1
|
Ateya NH, Al-Taie SF, Jasim SA, Uthirapathy S, Chaudhary K, Rani P, Kundlas M, Naidu KS, Amer NA, Ahmed JK. Histone Deacetylation in Alzheimer's Diseases (AD); Hope or Hype. Cell Biochem Biophys 2025; 83:1537-1553. [PMID: 39825060 DOI: 10.1007/s12013-025-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning. Histone deacetylases (HDACs), "writing" enzymes (HATs), and "reading" enzymes with bromodomains that identify and localize to acetylated lysine residues are responsible for maintaining histone acetylation. By giving animals HDAC inhibitors (HDACis), it is possible to intentionally control the ratios of "writer" and "eraser" activity, which will change the acetylation of histones. In addition to making the chromatin more accessible, these histone acetylation alterations re-allocate the targeting of "readers," including the transcriptional co-activators, cAMP response element-binding protein (CBP), and bromodomain-containing protein 4 (Brd4) in the CNS. Conclusive evidence has shown that HDACs slow down the progression of Alzheimer's disease (AD) by reducing the amount of histone acetylation, decreasing the activity of genes linked to memory, supporting cognitive decline and Amyloid beta (Aβ) protein accumulation, influencing aberrant tau phosphorylation, and promoting the emergence of neurofibrillary tangles (NFTs). In this review, we have covered the therapeutic targets and functions of HDACs that might be useful in treating AD.
Collapse
Affiliation(s)
- Nabaa Hisham Ateya
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Sarah F Al-Taie
- University of Baghdad, College of Science, Department of Biotechnology, Baghdad, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Ramadi, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University Erbil, Kurdistan Region, Erbil, Iraq
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Nevin Adel Amer
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
- Medical Surgical Nursing Department, Faculty of Nursing, Menofia University, Shibin el Kom, Saudi Arabia
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
2
|
Ran J, Zhou J. Post-Translational Modifications in Cilia and Ciliopathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e16562. [PMID: 40433930 DOI: 10.1002/advs.202416562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Cilia are microtubule-based organelles that extend from the surface of most vertebrate cells, and they play important roles in diverse cellular processes during embryonic development and tissue homeostasis. Mutations in ciliary proteins are associated with a wide range of human diseases, collectively referred to as ciliopathies. The past decades have witnessed significant advances in the identification of post-translational modifications (PTMs) in ciliary proteins, as well as the enzymes responsible for the PTMs. For example, acetylation of α-tubulin at lysine 40 is essential for ciliary assembly and maintenance, while ubiquitination of centrosomal proteins, such as pericentriolar material 1, regulates ciliary disassembly. In addition, accumulating evidence has shown that PTMs are essential for modulating ciliary structure and function, and that dysregulation of these modifications leads to the development of ciliopathies. In this review, current knowledge of PTMs in ciliary proteins is summarized, and their roles in regulating ciliary formation, homeostasis, and signaling are highlighted. The contribution of aberrant ciliary PTMs to ciliopathies is also discussed, along with the potential of targeting PTMs for ciliopathy treatment, including pharmacological modulation of PTM-related enzymes or substrates, which may provide new avenues for therapeutic intervention in ciliopathies.
Collapse
Affiliation(s)
- Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Noh MY, Oh SI, Kim YE, Cha SJ, Sung W, Oh KW, Park Y, Mun JY, Ki CS, Nahm M, Kim SH. Mutations in NEK1 cause ciliary dysfunction as a novel pathogenic mechanism in amyotrophic lateral sclerosis. Mol Neurodegener 2025; 20:59. [PMID: 40389989 PMCID: PMC12090460 DOI: 10.1186/s13024-025-00848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/05/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Neuronal primary cilia, vital for signaling and cell-cycle regulation, have been implicated in maintaining neuronal identity. While a link between primary ciliary defects and neurodegenerative diseases is emerging, the precise pathological mechanisms remain unclear. METHODS We studied the genetic contribution of NEK1 to ALS pathogenesis by analyzing the exome sequences of 920 Korean patients with ALS. To understand the disease contribution of NEK1 variants in ALS, we performed a series of functional studies using patient fibroblasts focusing on primary cilia and microtubule-related phenotypes. In addition, these findings were validated in iPSC-derived motor neurons (iPSC-MNs). RESULTS NIMA-related kinase 1 (NEK1), a gene encoding a serine/threonine kinase involved in cell cycle regulation, has been identified as a risk gene for amyotrophic lateral sclerosis (ALS). Here, we report that mutations in NEK1 cause primary ciliary abnormality, cell cycle re-entry, and disrupted tubulin acetylation in ALS. We analyzed the whole-exome sequences of 920 Korean patients with sporadic ALS and identified 16 NEK1 variants in 23 patients. We found that two novel variants, p.E853Rfs*9 and p.M1?, reduced NEK1 expression, resulting in loss-of-function (LOF) and one synonymous splicing variant (p.Q132=) exhibited an aberrant isoform lacking exon 5. All three NEK1 variants exhibited abnormal primary ciliary structure, impaired sonic hedgehog signaling, and altered cell-cycle progression. Furthermore, the ALS-linked variants induced intracellular calcium overload followed by Aurora kinase A (AurA)-histone deacetylase (HDAC)6 activation, resulting in ciliary disassembly. These defects were restored by treatment with the intracellular Ca2+ chelator, BAPTA. We also found that NEK1 variants cause decreased α-tubulin acetylation, mitochondrial alteration, and impaired DNA damage response (DDR). Notably, drug treatment to inhibit HDAC6 restored the NEK1-dependent deficits in patient fibroblasts. And, we confirmed that data found in patient fibroblasts were reproduced in iPSC-MNs model. CONCLUSIONS Our results suggest that NEK1 contributes to ALS pathogenesis through the LOF mechanism, and HDAC6 inhibition provides an attractive therapeutic strategy for NEK1 variants associated ALS treatment.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seong-Il Oh
- Department of Neurology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Sun Joo Cha
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yurim Park
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Chang-Seok Ki
- Green Cross Genome Corporation, Yongin, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
- Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Song T, Han X, Yin H, Zhao J, Ma M, Wen X, Liu C, Yue Y, Zhao H, Zhou J, Yang Y, Ran J, Liu M. HDAC6 deacetylates ENKD1 to regulate mitotic spindle behavior and corneal epithelial homeostasis. EMBO Rep 2025; 26:2597-2621. [PMID: 40155750 DOI: 10.1038/s44319-025-00438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/11/2025] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
Corneal diseases can cause severe visual impairment and even blindness, which have been linked to the interruption of corneal epithelial homeostasis. However, the underlying molecular mechanisms are largely unknown. In this study, by comparing the transcriptomes of keratoconus, bacterial keratitis, viral keratitis, and healthy corneas, we found a steady upregulation of histone deacetylase 6 (HDAC6) in corneal diseases. Consistently, a significant increase in HDAC6 was observed in mouse corneas with bacterial keratitis. Overexpression of HDAC6 in mice results in a significant thickening of the corneal epithelium. Mechanistic studies reveal that HDAC6 overexpression disrupts mitotic spindle orientation and positioning in corneal epithelial cells. Our data further show that HDAC6 deacetylates enkurin domain-containing protein 1 (ENKD1) at lysine 98 and thereby impedes its interaction with γ-tubulin, restraining the centrosomal localization of ENKD1 and its proper function in regulating mitotic spindle behavior. These findings uncover a pivotal role for HDAC6-mediated deacetylation of ENKD1 in the control of corneal epithelial homeostasis, providing potential therapeutic targets for treating corneal diseases.
Collapse
Affiliation(s)
- Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Xueqing Han
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hanxiao Yin
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Junkui Zhao
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Mingming Ma
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Xiaonuan Wen
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Chunli Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yiyang Yue
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
- Department of Genetics and Cell Biology, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yang Yang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
| | - Min Liu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China.
| |
Collapse
|
5
|
Sun Y, Luo Z, Fu Y, Ngo T, Wang W, Wang Y, Kong Y. Primary cilia and inflammatory response: unveiling new mechanisms in osteoarthritis progression. Exp Biol Med (Maywood) 2025; 250:10490. [PMID: 40357414 PMCID: PMC12066368 DOI: 10.3389/ebm.2025.10490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that can lead to chronic pain and disability. The pathogenesis of OA involves chronic low-grade inflammation, characterized by the degradation of chondrocytes, inflammation of the synovium, and systemic low-grade inflammation. This inflammatory response accelerates the progression of OA and contributes to pain and functional impairment. Primary cilia play a crucial role in cellular signal transduction and the maintenance of cartilage matrix homeostasis, and their dysfunction is closely linked to inflammatory responses. Given these roles, primary cilia may significantly contribute to the pathogenesis of OA. This review explores inflammation-associated signaling pathways in OA, including NF-κB, MAPK, JAK/STAT, and PI3K/AKT/mTOR signaling. In addition, we place particular emphasis on cilia-mediated inflammatory modulation in OA. Primary cilia mediate chondrocyte responses to mechanical loading and inflammatory cytokines via pathways including NF-κB, MAPK, TRPV4, and Hedgehog signaling. Notably, alterations in the length and incidence of primary cilia in chondrocytes during OA further underscore their potential role in disease pathogenesis. The identification of biomarkers and therapeutic targets related to primary cilia and inflammatory pathways offers new potential for the treatment and management of OA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Kong
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Li B, He YY, Yao WX, Jin DD, Luo HN, Li MY, Wu Y, Yang ZM. Primary cilia prevent activation of the cGAS-STING pathway during mouse decidualization. Commun Biol 2025; 8:607. [PMID: 40229503 PMCID: PMC11997147 DOI: 10.1038/s42003-025-08030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Primary cilia are antenna-like organelles that sense extracellular signals and function as signaling hubs essential for vertebrate development and homeostasis. Decidualization is crucial for pregnancy establishment and maintenance in both humans and mice. While primary cilia are present in endometrial stromal cells, their role in pregnancy remains unknown. Here, we identify TMEM67, a key component of the ciliary transition zone, as a critical regulator of mouse decidualization. Loss of primary cilia triggers RhoA-MLC2-dependent actomyosin contraction, which transmits mechanical forces to the nuclear lamina, leading to micronuclei formation. Within these micronuclei, double-stranded DNA (dsDNA) can directly bind to cyclic GMP-AMP synthase (cGAS) in situ, initiating downstream signaling. This activation of the cGAS-STING pathway reduces CCL6 production and impairs decidualization. Furthermore, pharmacological inhibition of actin polymerization or RhoA-ROCK signaling alleviates mechanical forces surrounding stromal cells, restores ciliogenesis, maintains nuclear integrity, suppresses the cGAS-STING pathway activation, and ultimately rescues decidualization. Our findings reveal a previously unrecognized mechanism by which primary cilia regulate the actin cytoskeleton to maintain nuclear integrity and prevent DNA leakage. This safeguards against aberrant activation of the cGAS-STING pathway, which would otherwise trigger detrimental immune signaling and impair decidualization.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Xu Yao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Dan-Dan Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountain Region, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Bae JE, Jang S, Kim JB, Park NY, Jo DS, Hyung H, Kim P, Kim MS, Ryu HY, Lee HS, Lee DS, Baes M, Ryoo ZY, Cho DH. HSD17B4 deficiency causes dysregulation of primary cilia and is alleviated by acetyl-CoA. Nat Commun 2025; 16:2663. [PMID: 40102401 PMCID: PMC11920078 DOI: 10.1038/s41467-025-57793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/02/2025] [Indexed: 03/20/2025] Open
Abstract
Primary cilia are dynamic sensory organelles orchestrating key signaling pathways, and disruption of primary ciliogenesis is implicated in a spectrum of genetic disorders. The peroxisomal bifunctional enzyme HSD17B4 is pivotal for peroxisomal β-oxidation and acetyl-CoA synthesis, and its deficiency profoundly impairs peroxisomal metabolism. While patients with HSD17B4 deficiency exhibit ciliopathy-like symptoms due to dysfunctional primary cilia, the molecular connection between HSD17B4 and ciliopathy remains poorly understood. Here, we demonstrate that HSD17B4 deficiency impairs primary ciliogenesis and alters cilia-mediated signaling, suggesting a potential link between peroxisomal metabolism and ciliary function. Notably, elevation of acetyl-CoA rescues ciliary defects via HDAC6-mediated ciliogenesis in HSD17B4-deficient cells. Strikingly, acetate administration restores motor function, enhances primary cilia formation, and preserves the Purkinje layer in Hsd17B4-knockout mice. These findings provide insights into the functional link between HSD17B4 and primary cilia, highlighting acetyl-CoA as a potential therapeutic target for HSD17B4 deficiency and ciliopathy.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Jang
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Na Yeon Park
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Doo Sin Jo
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Hyejin Hyung
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Pansoo Kim
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, Seoul, Republic of Korea
| | - Hong-Yeoul Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Shik Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zae Young Ryoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| | - Dong-Hyung Cho
- Organelle Institute, Kyungpook National University, Daegu, Republic of Korea.
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
- ORGASIS Corp, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
9
|
Kostyanovskaya E, Lasser MC, Wang B, Schmidt J, Bader E, Buteo C, Arbelaez J, Sindledecker AR, McCluskey KE, Castillo O, Wang S, Dea J, Helde KA, Graglia JM, Brimble E, Kastner DB, Ehrlich AT, State MW, Willsey AJ, Willsey HR. Convergence of autism proteins at the cilium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.626924. [PMID: 39677731 PMCID: PMC11643032 DOI: 10.1101/2024.12.05.626924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hundreds of high-confidence autism genes have been identified, yet the relevant etiological mechanisms remain unclear. Gene ontology analyses have repeatedly identified enrichment of proteins with annotated functions in gene expression regulation and neuronal communication. However, proteins are often pleiotropic and these annotations are inherently incomplete. Our recent autism functional genetics work has suggested that these genes may share a common mechanism at the cilium, a membrane-bound organelle critical for neurogenesis, brain patterning, and neuronal activity-all processes strongly implicated in autism. Moreover, autism commonly co-occurs with conditions that are known to involve ciliary-related pathologies, including congenital heart disease, hydrocephalus, and blindness. However, the role of autism genes at the cilium has not been systematically investigated. Here we demonstrate that autism proteins spanning disparate functional annotations converge in expression, localization, and function at cilia, and that patients with pathogenic variants in these genes have cilia-related co-occurring conditions and biomarkers of disrupted ciliary function. This degree of convergence among genes spanning diverse functional annotations strongly suggests that cilia are relevant to autism, as well as to commonly co-occurring conditions, and that this organelle should be explored further for therapeutic potential.
Collapse
Affiliation(s)
- Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - James Schmidt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Chad Buteo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aria Rani Sindledecker
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Kate E. McCluskey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Octavio Castillo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | | | | | - David B. Kastner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aliza T. Ehrlich
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Matthew W. State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Li Y, Chen L, Li S, Song H, Chen Y, Wang S. The m6A reader IGF2BP1 contributes to the activation of hepatic stellate cells through facilitating TUBB4B mRNA stabilization. J Gastroenterol Hepatol 2024; 39:2916-2925. [PMID: 39403946 DOI: 10.1111/jgh.16765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024]
Abstract
The m6A reader insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) is involved in multiple pathophysiological processes through enhanced expression of the proteins encoded by their target mRNAs. However, the functional role of IGF2BP1-mediated m6A in liver fibrosis remains elusive. Here, we report that IGF2BP1 is highly expressed in activated hepatic stellate cells (HSCs), the major driver of fibrogenesis, and TUBB4B is identified as a potential target of IGF2BP1 by re-analysis of the RNA-seq, RIP-seq, and m6A-seq data. The relevant findings were subsequently demonstrated by a series of molecular and cellular evidences. The knockdown of IGF2BP1 or TUBB4B and pharmacological inhibition of TUBB4B by mebendazole treatments significantly suppress the proliferation, migration, and activation of HSCs. Mechanistically, IGF2BP1 upregulates TUBB4B expression through stabilizing TUBB4B in an m6A-dependent manner, and TUBB4B induces liver fibrosis by activating the FAK signaling pathway. Collectively, our results indicate that targeting IGF2BP1/TUBB4B/FAK axis in HSCs could be a promising therapeutic approach for liver fibrosis.
Collapse
Affiliation(s)
- Yanshan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ling Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuyi Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoxin Song
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Sun X, Sun B, Sammani S, Dudek S, Belvitch P, Camp S, Zhang D, Bime C, Garcia J. Genetic and epigenetic regulation of cortactin (CTTN) by inflammatory factors and mechanical stress in human lung endothelial cells. Biosci Rep 2024; 44:BSR20231934. [PMID: 39162263 PMCID: PMC11405783 DOI: 10.1042/bsr20231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024] Open
Abstract
RATIONALE Cortactin, an actin-binding cytoskeletal protein, plays a crucial role in maintaining endothelial cell (EC) barrier integrity and regulating vascular permeability. The gene encoding cortactin, CTTN, is implicated in various lung inflammatory disorders. Despite this, the transcriptional regulation of CTTN by inflammatory stimuli and promoter SNPs remains unexplored. METHODS We transfected human lung ECs with a full-length CTTN promoters linked to a luciferase reporter to measure promoter activity. SNP-containing CTTN promoter was created via site-directed mutagenesis. Transfected ECs were exposed to LPS (PAMP), TNF-α (cytokine), cyclic stretch (CS), FG-4592 (HIF-inducer), NRF2 (anti-oxidant modulator), FTY-(S)-phosphate (endothelial barrier enhancer), and 5'-Aza (demethylation inducer). Immunohistochemistry was used to assess cortactin expression in mouse lungs exposed to LPS. RESULTS LPS, TNF-α, and 18%CS significantly increased CTTN promoter activities in a time-dependent manner (P<0.05). The variant rs34612166 (-212T/C) markedly enhanced LPS- and 18%CS- induced CTTN promoter activities (P<0.05). FG-4592 significantly boosted CTTN promoter activities (P<0.01), which were partially inhibited by HIF1α (KC7F2) and HIF2α (PT2385) inhibitors (P<0.05). NRF2 activator Bixin increased CTTN promoter activities, whereas NRF2 inhibitor Brusatol reduced them (P<0.05). 5'-Aza increased CTTN promoter activities by 2.9-fold (P<0.05). NF-κB response element mutations significantly reduced CTTN promoter activities response to LPS and TNFα. FTY-(S)-phosphate significantly increased CTTN promoter activities in 24 h. In vivo, cortactin levels were significantly elevated in inflammatory mouse lungs exposed to LPS for 18 h. CONCLUSION CTTN transcriptional is significantly influenced by inflammatory factors and promoter variants. Cortactin, essential in mitigating inflammatory edema, presents a promising therapeutic target to alleviate severe inflammatory disorders.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Belinda Sun
- Department of Pathology, University of Arizona, Tucson, AZ, U.S.A
| | - Saad Sammani
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Steven M Dudek
- Department of Medicine, University of Illinois Chicago, Chicago IL, U.S.A
| | - Patrick Belvitch
- Department of Medicine, University of Illinois Chicago, Chicago IL, U.S.A
| | - Sara M. Camp
- University of Florida, UF Scripps Research Institute, Jupiter, FL, U.S.A
| | - Donna Zhang
- College of Pharmacy, University of Arizona, Tucson, AZ, U.S.A
| | - Christian Bime
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
- University of Florida, UF Scripps Research Institute, Jupiter, FL, U.S.A
| |
Collapse
|
12
|
Karunasagara S, Taghizadeh A, Kim SH, Kim SJ, Kim YJ, Taghizadeh M, Kim MY, Oh KY, Lee JH, Kim HS, Hyun J, Kim HW. Tissue Mechanics and Hedgehog Signaling Crosstalk as a Key Epithelial-Stromal Interplay in Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400063. [PMID: 38976559 PMCID: PMC11425211 DOI: 10.1002/advs.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Epithelial-stromal interplay through chemomechanical cues from cells and matrix propels cancer progression. Elevated tissue stiffness in potentially malignant tissues suggests a link between matrix stiffness and enhanced tumor growth. In this study, employing chronic oral/esophageal injury and cancer models, it is demonstrated that epithelial-stromal interplay through matrix stiffness and Hedgehog (Hh) signaling is key in compounding cancer development. Epithelial cells actively interact with fibroblasts, exchanging mechanoresponsive signals during the precancerous stage. Specifically, epithelial cells release Sonic Hh, activating fibroblasts to produce matrix proteins and remodeling enzymes, resulting in tissue stiffening. Subsequently, basal epithelial cells adjacent to the stiffened tissue become proliferative and undergo epithelial-to-mesenchymal transition, acquiring migratory and invasive properties, thereby promoting invasive tumor growth. Notably, transcriptomic programs of oncogenic GLI2, mechano-activated by actin cytoskeletal tension, govern this process, elucidating the crucial role of non-canonical GLI2 activation in orchestrating the proliferation and mesenchymal transition of epithelial cells. Furthermore, pharmacological intervention targeting tissue stiffening proves highly effective in slowing cancer progression. These findings underscore the impact of epithelial-stromal interplay through chemo-mechanical (Hh-stiffness) signaling in cancer development, and suggest that targeting tissue stiffness holds promise as a strategy to disrupt chemo-mechanical feedback, enabling effective cancer treatment.
Collapse
Affiliation(s)
- Shanika Karunasagara
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sang-Hyun Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Chemistry, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - So Jung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kyu-Young Oh
- Department of Oral Pathology, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
13
|
Chinbold B, Kwon HM, Park R. TonEBP inhibits ciliogenesis by controlling aurora kinase A and regulating centriolar satellite integrity. Cell Commun Signal 2024; 22:348. [PMID: 38961488 PMCID: PMC11221002 DOI: 10.1186/s12964-024-01721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Primary cilia on the surface of eukaryotic cells serve as sensory antennas for the reception and transmission in various cell signaling pathways. They are dynamic organelles that rapidly form during differentiation and cell cycle exit. Defects in these organelles cause a group of wide-ranging disorders called ciliopathies. Tonicity-responsive enhancer-binding protein (TonEBP) is a pleiotropic stress protein that mediates various physiological and pathological cellular responses. TonEBP is well-known for its role in adaptation to a hypertonic environment, to which primary cilia have been reported to contribute. Furthermore, TonEBP is involved in a wide variety of other signaling pathways, such as Sonic Hedgehog and WNT signaling, that promote primary ciliogenesis, suggesting a possible regulatory role. However, the functional relationship between TonEBP and primary ciliary formation remains unclear. METHODS TonEBP siRNAs and TonEBP-mCherry plasmids were used to examine their effects on cell ciliation rates, assembly and disassembly processes, and regulators. Serum starvation was used as a condition to induce ciliogenesis. RESULTS We identified a novel pericentriolar localization for TonEBP. The results showed that TonEBP depletion facilitates the formation of primary cilia, whereas its overexpression results in fewer ciliated cells. Moreover, TonEBP controlled the expression and activity of aurora kinase A, a major negative regulator of ciliogenesis. Additionally, TonEBP overexpression inhibited the loss of CP110 from the mother centrioles during the early stages of primary cilia assembly. Finally, TonEBP regulated the localization of PCM1 and AZI1, which are necessary for primary cilia formation. CONCLUSIONS This study proposes a novel role for TonEBP as a pericentriolar protein that regulates the integrity of centriolar satellite components. This regulation has shown to have a negative effect on ciliogenesis. Investigations into cilium assembly and disassembly processes suggest that TonEBP acts upstream of the aurora kinase A - histone deacetylase 6 signaling pathway and affects basal body formation to control ciliogenesis. Taken together, our data proposes previously uncharacterized regulation of primary cilia assembly by TonEBP.
Collapse
Affiliation(s)
- Batchingis Chinbold
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
14
|
Liu R, Guo L, Zhao Y, Wu D, Yu J, Liu P. Study on multi-target effects of the novel HDAC6 inhibitor W5 on Aβ/Cu 2+-induced Alzheimer's disease model of rats. Brain Res 2024; 1832:148847. [PMID: 38442843 DOI: 10.1016/j.brainres.2024.148847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Histone deacetylase 6 (HDAC6) is a key therapeutic target in neurodegenerative diseases such as Alzheimer's disease (AD), which has been demonstrated to play an essential role in memory function and microtubule-associated tau physiology. In this study, W5 was used to treat AD model rats induced by Aβ/Cu2+ to study the improving effect of W5 on learning and memory impairment in AD rats and its related mechanism, to provide the basis for the subsequent development of W5 as an anti-AD drug. Results showed that W5 could decrease the expression of Aβ, Tau, and p-Tau proteins in the hippocampus of AD rats to inhibit the formation of senile plaques and neurofibrillary tangles, down-regulate the expression of Bax mRNA and Caspase-3 mRNA, and up-regulate the expression of Bcl-2 mRNA to reduce the apoptosis of neuron cells, reverse the expression of TNF-α, IL-1β and IL-6 mRNA to regulate neuroinflammatory response in AD rat brain. W5 also could regulate the oxidative stress state of AD rats, and balance the neurotransmitter disorder in AD rats' brain tissue. Overall, W5 could recover the morphology of hippocampal neurons and improve the learning and memory dysfunction in AD rats by regulating multiple targets in AD rats, providing a promising therapeutic avenue for the treatment of AD.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dan Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiasi Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
15
|
Ekka R, Gutierrez A, Johnson KA, Tan M, Sütterlin C. Chlamydia trachomatis induces disassembly of the primary cilium to promote the intracellular infection. PLoS Pathog 2024; 20:e1012303. [PMID: 38885287 PMCID: PMC11213297 DOI: 10.1371/journal.ppat.1012303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/28/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Chlamydia trachomatis is a clinically important bacterium that infects epithelial cells of the genitourinary and respiratory tracts and the eye. These differentiated cells are in a quiescent growth state and have a surface organelle called a primary cilium, but the standard Chlamydia cell culture infection model uses cycling cells that lack primary cilia. To investigate if these differences are relevant, we performed infections with host cells that have a primary cilium. We found that C. trachomatis caused progressive loss of the primary cilium that was prevented by disrupting Aurora A (AurA), HDAC6 or calmodulin, which are components of the cellular cilia disassembly pathway. Stabilization of the primary cilium by targeting this pathway caused a large reduction in infectious progeny although there were no changes in chlamydial inclusion growth, chlamydial replication or the ultrastructural appearance of dividing and infectious forms (RBs and EBs, respectively). Thus, the presence of a primary cilium interfered with the production of infectious EBs at a late step in the developmental cycle. C. trachomatis infection also induced quiescent cells to re-enter the cell cycle, as detected by EdU incorporation in S-phase, and Chlamydia-induced cilia disassembly was necessary for cell cycle re-entry. This study therefore describes a novel host-pathogen interaction in which the primary cilium limits a productive Chlamydia infection, and the bacterium counteracts this host cell defense by activating the cellular cilia disassembly pathway.
Collapse
Affiliation(s)
- Roseleen Ekka
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Abraham Gutierrez
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Kirsten A. Johnson
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, United States of America
- Department of Medicine, University of California, Irvine, California, United States of America
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
16
|
Kawasaki M, Al-Shama RFM, Nariswari FA, Fabrizi B, van den Berg NWE, Wesselink R, Neefs J, Meulendijks ER, Baalman SWE, Driessen AHG, de Groot JR. Primary cilia suppress the fibrotic activity of atrial fibroblasts from patients with atrial fibrillation in vitro. Sci Rep 2024; 14:12470. [PMID: 38816374 PMCID: PMC11139955 DOI: 10.1038/s41598-024-60298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
Atrial fibrosis serves as an arrhythmogenic substrate in atrial fibrillation (AF) and contributes to AF persistence. Treating atrial fibrosis is challenging because atrial fibroblast activity is multifactorial. We hypothesized that the primary cilium regulates the profibrotic response of AF atrial fibroblasts, and explored therapeutic potentials of targeting primary cilia to treat fibrosis in AF. We included 25 patients without AF (non-AF) and 26 persistent AF patients (AF). Immunohistochemistry using a subset of the patients (non-AF: n = 10, AF: n = 10) showed less ciliated fibroblasts in AF versus non-AF. Acetylated α-tubulin protein levels were decreased in AF, while the gene expressions of AURKA and NEDD9 were highly increased in AF patients' left atrium. Loss of primary cilia in human atrial fibroblasts through IFT88 knockdown enhanced expression of ECM genes, including FN1 and COL1A1. Remarkably, restoration or elongation of primary cilia by an AURKA selective inhibitor or lithium chloride, respectively, prevented the increased expression of ECM genes induced by different profibrotic cytokines in atrial fibroblasts of AF patients. Our data reveal a novel mechanism underlying fibrotic substrate formation via primary cilia loss in AF atrial fibroblasts and suggest a therapeutic potential for abrogating atrial fibrosis by restoring primary cilia.
Collapse
Affiliation(s)
- Makiri Kawasaki
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Rushd F M Al-Shama
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Fransisca A Nariswari
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benedetta Fabrizi
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Nicoline W E van den Berg
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Robin Wesselink
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jolien Neefs
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eva R Meulendijks
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sarah W E Baalman
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Antoine H G Driessen
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Joris R de Groot
- Amsterdam UMC, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Heart Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Kong MJ, Han SJ, Seu SY, Han KH, Lipschutz JH, Park KM. High water intake induces primary cilium elongation in renal tubular cells. Kidney Res Clin Pract 2024; 43:313-325. [PMID: 37933114 PMCID: PMC11181044 DOI: 10.23876/j.krcp.23.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The primary cilium protrudes from the cell surface and functions as a mechanosensor. Recently, we found that water intake restriction shortens the primary cilia of renal tubular cells, and a blockage of the shortening disturbs the ability of the kidneys to concentrate urine. Here, we investigate whether high water intake (HWI) alters primary cilia length, and if so, what is its underlying mechanism and its role on kidney urine production. METHODS Experimental mice were given free access to normal water (normal water intake) or 3% sucrose-containing water for HWI for 2 days. Some mice were administered with U0126 (10 mg/kg body weight), an inhibitor of MEK kinase, from 2 days before HWI, daily. The primary cilium length and urine amount and osmolality were investigated. RESULTS HWI-induced diluted urine production and primary cilium elongation in renal tubular cells. HWI increased the expression of α-tubulin acetyltransferase 1 (αTAT1), leading to the acetylation of α-tubulins, a core protein of the primary cilia. HWI also increased phosphorylated ERK1/2 (p-ERK1/2) and exocyst complex component 5 (Exoc5) expression in the kidneys. U0126 blocked HWI-induced increases in αTAT1, p-ERK1/2, and Exoc5 expression. U0126 inhibited HWI-induced α-tubulin acetylation, primary cilium elongation, urine amount increase, and urine osmolality decrease. CONCLUSION These results show that increased water intake elongates the primary cilia via ERK1/2 activation and that ERK inhibition prevents primary cilium elongation and diluted urine production. These data suggest that the elongation of primary cilium length is associated with the production of diluted urine.
Collapse
Affiliation(s)
- Min Jung Kong
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Jun Han
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Sung Young Seu
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Joshua H. Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Kwon Moo Park
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
18
|
Yang SK, Kubo S, Black CS, Peri K, Dai D, Legal T, Valente-Paterno M, Gaertig J, Bui KH. Effect of α-tubulin acetylation on the doublet microtubule structure. eLife 2024; 12:RP92219. [PMID: 38598282 PMCID: PMC11006419 DOI: 10.7554/elife.92219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.
Collapse
Affiliation(s)
- Shun Kai Yang
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | - Shintaroh Kubo
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | | | - Katya Peri
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | - Daniel Dai
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | | | - Jacek Gaertig
- Department of Cellular Biology, University of GeorgiaAthensUnited States
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
- Centre de Recherche en Biologie Structurale, McGill UniversityMontréalCanada
| |
Collapse
|
19
|
Araujo-Silva CA, Vögerl K, Breu F, Jung M, Costa ALO, De Souza W, Bracher F, Martins-Duarte ES, Vommaro RC. Potent hydroxamate-derived compounds arrest endodyogeny of Toxoplasma gondii tachyzoites. Exp Parasitol 2024; 259:108727. [PMID: 38431113 DOI: 10.1016/j.exppara.2024.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Toxoplasmosis is a zoonosis that is a worldwide health problem, commonly affecting fetal development and immunodeficient patients. Treatment is carried out with a combination of pyrimethamine and sulfadiazine, which can cause cytopenia and intolerance and does not lead to a parasitological cure of the infection. Lysine deacetylases (KDACs), which remove an acetyl group from lysine residues in histone and non-histone proteins are found in the Toxoplasma gondii genome. Previous work showed the hydroxamate-type KDAC inhibitors Tubastatin A (TST) and Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) were effective against T. gondii. In the present study, the effects of three hydroxamates (KV-24, KV-30, KV-46), which were originally designed to inhibit human KDAC6, showed different effects against T. gondii. These compounds contain a heterocyclic cap group and a benzyl linker bearing the hydroxamic acid group in para-position. All compounds showed selective activity against T. gondii proliferation, inhibiting tachyzoite proliferation with IC50 values in a nanomolar range after 48h treatment. Microscopy analyses showed that after treatment, tachyzoites presented mislocalization of the apicoplast, disorganization of the inner membrane complex, and arrest in the completion of new daughter cells. The number of dividing cells with incomplete endodyogeny increased significantly after treatment, indicating the compounds can interfere in the late steps of cell division. The results obtained in this work that these new hydroxamates should be considered for future in vivo tests and the development of new compounds for treating toxoplasmosis.
Collapse
Affiliation(s)
- Carlla Assis Araujo-Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Av. Carlos Chagas Filho, Centro de Pesquisa em medicina de Precisão, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-904, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Brazil
| | - Katharina Vögerl
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Ferdinand Breu
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Germany
| | - Andreia Luiza Oliveira Costa
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6.627 -Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Wanderley De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Av. Carlos Chagas Filho, Centro de Pesquisa em medicina de Precisão, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-904, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Brazil
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians University, Munich, Germany
| | - Erica S Martins-Duarte
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6.627 -Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Rossiane C Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Av. Carlos Chagas Filho, Centro de Pesquisa em medicina de Precisão, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-904, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
20
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
21
|
Guo H, Lan M, Zhang Q, Liu Y, Zhang Y, Zhang Q, Chen W. [Piezo1 Mediates the Regulation of Substrate Stiffness on Primary Cilia in Chondrocytes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:67-73. [PMID: 38322536 PMCID: PMC10839480 DOI: 10.12182/20240160502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 02/08/2024]
Abstract
Objective To investigate how substrate stiffness regulates the morphology of primary cilia in chondrocytes and to illustrate how Piezo1 mediates the morphology regulation of primary cilia by substrate stiffness. Methods Polydimethylsiloxane (PDMS) curing agent and the main agent (Dow Corning, Beijing, China) were mixed at the ratio of 1∶10 (stiff), 1∶50 (medium stiffness), and 1∶70 (soft), respectively, to prepare substrate films with the thickness of 1 mm at different levels of stiffness, including stiff substrate of (2.21±0.12) MPa, medium-stiffness substrate of (54.47±6.06) kPa, and soft substrate of (2.13±0.10) kPa. Chondrocytes were cultured with the substrates of three different levels of stiffness. Then, the cells were treated with Tubastatin A (Tub A) to inhibit histone deacetylase 6 (HDAC6), Piezo1 activator Yoda1, and inhibitor GsMTx4, respectively. The effects of HDAC6, Yoda1, and GsMTx4 on chondrocyte morphology and the length of primary cilia were analyzed through immunofluorescence staining. Results The stiff substrate increased the spread area of the chondrocytes. Immunofluorescence assays showed that the cytoskeleton and the nuclear area of the cells on the stiff substrate were significantly increased (P<0.05) and the primary cilia were significantly extended (P<0.05) compared with those on the medium-stiffness and soft substrates. However, the presence rate of primary cilia was not affected. The HDAC6 activity of chondrocytes increased with the decrease in substrate stiffness. When the activity of HDAC6 was inhibited, the cytoskeletal area, the nuclei area, and the primary cilium length were increased more significantly on the stiff substrate (P<0.05). Further testing showed that Piezo1 activator and inhibitor could regulate the activity of HDAC6 in chondrocytes, and that the length of primary cilia was significantly increased after treatment with the activator Yoda1 (P<0.05). On the other hand, the length of primary cilia was significantly shortened on the stiff substrate after treatment with the inhibitor GsMTx4 (P<0.05). Conclusion Both substrate stiffness and Piezo1 may affect the morphology of chondrocyte primary cilia by regulating HDAC6 activity.
Collapse
Affiliation(s)
- Huaqing Guo
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Minhua Lan
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qiang Zhang
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanli Liu
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanjun Zhang
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- ( 030009) Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030009, China
| | - Quanyou Zhang
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- ( 030009) Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Shanxi Medical University, Taiyuan 030009, China
| | - Weiyi Chen
- ( 030024) College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
22
|
Zhang Y, Tawiah GK, Zhang Y, Wang X, Wei X, Chen W, Qiao X, Zhang Q. HDAC6 inhibition regulates substrate stiffness-mediated inflammation signaling in chondrocytes. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1987-1998. [PMID: 37644773 PMCID: PMC10753363 DOI: 10.3724/abbs.2023144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoarthritis (OA) is a chronic disease and is difficult to cure. Chondrocytes are highly mechanosensitive. Therefore, mechanical therapies have received attention as a therapeutic direction for OA. The stiffness, as a critical cue of the extracellular matrix (ECM), affects cell growth, development, and death. In this study, we use polydimethylsiloxane (PDMS) to create substrates with varying stiffness for chondrocyte growth, interleukin-1β (IL-1β) treatment to mimic the inflammatory environment, and Tubastatin A (Tub A) to inhibit histone deacetylase 6 (HDAC6). Our results show that stiff substrates can be anti-inflammatory and provide a better matrix environment than soft substrates. Inhibition of HDAC6 improves the inflammatory environment caused by IL-1β and coordinates with inflammation to spread the chondrocyte area and primary cilia elongation. Without IL-1β and Tub A treatments, the length of the primary cilia rather than frequency is stiffness-dependent, and their length on stiff substrates are greater than that on soft substrates. In conclusion, we demonstrate that stiff substrates, inflammation, and inhibition of HDAC6 enhance the mechanosensitivity of primary cilia and mediate substrate stiffness to suppress inflammation and protect the matrix.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Histology and EmbryologyShanxi Medical UniversityJinzhong030604China
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Godfred K Tawiah
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Yanjun Zhang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
- Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China
| | - Xiaohu Wang
- Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China
| | - Xiaochun Wei
- Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China
| | - Weiyi Chen
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaohong Qiao
- Department of Histology and EmbryologyShanxi Medical UniversityJinzhong030604China
- Department of OrthopaedicsLvliang Hospital Affiliated to Shanxi Medical UniversityLvliang033099China
| | - Quanyou Zhang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
- Department of Orthopaedicsthe Second Hospital of Shanxi Medical UniversityShanxi Key Laboratory of Bone and Soft Tissue Injury RepairShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
23
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
24
|
Ripa L, Sandmark J, Hughes G, Shamovsky I, Gunnarsson A, Johansson J, Llinas A, Collins M, Jung B, Novén A, Pemberton N, Mogemark M, Xiong Y, Li Q, Tångefjord S, Ek M, Åstrand A. Selective and Bioavailable HDAC6 2-(Difluoromethyl)-1,3,4-oxadiazole Substrate Inhibitors and Modeling of Their Bioactivation Mechanism. J Med Chem 2023; 66:14188-14207. [PMID: 37797307 DOI: 10.1021/acs.jmedchem.3c01269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation. We also observe that the inherent electrophilicity of the oxadiazoles makes them prone to degradation in water solution and the generation of potentially toxic products cannot be ruled out, limiting the developability for chronic diseases. However, the oxadiazoles demonstrate high oral bioavailability and low in vivo clearance and are excellent tools for studying the role of HDAC6 in vitro and in vivo in rats and mice.
Collapse
Affiliation(s)
- Lena Ripa
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Jenny Sandmark
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Glyn Hughes
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Igor Shamovsky
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anders Gunnarsson
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Julia Johansson
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Antonio Llinas
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mia Collins
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Bomi Jung
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Anna Novén
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Nils Pemberton
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Yao Xiong
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Qing Li
- Pharmaron Beijing, Co. Ltd., No. 6, Taihe Road, BDA, Beijing 100176, China
| | - Stefan Tångefjord
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Margareta Ek
- Discovery Sciences, Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| | - Annika Åstrand
- Respiratory & Immunology (R&I), Research and Early Development, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183 Mölndal, Sweden
| |
Collapse
|
25
|
Fiedler J, Moennig T, Hinrichs JH, Weber A, Wagner T, Hemmer T, Schröter R, Weide T, Epting D, Bergmann C, Nedvetsky P, Krahn MP. PATJ inhibits histone deacetylase 7 to control tight junction formation and cell polarity. Cell Mol Life Sci 2023; 80:333. [PMID: 37878054 PMCID: PMC10600057 DOI: 10.1007/s00018-023-04994-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.
Collapse
Affiliation(s)
- Julia Fiedler
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Moennig
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Johanna H Hinrichs
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Annika Weber
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Wagner
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Tim Hemmer
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Weide
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Daniel Epting
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, 55128, Mainz, Germany
| | - Pavel Nedvetsky
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Michael P Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
26
|
Yang J, Liu Y, Yin H, Xie S, Zhang L, Dong X, Ni H, Bu W, Ma H, Liu P, Zhu H, Guo R, Sun L, Wu Y, Qin J, Sun B, Li D, Luo HR, Liu M, Xuan C, Zhou J. HDAC6 deacetylates IDH1 to promote the homeostasis of hematopoietic stem and progenitor cells. EMBO Rep 2023; 24:e56009. [PMID: 37642636 PMCID: PMC10561360 DOI: 10.15252/embr.202256009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Songbo Xie
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xifeng Dong
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Weiwen Bu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo Ma
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Peng Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Haiyan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Rongxia Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Lei Sun
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Yue Wu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo R Luo
- Department of Pathology, Department of Laboratory Medicine, Harvard Medical SchoolChildren's Hospital Boston, Dana‐Farber/Harvard Cancer CenterBostonMAUSA
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjinChina
| | - Chenghao Xuan
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| |
Collapse
|
27
|
Toro TB, Skripnikova EV, Bornes KE, Zhang K, Watt TJ. Endogenous expression of inactive lysine deacetylases reveals deacetylation-dependent cellular mechanisms. PLoS One 2023; 18:e0291779. [PMID: 37721967 PMCID: PMC10506724 DOI: 10.1371/journal.pone.0291779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Acetylation of lysine residues is an important and common post-translational regulatory mechanism occurring on thousands of non-histone proteins. Lysine deacetylases (KDACs or HDACs) are a family of enzymes responsible for removing acetylation. To identify the biological mechanisms regulated by individual KDACs, we created HT1080 cell lines containing chromosomal point mutations, which endogenously express either KDAC6 or KDAC8 having single inactivated catalytic domain. Engineered HT1080 cells expressing inactive KDA6 or KDAC8 domains remained viable and exhibited enhanced acetylation on known substrate proteins. RNA-seq analysis revealed that many changes in gene expression were observed when KDACs were inactivated, and that these gene sets differed significantly from knockdown and knockout cell lines. Using GO ontology, we identified several critical biological processes associated specifically with catalytic activity and others attributable to non-catalytic interactions. Treatment of wild-type cells with KDAC-specific inhibitors Tubastatin A and PCI-34051 resulted in gene expression changes distinct from those of the engineered cell lines, validating this approach as a tool for evaluating in-cell inhibitor specificity and identifying off-target effects of KDAC inhibitors. Probing the functions of specific KDAC domains using these cell lines is not equivalent to doing so using previously existing methods and provides novel insight into the catalytic functions of individual KDACs by investigating the molecular and cellular changes upon genetic inactivation.
Collapse
Affiliation(s)
- Tasha B. Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Elena V. Skripnikova
- Division of Basic and Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kiara E. Bornes
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kun Zhang
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, United States of America
- Bioinformatics Core, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Terry J. Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| |
Collapse
|
28
|
Bodin A, Greibill L, Gouju J, Letournel F, Pozzi S, Julien JP, Renaud L, Bohl D, Millecamps S, Verny C, Cassereau J, Lenaers G, Chevrollier A, Tassin AM, Codron P. Transactive response DNA-binding protein 43 is enriched at the centrosome in human cells. Brain 2023; 146:3624-3633. [PMID: 37410912 PMCID: PMC10473568 DOI: 10.1093/brain/awad228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
The centrosome, as the main microtubule organizing centre, plays key roles in cell polarity, genome stability and ciliogenesis. The recent identification of ribosomes, RNA-binding proteins and transcripts at the centrosome suggests local protein synthesis. In this context, we hypothesized that TDP-43, a highly conserved RNA binding protein involved in the pathophysiology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, could be enriched at this organelle. Using dedicated high magnification sub-diffraction microscopy on human cells, we discovered a novel localization of TDP-43 at the centrosome during all phases of the cell cycle. These results were confirmed on purified centrosomes by western blot and immunofluorescence microscopy. In addition, the co-localization of TDP-43 and pericentrin suggested a pericentriolar enrichment of the protein, leading us to hypothesize that TDP-43 might interact with local mRNAs and proteins. Supporting this hypothesis, we found four conserved centrosomal mRNAs and 16 centrosomal proteins identified as direct TDP-43 interactors. More strikingly, all the 16 proteins are implicated in the pathophysiology of TDP-43 proteinopathies, suggesting that TDP-43 dysfunction in this organelle contributes to neurodegeneration. This first description of TDP-43 centrosomal enrichment paves the way for a more comprehensive understanding of TDP-43 physiology and pathology.
Collapse
Affiliation(s)
- Alexia Bodin
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Logan Greibill
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Julien Gouju
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Franck Letournel
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Laurence Renaud
- Département de Neurosciences, Université de Montréal, Montréal, Qc H3C 3J7, Canada
- Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Christophe Verny
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Julien Cassereau
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Guy Lenaers
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Philippe Codron
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| |
Collapse
|
29
|
Kong MJ, Han SJ, Seu SY, Han KH, Lipschutz JH, Park KM. Shortening of primary cilia length is associated with urine concentration in the kidneys. Kidney Res Clin Pract 2023; 42:312-324. [PMID: 37313611 DOI: 10.23876/j.krcp.22.274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/25/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND The primary cilium, a microtubule-based cellular organelle present in certain kidney cells, functions as a mechano-sensor to monitor fluid flow in addition to various other biological functions. In kidneys, the primary cilia protrude into the tubular lumen and are directly exposed to pro-urine flow and components. However, their effects on urine concentration remain to be defined. Here, we investigated the association between primary cilia and urine concentration. METHODS Mice either had free access to water (normal water intake, NWI) or were not allowed access to water (water deprivation, WD). Some mice received tubastatin, an inhibitor of histone deacetylase 6 (HDAC6), which regulates the acetylation of α-tubulin, a core protein of microtubules. RESULTS WD decreased urine output and increased urine osmolality, concomitant with apical plasma membrane localization of aquaporin 2 (AQP2) in the kidney. After WD, compared with after NWI, the lengths of primary cilia in renal tubular epithelial cells were shortened and HDAC6 activity increased. WD induced deacetylation of α-tubulin without altering α-tubulin levels in the kidney. Tubastatin prevented the shortening of cilia through increasing HDAC6 activity and consequently increasing acetylated α-tubulin expression. Furthermore, tubastatin prevented the WD-induced reduction of urine output, urine osmolality increase, and apical plasma membrane localization of AQP2. CONCLUSIONS WD shortens primary cilia length through HDAC6 activation and α-tubulin deacetylation, while HDAC6 inhibition blocks the WD-induced changes in cilia length and urine output. This suggests that cilia length alterations are involved, at least in part, in the regulation of body water balance and urine concentration.
Collapse
Affiliation(s)
- Min Jung Kong
- Department of Anatomy, BK21 Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Jun Han
- Department of Anatomy, BK21 Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
| | - Sung Young Seu
- Department of Anatomy, BK21 Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Kwon Moo Park
- Department of Anatomy, BK21 Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
30
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
31
|
DeMars KM, Ross MR, Starr A, McIntyre JC. Neuronal primary cilia integrate peripheral signals with metabolic drives. Front Physiol 2023; 14:1150232. [PMID: 37064917 PMCID: PMC10090425 DOI: 10.3389/fphys.2023.1150232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Neuronal primary cilia have recently emerged as important contributors to the central regulation of energy homeostasis. As non-motile, microtubule-based organelles, primary cilia serve as signaling antennae for metabolic status. The impairment of ciliary structure or function can produce ciliopathies for which obesity is a hallmark phenotype and global ablation of cilia induces non-syndromic adiposity in mouse models. This organelle is not only a hub for metabolic signaling, but also for catecholamine neuromodulation that shapes neuronal circuitry in response to sensory input. The objective of this review is to highlight current research investigating the mechanisms of primary cilium-regulated metabolic drives for maintaining energy homeostasis.
Collapse
Affiliation(s)
- Kelly M. DeMars
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Madeleine R. Ross
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Summer Neuroscience Internship Program, University of Florida, Gainesville, FL, United States
| | - Alana Starr
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Jeremy C. McIntyre
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Arora S, Rana M, Sachdev A, D’Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023. [DOI: 10.1007/s12038-023-00326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
33
|
Xue Y, Gan B, Zhou Y, Wang T, Zhu T, Peng X, Zhang X, Zhou Y. Advances in the Mechanistic Study of the Control of Oxidative Stress Injury by Modulating HDAC6 Activity. Cell Biochem Biophys 2023; 81:127-139. [PMID: 36749475 PMCID: PMC9925596 DOI: 10.1007/s12013-022-01125-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress is defined as an injury resulting from a disturbance in the dynamic equilibrium of the redox environment due to the overproduction of active/radical oxygen exceeding the antioxidative ability of the body. This is a key step in the development of various diseases. Oxidative stress is modulated by different factors and events, including the modification of histones, which are the cores of nucleosomes. Histone modification includes acetylation and deacetylation of certain amino acid residues; this process is catalyzed by different enzymes. Histone deacetylase 6 (HDAC6) is a unique deacetylating protease that also catalyzes the deacetylation of different nonhistone substrates to regulate various physiologic processes. The intimate relationship between HDAC6 and oxidative stress has been demonstrated by different studies. The present paper aims to summarize the data obtained from a mechanistic study of HDAC6 and oxidative stress to guide further investigations on mechanistic characterization and drug development.
Collapse
Affiliation(s)
- Yuanye Xue
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China
| | - Bing Gan
- The Third Affiliated Hospital of Guangdong Medical University, Fo Shan, 528000, Guangdong, China
| | - Yanxing Zhou
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Tingyu Wang
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China
| | - Tong Zhu
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, 523808, China.
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Xiangning Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China.
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
34
|
Epigenetic Abnormalities in Chondrosarcoma. Int J Mol Sci 2023; 24:ijms24054539. [PMID: 36901967 PMCID: PMC10003547 DOI: 10.3390/ijms24054539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In recent years, our understanding of the epigenetic mechanisms involved in tumor pathology has improved greatly. DNA and histone modifications, such as methylation, demethylation, acetylation, and deacetylation, can lead to the up-regulation of oncogenic genes, as well as the suppression of tumor suppressor genes. Gene expression can also be modified on a post-transcriptional level by microRNAs that contribute to carcinogenesis. The role of these modifications has been already described in many tumors, e.g., colorectal, breast, and prostate cancers. These mechanisms have also begun to be investigated in less common tumors, such as sarcomas. Chondrosarcoma (CS) is a rare type of tumor that belongs to sarcomas and is the second most common malignant bone tumor after osteosarcoma. Due to unknown pathogenesis and resistance to chemo- and radiotherapies of these tumors, there is a need to develop new potential therapies against CS. In this review, we summarize current knowledge on the influence of epigenetic alterations in the pathogenesis of CS by discussing potential candidates for future therapies. We also emphasize ongoing clinical trials that use drugs targeting epigenetic modifications in CS treatment.
Collapse
|
35
|
Arora S, Rana M, Sachdev A, D'Souza JS. Appearing and disappearing acts of cilia. J Biosci 2023; 48:8. [PMID: 36924208 PMCID: PMC10005925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The past few decades have seen a rise in research on vertebrate cilia and ciliopathy, with interesting collaborations between basic and clinical scientists. This work includes studies on ciliary architecture, composition, evolution, and organelle generation and its biological role. The human body has cells that harbour any of the following four types of cilia: 9+0 motile, 9+0 immotile, 9+2 motile, and 9+2 immotile. Depending on the type, cilia play an important role in cell/fluid movement, mating, sensory perception, and development. Defects in cilia are associated with a wide range of human diseases afflicting the brain, heart, kidneys, respiratory tract, and reproductive system. These are commonly known as ciliopathies and affect millions of people worldwide. Due to their complex genetic etiology, diagnosis and therapy have remained elusive. Although model organisms like Chlamydomonas reinhardtii have been a useful source for ciliary research, reports of a fascinating and rewarding translation of this research into mammalian systems, especially humans, are seen. The current review peeks into one of the complex features of this organelle, namely its birth, the common denominators across the formation of both 9+0 and 9+2 ciliary types, the molecules involved in ciliogenesis, and the steps that go towards regulating their assembly and disassembly.
Collapse
Affiliation(s)
- Shashank Arora
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus, Santacruz (E), Mumbai 400098, India
| | | | | | | |
Collapse
|
36
|
Nguyen A, Goetz SC. TTBK2 controls cilium stability by regulating distinct modules of centrosomal proteins. Mol Biol Cell 2022; 34:ar8. [PMID: 36322399 PMCID: PMC9816645 DOI: 10.1091/mbc.e22-08-0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-threonine kinase tau tubulin kinase 2 (TTBK2) is a key regulator of the assembly of primary cilia, which are vital signaling organelles. TTBK2 is also implicated in the stability of the assembled cilium through mechanisms that remain to be defined. Here we use mouse embryonic fibroblasts derived from Ttbk2fl/fl, UBC-CreERT+ embryos (hereafter Ttbk2cmut) to dissect the role of TTBK2 in cilium stability. This system depletes TTBK2 levels after cilia formation, allowing us to assess the molecular changes to the assembled cilium over time. As a consequence of Ttbk2 deletion, the ciliary axoneme is destabilized and primary cilia are lost within 48-72 h following recombination. Axoneme destabilization involves an increased frequency of cilia breaks and a reduction in axonemal microtubule modifications. Cilia loss was delayed by using inhibitors that affect actin-based trafficking. At the same time, we find that TTBK2 is required to regulate the composition of the centriolar satellites and to maintain the basal body pools of intraflagellar transport proteins. Altogether, our results reveal parallel pathways by which TTBK2 maintains cilium stability.
Collapse
Affiliation(s)
- Abraham Nguyen
- Molecular Cancer Biology Program, Duke University School of Medicine, Durham, NC 27710,Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710
| | - Sarah C. Goetz
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710,*Address correspondence to: Sarah C. Goetz ()
| |
Collapse
|
37
|
Primary Cilia Restrain PI3K-AKT Signaling to Orchestrate Human Decidualization. Int J Mol Sci 2022; 23:ijms232415573. [PMID: 36555215 PMCID: PMC9779442 DOI: 10.3390/ijms232415573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial decidualization plays a pivotal role during early pregnancy. Compromised decidualization has been tightly associated with recurrent implantation failure (RIF). Primary cilium is an antenna-like sensory organelle and acts as a signaling nexus to mediate Hh, Wnt, TGFβ, BMP, FGF, and Notch signaling. However, whether primary cilium is involved in human decidualization is still unknown. In this study, we found that primary cilia are present in human endometrial stromal cells. The ciliogenesis and cilia length are increased by progesterone during in vitro and in vivo decidualization. Primary cilia are abnormal in the endometrium of RIF patients. Based on data from both assembly and disassembly of primary cilia, it has been determined that primary cilium is essential to human decidualization. Trichoplein (TCHP)-Aurora A signaling mediates cilia disassembly during human in vitro decidualization. Mechanistically, primary cilium modulates human decidualization through PTEN-PI3K-AKT-FOXO1 signaling. Our study highlights primary cilium as a novel decidualization-related signaling pathway.
Collapse
|
38
|
Horndahl J, Svärd R, Berntsson P, Wingren C, Li J, Abdillahi SM, Ghosh B, Capodanno E, Chan J, Ripa L, Åstrand A, Sidhaye VK, Collins M. HDAC6 inhibitor ACY-1083 shows lung epithelial protective features in COPD. PLoS One 2022; 17:e0266310. [PMID: 36223404 PMCID: PMC9555642 DOI: 10.1371/journal.pone.0266310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Airway epithelial damage is a common feature in respiratory diseases such as COPD and has been suggested to drive inflammation and progression of disease. These features manifest as remodeling and destruction of lung epithelial characteristics including loss of small airways which contributes to chronic airway inflammation. Histone deacetylase 6 (HDAC6) has been shown to play a role in epithelial function and dysregulation, such as in cilia disassembly, epithelial to mesenchymal transition (EMT) and oxidative stress responses, and has been implicated in several diseases. We thus used ACY-1083, an inhibitor with high selectivity for HDAC6, and characterized its effects on epithelial function including epithelial disruption, cytokine production, remodeling, mucociliary clearance and cell characteristics. Primary lung epithelial air-liquid interface cultures from COPD patients were used and the impacts of TNF, TGF-β, cigarette smoke and bacterial challenges on epithelial function in the presence and absence of ACY-1083 were tested. Each challenge increased the permeability of the epithelial barrier whilst ACY-1083 blocked this effect and even decreased permeability in the absence of challenge. TNF was also shown to increase production of cytokines and mucins, with ACY-1083 reducing the effect. We observed that COPD-relevant stimulations created damage to the epithelium as seen on immunohistochemistry sections and that treatment with ACY-1083 maintained an intact cell layer and preserved mucociliary function. Interestingly, there was no direct effect on ciliary beat frequency or tight junction proteins indicating other mechanisms for the protected epithelium. In summary, ACY-1083 shows protection of the respiratory epithelium during COPD-relevant challenges which indicates a future potential to restore epithelial structure and function to halt disease progression in clinical practice.
Collapse
Affiliation(s)
- Jenny Horndahl
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rebecka Svärd
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pia Berntsson
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Wingren
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jingjing Li
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Suado M. Abdillahi
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erin Capodanno
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Justin Chan
- Department of Public Health Studies, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lena Ripa
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Åstrand
- Project Leader Department, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Venkataramana K. Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mia Collins
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
39
|
Apical Medium Flow Influences the Morphology and Physiology of Human Proximal Tubular Cells in a Microphysiological System. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100516. [PMID: 36290484 PMCID: PMC9598399 DOI: 10.3390/bioengineering9100516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 12/28/2022]
Abstract
There is a lack of physiologically relevant in vitro human kidney models for disease modelling and detecting drug-induced effects given the limited choice of cells and difficulty implementing quasi-physiological culture conditions. We investigated the influence of fluid shear stress on primary human renal proximal tubule epithelial cells (RPTECs) cultured in the micro-physiological Vitrofluid device. This system houses cells seeded on semipermeable membranes and can be connected to a regulable pump that enables controlled, unidirectional flow. After 7 days in culture, RPTECs maintained physiological characteristics such as barrier integrity, protein uptake ability, and expression of specific transporters (e.g., aquaporin-1). Exposure to constant apical side flow did not cause cytotoxicity, cell detachment, or intracellular reactive oxygen species accumulation. However, unidirectional flow profoundly affected cell morphology and led to primary cilia lengthening and alignment in the flow direction. The dynamic conditions also reduced cell proliferation, altered plasma membrane leakiness, increased cytokine secretion, and repressed histone deacetylase 6 and kidney injury molecule 1 expression. Cells under flow also remained susceptible to colistin-induced toxicity. Collectively, the results suggest that dynamic culture conditions in the Vitrofluid system promote a more differentiated phenotype in primary human RPTECs and represent an improved in vitro kidney model.
Collapse
|
40
|
Ge R, Cao M, Chen M, Liu M, Xie S. Cytoskeletal networks in primary cilia: Current knowledge and perspectives. J Cell Physiol 2022; 237:3975-3983. [PMID: 36000703 DOI: 10.1002/jcp.30865] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022]
Abstract
Primary cilia, microtubule-based protrusions present on the surface of most mammalian cells, function as sensory organelles that monitor extracellular signals and transduce them into intracellular biochemical responses. There is renewed research interest in primary cilia due to their essential roles in development, tissue homeostasis, and human diseases. Primary cilia dysfunction causes a large spectrum of human diseases, collectively known as ciliopathies. Despite significant advances in our understanding of primary cilia, there are still no effective agents for treating ciliopathies. Primary ciliogenesis is a highly ordered process involving membrane trafficking, basal body maturation, vesicle docking and fusion, transition zone assembly, and axoneme extension, in which actin and microtubule networks play critical and multiple roles. Actin and microtubule network architecture, isotropy, and dynamics are tightly controlled by cytoskeleton-associated proteins, a growing number of which are now recognized as responsible for cilium formation and maintenance. Here we summarize the roles of actin and microtubules and their associated proteins in primary ciliogenesis and maintenance. In doing so, we highlight that targeting cytoskeleton-associated proteins may be a promising therapeutic strategy for the treatment of ciliopathies.
Collapse
Affiliation(s)
- Ruixin Ge
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Minghui Cao
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Miao Chen
- Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Min Liu
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China
| | - Songbo Xie
- Department of Cell Biology, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, China.,Department of Bioscience, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
41
|
Pezzotta A, Gentile I, Genovese D, Totaro MG, Battaglia C, Leung AYH, Fumagalli M, Parma M, Cazzaniga G, Fazio G, Alcalay M, Marozzi A, Pistocchi A. HDAC6 inhibition decreases leukemic stem cell expansion driven by Hedgehog hyperactivation by restoring primary ciliogenesis. Pharmacol Res 2022; 183:106378. [PMID: 35918044 DOI: 10.1016/j.phrs.2022.106378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
Aberrant activation of the Hh pathway promotes cell proliferation and multi-drug resistance (MDR) in several cancers, including Acute Myeloid Leukemia (AML). Notably, only one Hh inhibitor, glasdegib, has been approved for AML treatment, and most patients eventually relapse, highlighing the urgent need ti discover new therapeutic targets. Hh signal is transduced through the membrane of the primary cilium, a structure expressed by non-proliferating mammalian cells, whose stabilization depends on the activity of HDAC6. Here we describe a positive correlation between Hh, HDAC6, and MDR genes in a cohort of adult AML patients, human leukemic cell lines, and a zebrafish model of Hh overexpression. The hyper-activation of Hh or HDAC6 in zebrafish drove the increased proliferation of hematopoietic stem and progenitor cells (HSPCs). Interestingly, this phenotype was rescued by inhibition of HDAC6 but not of Hh. Also, in human leukemic cell lines, a reduction in vitality was obtained through HDAC6, but not Hh inhibition. Our data showed the presence of a cross-talk between Hh and HDAC6 mediated by stabilization of the primary cilium, which we detect for the first time in zebrafish HSPCs. Inhibition of HDAC6 activity alone or in combination therapy with the chemotherapeutic agent cytarabine, efficiently rescued the hematopoietic phenotype. Our results open the possibility to introduce HDAC6 as therapeutic target to reduce proliferation of leukemic blasts in AML patients.
Collapse
Affiliation(s)
- Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Gentile
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Donatella Genovese
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | | | - Cristina Battaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | | | - Monica Fumagalli
- Hospital San Gerardo, Clinica Ematologica e Centro Trapianti di Midollo Osseo, Monza, Italy
| | - Matteo Parma
- Hospital San Gerardo, Clinica Ematologica e Centro Trapianti di Midollo Osseo, Monza, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Myriam Alcalay
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milano, Italy; Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milano, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
42
|
Agborbesong E, Li LX, Li L, Li X. Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Front Mol Biosci 2022; 9:922428. [PMID: 35847973 PMCID: PMC9277309 DOI: 10.3389/fmolb.2022.922428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder, which is caused by mutations in the PKD1 and PKD2 genes, characterizing by progressive growth of multiple cysts in the kidneys, eventually leading to end-stage kidney disease (ESKD) and requiring renal replacement therapy. In addition, studies indicate that disease progression is as a result of a combination of factors. Understanding the molecular mechanisms, therefore, should facilitate the development of precise therapeutic strategies for ADPKD treatment. The roles of epigenetic modulation, interstitial inflammation, and regulated cell death have recently become the focuses in ADPKD. Different epigenetic regulators, and the presence of inflammatory markers detectable even before cyst growth, have been linked to cyst progression. Moreover, the infiltration of inflammatory cells, such as macrophages and T cells, have been associated with cyst growth and deteriorating renal function in humans and PKD animal models. There is evidence supporting a direct role of the PKD gene mutations to the regulation of epigenetic mechanisms and inflammatory response in ADPKD. In addition, the role of regulated cell death, including apoptosis, autophagy and ferroptosis, have been investigated in ADPKD. However, there is no consensus whether cell death promotes or delays cyst growth in ADPKD. It is therefore necessary to develop an interactive picture between PKD gene mutations, the epigenome, inflammation, and cell death to understand why inherited PKD gene mutations in patients may result in the dysregulation of these processes that increase the progression of renal cyst formation.
Collapse
Affiliation(s)
- Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Lu Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
43
|
Ran J, Zhang Y, Zhang S, Li H, Zhang L, Li Q, Qin J, Li D, Sun L, Xie S, Zhang X, Liu L, Liu M, Zhou J. Targeting the HDAC6-Cilium Axis Ameliorates the Pathological Changes Associated with Retinopathy of Prematurity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105365. [PMID: 35619548 PMCID: PMC9313505 DOI: 10.1002/advs.202105365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Retinopathy of prematurity (ROP) is one of the leading causes of childhood visual impairment and blindness. However, there are still very few effective pharmacological interventions for ROP. Histone deacetylase 6 (HDAC6)-mediated disassembly of photoreceptor cilia has recently been implicated as an early event in the pathogenesis of ROP. Herein it is shown that enhanced expression of HDAC6 by intravitreal injection of adenoviruses encoding HDAC6 induces the typical pathological changes associated with ROP in mice, including disruption of the membranous disks of photoreceptor outer segments and a decrease in electroretinographic amplitudes. Hdac6 transgenic mice exhibit similar ROP-related defects in retinal structures and functions and disassembly of photoreceptor cilia, whereas Hdac6 knockout mice are resistant to oxygen change-induced retinal defects. It is further shown that blocking HDAC6-mediated cilium disassembly by intravitreal injection of small-molecule compounds protect mice from ROP-associated retinal defects. The findings indicate that pharmacological targeting of the HDAC6-cilium axis may represent a promising strategy for the prevention of ROP.
Collapse
Affiliation(s)
- Jie Ran
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Yao Zhang
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Sai Zhang
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Haixia Li
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Liang Zhang
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Qingchao Li
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Lei Sun
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Songbo Xie
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and DiseasesEye Institute and School of OptometryTianjin Medical University Eye HospitalTianjin300384China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| | - Min Liu
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Jun Zhou
- Institute of Biomedical SciencesShandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongCollege of Life SciencesShandong Normal UniversityJinan250014China
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesHaihe Laboratory of Cell EcosystemNankai UniversityTianjin300071China
| |
Collapse
|
44
|
Wang M, Zhou C, Yu L, Kong D, Ma W, Lv B, Wang Y, Wu W, Zhou M, Cui G. Upregulation of MDH1 acetylation by HDAC6 inhibition protects against oxidative stress-derived neuronal apoptosis following intracerebral hemorrhage. Cell Mol Life Sci 2022; 79:356. [PMID: 35678904 PMCID: PMC11073123 DOI: 10.1007/s00018-022-04341-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress impairs functional recovery after intracerebral hemorrhage (ICH). Histone deacetylase 6 (HDAC6) plays an important role in the initiation of oxidative stress. However, the function of HDAC6 in ICH and the underlying mechanism of action remain elusive. We demonstrated here that HDAC6 knockout mice were resistant to oxidative stress following ICH, as assessed by the MDA and NADPH/NADP+ assays and ROS detection. HDAC6 deficiency also resulted in reduced neuronal apoptosis and lower expression levels of apoptosis-related proteins. Further mechanistic studies showed that HDAC6 bound to malate dehydrogenase 1 (MDH1) and mediated-MDH1 deacetylation on the lysine residues at position 121 and 298. MDH1 acetylation was inhibited in HT22 cells that were challenged with ICH-related damaging agents (Hemin, Hemoglobin, and Thrombin), but increased when HDAC6 was inhibited, suggesting an interplay between HDAC6 and MDH1. The acetylation-mimetic mutant, but not the acetylation-resistant mutant, of MDH1 protected neurons from oxidative injury. Furthermore, HDAC6 inhibition failed to alleviate brain damage after ICH when MDH1 was knockdown. Taken together, our study showed that HDAC6 inhibition protects against brain damage during ICH through MDH1 acetylation.
Collapse
Affiliation(s)
- Miao Wang
- Department of Geriatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China.
- Department of Neurology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chao Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Lu Yu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Delian Kong
- Department of Neurology, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weijing Ma
- Department of Neurology, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bingchen Lv
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Yan Wang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Weifeng Wu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Mingyue Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Guiyun Cui
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China.
| |
Collapse
|
45
|
Bandela M, Belvitch P, Garcia JGN, Dudek SM. Cortactin in Lung Cell Function and Disease. Int J Mol Sci 2022; 23:4606. [PMID: 35562995 PMCID: PMC9101201 DOI: 10.3390/ijms23094606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cortactin (CTTN) is an actin-binding and cytoskeletal protein that is found in abundance in the cell cortex and other peripheral structures of most cell types. It was initially described as a target for Src-mediated phosphorylation at several tyrosine sites within CTTN, and post-translational modifications at these tyrosine sites are a primary regulator of its function. CTTN participates in multiple cellular functions that require cytoskeletal rearrangement, including lamellipodia formation, cell migration, invasion, and various other processes dependent upon the cell type involved. The role of CTTN in vascular endothelial cells is particularly important for promoting barrier integrity and inhibiting vascular permeability and tissue edema. To mediate its functional effects, CTTN undergoes multiple post-translational modifications and interacts with numerous other proteins to alter cytoskeletal structures and signaling mechanisms. In the present review, we briefly describe CTTN structure, post-translational modifications, and protein binding partners and then focus on its role in regulating cellular processes and well-established functional mechanisms, primarily in vascular endothelial cells and disease models. We then provide insights into how CTTN function affects the pathophysiology of multiple lung disorders, including acute lung injury syndromes, COPD, and asthma.
Collapse
Affiliation(s)
- Mounica Bandela
- Department of Biomedical Engineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Patrick Belvitch
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA;
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
46
|
Rocha C, Prinos P. Post-transcriptional and Post-translational Modifications of Primary Cilia: How to Fine Tune Your Neuronal Antenna. Front Cell Neurosci 2022; 16:809917. [PMID: 35295905 PMCID: PMC8918543 DOI: 10.3389/fncel.2022.809917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Primary cilia direct cellular signaling events during brain development and neuronal differentiation. The primary cilium is a dynamic organelle formed in a multistep process termed ciliogenesis that is tightly coordinated with the cell cycle. Genetic alterations, such as ciliary gene mutations, and epigenetic alterations, such as post-translational modifications and RNA processing of cilia related factors, give rise to human neuronal disorders and brain tumors such as glioblastoma and medulloblastoma. This review discusses the important role of genetics/epigenetics, as well as RNA processing and post-translational modifications in primary cilia function during brain development and cancer formation. We summarize mouse and human studies of ciliogenesis and primary cilia activity in the brain, and detail how cilia maintain neuronal progenitor populations and coordinate neuronal differentiation during development, as well as how cilia control different signaling pathways such as WNT, Sonic Hedgehog (SHH) and PDGF that are critical for neurogenesis. Moreover, we describe how post-translational modifications alter cilia formation and activity during development and carcinogenesis, and the impact of missplicing of ciliary genes leading to ciliopathies and cell cycle alterations. Finally, cilia genetic and epigenetic studies bring to light cellular and molecular mechanisms that underlie neurodevelopmental disorders and brain tumors.
Collapse
Affiliation(s)
- Cecilia Rocha
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
- *Correspondence: Cecilia Rocha,
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
- Panagiotis Prinos,
| |
Collapse
|
47
|
Guichard P, Laporte MH, Hamel V. The centriolar tubulin code. Semin Cell Dev Biol 2021; 137:16-25. [PMID: 34896019 DOI: 10.1016/j.semcdb.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
Centrioles are microtubule-based cell organelles present in most eukaryotes. They participate in the control of cell division as part of the centrosome, the major microtubule-organizing center of the cell, and are also essential for the formation of primary and motile cilia. During centriole assembly as well as across its lifetime, centriolar tubulin display marks defined by post-translational modifications (PTMs), such as glutamylation or acetylation. To date, the functions of these PTMs at centrioles are not well understood, although pioneering experiments suggest a role in the stability of this organelle. Here, we review the current knowledge regarding PTMs at centrioles with a particular focus on a possible link between these modifications and centriole's architecture, and propose possible hypothesis regarding centriolar tubulin PTMs's function.
Collapse
Affiliation(s)
- Paul Guichard
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| | - Marine H Laporte
- University of Geneva, Department of Cell Biology, Geneva, Switzerland
| | - Virginie Hamel
- University of Geneva, Department of Cell Biology, Geneva, Switzerland.
| |
Collapse
|
48
|
Pant K, Peixoto E, Richard S, Biswas A, O'Sullivan MG, Giama N, Ha Y, Yin J, Carotenuto P, Salati M, Ren Y, Yang R, Franco B, Roberts LR, Gradilone SA. Histone Deacetylase Sirtuin 1 Promotes Loss of Primary Cilia in Cholangiocarcinoma. Hepatology 2021; 74:3235-3248. [PMID: 34322899 DOI: 10.1002/hep.32080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Sirtuin 1 (SIRT1) is a complex NAD+ -dependent protein deacetylase known to act as a tumor promoter or suppressor in different cancers. Here, we describe a mechanism of SIRT1-induced destabilization of primary cilia in cholangiocarcinoma (CCA). APPROACH AND RESULTS A significant overexpression of SIRT1 was detected in human CCA specimens and CCA cells including HuCCT1, KMCH, and WITT1 as compared with normal cholangiocytes (H69 and NHC). Small interfering RNA (siRNA)-mediated knockdown of SIRT1 in HuCCT1 cells induced cilia formation, whereas overexpression of SIRT1 in normal cholangiocytes suppressed ciliary expression. Activity of SIRT1 was regulated by presence of NAD+ in CCA cells. Inhibition of NAD -producing enzyme nicotinamide phosphoribosyl transferase increased ciliary length and frequency in CCA cells and in SIRT1-overexpressed H69 cells. Furthermore, we also noted that SIRT1 induces the proteasomal mediated degradation of ciliary proteins, including α-tubulin, ARL13B, and KIF3A. Moreover, overexpression of SIRT1 in H69 and NHC cells significantly induced cell proliferation and, conversely, SIRT1 inhibition in HuCCT1 and KMCH cells using siRNA or sirtinol reduced cell proliferation. In an orthotopic transplantation rat CCA model, the SIRT1 inhibitor sirtinol reduced tumor size and tumorigenic proteins (glioma-associated oncogene 1, phosphorylated extracellular signal-regulated kinase, and IL-6) expression. CONCLUSIONS In conclusion, these results reveal the tumorigenic role of SIRT1 through modulation of primary cilia formation and provide the rationale for developing therapeutic approaches for CCA using SIRT1 as a target.
Collapse
Affiliation(s)
- Kishor Pant
- The Hormel Institute, University of Minnesota, Austin, MN
| | | | - Seth Richard
- The Hormel Institute, University of Minnesota, Austin, MN
| | | | - M Gerard O'Sullivan
- Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, St. Paul, MN
| | - Nasra Giama
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Yeonjung Ha
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Jun Yin
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN
| | - Pietro Carotenuto
- TIGEM, Telethon Institute of Genetics and Medicine, and Medical Genetics, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Massimiliano Salati
- Medical Oncology Unit, Modena Cancer Centre, PhD Program Clinical and Experimental Medicine, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Yanan Ren
- The Hormel Institute, University of Minnesota, Austin, MN
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN
| | - Brunella Franco
- TIGEM, Telethon Institute of Genetics and Medicine, and Medical Genetics, Department of Translational Medical Science, Federico II University, Naples, Italy
| | - Lewis R Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Sergio A Gradilone
- The Hormel Institute, University of Minnesota, Austin, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
49
|
Insights into the Regulation of Ciliary Disassembly. Cells 2021; 10:cells10112977. [PMID: 34831200 PMCID: PMC8616418 DOI: 10.3390/cells10112977] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
The primary cilium, an antenna-like structure that protrudes out from the cell surface, is present in most cell types. It is a microtubule-based organelle that serves as a mega-signaling center and is important for sensing biochemical and mechanical signals to carry out various cellular processes such as proliferation, migration, differentiation, and many others. At any given time, cilia length is determined by a dynamic balance of cilia assembly and disassembly processes. Abnormally short or long cilia can cause a plethora of human diseases commonly referred to as ciliopathies, including, but not limited to, skeletal malformations, obesity, autosomal dominant polycystic kidney disease, retinal degeneration, and bardet-biedl syndrome. While the process of cilia assembly is studied extensively, the process of cilia disassembly and its biological role(s) are less well understood. This review discusses current knowledge on ciliary disassembly and how different cellular processes and molecular signals converge to carry out this process. This information will help us understand how the process of ciliary disassembly is regulated, identify the key steps that need further investigation, and possibly design therapeutic targets for a subset of ciliopathies that are causally linked to defective ciliary disassembly.
Collapse
|
50
|
Speight P, Rozycki M, Venugopal S, Szászi K, Kofler M, Kapus A. Myocardin-related transcription factor and serum response factor regulate cilium turnover by both transcriptional and local mechanisms. iScience 2021; 24:102739. [PMID: 34278253 PMCID: PMC8261663 DOI: 10.1016/j.isci.2021.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Turnover of the primary cilium (PC) is critical for proliferation and tissue homeostasis. Each key component of the PC resorption machinery, the HEF1/Aurora kinase A (AurA)/HDAC6 pathway harbors cis-elements potentially targeted by the transcriptional co-activator myocardin-related transcription factor (MRTF) and/or its partner serum response factor (SRF). Thus we investigated if MRTF and/or SRF regulate PC turnover. Here we show that (1) both MRTF and SRF are indispensable for serum-induced PC resorption, and (2) they act via both transcriptional and local mechanisms. Intriguingly, MRTF and SRF are present in the basal body and/or the PC, and serum facilitates ciliary MRTF recruitment. MRTF promotes the stability and ciliary accumulation of AurA and facilitates SRF phosphorylation. Ciliary SRF interacts with AurA and HDAC6. MRTF also inhibits ciliogenesis. It interacts with and is required for the correct localization of the ciliogenesis modulator CEP290. Thus, MRTF and SRF are critical regulators of PC assembly and/or disassembly, acting both as transcription factors and as PC constituents.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Matthew Rozycki
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|