1
|
Ouyang L, Gao X, Yang R, Zhou P, Cai H, Tian Y, Wang H, Kong S, Lu Z. SHP2 regulates the HIF-1 signaling pathway in the decidual human endometrial stromal cells†. Biol Reprod 2025; 112:743-753. [PMID: 39893623 DOI: 10.1093/biolre/ioaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025] Open
Abstract
The decidual endometrial stromal cells play a critical role in the establishment of uterine receptivity and pregnancy in human. Our previous studies demonstrate that protein tyrosine phosphatase 2 SHP2 is highly expressed in decidualized cells and governs the decidualization progress. However, the role and mechanism of SHP2 in the function of decidual cells remain unclear. Here, we screened proteins interacting with SHP2 in decidual hTERT-immortalized human endometrial stromal cells (T-HESCs) and identified Hypoxia-inducible factor-1 (HIF-1) signaling pathway as a potential SHP2-mediated signaling pathway through proximity-dependent biotinylation (BioID) analysis. Immunoprecipitation (Co-IP) revealed an interaction between SHP2 and HIF-1α, which colocalized to the nucleus in decidual cells. Furthermore, the SHP2 expression correlated with the transcriptional activation of HIF-1α and its downstream genes Beta-enolase (Eno3), Pyruvate kinase 2 (Pkm2), Aldolase C (Aldoc), and Facilitative glucose transporter 1 (Glut1). Knockdown or inhibition of SHP2 significantly reduced the mRNA and protein levels of HIF-1α and its downstream genes, as well as lactate production in decidual cells. We also established a hypoxia model of T-HESCs and 293 T cells and found that hypoxic treatment induced the expression of SHP2 and HIF-1α, which colocalized in the nucleus. SHP2 forced-expression rescued the inhibitory effects of SHP2 deficiency on HIF-1α expression and lactate production. Finally, SHP2 binds to the promoter regions of HIF-1α and its target genes (Eno3, Pkm2, Aldoc, and Glut1). Collectively, our results suggest that SHP2 influences the function of decidual cells by HIF-1α signaling and provide a novel function mechanism of decidual stromal cells.
Collapse
Affiliation(s)
- Liqun Ouyang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Xia Gao
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Rongyu Yang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Peiyi Zhou
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Han Cai
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Yingpu Tian
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Zhenhai Road, Xiamen, Fujian 361005, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| | - Zhongxian Lu
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiangan South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
2
|
Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation of spermatogenesis. Stem Cell Res Ther 2024; 15:294. [PMID: 39256786 PMCID: PMC11389459 DOI: 10.1186/s13287-024-03893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in the male reproductive system, responsible for maintaining continuous spermatogenesis. The microenvironment or niche of SSCs is a key factor in regulating their self-renewal, differentiation and spermatogenesis. This microenvironment consists of multiple cell types, extracellular matrix, growth factors, hormones and other molecular signals that interact to form a complex regulatory network. This review aims to provide an overview of the main components of the SSCs microenvironment, explore how they regulate the fate decisions of SSCs, and discuss the potential impact of microenvironmental abnormalities on male reproductive health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yan He
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| | - Mengjie Tang
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
3
|
Zheng S, Jiang L, Qiu L. The effects of fine particulate matter on the blood-testis barrier and its potential mechanisms. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:233-249. [PMID: 36863426 DOI: 10.1515/reveh-2022-0204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/13/2022] [Indexed: 02/17/2024]
Abstract
With the rapid expansion of industrial scale, an increasing number of fine particulate matter (PM2.5) has bringing health concerns. Although exposure to PM2.5 has been clearly associated with male reproductive toxicity, the exact mechanisms are still unclear. Recent studies demonstrated that exposure to PM2.5 can disturb spermatogenesis through destroying the blood-testis barrier (BTB), consisting of different junction types, containing tight junctions (TJs), gap junctions (GJs), ectoplasmic specialization (ES) and desmosomes. The BTB is one of the tightest blood-tissue barriers among mammals, which isolating germ cells from hazardous substances and immune cell infiltration during spermatogenesis. Therefore, once the BTB is destroyed, hazardous substances and immune cells will enter seminiferous tubule and cause adversely reproductive effects. In addition, PM2.5 also has shown to cause cells and tissues injury via inducing autophagy, inflammation, sex hormones disorder, and oxidative stress. However, the exact mechanisms of the disruption of the BTB, induced by PM2.5, are still unclear. It is suggested that more research is required to identify the potential mechanisms. In this review, we aim to understand the adverse effects on the BTB after exposure to PM2.5 and explore its potential mechanisms, which provides novel insight into accounting for PM2.5-induced BTB injury.
Collapse
Affiliation(s)
- Shaokai Zheng
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianlian Jiang
- School of Public Health, Nantong University, Nantong, P. R. China
| | - Lianglin Qiu
- School of Public Health, Nantong University, Nantong, P. R. China
| |
Collapse
|
4
|
Orsolini F, Pignata L, Baldinotti F, Romano S, Tonacchera M, Canale D. Gonadal dysfunction in a man with Noonan syndrome from the LZTR1 variant: case report and review of literature. Front Endocrinol (Lausanne) 2024; 15:1354699. [PMID: 38689733 PMCID: PMC11059086 DOI: 10.3389/fendo.2024.1354699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Noonan syndrome (NS) is a genetic disorder characterized by multiple congenital defects caused by mutations in the RAS/mitogen-activated protein kinase pathway. Male fertility has been reported to be impaired in NS, but only a few studies have focused on fertility status in NS patients and underlying mechanisms are still incompletely understood. We describe the case of a 35-year-old man who underwent an andrological evaluation due to erectile dysfunction and severe oligospermia. A syndromic facial appearance and reduced testis size were present on clinical examination. Hormonal evaluation showed normal total testosterone level, high FSH level, and low-normal AMH and inhibin B, compatible with primary Sertoli cell dysfunction. Genetic analysis demonstrated the pathogenetic heterozygous variant c.742G>A, p.(Gly248Arg) of the LZTR1 gene (NM_006767.3). This case report provides increased knowledge on primary gonadal dysfunction in men with NS and enriches the clinical spectrum of NS from a rare variant in the novel gene LZTR1.
Collapse
Affiliation(s)
- Francesca Orsolini
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| | - Luisa Pignata
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| | - Fulvia Baldinotti
- Department of Laboratory Medicine, Section of Molecular Genetics, Pisa University Hospital, Pisa, Italy
| | - Silvia Romano
- Departmental Section of Medical Genetics, Pisa University Hospital, Pisa, Italy
| | - Massimo Tonacchera
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| | - Domenico Canale
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Zhou P, Ouyang L, Jiang T, Tian Y, Deng W, Wang H, Kong S, Lu Z. Progesterone and cAMP synergistically induce SHP2 expression via PGR and CREB1 during uterine stromal decidualization. FEBS J 2024; 291:142-157. [PMID: 37786383 DOI: 10.1111/febs.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Decidualization of endometrial stroma is a key step in embryo implantation and its abnormality often leads to pregnancy failure. Stromal decidualization is a very complex process that is co-regulated by estrogen, progesterone and many local factors. The signaling protein SHP2 encoded by PTPN11 is dynamically expressed in decidualized endometrial stroma and mediates and integrates various signals to govern the decidualization. In the present study, we investigate the mechanism of PTPN11 gene transcription. Estrogen, progesterone and cAMP co-induced decidualization of human endometrial stromal cell in vitro, but only progesterone and cAMP induced SHP2 expression. Using the luciferase reporter, we refined a region from -229 bp to +1 bp in the PTPN11 gene promoter comprising the transcriptional core regions that respond to progesterone and cAMP. Progesterone receptor (PGR) and cAMP-responsive element-binding protein 1 (CREB1) were predicted to be transcription factors in this core region by bioinformatic methods. The direct binding of PGR and CREB1 on the PTPN11 promoter was confirmed by electrophoretic mobility and chromatin immunoprecipitation in vitro. Knockdown of PGR and CREB1 protein significantly inhibited the expression of SHP2 induced by medroxyprogesterone acetate and cAMP. These results demonstrate that transcription factors PGR and CREB1 bind to the PTPN11 promoter to regulate the expression of SHP2 in response to decidual signals. Our results explain the transcriptional expression mechanism of SHP2 during decidualization and promote the understanding of the mechanism of decidualization of stromal cells.
Collapse
Affiliation(s)
- Peiyi Zhou
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Liqun Ouyang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Ting Jiang
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Yingpu Tian
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
| | - Wenbo Deng
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| | - Zhongxian Lu
- Xiamen City Key Laboratory of Metabolism, School of Pharmaceutical Sciences, Xiamen University, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, China
| |
Collapse
|
6
|
Wang X, Qu L, Chen J, Jin Y, Hu K, Zhou Z, Zhang J, An Y, Zheng J. Toxoplasma rhoptry proteins that affect encephalitis outcome. Cell Death Discov 2023; 9:439. [PMID: 38049394 PMCID: PMC10696021 DOI: 10.1038/s41420-023-01742-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Toxoplasma gondii, a widespread obligate intracellular parasite, can infect almost all warm-blooded animals, including humans. The cellular barrier of the central nervous system (CNS) is generally able to protect the brain parenchyma from infectious damage. However, T. gondii typically causes latent brain infections in humans and other vertebrates. Here, we discuss how T. gondii rhoptry proteins (ROPs) affect signaling pathways in host cells and speculate how this might affect the outcome of Toxoplasma encephalitis.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Lai Qu
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, 130021, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130021, China
| | - Yufen Jin
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Kaisong Hu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhengjie Zhou
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaqi Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yiming An
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Wang K, Kong F, Qiu Y, Chen T, Fu J, Jin X, Su Y, Gu Y, Hu Z, Li J. Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin). Autophagy 2023; 19:2934-2957. [PMID: 37450577 PMCID: PMC10549198 DOI: 10.1080/15548627.2023.2235195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.
Collapse
Affiliation(s)
- Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Department of Center of Reproductive Medicine, Wuxi Maternity and Child Health Care Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Patti G, Scaglione M, Maiorano NG, Rosti G, Divizia MT, Camia T, De Rose EL, Zucconi A, Casalini E, Napoli F, Di Iorgi N, Maghnie M. Abnormalities of pubertal development and gonadal function in Noonan syndrome. Front Endocrinol (Lausanne) 2023; 14:1213098. [PMID: 37576960 PMCID: PMC10422880 DOI: 10.3389/fendo.2023.1213098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background Noonan syndrome (NS) is a genetic multisystem disorder characterised by variable clinical manifestations including dysmorphic facial features, short stature, congenital heart disease, renal anomalies, lymphatic malformations, chest deformities, cryptorchidism in males. Methods In this narrative review, we summarized the available data on puberty and gonadal function in NS subjects and the role of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway in fertility. In addition, we have reported our personal experience on pubertal development and vertical transmission in NS. Conclusions According to the literature and to our experience, NS patients seem to have a delay in puberty onset compared to the physiological timing reported in healthy children. Males with NS seem to be at risk of gonadal dysfunction secondary not only to cryptorchidism but also to other underlying developmental factors including the MAP/MAPK pathway and genetics. Long-term data on a large cohort of males and females with NS are needed to better understand the impact of delayed puberty on adult height, metabolic profile and well-being. The role of genetic counselling and fertility related-issues is crucial.
Collapse
Affiliation(s)
- Giuseppa Patti
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Marco Scaglione
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Nadia Gabriella Maiorano
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Giulia Rosti
- Department of Clinical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Teresa Divizia
- Department of Clinical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Tiziana Camia
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Elena Lucia De Rose
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Alice Zucconi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Emilio Casalini
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Flavia Napoli
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Natascia Di Iorgi
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Mohamad Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| |
Collapse
|
9
|
Population Structure and Selection Signatures Underlying Domestication Inferred from Genome-Wide Copy Number Variations in Chinese Indigenous Pigs. Genes (Basel) 2022; 13:genes13112026. [PMID: 36360263 PMCID: PMC9690591 DOI: 10.3390/genes13112026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Single nucleotide polymorphism was widely used to perform genetic and evolution research in pigs. However, little is known about the effect of copy number variation (CNV) on characteristics in pigs. This study performed a genome-wide comparison of CNVs between Wannan black pigs (WBP) and Asian wild boars (AWB), using whole genome resequencing data. By using Manta, we detected in total 28,720 CNVs that covered approximately 1.98% of the pig genome length. We identified 288 selected CNVs (top 1%) by performing Fst statistics. Functional enrichment analyses for genes located in selected CNVs were found to be muscle related (NDN, TMOD4, SFRP1, and SMYD3), reproduction related (GJA1, CYP26B1, WNT5A, SRD5A2, PTPN11, SPEF2, and CCNB1), residual feed intake (RFI) related (MAP3K5), and ear size related (WIF1). This study provides essential information on selected CNVs in Wannan black pigs for further research on the genetic basis of the complex phenotypic and provides essential information for direction in the protection and utilization of Wannan black pig.
Collapse
|
10
|
Wei X, Zheng L, Tian Y, Wang H, Su Y, Feng G, Wang C, Lu Z. Tyrosine phosphatase SHP2 in ovarian granulosa cells balances follicular development by inhibiting PI3K/AKT signaling. J Mol Cell Biol 2022; 14:6674768. [PMID: 36002018 PMCID: PMC9764209 DOI: 10.1093/jmcb/mjac048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/22/2022] [Accepted: 08/17/2022] [Indexed: 01/14/2023] Open
Abstract
In mammals, the growth and maturation of oocytes within growing follicles largely depends on ovarian granulosa cells (GCs) in response to gonadotropin stimulation. Many signals have been shown to regulate GC proliferation and apoptosis. However, whether the tyrosine phosphatase SHP2 is involved remains unclear. In this study, we identified the crucial roles of SHP2 in modulating GC proliferation and apoptosis. The production of both mature oocytes and pups was increased in mice with Shp2 specifically deleted in ovarian GCs via Fshr-Cre. Shp2 deletion simultaneously promoted GC proliferation and inhibited GC apoptosis. Furthermore, Shp2 deficiency promoted, while Shp2 overexpression inhibited, the proliferation of cultured primary mouse ovarian GCs and the human ovarian granulosa-like tumor cell line KGN in vitro. Shp2 deficiency promoted follicule-stimulating hormone (FSH)-activated phosphorylation of AKT in vivo. SHP2 deficiency reversed the inhibitory effect of hydrogen peroxide (H2O2) on AKT activation in KGN cells. H2O2 treatment promoted the interaction between SHP2 and the p85 subunit of PI3K in KGN cells. Therefore, SHP2 in GCs may act as a negative modulator to balance follicular development by suppressing PI3K/AKT signaling. The novel function of SHP2 in modulating proliferation and apoptosis of GCs provides a potential therapeutic target for the clinical treatment of follicle developmental dysfunction.
Collapse
Affiliation(s)
- Xiaoli Wei
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Lanping Zheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361102, China
| | - Youqiang Su
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chao Wang
- Correspondence to: Chao Wang, E-mail:
| | | |
Collapse
|
11
|
Phycocyanin Ameliorates Colitis-Associated Colorectal Cancer by Regulating the Gut Microbiota and the IL-17 Signaling Pathway. Mar Drugs 2022; 20:md20040260. [PMID: 35447933 PMCID: PMC9030732 DOI: 10.3390/md20040260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Phycocyanin (PC) is a pigment-protein complex. It has been reported that PC exerts anti-colorectal cancer activities, although the underlying mechanism has not been fully elucidated. In the present study, azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced mice were orally administrated with PC, followed by microbiota and transcriptomic analyses to investigate the effects of PC on colitis-associated cancer (CAC). Our results indicated that PC ameliorated AOM/DSS induced inflammation. PC treatment significantly reduced the number of colorectal tumors and inhibited proliferation of epithelial cell in CAC mice. Moreover, PC reduced the relative abundance of Firmicutes, Deferribacteres, Proteobacteria and Epsilonbacteraeota at phylum level. Transcriptomic analysis showed that the expression of genes involved in the intestinal barrier were altered upon PC administration, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed the IL-17 signaling pathway was affected by PC treatment. The study demonstrated the protective therapeutic action of PC on CAC.
Collapse
|
12
|
Mu H, Liu S, Tian S, Chen B, Liu Z, Fan Y, Liu Y, Ma W, Zhang W, Fu M, Song X. Study on the SHP2-Mediated Mechanism of Promoting Spermatogenesis Induced by Active Compounds of Eucommiae Folium in Mice. Front Pharmacol 2022; 13:851930. [PMID: 35392568 PMCID: PMC8981153 DOI: 10.3389/fphar.2022.851930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Spermatogenesis directly determines the reproductive capacity of male animals. With the development of society, the increasing pressure on people’s lives and changes in the living environment, male fertility is declining. The leaf of Eucommia ulmoides Oliv. (Eucommiae Folium, EF) was recorded in the 2020 Chinese Pharmacopoeia and was used in traditional Chinese medicine as a tonic. In recent years, EF has been reported to improve spermatogenesis, but the mechanisms of EF remain was poorly characterized. In this study, the effect of EF ethanol extract (EFEE) on spermatogenesis was tested in mice. Chemical components related to spermatogenesis in EF were predicted by network pharmacology. The biological activity of the predicted chemical components was measured by the proliferation of C18-4 spermatogonial stem cells (SSCs) and the testosterone secretion of TM3 leydig cells. The biological activity of chlorogenic acid (CGA), the active compound in EF, was tested in vivo. The cell cycle was analysed by flow cytometry. Testosterone secretion was detected by ELISA. RNA interference (RNAi) was used to detect the effect of key genes on cell biological activity. Western blotting, qRT–PCR and immunofluorescence staining were used to analyse the molecular mechanism of related biological activities. The results showed that EFEE and CGA could improve spermatogenesis in mice. Furthermore, the main mechanism was that CGA promoted SSC proliferation, self-renewal and Leydig cell testosterone secretion by promoting the expression of SHP2 and activating the downstream signaling pathways involved in these biological processes. This study provided strong evidence for elucidating the mechanism by which EF promotes the spermatogenesis in mice and a new theoretical basis for dealing with the decrease in male reproductive capacity.
Collapse
Affiliation(s)
- Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shuangshi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shiyang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Beibei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Wang X, Yin L, Wen Y, Yuan S. Mitochondrial regulation during male germ cell development. Cell Mol Life Sci 2022; 79:91. [PMID: 35072818 PMCID: PMC11072027 DOI: 10.1007/s00018-022-04134-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Mitochondria tailor their morphology to execute their specialized functions in different cell types and/or different environments. During spermatogenesis, mitochondria undergo continuous morphological and distributional changes with germ cell development. Deficiencies in these processes lead to mitochondrial dysfunction and abnormal spermatogenesis, thereby causing male infertility. In recent years, mitochondria have attracted considerable attention because of their unique role in the regulation of piRNA biogenesis in male germ cells. In this review, we describe the varied characters of mitochondria and focus on key mitochondrial factors that play pivotal roles in the regulation of spermatogenesis, from primordial germ cells to spermatozoa, especially concerning metabolic shift, stemness and reprogramming, mitochondrial transformation and rearrangement, and mitochondrial defects in human sperm. Further, we discuss the molecular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Laboratory Animal Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Siano MA, Pivonello R, Salerno M, Falco M, Mauro C, De Brasi D, Klain A, Sestito S, De Luca A, Pinna V, Simeoli C, Concolino D, Mainolfi CG, Mannarino T, Strisciuglio P, Tartaglia M, Melis D. Endocrine system involvement in patients with RASopathies: A case series. Front Endocrinol (Lausanne) 2022; 13:1030398. [PMID: 36483002 PMCID: PMC9724702 DOI: 10.3389/fendo.2022.1030398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Endocrine complications have been described in patients affected by RASopathies but no systematic assessment has been reported. In this study, we investigate the prevalence of endocrine disorders in a consecutive unselected cohort of patients with RASopathies. STUDY DESIGN 72 patients with a genetically confirmed RASopathy (Noonan syndrome [NS], N=53; 29 LEOPARD syndrome [LS], N=2; cardiofaciocutaneous syndrome [CFCS], N=14; subjects showing co-occurring pathogenic variants in PTPN11 and NF1, N=3) and an age- and sex-matched healthy controls were included in the study. Endocrine system involvement was investigated by assessing the thyroid function, pubertal development, auxological parameters, adrenal function and bone metabolism. RESULTS Short stature was detected in 40% and 64% of the NS and CFCS subcohorts, respectively. Patients showed lower Z-scores at DXA than controls (p<0.05) when considering the entire case load and both NS and CFCS groups. Vitamin D and Calcitonin levels were significantly lower (p< 0.01), Parathormone levels significantly higher (p<0.05) in patients compared to the control group (p<0.05). Patients with lower BMD showed reduced physical activity and joint pain. Finally, anti-TPO antibody levels were significantly higher in patients than in controls when considering the entire case load and both NS and CFCS groups. CONCLUSIONS The collected data demonstrate a high prevalence of thyroid autoimmunity, confirming an increased risk to develop autoimmune disorders both in NS and CFCS. Reduced BMD, probably associated to reduced physical activity and inflammatory cytokines, also occurs. These findings are expected to have implications for the follow-up and prevention of osteopenia/osteoporosis in both NS and CFCS.
Collapse
Affiliation(s)
- M. A. Siano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - R. Pivonello
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples “Federico II”, Naples, Italy
| | - M. Salerno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - M. Falco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - C. Mauro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
| | - D. De Brasi
- Dipartimento di Pediatria, Azienda Ospedaliera di rilievo Nazionale (A.O.R.N). “Santobono-Pausillipon”, Napoli, Italy
| | - A. Klain
- Dipartimento di Pediatria, Azienda Ospedaliera di rilievo Nazionale (A.O.R.N). “Santobono-Pausillipon”, Napoli, Italy
| | - S. Sestito
- Dipartimento di Medicina Clinica e Sperimentale, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - A. De Luca
- Molecular Genetics Unit, Fondazione Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Giovanni Rotondo, Foggia, Italy
| | - V. Pinna
- Molecular Genetics Unit, Fondazione Casa Sollievo della Sofferenza, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Giovanni Rotondo, Foggia, Italy
| | - C. Simeoli
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples “Federico II”, Naples, Italy
| | - D. Concolino
- Dipartimento di Medicina Clinica e Sperimentale, Università “Magna Graecia” di Catanzaro, Catanzaro, Italy
| | - Ciro Gabriele Mainolfi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - T. Mannarino
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli Federico II, Naples, Italy
| | - P. Strisciuglio
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - M. Tartaglia
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - D. Melis
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Università di Salerno, Salerno, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- *Correspondence: D. Melis,
| |
Collapse
|
15
|
Liu W, Zhao Y, Liu X, Zhang X, Ding J, Li Y, Tian Y, Wang H, Liu W, Lu Z. A Novel Meiosis-Related lncRNA, Rbakdn, Contributes to Spermatogenesis by Stabilizing Ptbp2. Front Genet 2021; 12:752495. [PMID: 34707642 PMCID: PMC8542969 DOI: 10.3389/fgene.2021.752495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Spermatocyte meiosis is the cornerstone of mammalian production. Thousands of long noncoding RNAs (lncRNAs) have been reported to be functional in various cellular processes, but the function of lncRNAs in meiosis remains largely unknown. Here, we profiled lncRNAs in spermatocytes at stage I of meiosis and identified a testis-specific lncRNA, Rbakdn, as a vital regulator of meiosis. Rbakdn is dynamically expressed during meiosis I, and Rbakdn knockdown inhibits meiosis in vitro. Furthermore, Rbakdn knockdown in testes in mice by intratesticular injection disturbs meiosis, reduces testicular volume, and increases apoptosis of spermatocytes, resulting in vacuolation of the seminiferous tubules. Rbakdn can bind to Ptbp2, an RNA-binding protein that is important in the regulation of the alternative splicing of many genes in spermatogenesis. Rbakdn knockdown leads to a decrease in Ptbp2 through the ubiquitination degradation pathway, indicating that Rbakdn maintains the stability of Ptbp2. In conclusion, our study identified an lncRNA, Rbakdn, with a crucial role in meiosis.
Collapse
Affiliation(s)
- Wensheng Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yinan Zhao
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Xiaoya Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jiancheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yingpu Tian
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhongxian Lu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Liu W, Wang Z, Hu X. Identification of Competing Endogenous RNA and Micro-RNA Profiles and Regulatory Networks in 4-Nonylphenol-induced Impairment of Sertoli Cells. Front Pharmacol 2021; 12:644204. [PMID: 34084133 PMCID: PMC8167654 DOI: 10.3389/fphar.2021.644204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
The xenoestrogens nonylphenols (NPs), which are materials used in the plastic polymer industry, are considered endocrine disruptors in a wide range of organisms. Studies have shown that human health problems, such as infertility and reproductive toxicology, are linked with NPs. However, the mechanism by which NPs interfere with male reproduction is not fully elucidated. Here, we found that 4-NP can result in male reproductive impairment and reduce androgen receptor (AR) protein levels in rat sertoli cells in vitro and in vivo. Moreover, we performed RNA sequencing to assess the differential expression of ceRNAs in rat primary sertoli cells treated with 4-NP. Bioinformatics methods, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) database and ceRNA functional network analyses, were used to investigate the sequencing data and gain further understanding of the biological processes. Our analysis revealed a core set of mRNAs (Ar, Atf6 and Cbp), and circRNAs (circ673, circ1377, circ1789, and circPTEN) that were selected and validated by RT-qPCR. In addition, the head-to-tail splicing of circ673, circ1377, circ1789, and circPTEN was identified by Sanger sequencing. These findings provide the first insight into the ceRNA expression profiles of rat sertoli cells and reveal that ceRNAs participate in 4-NP-induced impairment of sertoli cell function, thereby indicating potential therapies for both reproductive toxicology and male infertility.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, China
| | - Zhaokai Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xiaopeng Hu
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Saintilnord WN, Tenlep SYN, Preston JD, Duregon E, DeRouchey JE, Unrine JM, de Cabo R, Pearson KJ, Fondufe-Mittendorf YN. Chronic Exposure to Cadmium Induces Differential Methylation in Mice Spermatozoa. Toxicol Sci 2021; 180:262-276. [PMID: 33483743 PMCID: PMC8041459 DOI: 10.1093/toxsci/kfab002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cadmium exposure is ubiquitous and has been linked to diseases including cancers and reproductive defects. Since cadmium is nonmutagenic, it is thought to exert its gene dysregulatory effects through epigenetic reprogramming. Several studies have implicated germline exposure to cadmium in developmental reprogramming. However, most of these studies have focused on maternal exposure, while the impact on sperm fertility and disease susceptibility has received less attention. In this study, we used reduced representation bisulfite sequencing to comprehensively investigate the impact of chronic cadmium exposure on mouse spermatozoa DNA methylation. Adult male C57BL/J6 mice were provided water with or without cadmium chloride for 9 weeks. Sperm, testes, liver, and kidney tissues were collected at the end of the treatment period. Cadmium exposure was confirmed through gene expression analysis of metallothionein-1 and 2, 2 well-known cadmium-induced genes. Analysis of sperm DNA methylation changes revealed 1788 differentially methylated sites present at regulatory regions in sperm of mice exposed to cadmium compared with vehicle (control) mice. Furthermore, most of these differential methylation changes positively correlated with changes in gene expression at both the transcription initiation stage as well as the splicing levels. Interestingly, the genes targeted by cadmium exposure are involved in several critical developmental processes. Our results present a comprehensive analysis of the sperm methylome in response to chronic cadmium exposure. These data, therefore, highlight a foundational framework to study gene expression patterns that may affect fertility in the exposed individual as well as their offspring, through paternal inheritance.
Collapse
Affiliation(s)
- Wesley N Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Sara Y N Tenlep
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Joshua D Preston
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| | - Yvonne N Fondufe-Mittendorf
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| |
Collapse
|
18
|
Han F, Dong MZ, Lei WL, Xu ZL, Gao F, Schatten H, Wang ZB, Sun XF, Sun QY. Oligoasthenoteratospermia and sperm tail bending in PPP4C-deficient mice. Mol Hum Reprod 2021; 27:gaaa083. [PMID: 33543287 DOI: 10.1093/molehr/gaaa083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase 4 (PPP4) is a protein phosphatase that, although highly expressed in the testis, currently has an unclear physiological role in this tissue. Here, we show that deletion of PPP4 catalytic subunit gene Ppp4c in the mouse causes male-specific infertility. Loss of PPP4C, when assessed by light microscopy, did not obviously affect many aspects of the morphology of spermatogenesis, including acrosome formation, nuclear condensation and elongation, mitochondrial sheaths arrangement and '9 + 2' flagellar structure assembly. However, the PPP4C mutant had sperm tail bending defects (head-bent-back), low sperm count, poor sperm motility and had cytoplasmic remnants attached to the middle piece of the tail. The cytoplasmic remnants were further investigated by transmission electron microscopy to reveal that a defect in cytoplasm removal appeared to play a significant role in the observed spermiogenesis failure and resulting male infertility. A lack of PPP4 during spermatogenesis causes defects that are reminiscent of oligoasthenoteratospermia (OAT), which is a common cause of male infertility in humans. Like the lack of functional PPP4 in the mouse model, OAT is characterized by abnormal sperm morphology, low sperm count and poor sperm motility. Although the causes of OAT are probably heterogeneous, including mutation of various genes and environmentally induced defects, the detailed molecular mechanism(s) has remained unclear. Our discovery that the PPP4C-deficient mouse model shares features with human OAT might offer a useful model for further studies of this currently poorly understood disorder.
Collapse
Affiliation(s)
- F Han
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - M Z Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - W L Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Z L Xu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - F Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - H Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Z B Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - X F Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Q Y Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 501317, China
| |
Collapse
|
19
|
Idrees M, Kumar V, Joo MD, Ali N, Lee KW, Kong IK. SHP2 Nuclear/Cytoplasmic Trafficking in Granulosa Cells Is Essential for Oocyte Meiotic Resumption and Maturation. Front Cell Dev Biol 2021; 8:611503. [PMID: 33553147 PMCID: PMC7862566 DOI: 10.3389/fcell.2020.611503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Src-homology-2-containing phosphotyrosine phosphatase (SHP2), a classic cytoplasmic protein and a major regulator of receptor tyrosine kinases and G protein-coupled receptors, plays a significant role in preimplantation embryo development. In this study, we deciphered the role of SHP2 in the somatic compartment of oocytes during meiotic maturation. SHP2 showed nuclear/cytoplasmic localization in bovine cumulus and human granulosa (COV434) cells. Follicle-stimulating hormone (FSH) treatment significantly enhanced cytoplasmic SHP2 localization, in contrast to the E2 treatment, which augmented nuclear localization. Enhanced cytoplasmic SHP2 was found to negatively regulate the expression of the ERα-transcribed NPPC and NPR2 mRNAs, which are vital for oocyte meiotic arrest. The co-immunoprecipitation results revealed the presence of the SHP2/ERα complex in the germinal vesicle-stage cumulus-oocyte complexes, and this complex significantly decreased with the progression of meiotic maturation. The complex formation between ERα and SHP2 was also confirmed by using a series of computational modeling methods. To verify the correlation between SHP2 and NPPC/NPR2, SHP2 was knocked down via RNA interference, and NPPC and NPR2 mRNAs were analyzed in the control, E2, and FSH-stimulated COV434 cells. Furthermore, phenyl hydrazonopyrazolone sulfonate 1, a site-directed inhibitor of active SHP2, showed no significant effect on the ERα-transcribed NPPC and NPR2 mRNAs. Taken together, these findings support a novel nuclear/cytoplasmic role of SHP2 in oocyte meiotic resumption and maturation.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Vikas Kumar
- Division of Applied Life Science, Department of Bio and Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea
| | - Niaz Ali
- Institute of Basic Medical Sciences, Khybar Medical University, Peshawar, Pakistan
| | - Keun-Woo Lee
- Division of Applied Life Science, Department of Bio and Medical Big Data (BK21 Four), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Jinju, South Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, South Korea.,The King Kong Corp. Ltd., Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
20
|
Li Y, Liu WS, Yi J, Kong SB, Ding JC, Zhao YN, Tian YP, Feng GS, Li CJ, Liu W, Wang HB, Lu ZX. The role of tyrosine phosphatase Shp2 in spermatogonial differentiation and spermatocyte meiosis. Asian J Androl 2020; 22:79-87. [PMID: 31210146 PMCID: PMC6958991 DOI: 10.4103/aja.aja_49_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transition from spermatogonia to spermatocytes and the initiation of meiosis are key steps in spermatogenesis and are precisely regulated by a plethora of proteins. However, the underlying molecular mechanism remains largely unknown. Here, we report that Src homology domain tyrosine phosphatase 2 (Shp2; encoded by the protein tyrosine phosphatase, nonreceptor type 11 [Ptpn11] gene) is abundant in spermatogonia but markedly decreases in meiotic spermatocytes. Conditional knockout of Shp2 in spermatogonia in mice using stimulated by retinoic acid gene 8 (Stra8)-cre enhanced spermatogonial differentiation and disturbed the meiotic process. Depletion of Shp2 in spermatogonia caused many meiotic spermatocytes to die; moreover, the surviving spermatocytes reached the leptotene stage early at postnatal day 9 (PN9) and the pachytene stage at PN11–13. In preleptotene spermatocytes, Shp2 deletion disrupted the expression of meiotic genes, such as disrupted meiotic cDNA 1 (Dmc1), DNA repair recombinase rad51 (Rad51), and structural maintenance of chromosome 3 (Smc3), and these deficiencies interrupted spermatocyte meiosis. In GC-1 cells cultured in vitro, Shp2 knockdown suppressed the retinoic acid (RA)-induced phosphorylation of extracellular-regulated protein kinase (Erk) and protein kinase B (Akt/PKB) and the expression of target genes such as synaptonemal complex protein 3 (Sycp3) and Dmc1. Together, these data suggest that Shp2 plays a crucial role in spermatogenesis by governing the transition from spermatogonia to spermatocytes and by mediating meiotic progression through regulating gene transcription, thus providing a potential treatment target for male infertility.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Wen-Sheng Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Jia Yi
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Shuang-Bo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361005, China
| | - Jian-Cheng Ding
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Yi-Nan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Ying-Pu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China
| | - Gen-Sheng Feng
- Department of Pathology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chao-Jun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Wen Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen 361005, China
| | - Hai-Bin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361005, China
| | - Zhong-Xian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen 361005, China
| |
Collapse
|
21
|
Idrees M, Oh SH, Muhammad T, El-Sheikh M, Song SH, Lee KL, Kong IK. Growth Factors, and Cytokines; Understanding the Role of Tyrosine Phosphatase SHP2 in Gametogenesis and Early Embryo Development. Cells 2020; 9:cells9081798. [PMID: 32751109 PMCID: PMC7465981 DOI: 10.3390/cells9081798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growth factors and cytokines have vital roles in germ cell development, gamete maturation, and early embryo development. Cell surface receptors are present for growth factors and cytokines to integrate with and trigger protein signaling in the germ and embryo intracellular milieu. Src-homology-2-containing phosphotyrosine phosphatase (SHP2) is a ubiquitously expressed, multifunctional protein that plays a central role in the signaling pathways involved in growth factor receptors, cytokine receptors, integrins, and G protein-coupled receptors. Over recent decades, researchers have recapitulated the protein signaling networks that influence gamete progenitor specification as well as gamete differentiation and maturation. SHP2 plays an indispensable role in cellular growth, survival, proliferation, differentiation, and migration, as well as the basic events in gametogenesis and early embryo development. SHP2, a classic cytosolic protein and a key regulator of signal transduction, displays unconventional nuclear expression in the genital organs. Several observations provided shreds of evidence that this behavior is essential for fertility. The growth factor and cytokine-dependent roles of SHP2 and its nuclear/cytoplasmic presence during gamete maturation, early embryonic development and embryo implantation are fascinating and complex subjects. This review is intended to summarize the previous and recent knowledge about the SHP2 functions in gametogenesis and early embryo development.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Tahir Muhammad
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Marwa El-Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Seok-Hwan Song
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
22
|
Wang S, Wang P, Liang D, Wang Y. BRG1 Is Dispensable for Sertoli Cell Development and Functions in Mice. Int J Mol Sci 2020; 21:4358. [PMID: 32575410 PMCID: PMC7353015 DOI: 10.3390/ijms21124358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
Sertoli cells are somatic supporting cells in spermatogenic niche and play critical roles in germ cell development, but it is yet to be understood how epigenetic modifiers regulate Sertoli cell development and contribution to spermatogenesis. BRG1 (Brahma related gene 1) is a catalytic subunit of the mammalian SWI/SNF chromatin remodeling complex and participates in transcriptional regulation. The present study aimed to define the functions of BRG1 in mouse Sertoli cells during mouse spermatogenesis. We found that BRG1 protein was localized in the nuclei of both Sertoli cells and germ cells in seminiferous tubules. We further examined the requirement of BRG1 in Sertoli cell development using a Brg1 conditional knockout mouse model and two Amh-Cre mouse strains to specifically delete Brg1 gene from Sertoli cells. We found that the Amh-Cre mice from Jackson Laboratory had inefficient recombinase activities in Sertoli cells, while the other Amh-Cre strain from the European Mouse Mutant Archive achieved complete Brg1 deletion in Sertoli cells. Nevertheless, the conditional knockout of Brg1 from Sertoli cells by neither of Amh-Cre strains led to any detectable abnormalities in the development of either Sertoli cells or germ cells, suggesting that BRG1-SWI/SNF complex is dispensable to the functions of Sertoli cells in spermatogenesis.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (S.W.); (P.W.)
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (S.W.); (P.W.)
| | - Dongli Liang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (S.W.); (P.W.)
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
23
|
Follicle-stimulating Hormone (FSH) Action on Spermatogenesis: A Focus on Physiological and Therapeutic Roles. J Clin Med 2020; 9:jcm9041014. [PMID: 32260182 PMCID: PMC7230878 DOI: 10.3390/jcm9041014] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human reproduction is regulated by the combined action of the follicle-stimulating hormone (FSH) and the luteinizing hormone (LH) on the gonads. Although FSH is largely used in female reproduction, in particular in women attending assisted reproductive techniques to stimulate multi-follicular growth, its efficacy in men with idiopathic infertility is not clearly demonstrated. Indeed, whether FSH administration improves fertility in patients with hypogonadotropic hypogonadism, the therapeutic benefit in men presenting alterations in sperm production despite normal FSH serum levels is still unclear. In the present review, we evaluate the potential pharmacological benefits of FSH administration in clinical practice. METHODS This is a narrative review, describing the FSH physiological role in spermatogenesis and its potential therapeutic action in men. RESULTS The FSH role on male fertility is reviewed starting from the physiological control of spermatogenesis, throughout its mechanism of action in Sertoli cells, the genetic regulation of its action on spermatogenesis, until the therapeutic options available to improve sperm production. CONCLUSION FSH administration in infertile men has potential benefits, although its action should be considered by evaluating its synergic action with testosterone, and well-controlled, powerful trials are required. Prospective studies and new compounds could be developed in the near future.
Collapse
|
24
|
Cui L, Gu Y, Liu S, Li M, Ye J, Zhang F, Luo X, Chang WL, Gui Y. TBC1D20 Is Essential for Mouse Blood-Testis Barrier Integrity Through Maintaining the Epithelial Phenotype and Modulating the Maturation of Sertoli Cells. Reprod Sci 2020; 27:1443-1454. [PMID: 31994000 DOI: 10.1007/s43032-020-00156-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022]
Abstract
Sertoli cells are important for spermatogenesis not only by directly interacting with germ line cells in the seminiferous epithelium but also by constituting the blood-testis barrier (BTB) structure to create a favorable environment for spermatogenesis. Blind sterile (bs) male mice are infertile, with excessive germ cell apoptosis and spermatogenesis arrest. TBC1D20 (TBC1 domain family member 20) deficiency has been identified as the causative mutation in bs mice. However, whether TBC1D20 loss of function also impairs BTB integrity, which further contributes to the failed spermatogenesis of bs male mice, remains unclear. In the present study, biotin tracer assay and transmission electron microscopy showed severely disrupted BTB integrity in bs testes. Compared to the wild-type Sertoli cells, BTB components of cultured bs Sertoli cells in vitro was perturbed with downregulation of E-cadherin, ZO-1, β-catenin, and Claudin 11. The obvious rearrangement of F-actin indicated disrupted epithelial-mesenchymal balance in TBC1D20-deficient Sertoli cells. The ability of bs Sertoli cells to maintain the clone formation of spermatogonia stem cells was also obviously limited. Furthermore, the decreasing of SOX9 (sex-determining region Y box 9) and WT1 (Wilms' tumor 1) and increasing of vimentin in bs Sertoli cells indicated that TBC1D20 loss of function attenuated the differentiation progression of bs Sertoli cells. In summary, TBC1D20 loss of function impedes the maturation of adult Sertoli cells and resulted in impaired BTB integrity, which is further implicated in the infertile phenotype of bs male mice.
Collapse
Affiliation(s)
- Lina Cui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yanli Gu
- Department of Obstetrics, the People's Hospital of Longhua, Shenzhen, 518109, China
| | - Shuo Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 10083, China
| | - Minghua Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Fanting Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Xiaomin Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Wen-Lin Chang
- Department of Obstetrics, the People's Hospital of Longhua, Shenzhen, 518109, China.
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
25
|
Idrees M, Xu L, Song SH, Joo MD, Lee KL, Muhammad T, El Sheikh M, Sidrat T, Kong IK. PTPN11 (SHP2) Is Indispensable for Growth Factors and Cytokine Signal Transduction During Bovine Oocyte Maturation and Blastocyst Development. Cells 2019; 8:cells8101272. [PMID: 31635340 PMCID: PMC6830097 DOI: 10.3390/cells8101272] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | | | - Tahir Muhammad
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Marwa El Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Tabinda Sidrat
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
- The King Kong Ltd., Daegu 43017, Korea.
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea.
| |
Collapse
|
26
|
Chen W, Zhang Q, Wang H, Tan D, Tan Y. Unique and independent role of the GABA B1 subunit in embryo implantation and uterine decidualization in mice. Genes Dis 2019; 8:79-86. [PMID: 33569516 PMCID: PMC7859463 DOI: 10.1016/j.gendis.2019.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/26/2023] Open
Abstract
Embryo implantation and decidualization are crucial for successful pregnancy, which include multiple genes and signaling pathways, while the precise mechanism regarding embryo implantation and decidualization has yet to be explored. The GABA which activates GABAA or GABAB receptors has been found playing an important role in early pregnancy. Here we seek to investigate whether GABAB receptors participate in embryo implantation in mice. This study first characterized the spatiotemporal expression pattern of GABAB receptors in the uterus during the peri-implantation period and found that GABAB1 expression was drastically upregulated in stromal cells on days 4–6, a period of embryo implantation and early stages of decidualization. Embryo delayed implantation and oil-induced decidualization models were further used to confirm that the GABAB1 was associated with embryo implantation and decidualization. We also found estrogen or progesterone had no directly effect on expression of GABAB1 in ovariectomized model. Because we were unable to detect significant GABAB2 which couples with GABAB1 to form whole GABAB receptors, and the agonist and antagonist of whole GABAB receptors had weak effect on the proliferation and differentiation of stromal cells as well, we excluded the possibility whole GABAB receptors function, and concluded it should be non-classical signals of GABAB1 involving in embryo implantation and decidualization. Future studies should focus on investigating the roles and mechanisms of GABAB1 during embryo implantation and decidualization.
Collapse
Affiliation(s)
- Wenhao Chen
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Qian Zhang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, PR China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, 361102, Fujian, PR China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yi Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
27
|
Maher GJ, Goriely A. Teasing apart the multiple roles of Shp2 ( Ptpn11) in spermatogenesis. Asian J Androl 2019; 22:122. [PMID: 31361219 PMCID: PMC6958989 DOI: 10.4103/aja.aja_79_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Geoffrey J Maher
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Anne Goriely
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
28
|
Ni FD, Hao SL, Yang WX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death Dis 2019; 10:541. [PMID: 31316051 PMCID: PMC6637205 DOI: 10.1038/s41419-019-1782-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
The functions of Sertoli cells in spermatogenesis have attracted much more attention recently. Normal spermatogenesis depends on Sertoli cells, mainly due to their influence on nutrient supply, maintenance of cell junctions, and support for germ cells' mitosis and meiosis. Accumulating evidence in the past decade has highlighted the dominant functions of the MAPK, AMPK, and TGF-β/Smad signaling pathways during spermatogenesis. Among these pathways, the MAPK signaling pathway regulates dynamics of tight junctions and adherens junctions, proliferation and meiosis of germ cells, proliferation and lactate production of Sertoli cells; the AMPK and the TGF-β/Smad signaling pathways both affect dynamics of tight junctions and adherens junctions, as well as the proliferation of Sertoli cells. The AMPK signaling pathway also regulates lactate supply. These signaling pathways combine to form a complex regulatory network for spermatogenesis. In testicular tumors or infertile patients, the activities of these signaling pathways in Sertoli cells are abnormal. Clarifying the mechanisms of signaling pathways in Sertoli cells on spermatogenesis provides new insights into the physiological functions of Sertoli cells in male reproduction, and also serves as a pre-requisite to identify potential therapeutic targets in abnormal spermatogenesis including testicular tumor and male infertility.
Collapse
Affiliation(s)
- Fei-Da Ni
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
29
|
Li Y, Sha Y, Wang X, Ding L, Liu W, Ji Z, Mei L, Huang X, Lin S, Kong S, Lu J, Qin W, Zhang X, Zhuang J, Tang Y, Lu Z. DNAH2 is a novel candidate gene associated with multiple morphological abnormalities of the sperm flagella. Clin Genet 2019; 95:590-600. [PMID: 30811583 DOI: 10.1111/cge.13525] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/15/2019] [Accepted: 02/08/2019] [Indexed: 01/28/2023]
Abstract
Multiple morphological abnormalities of flagella (MMAF) is one kind of severe teratozoospermia. Gene mutations reported in previous works only revealed the pathogenesis of approximately half of the MMAF cases, and more genetic defects in MMAF need to be explored. In the present study, we performed a genetic analysis on Han Chinese men with MMAF using whole-exome sequencing. After filtering out the cases with known gene mutations, we identified five novel mutation sites in the DNAH2 gene in three cases from three families. These mutations were validated through Sanger sequencing and absent in all control individuals. In silico analysis revealed that these DNAH2 variations are deleterious. The spermatozoa with DNAH2 mutations showed severely disarranged axonemal structures with mitochondrial sheath defection. The DNAH2 protein level was significantly decreased and inner dynein arms were absent in the spermatozoa of patients. ICSI treatment was performed for two MMAF patients with DNAH2 mutations and the associated couples successfully achieved pregnancy, indicating good nuclear quality of the sperm from the DNAH2 mutant patients. Together, these data suggest that the DNAH2 mutation can cause severe sperm flagella defects that damage sperm motility. These results provide a novel genetic pathogeny for the human MMAF phenotype.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yanwei Sha
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, China
| | - Xiong Wang
- Reproductive Medicine Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Qingdao, China
| | - Lu Ding
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, China
| | - Wensheng Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhiyong Ji
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, China
| | - Libin Mei
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, China
| | - Xianjing Huang
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, China
| | - Shaobin Lin
- Department of Reproductive Medicine, Xiamen Maternity and Child Care Hospital, Xiamen, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Weibing Qin
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, Guangzhou, China
| | - Xinzhong Zhang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, Guangzhou, China
| | - Jianmin Zhuang
- Reproductive Medicine Center, Xiamen Haicang Hospital, Xiamen, China
| | - Yunge Tang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, Guangzhou, China
| | - Zhongxian Lu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| |
Collapse
|
30
|
Moniez S, Pienkowski C, Lepage B, Hamdi S, Daudin M, Oliver I, Jouret B, Cartault A, Diene G, Verloes A, Cavé H, Salles JP, Tauber M, Yart A, Edouard T. Noonan syndrome males display Sertoli cell-specific primary testicular insufficiency. Eur J Endocrinol 2018; 179:409-418. [PMID: 30325180 DOI: 10.1530/eje-18-0582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023]
Abstract
Context Abnormalities in the hypothalamo-pituitary-gonadal axis have long been reported in Noonan syndrome (NS) males with only few data available in prepubertal children. Objective The aim of this study was to describe the gonadal function of NS males from childhood to adulthood. Design It is a retrospective chart review. Patients and methods A total of 37 males with a genetically confirmed diagnosis of NS were included. Clinical and genetic features, as well as serum hormone levels (LH, FSH, testosterone, anti-Müllerian hormone (AMH), and inhibin B) were analysed. Results Of the 37 patients, 16 (43%) children had entered puberty at a median age of 13.5 years (range: 11.4-15.0 years); age at pubertal onset was negatively correlated with BMI SDS (r = -0.541; P = 0.022). In pubertal boys, testosterone levels were normal suggesting a normal Leydig cell function. In contrast, NS patients had significant lower levels of AMH (mean SDS: -0.6 ± 1.1; P = 0.003) and inhibin B (mean SDS: -1.1 ± 1.2; P < 0.001) compared with the general population, suggesting a Sertoli cell dysfunction. Lower AMH and inhibin B levels were found in NS-PTPN11 patients, whereas these markers did not differ from healthy children in SOS1 patients. No difference was found between cryptorchid and non-cryptorchid patients for AMH and inhibin B levels (P = 0.43 and 0.62 respectively). Four NS-PTPN11 patients had a severe primary hypogonadism with azoospermia/cryptozoospermia. Conclusions NS males display Sertoli cell-specific primary testicular insufficiency, whereas Leydig cell function seems to be unaffected.
Collapse
Affiliation(s)
- Sophie Moniez
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital
| | | | - Benoit Lepage
- Department of Epidemiology, CECOS Midi-Pyrénées, EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| | - Safouane Hamdi
- Laboratory of Biochemistry and Hormonology, CECOS Midi-Pyrénées, EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
- Fertility Centre, CECOS Midi-Pyrénées, EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| | - Myriam Daudin
- Fertility Centre, CECOS Midi-Pyrénées, EA 3694 Human Fertility Research Group, Toulouse University Hospital, Toulouse, France
| | - Isabelle Oliver
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital
| | - Béatrice Jouret
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital
| | - Audrey Cartault
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital
| | - Gwenaelle Diene
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital
| | - Alain Verloes
- Department of Genetics, Robert-Debré University Hospital, APHP, Paris, France
| | - Hélène Cavé
- Department of Genetics, Robert-Debré University Hospital, APHP, Paris, France
| | - Jean-Pierre Salles
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP)
| | - Maithé Tauber
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP)
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP)
| |
Collapse
|
31
|
Dorenkamp M, Müller JP, Shanmuganathan KS, Schulten H, Müller N, Löffler I, Müller UA, Wolf G, Böhmer FD, Godfrey R, Waltenberger J. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci Rep 2018; 8:14684. [PMID: 30279491 PMCID: PMC6168515 DOI: 10.1038/s41598-018-33014-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) is a major cardiovascular risk factor contributing to cardiovascular complications by inducing vascular cell dysfunction. Monocyte dysfunction could contribute to impaired arteriogenesis response in DM patients. DM monocytes show blunted chemotactic responses to arteriogenic stimuli, a condition termed as vascular endothelial growth factor (VEGF) resistance. We hypothesize that methylglyoxal (MG), a glucose metabolite, induces monocyte dysfunction and aimed to elucidate the underlying molecular mechanisms. Human monocytes exposed to MG or monocytes from DM patients or mice (db/db) showed VEGF-resistance secondary to a pro-migratory phenotype. Mechanistically, DM conditions or MG exposure resulted in the upregulation of the expression of SHP-2 phosphatase. This led to the enhanced activity of SHP-2 and aided an interaction with SRC kinase. SHP-2 dephosphorylated the inhibitory phosphorylation site of SRC leading to its abnormal activation and phosphorylation of cytoskeletal protein, paxillin. We demonstrated that MG-induced molecular changes could be reversed by pharmacological inhibitors of SHP-2 and SRC and by genetic depletion of SHP-2. Finally, a SHP-2 inhibitor completely reversed the dysfunction of monocytes isolated from DM patients and db/db mice. In conclusion, we identified SHP-2 as a hitherto unknown target for improving monocyte function in diabetes. This opens novel perspectives for treating diabetic complications associated with impaired monocyte function.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Kallipatti Sanjith Shanmuganathan
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Henny Schulten
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nicolle Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ulrich A Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Rinesh Godfrey
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| | - Johannes Waltenberger
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| |
Collapse
|
32
|
Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy Family: Consequences of Germline Activation of the RAS/MAPK Pathway. Endocr Rev 2018; 39:676-700. [PMID: 29924299 DOI: 10.1210/er.2017-00232] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Noonan syndrome [NS; Mendelian Inheritance in Men (MIM) #163950] and related syndromes [Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome; MIM #151100), Noonan-like syndrome with loose anagen hair (MIM #607721), Costello syndrome (MIM #218040), cardio-facio-cutaneous syndrome (MIM #115150), type I neurofibromatosis (MIM #162200), and Legius syndrome (MIM #611431)] are a group of related genetic disorders associated with distinctive facial features, cardiopathies, growth and skeletal abnormalities, developmental delay/mental retardation, and tumor predisposition. NS was clinically described more than 50 years ago, and disease genes have been identified throughout the last 3 decades, providing a molecular basis to better understand their physiopathology and identify targets for therapeutic strategies. Most of these genes encode proteins belonging to or regulating the so-called RAS/MAPK signaling pathway, so these syndromes have been gathered under the name RASopathies. In this review, we provide a clinical overview of RASopathies and an update on their genetics. We then focus on the functional and pathophysiological effects of RASopathy-causing mutations and discuss therapeutic perspectives and future directions.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Romain Paccoud
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Sophie Branka
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), University of Toulouse Paul Sabatier, Toulouse, France
| |
Collapse
|
33
|
Curley M, Milne L, Smith S, Jørgensen A, Frederiksen H, Hadoke P, Potter P, Smith LB. A young testicular microenvironment protects Leydig cells against age-related dysfunction in a mouse model of premature aging. FASEB J 2018; 33:978-995. [PMID: 30080443 PMCID: PMC6355079 DOI: 10.1096/fj.201800612r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Testicular Leydig cells (LCs) are the primary source of circulating androgen in men. As men age, circulating androgen levels decline. However, whether reduced LC steroidogenesis results from specific effects of aging within LCs or reflects degenerative alterations to the wider supporting microenvironment is unclear; inability to separate intrinsic LC aging from that of the testicular microenvironment in vivo has made this question difficult to address. To resolve this, we generated novel mouse models of premature aging, driven by CDGSH iron sulfur domain 2 (Cisd2) deletion, to separate the effects of cell intrinsic aging from extrinsic effects of aging on LC function. At 6 mo of age, constitutive Cisd2-deficient mice display signs of premature aging, including testicular atrophy, reduced LC and Sertoli cell (SC) number, decreased circulating testosterone, increased luteinizing hormone/testosterone ratio, and decreased expression of steroidogenic mRNAs, appropriately modeling primary testicular dysfunction observed in aging men. However, mice with Cisd2 deletion (and thus premature aging) restricted to either LCs or SCs were protected against testicular degeneration, demonstrating that age-related LCs dysfunction cannot be explained by intrinsic aging within either the LC or SC lineages alone. We conclude that age-related LC dysfunction is largely driven by aging of the supporting testicular microenvironment.—Curley, M., Milne, L., Smith, S., Jørgensen, A., Frederiksen, H., Hadoke, P., Potter, P., Smith, L. B. A Young testicular microenvironment protects Leydig cells against age-related dysfunction in a mouse model of premature aging.
Collapse
Affiliation(s)
- Michael Curley
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Laura Milne
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Sarah Smith
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Hadoke
- The British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Paul Potter
- MRC Mammalian Genetics Unit, MRC Harwell, Harwell, United Kingdom; and
| | - Lee B Smith
- Medical Research Council (MRC) Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
34
|
Zhao J, Zhao J, Xu G, Wang Z, Gao J, Cui S, Liu J. Deletion of Spata2 by CRISPR/Cas9n causes increased inhibin alpha expression and attenuated fertility in male mice. Biol Reprod 2018; 97:497-513. [PMID: 29025062 DOI: 10.1093/biolre/iox093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/25/2017] [Indexed: 12/22/2022] Open
Abstract
As somatic cells in the testis seminiferous tubule, Sertoli cells provide the medium for spermatogenesis. One of the important functions of Sertoli cells is synthesizing and secreting cell factors to affect the production of sperm; however, much of those molecular regulation mechanisms remain unknown. Here, we confirm the localization of protein SPATA2 (spermatogenesis-associated protein 2), which had previously been shown to be highly expressed in Sertoli cells of the adult mouse testis. To further conduct a functional study, we generated SPATA2 global knockout mice via use of the CRISPR/Cas9n gene editing technology. The 120-day-old knockout mice testes showed almost a 40% decrease in size and weight and variations in the histomorphology of the seminiferous epithelium, with a 40% decrease in sperm count. Further examination revealed that the proliferation of germ cells in the seminiferous tubules was attenuated by 28%. In addition, we found that SPATA2 deletion led to an approximately 70% increase in the inhibin alpha-subunit mRNA and protein level in the testes compared to that of wild-type mice. Our data revealed the impact of SPATA2 on male fertility and suggested that SPATA2 ensures the normal secretory function of Sertoli cells.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jianjun Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Guojin Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Zhijuan Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jiali Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
35
|
SHP2-Mediated Signal Networks in Stem Cell Homeostasis and Dysfunction. Stem Cells Int 2018; 2018:8351374. [PMID: 29983715 PMCID: PMC6015663 DOI: 10.1155/2018/8351374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/17/2022] Open
Abstract
Stem cells, including embryonic stem cells (ESCs) and adult stem cells, play a central role in mammal organism development and homeostasis. They have two unique properties: the capacity for self-renewal and the ability to differentiate into many specialized cell types. Src homology region 2- (SH2-) containing protein tyrosine phosphatase 2 (SHP-2), a nonreceptor protein tyrosine phosphatase encoded by protein tyrosine phosphatase nonreceptor type 11 gene (PTPN11), regulates multicellular differentiation, proliferation, and survival through numerous conserved signal pathways. Gain-of-function (GOF) or loss-of-function (LOF) SHP2 in various cells, especially for stem cells, disrupt organism self-balance and lead to a plethora of diseases, such as cancer, maldevelopment, and excessive hyperblastosis. However, the exact mechanisms of SHP2 dysfunction in stem cells remain unclear. In this review, we intended to raise the attention and clarify the framework of SHP2-mediated signal pathways in various stem cells. Establishment of integrated signal architecture, from ESCs to adult stem cells, will help us to understand the changes of dynamic, multilayered pathways in response to SHP2 dysfunction. Overall, better understanding the functions of SHP2 in stem cells provides a new avenue to treat SHP2-associated diseases.
Collapse
|
36
|
Wang S, Wang S, Li H, Li X, Xie M, Wen J, Li M, Long T. Effect of aromatase inhibitor letrozole on the proliferation of spermatogonia by regulating the MAPK pathway. Exp Ther Med 2018; 15:5269-5274. [PMID: 29805545 PMCID: PMC5958651 DOI: 10.3892/etm.2018.6081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/26/2018] [Indexed: 12/02/2022] Open
Abstract
The molecular mechanism of the aromatase inhibitor letrozole was investigated. It promotes the proliferation of spermatogonia by regulating the mitogen-activated protein kinase (MAPK) pathway. Six different concentrations were selected for letrozole in order to incubate mouse spermatogonia [GC-1 spermatogonia (spg)] for 24, 48 and 72 h, respectively. Cell Counting Kit-8 (CCK-8) was used to observe the effect of letrozole on the proliferation of GC-1 spg cells, and the effect was further verified by cell plate clone formation assay. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to detect the effects of letrozole on MAPK signaling pathways [Ras/extracellular signal-regulated kinase 1 (ERK1)/c-Myc], proliferation indexes [Ki-67 and proliferating cell nuclear antigen (PCNA)]. Bromodeoxyuridine (BrdU) staining was used to study the effects of letrozole and MAPK signaling pathways on cell proliferation. The results of CCK-8 showed that the proliferation rate of GC-1 spg cells was improved. Study results also revealed a significant increase in letrozole concentration along with the time of action. The results of plate clone formation assay further indicated that letrozole could significantly promote the proliferation capacity of GC-1 spg cells (p<0.05). The results of RT-PCR and western blot analysis confirmed letrozole significantly activated the expression of Ras/ERK1/c-Myc in the classical MAPK pathway. A significant increase was noted in the protein levels of Ki-67 and PCNA (p<0.05). By contrast, inhibition of the MAPK pathway resulted in a significant decrease in the levels of the above indexes (p<0.05). The number of BrdU cells in the letrozole group was also higher than that of the control group, while the number of BrdU-stained cells in the letrozole + MAPK inhibition group showed a significant decrease in comparison to the letrozole group. In conclusion, letrozole activated the MAPK signaling pathway and promoted the proliferation of mouse spermatogonia GC-1 spg cells. The present study provides a theoretical basis for the clinical application of letrozole.
Collapse
Affiliation(s)
- Shunde Wang
- Department of Andrology, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| | - Shuhong Wang
- Department of Andrology, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| | - Hang Li
- Department of Andrology, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| | - Xiaoxia Li
- Department of Andrology, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| | - Menglin Xie
- Department of Andrology, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| | - Jiayu Wen
- Department of Andrology, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| | - Meicai Li
- Department of Andrology, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| | - Tengbo Long
- Department of Andrology, Chongqing Three Gorges Central Hospital, Chongqing 404000, P.R. China
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW To provide an update on recent developments on Noonan syndrome with a special focus on endocrinology, bone, and metabolism aspects. The key issues still to be resolved and the future therapeutic perspectives will be discussed. RECENT FINDINGS The discovery of the molecular genetic causes of Noonan syndrome and Noonan-syndrome-related disorders has permitted us to better understand the mechanisms underlying the different symptoms of these diseases and to establish genotype-phenotype correlations (in growth patterns for example). In addition to the classical clinical hallmarks of Noonan syndrome, new important aspects include decreased fertility in men, lean phenotype with increased energy expenditure and possible impact on carbohydrate metabolism/insulin sensitivity, and impaired bone health. Further clinical studies are needed to investigate the long-term impact of these findings and their possible interconnections. Finally, the understanding of the crucial role of RAS/mitogen-activated protein kinases dysregulation in the pathophysiology of Noonan syndrome allows us to devise new therapeutic approaches. Some agents are currently undergoing clinical trials in Noonan syndrome patients. SUMMARY On the last 10 years, our knowledge of the molecular basis and the pathophysiology of Noonan syndrome has greatly advanced allowing us to gain insight in all the aspects of this disease and to devise new specific therapeutic strategies.
Collapse
Affiliation(s)
- Armelle Yart
- INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases (I2MC), Paul Sabatier University
| | - Thomas Edouard
- Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital
- INSERM UMR1043 - CNRS U5282, Physiopathology Center of Toulouse Purpan (CPTP), Paul Sabatier University, Toulouse, France
| |
Collapse
|
38
|
Jiang T, Wang Y, Zhu M, Wang Y, Huang M, Jin G, Guo X, Sha J, Dai J, Hu Z. Transcriptome-wide association study revealed two novel genes associated with nonobstructive azoospermia in a Chinese population. Fertil Steril 2017; 108:1056-1062.e4. [PMID: 29202958 DOI: 10.1016/j.fertnstert.2017.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the associations between genetically cis-regulated gene expression levels and nonobstructive azoospermia (NOA) susceptibility. DESIGN Transcriptome-wide association study (TWAS). SETTING Medical university. INTERVENTIONS None. MAIN OUTCOME MEASURE(S) The cis-hg2 values for each gene were estimated with GCTA software. The effect sizes of cis-single-nucleotide polymorphisms (SNPs) on gene expression were measured using GEMMA software. Gene expression levels were entered into our existing NOA GWAS cohort using GEMMA software. The TWAS P-values were calculated using logistic regression models. RESULT(S) Expression levels of 1,296 cis-heritable genes were entered into our existing NOA GWAS data. The TWAS results identified two novel genes as statistically significantly associated with NOA susceptibility: PILRA and ZNF676. In addition, 6p21.32, previously reported in NOA GWAS, was further validated to be a susceptible region to NOA risk. CONCLUSION(S) Analysis with TWAS provides fruitful targets for follow-up functional studies.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuzhuo Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yifeng Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mingtao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
39
|
Ramos-Treviño J, Bassol-Mayagoitia S, Ruiz-Flores P, Espino-Silva PK, Saucedo-Cárdenas O, Villa-Cedillo SA, Nava-Hernández MP. In Vitro Evaluation of Damage by Heavy Metals in Tight and Gap Junctions of Sertoli Cells. DNA Cell Biol 2017; 36:829-836. [PMID: 28829631 DOI: 10.1089/dna.2017.3839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Sertoli cell plays a vital role during the spermatogenesis process and has been identified as one of the main targets of the toxic action of heavy metals on the seminiferous epithelium. In the present work, the effect of lead (Pb), Arsenic (As), and Cadmium (Cd) in primary cultures of Sertoli cells was analyzed by measuring the expression of the genes Cldn11, Ocln, and Gja1 that participate in the tight and gap junctions, which are responsible for maintaining the blood-testis barrier. Sertoli cells were isolated from the testes of Wistar rats. Sertoli cell cultures were exposed separately and at the same concentrations of three heavy metals for 48 h. Subsequently, gene expression was measured by real-time polymerase chain reaction. In the morphological analysis of the cultures, after 24 h, the cultures exposed to Cd showed greatest detachment of the monolayer, followed by those exposed to As and Pb. As for gene expression patterns, As induced a decrease in the expression of the Cldn11 gene at 24 and 48 h (p < 0.01) and in that of Ocln at 24 (p < 0.001) and 48 h (p < 0.01), whereas Cd induced overexpression of the Gja1 gene from day 1 of exposure (p < 0.001) and subexpression of the Ocln gene (p < 0.05) at 24 h. Because each of these three metals generated different expression patterns in the three genes, we can postulate that the mechanisms of damage that they induce are different; therefore, the effect that they exert on the Sertoli cell occurs through different pathways, generating changes in structural proteins, altering Sertoli cell morphology, and compromising its function in the regulation of the spermatogenesis process.
Collapse
Affiliation(s)
- Juan Ramos-Treviño
- 1 Departamento de Biología de la Reproducción, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| | - Susana Bassol-Mayagoitia
- 1 Departamento de Biología de la Reproducción, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| | - Pablo Ruiz-Flores
- 2 Departmento de Genética y Medicina Molécular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| | - Perla Karina Espino-Silva
- 2 Departmento de Genética y Medicina Molécular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| | - Odila Saucedo-Cárdenas
- 3 Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León , Monterrey, México .,4 Departamento de Genética Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social , Monterrey, México
| | - Sheila Adela Villa-Cedillo
- 3 Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León , Monterrey, México
| | - Martha P Nava-Hernández
- 1 Departamento de Biología de la Reproducción, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila , Torreón, Mexico
| |
Collapse
|
40
|
Islam R, Yoon H, Kim BS, Bae HS, Shin HR, Kim WJ, Yoon WJ, Lee YS, Woo KM, Baek JH, Ryoo HM. Blood-testis barrier integrity depends on Pin1 expression in Sertoli cells. Sci Rep 2017; 7:6977. [PMID: 28765625 PMCID: PMC5539286 DOI: 10.1038/s41598-017-07229-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/23/2017] [Indexed: 01/15/2023] Open
Abstract
The conformation and function of a subset of serine and threonine-phosphorylated proteins are regulated by the prolyl isomerase Pin1 through isomerization of phosphorylated Ser/Thr-Pro bonds. Pin1 is intensely expressed in Sertoli cells, but its function in this post mitotic cell remains unclear. Our aim was to investigate the role of Pin1 in the Sertoli cells. Lack of Pin1 caused disruption of the blood-testis barrier. We next investigated if the activin pathways in the Sertoli cells were affected by lack of Pin1 through immunostaining for Smad3 protein in testis tissue. Indeed, lack of Pin1 caused reduced Smad3 expression in the testis tissue, as well as a reduction in the level of N-Cadherin, a known target of Smad3. Pin1-/- testes express Sertoli cell marker mRNAs in a pattern similar to that seen in Smad3+/- mice, except for an increase in Wt1 expression. The resulting dysregulation of N-Cadherin, connexin 43, and Wt1 targets caused by lack of Pin1 might affect the mesenchymal-epithelial balance in the Sertoli cells and perturb the blood-testis barrier. The effect of Pin1 dosage in Sertoli cells might be useful in the study of toxicant-mediated infertility, gonadal cancer, and for designing male contraceptives.
Collapse
Affiliation(s)
- Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Heein Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Han-Sol Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Kyung Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 110-749, Korea.
| |
Collapse
|
41
|
The regulation of male fertility by the PTPN11 tyrosine phosphatase. Semin Cell Dev Biol 2016; 59:27-34. [DOI: 10.1016/j.semcdb.2016.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/04/2023]
|
42
|
Different fixative methods influence histological morphology and TUNEL staining in mouse testes. Reprod Toxicol 2016; 60:53-61. [PMID: 26820454 DOI: 10.1016/j.reprotox.2016.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/11/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Society of Toxicologic Pathology has recommended mDF to fix testes since 2002. However, subsequent studies showed that false TUNEL-positive cells were observed in mDF-fixed testes. This study compared the effects of different fixation methods on histology and TUNEL staining in mouse testes. Results showed that fixation for 24 or 36h in mDF provided better morphologic details in untreated testes, but markedly enhanced false TUNEL-positive staining. To optimize the fixation, testes were fixed using mDF for 6h and then PFA for 18h. Interestingly, fixation using mDF/PFA manifested better morphologic details, and rarely caused false TUNEL-positive cells in testes. Finally, we examined germ cell apoptosis in testes using mDF/PFA fixation in cadmium-treated mice. As expected, cadmium triggered germ cell apoptosis which was well visualized in the mDF/PFA fixed testes. Taken together, mDF plus PFA fixation not only minimizes false TUNEL-positive cells, but also provides integrated morphologic details in testes.
Collapse
|