report chemically evoked activity in possible downstream brain regions including the mushroom bodies (MBs), which are anatomically and molecularly similar to insect MBs. We conclude that chemosensation is a major sensory modality for marine annelids and propose early Platynereis juveniles as a model to study annelid chemosensory systems.
Collapse
Affiliation(s)
- Thomas F Chartier
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Joran Deschamps
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Wiebke Dürichen
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
26
|
Wanner AA, Vishwanathan A. Methods for Mapping Neuronal Activity to Synaptic Connectivity: Lessons From Larval Zebrafish. Front Neural Circuits 2018; 12:89. [PMID: 30410437 PMCID: PMC6209671 DOI: 10.3389/fncir.2018.00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 12/29/2022] Open
Abstract
For a mechanistic understanding of neuronal circuits in the brain, a detailed description of information flow is necessary. Thereby it is crucial to link neuron function to the underlying circuit structure. Multiphoton calcium imaging is the standard technique to record the activity of hundreds of neurons simultaneously. Similarly, recent advances in high-throughput electron microscopy techniques allow for the reconstruction of synaptic resolution wiring diagrams. These two methods can be combined to study both function and structure in the same specimen. Due to its small size and optical transparency, the larval zebrafish brain is one of the very few vertebrate systems where both, activity and connectivity of all neurons from entire, anatomically defined brain regions, can be analyzed. Here, we describe different methods and the tools required for combining multiphoton microscopy with dense circuit reconstruction from electron microscopy stacks of entire brain regions in the larval zebrafish.
Collapse
Affiliation(s)
- Adrian A Wanner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - Ashwin Vishwanathan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| |
Collapse
|
27
|
Paiè P, Martínez Vázquez R, Osellame R, Bragheri F, Bassi A. Microfluidic Based Optical Microscopes on Chip. Cytometry A 2018; 93:987-996. [PMID: 30211977 PMCID: PMC6220811 DOI: 10.1002/cyto.a.23589] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
Abstract
Last decade's advancements in optofluidics allowed obtaining an ever increasing integration of different functionalities in lab on chip devices to culture, analyze, and manipulate single cells and entire biological specimens. Despite the importance of optical imaging for biological sample monitoring in microfluidics, imaging is traditionally achieved by placing microfluidics channels in standard bench-top optical microscopes. Recently, the development of either integrated optical elements or lensless imaging methods allowed optical imaging techniques to be implemented in lab on chip systems, thus increasing their automation, compactness, and portability. In this review, we discuss known solutions to implement microscopes on chip that exploit different optical methods such as bright-field, phase contrast, holographic, and fluorescence microscopy.
Collapse
Affiliation(s)
- Petra Paiè
- Istituto di Fotonica e NanotecnologieConsiglio Nazionale dell RicerchePiazza Leonardo da Vinci 3220133 MilanItaly
| | - Rebeca Martínez Vázquez
- Istituto di Fotonica e NanotecnologieConsiglio Nazionale dell RicerchePiazza Leonardo da Vinci 3220133 MilanItaly
| | - Roberto Osellame
- Istituto di Fotonica e NanotecnologieConsiglio Nazionale dell RicerchePiazza Leonardo da Vinci 3220133 MilanItaly
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 3220133 MilanItaly
| | - Francesca Bragheri
- Istituto di Fotonica e NanotecnologieConsiglio Nazionale dell RicerchePiazza Leonardo da Vinci 3220133 MilanItaly
| | - Andrea Bassi
- Istituto di Fotonica e NanotecnologieConsiglio Nazionale dell RicerchePiazza Leonardo da Vinci 3220133 MilanItaly
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 3220133 MilanItaly
| |
Collapse
|
28
|
Rouse T, Aubry G, Cho Y, Zimmer M, Lu H. A programmable platform for sub-second multichemical dynamic stimulation and neuronal functional imaging in C. elegans. LAB ON A CHIP 2018; 18:505-513. [PMID: 29313542 PMCID: PMC5790607 DOI: 10.1039/c7lc01116d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Caenorhabditis elegans (C. elegans) is a prominent model organism in neuroscience, as its small stereotyped nervous system offers unique advantages for studying neuronal circuits at the cellular level. Characterizing temporal dynamics of neuronal circuits is essential to fully understand neuronal processing. Characterization of the temporal dynamics of chemosensory circuits requires a precise and fast method to deliver multiple stimuli and monitor the animal's neuronal activity. Microfluidic platforms have been developed that offer an improved control of chemical delivery compared to manual methods. However, stimulating an animal with multiple chemicals at high speed is still difficult. In this work, we have developed a platform that can deliver any sequence of multiple chemical reagents, at sub-second resolution and without cross-contamination. We designed a network of chemical selectors wherein the chemical selected for stimulation is determined by the set of pressures applied to the chemical reservoirs. Modulation of inlet pressures has been automated to create robust, programmable sequences of subsecond chemical pulses. We showed that stimulation with sequences of different chemicals at the second to sub-second range can generate different neuronal activity patterns in chemosensory neurons; we observed previously unseen neuronal responses to a controlled chemical stimulation. Because of the speed and versatility of stimulus generated, this platform opens new possibilities to investigate neuronal circuits.
Collapse
Affiliation(s)
- T Rouse
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, USA.
| | | | | | | | | |
Collapse
|
29
|
Peimani AR, Zoidl G, Rezai P. A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae. BIOMICROFLUIDICS 2018; 12:014113. [PMID: 29464011 PMCID: PMC5803004 DOI: 10.1063/1.5016381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
The zebrafish is a lower vertebrate model organism offering multiple applications for both fundamental and biomedical research into the nervous system from genes to behaviour. Investigation of zebrafish larvae's movement in response to various stimuli, which involves the dopaminergic system, is of interest in the field of sensory-motor integration. Nevertheless, the conventional methods of movement screening in Petri dishes and multi-well plates are mostly qualitative, uncontrollable, and inaccurate in terms of stimulus delivery and response analysis. We recently presented a microfluidic device built as a versatile platform for fluid flow stimulation and high speed time-lapse imaging of rheotaxis behaviour of zebrafish larvae. Here, we describe for the first time that this microfluidic device can also be used to test zebrafish larvae's sense of the electric field and electrotaxis in a systemic manner. We further show that electrotaxis is correlated with the dopamine signalling pathway in a time of day dependent manner and by selectively involving the D2-like dopamine receptors. The primary outcomes of this research opens avenues to study the molecular and physiological basis of electrotaxis, the effects of known agonist and antagonist compounds on the dopaminergic system, and the screen of novel pharmacological tools in the context of neurodegenerative disorders. We propose that this microfluidic device has broad application potential, including the investigation of complex stimuli, biological pathways, behaviors, and brain disorders.
Collapse
Affiliation(s)
- Amir Reza Peimani
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Georg Zoidl
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
30
|
Miniaturized Sensors and Actuators for Biological Studies on Small Model Organisms of Disease. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2018. [DOI: 10.1007/978-981-10-7751-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Nady A, Peimani AR, Zoidl G, Rezai P. A microfluidic device for partial immobilization, chemical exposure and behavioural screening of zebrafish larvae. LAB ON A CHIP 2017; 17:4048-4058. [PMID: 29068019 DOI: 10.1039/c7lc00786h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The zebrafish larva is an important vertebrate model for sensory-motor integration studies, genetic screening, and drug discovery because of its excellent characteristics such as optical transparency, genetic manipulability, and genetic similarity to humans. Operations such as precise manipulation of zebrafish larvae, controlled exposure to chemicals, and behavioural monitoring are of utmost importance to the abovementioned studies. In this work, a novel microfluidic device is presented to easily stabilize an individual larva's head using a microfluidic trap while leaving the majority of the body and the tail unhindered to move freely in a downstream chamber. The device is equipped with a microvalve to prevent the larva's escape from the trap and a microchannel beside the larva's head to expose it to chemicals at desired concentrations and times, while investigating multiple behaviours such as the tail, eye, and mouth movement frequencies. An in situ air bubble removal module was also incorporated to increase the yield of experiments. The functionality of our device in comparison to a conventional droplet-based technique was tested using l-arginine exposure and viability assays. We found that the larvae in the device and the droplet exhibit similar tail and eye response trends to nM-mM concentrations of l-arginine, and that the survival of the larvae is not affected by the device. However, the tail responses in the device were numerically higher than the droplet-tested larvae at nM-mM l-arginine concentrations. In the future, our device has the potential to be used for conducting simultaneous whole-brain functional imaging, upon optimized immobilization of the brain, and behavioural analysis to uncover differences between diseased and healthy states in zebrafish.
Collapse
Affiliation(s)
- Asal Nady
- Department of Biology, York University, Toronto, ON, Canada
| | | | | | | |
Collapse
|
32
|
Abstract
Zebrafish is a model organism for various sensory-motor biological studies. Rheotaxis, or the ability of zebrafish to orient and swim against the water stream, is a common behavior that involves multiple sensory-motor processes such as their lateral line and visual systems. Due to the lack of a controllable and easy-to-use assay, zebrafish rheotaxis at larval stages is not well-understood. In this paper, we report a microfluidic device that can be used to apply the flow stimulus precisely and repeatedly along the longitudinal axis of individual zebrafish larvae to study their coaxial rheotaxis. We quantified rheotaxis in terms of the response rate and location along the channel at various flow velocities (9.5-38 mm.sec-1). The larvae effectively exhibited a similarly high rheotactic response at low and medium velocities (9.5 and 19 mm.sec-1); however, at high velocity of 38 mm.sec-1, despite sensing the flow, their rheotactic response decreased significantly. The flow velocity also affected the response location along the channel. At 9.5 mm.sec-1, responses were distributed evenly along the channel length while, at 19 and 38 mm.sec-1, the larvae demonstrated higher rheotaxis responses at the anterior and posterior ends of the channel, respectively. This result shows that although the response is similarly high at low and medium flow velocities, zebrafish larvae become more sensitive to the flow at medium velocity, demonstrating a modulated rheotactic behavior. Employing our device, further investigations can be conducted to study the sensory-motor systems involved in rheotaxis of zebrafish larvae and other fish species.
Collapse
|
33
|
Liu Y, Lu H. Microfluidics in systems biology-hype or truly useful? Curr Opin Biotechnol 2017; 39:215-220. [PMID: 27267565 DOI: 10.1016/j.copbio.2016.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Systems biology often relies on large-scale measurements and model-building to understand how complex biological systems function. Microfluidic technology has been touted as a tool for high-throughput experiments and has been a valuable tool to some systems biology research. This review focuses on applications where microfluidics can enhance experimental sensitivity and throughput, particularly in recent development in single-cell analyses and analyses on multi-cellular or complex biological entities. We conclude that microfluidics is not necessarily always useful for systems biology, but when used appropriately can greatly enhance experimentalists' ability to measure and control, and thereby enhance the understanding of and expand the utility of biological systems.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, United States.
| |
Collapse
|
34
|
Optical mapping of neuronal activity during seizures in zebrafish. Sci Rep 2017; 7:3025. [PMID: 28596596 PMCID: PMC5465210 DOI: 10.1038/s41598-017-03087-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/07/2017] [Indexed: 11/26/2022] Open
Abstract
Mapping neuronal activity during the onset and propagation of epileptic seizures can provide a better understanding of the mechanisms underlying this pathology and improve our approaches to the development of new drugs. Recently, zebrafish has become an important model for studying epilepsy both in basic research and in drug discovery. Here, we employed a transgenic line with pan-neuronal expression of the genetically-encoded calcium indicator GCaMP6s to measure neuronal activity in zebrafish larvae during seizures induced by pentylenetretrazole (PTZ). With this approach, we mapped neuronal activity in different areas of the larval brain, demonstrating the high sensitivity of this method to different levels of alteration, as induced by increasing PTZ concentrations, and the rescuing effect of an anti-epileptic drug. We also present simultaneous measurements of brain and locomotor activity, as well as a high-throughput assay, demonstrating that GCaMP measurements can complement behavioural assays for the detection of subclinical epileptic seizures, thus enabling future investigations on human hypomorphic mutations and more effective drug screening methods. Notably, the methodology described here can be easily applied to the study of many human neuropathologies modelled in zebrafish, allowing a simple and yet detailed investigation of brain activity alterations associated with the pathological phenotype.
Collapse
|
35
|
Romano SA, Pérez-Schuster V, Jouary A, Boulanger-Weill J, Candeo A, Pietri T, Sumbre G. An integrated calcium imaging processing toolbox for the analysis of neuronal population dynamics. PLoS Comput Biol 2017; 13:e1005526. [PMID: 28591182 PMCID: PMC5479595 DOI: 10.1371/journal.pcbi.1005526] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/21/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
The development of new imaging and optogenetics techniques to study the dynamics of large neuronal circuits is generating datasets of unprecedented volume and complexity, demanding the development of appropriate analysis tools. We present a comprehensive computational workflow for the analysis of neuronal population calcium dynamics. The toolbox includes newly developed algorithms and interactive tools for image pre-processing and segmentation, estimation of significant single-neuron single-trial signals, mapping event-related neuronal responses, detection of activity-correlated neuronal clusters, exploration of population dynamics, and analysis of clusters' features against surrogate control datasets. The modules are integrated in a modular and versatile processing pipeline, adaptable to different needs. The clustering module is capable of detecting flexible, dynamically activated neuronal assemblies, consistent with the distributed population coding of the brain. We demonstrate the suitability of the toolbox for a variety of calcium imaging datasets. The toolbox open-source code, a step-by-step tutorial and a case study dataset are available at https://github.com/zebrain-lab/Toolbox-Romano-et-al.
Collapse
Affiliation(s)
- Sebastián A. Romano
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS, IBENS, Paris, France
- Instituto de Investigación en Biomedicina de Buenos Aires – CONICET – Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Verónica Pérez-Schuster
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS, IBENS, Paris, France
| | - Adrien Jouary
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS, IBENS, Paris, France
| | - Jonathan Boulanger-Weill
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS, IBENS, Paris, France
| | - Alessia Candeo
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS, IBENS, Paris, France
| | - Thomas Pietri
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS, IBENS, Paris, France
| | - Germán Sumbre
- Ecole Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS, IBENS, Paris, France
| |
Collapse
|
36
|
Muto A, Lal P, Ailani D, Abe G, Itoh M, Kawakami K. Activation of the hypothalamic feeding centre upon visual prey detection. Nat Commun 2017; 8:15029. [PMID: 28425439 PMCID: PMC5411483 DOI: 10.1038/ncomms15029] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/21/2017] [Indexed: 11/09/2022] Open
Abstract
The visual system plays a major role in food/prey recognition in diurnal animals, and food intake is regulated by the hypothalamus. However, whether and how visual information about prey is conveyed to the hypothalamic feeding centre is largely unknown. Here we perform real-time imaging of neuronal activity in freely behaving or constrained zebrafish larvae and demonstrate that prey or prey-like visual stimuli activate the hypothalamic feeding centre. Furthermore, we identify prey detector neurons in the pretectal area that project to the hypothalamic feeding centre. Ablation of the pretectum completely abolishes prey capture behaviour and neurotoxin expression in the hypothalamic area also reduces feeding. Taken together, these results suggest that the pretecto-hypothalamic pathway plays a crucial role in conveying visual information to the feeding centre. Thus, this pathway possibly converts visual food detection into feeding motivation in zebrafish.
Collapse
Affiliation(s)
- Akira Muto
- Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Pradeep Lal
- Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Deepak Ailani
- Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Gembu Abe
- Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Mari Itoh
- Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
37
|
Ross AE, Belanger MC, Woodroof JF, Pompano RR. Spatially resolved microfluidic stimulation of lymphoid tissue ex vivo. Analyst 2017; 142:649-659. [PMID: 27900374 PMCID: PMC7863610 DOI: 10.1039/c6an02042a] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The lymph node is a structurally complex organ of the immune system, whose dynamic cellular arrangements are thought to control much of human health. Currently, no methods exist to precisely stimulate substructures within the lymph node or analyze local stimulus-response behaviors, making it difficult to rationally design therapies for inflammatory disease. Here we describe a novel integration of live lymph node slices with a microfluidic system for local stimulation. Slices maintained the cellular organization of the lymph node while making its core experimentally accessible. The 3-layer polydimethylsiloxane device consisted of a perfusion chamber stacked atop stimulation ports fed by underlying microfluidic channels. Fluorescent dextrans similar in size to common proteins, 40 and 70 kDa, were delivered to live lymph node slices with 284 ± 9 μm and 202 ± 15 μm spatial resolution, respectively, after 5 s, which is sufficient to target functional zones of the lymph node. The spread and quantity of stimulation were controlled by varying the flow rates of delivery; these were predictable using a computational model of isotropic diffusion and convection through the tissue. Delivery to two separate regions simultaneously was demonstrated, to mimic complex intercellular signaling. Delivery of a model therapeutic, glucose-conjugated albumin, to specific regions of the lymph node indicated that retention of the drug was greater in the B-cell zone than in the T-cell zone. Together, this work provides a novel platform, the lymph node slice-on-a-chip, to target and study local events in the lymph node and to inform the development of new immunotherapeutics.
Collapse
Affiliation(s)
- Ashley E Ross
- University of Virginia, Dept. of Chemistry, PO Box 400319, McCormick Rd, Charlottesville, VA 22904, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Microinjection of zebrafish larvae is an essential technique for delivery of treatments, dyes, microbes, and xenotransplantation into various tissues. Although a number of casts are available to orient embryos at the single-cell stage, no device has been specifically designed to position hatching-stage larvae for microinjection of different tissues. In this study, we present a reusable silicone device consisting of arrayed microstructures, designed to immobilize 2 days postfertilization larvae in lateral, ventral, and dorsal orientations, while providing maximal access to target sites for microinjection. Injection of rhodamine dextran was used to demonstrate the utility of this device for precise microinjection of multiple anatomical targets.
Collapse
Affiliation(s)
- Felix Ellett
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital , Boston, Massachusetts
| | - Daniel Irimia
- Department of Surgery, BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital , Boston, Massachusetts
| |
Collapse
|
39
|
Jouary A, Haudrechy M, Candelier R, Sumbre G. A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae. Sci Rep 2016; 6:34015. [PMID: 27659496 PMCID: PMC5034285 DOI: 10.1038/srep34015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/06/2016] [Indexed: 01/20/2023] Open
Abstract
Animals continuously rely on sensory feedback to adjust motor commands. In order to study the role of visual feedback in goal-driven navigation, we developed a 2D visual virtual reality system for zebrafish larvae. The visual feedback can be set to be similar to what the animal experiences in natural conditions. Alternatively, modification of the visual feedback can be used to study how the brain adapts to perturbations. For this purpose, we first generated a library of free-swimming behaviors from which we learned the relationship between the trajectory of the larva and the shape of its tail. Then, we used this technique to infer the intended displacements of head-fixed larvae, and updated the visual environment accordingly. Under these conditions, larvae were capable of aligning and swimming in the direction of a whole-field moving stimulus and produced the fine changes in orientation and position required to capture virtual prey. We demonstrate the sensitivity of larvae to visual feedback by updating the visual world in real-time or only at the end of the discrete swimming episodes. This visual feedback perturbation caused impaired performance of prey-capture behavior, suggesting that larvae rely on continuous visual feedback during swimming.
Collapse
Affiliation(s)
- Adrien Jouary
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS (IBENS), F-75005 Paris, France
| | - Mathieu Haudrechy
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS (IBENS), F-75005 Paris, France
| | - Raphaël Candelier
- Sorbonne Universités, UPMC Univ. Paris 06, UMR 8237, Laboratoire Jean Perrin, F-75005 Paris, France
| | - German Sumbre
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'ENS (IBENS), F-75005 Paris, France
| |
Collapse
|
40
|
Hong S, Lee P, Baraban SC, Lee LP. A Novel Long-term, Multi-Channel and Non-invasive Electrophysiology Platform for Zebrafish. Sci Rep 2016; 6:28248. [PMID: 27305978 PMCID: PMC4910293 DOI: 10.1038/srep28248] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 01/03/2023] Open
Abstract
Zebrafish are a popular vertebrate model for human neurological disorders and drug discovery. Although fecundity, breeding convenience, genetic homology and optical transparency have been key advantages, laborious and invasive procedures are required for electrophysiological studies. Using an electrode-integrated microfluidic system, here we demonstrate a novel multichannel electrophysiology unit to record multiple zebrafish. This platform allows spontaneous alignment of zebrafish and maintains, over days, close contact between head and multiple surface electrodes, enabling non-invasive long-term electroencephalographic recording. First, we demonstrate that electrographic seizure events, induced by pentylenetetrazole, can be reliably distinguished from eye or tail movement artifacts, and quantifiably identified with our unique algorithm. Second, we show long-term monitoring during epileptogenic progression in a scn1lab mutant recapitulating human Dravet syndrome. Third, we provide an example of cross-over pharmacology antiepileptic drug testing. Such promising features of this integrated microfluidic platform will greatly facilitate high-throughput drug screening and electrophysiological characterization of epileptic zebrafish.
Collapse
Affiliation(s)
- SoonGweon Hong
- Department of Bioengineering Engineering, University of California, Berkeley, CA 94720, USA.,Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
| | - Philip Lee
- Department of Bioengineering Engineering, University of California, Berkeley, CA 94720, USA
| | - Scott C Baraban
- Epilepsy Research Laboratory, Department of Neurological Surgery, University of California at San Francisco, USA, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, USA, CA 94143, USA
| | - Luke P Lee
- Department of Bioengineering Engineering, University of California, Berkeley, CA 94720, USA.,Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA.,Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA.,Biophysics Graduate Program, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
41
|
Yang F, Gao C, Wang P, Zhang GJ, Chen Z. Fish-on-a-chip: microfluidics for zebrafish research. LAB ON A CHIP 2016; 16:1106-25. [PMID: 26923141 DOI: 10.1039/c6lc00044d] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
High-efficiency zebrafish (embryo) handling platforms are crucially needed to facilitate the deciphering of the increasingly expanding vertebrate-organism model values. However, the manipulation platforms for zebrafish are scarce and rely mainly on the conventional "static" microtiter plates or glass slides with rigid gel, which limits the dynamic, three-dimensional (3D), tissue/organ-oriented information acquisition from the intact larva with normal developmental dynamics. In addition, these routine platforms are not amenable to high-throughput handling of such swimming multicellular biological entities at the single-organism level and incapable of precisely controlling the growth microenvironment by delivering stimuli in a well-defined spatiotemporal fashion. Recently, microfluidics has been developed to address these technical challenges via tailor-engineered microscale structures or structured arrays, which integrate with or interface to functional components (e.g. imaging systems), allowing quantitative readouts of small objects (zebrafish larvae and embryos) under normal physiological conditions. Here, we critically review the recent progress on zebrafish manipulation, imaging and phenotype readouts of external stimuli using these microfluidic tools and discuss the challenges that confront these promising "fish-on-a-chip" technologies. We also provide an outlook on future potential trends in this field by combining with bionanoprobes and biosensors.
Collapse
Affiliation(s)
- Fan Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | - Chuan Gao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, 1 Huangjia Lake West Road, Wuhan 430065, China.
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
42
|
Lv C, Xia H, Guan W, Sun YL, Tian ZN, Jiang T, Wang YS, Zhang YL, Chen QD, Ariga K, Yu YD, Sun HB. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. Sci Rep 2016; 6:19801. [PMID: 26823292 PMCID: PMC4731762 DOI: 10.1038/srep19801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/07/2015] [Indexed: 01/23/2023] Open
Abstract
Optofluidics, which integrates microfluidics and micro-optical components, is crucial for optical sensing, fluorescence analysis, and cell detection. However, the realization of an integrated system from optofluidic manipulation and a microfluidic channel is often hampered by the lack of a universal substrate for achieving monolithic integration. In this study, we report on an integrated optofluidic-microfluidic twin channels chip fabricated by one-time exposure photolithography, in which the twin microchannels on both surfaces of the substrate were exactly aligned in the vertical direction. The twin microchannels can be controlled independently, meaning that fluids could flow through both microchannels simultaneously without interfering with each other. As representative examples, a tunable hydrogel microlens was integrated into the optofluidic channel by femtosecond laser direct writing, which responds to the salt solution concentration and could be used to detect the microstructure at different depths. The integration of such optofluidic and microfluidic channels provides an opportunity to apply optofluidic detection practically and may lead to great promise for the integration and miniaturization of Lab-on-a-Chip systems.
Collapse
Affiliation(s)
- Chao Lv
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Wei Guan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Yun-Lu Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Zhen-Nan Tian
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Tong Jiang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Ying-Shuai Wang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Yong-Lai Zhang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Qi-Dai Chen
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, 305-0044 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Japan
| | - Yu-De Yu
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Hong-Bo Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, People’s Republic of China
- College of Physics, Jilin University, 119 Jiefang Road, Changchun, 130023, People’s Republic of China
| |
Collapse
|