1
|
Feicht L, Dangel A, Jansen RP. Expression of transgenic biotin ligases in inducible neuronal murine cell lines by integration into the mHipp11 gene locus. PLoS One 2025; 20:e0315806. [PMID: 40036200 PMCID: PMC11878913 DOI: 10.1371/journal.pone.0315806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/02/2024] [Indexed: 03/06/2025] Open
Abstract
Biotin proximity labeling is a powerful method for identifying proteins associated with a specific organelle, a bait protein, or RNA. It requires the expression of a modified biotin ligase by transient transfection or from a stably integrated expression construct. Because such stable integration of transgenes into stem cells can lead to silencing during differentiation, targeting a biotin ligase to a genomic safe harbor site would be beneficial. Here, we report on the successful targeting and expression of two biotin ligase constructs to the mouse Hipp11 locus during neuronal differentiation. While randomly integrated MicroID and TurboID are expressed and active in mouse embryonic stem cells (mESCs), expression ceases upon differentiation into mESC-derived neurons, which is independent of the promoter used. In contrast, targeting of the same expression cassette to the mHipp11 locus results in expression, correct localization, and biotinylation activity not only in mESCs but also in neurons 8-10 days after differentiation. This demonstrates that the mouse Hipp11 locus is a promising genomic integration site for transgenic biotin ligases in mESCs and mESC-derived neurons.
Collapse
Affiliation(s)
- Lisa Feicht
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Germany
| | - Aaron Dangel
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Germany
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Germany
| |
Collapse
|
2
|
Kiesler P, Lee SS, Norris AL, Miller MF, Mercado CJ, Moyer AL, Maragh S. Protocol for CRISPR-Cas9 genome editing of a swine cell line via electroporation. STAR Protoc 2024; 5:103385. [PMID: 39392744 PMCID: PMC11735999 DOI: 10.1016/j.xpro.2024.103385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/14/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
Genome editing technology is being used in animals for a variety of purposes, including improvement of animal and public health outcomes. Characterization of genome editing reagents and anticipated genomic alterations is an essential step toward the development of an edited animal. Here, we present a protocol for genome editing in the swine testicular (ST) cell line. We describe steps for evaluating CRISPR-Cas9 complex functionality in vitro, delivering editing molecules into cells by transfection, and assessing target editing via Sanger sequencing.
Collapse
Affiliation(s)
- Patricia Kiesler
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Stella S Lee
- Center for Veterinary Medicine, Office of New Animal Drug Evaluation, US Food and Drug Administration, Rockville, MD 20855, USA
| | - Alexis L Norris
- Center for Veterinary Medicine, Office of New Animal Drug Evaluation, US Food and Drug Administration, Rockville, MD 20855, USA
| | - Mayumi F Miller
- Center for Veterinary Medicine, Office of Applied Science, US Food and Drug Administration, Laurel, MD 20708, USA
| | - Carlo J Mercado
- Center for Veterinary Medicine, Office of New Animal Drug Evaluation, US Food and Drug Administration, Rockville, MD 20855, USA
| | - Adam L Moyer
- Center for Veterinary Medicine, Office of New Animal Drug Evaluation, US Food and Drug Administration, Rockville, MD 20855, USA
| | - Samantha Maragh
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
3
|
Fu B, Ma H, Huo X, Zhu Y, Liu D. CRISPR Technology Acts as a Dual-Purpose Tool in Pig Breeding: Enhancing Both Agricultural Productivity and Biomedical Applications. Biomolecules 2024; 14:1409. [PMID: 39595585 PMCID: PMC11591810 DOI: 10.3390/biom14111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Pigs have long been integral to human society for their roles in agriculture and medicine. Consequently, there is an urgent need for genetic improvement of pigs to meet human dual needs for medicine and food. In agriculture, gene editing can improve productivity traits, such as growth rate and disease resistance, which could lower farming costs and benefit consumers through enhanced meat quality. In biomedical research, gene-edited pigs offer invaluable resources as disease models and in xenotransplantation, providing organs compatible with human physiology. Currently, with CRISPR technology, especially the CRISPR/Cas9 system emerging as a transformative force in modern genetics, pigs are not only sources of sustenance but also cornerstones of biomedical innovation. This review aims to summarize the applications of CRISPR/Cas9 technology in developing pigs that serve dual roles in agriculture and biomedical applications. Compared to ZFNs and TALENs, the CRISPR/Cas9 system offers several advantages, including higher efficiency, greater specificity, ease of design and implementation, and the capability to target multiple genes simultaneously, significantly streamlining the process of genetic modifications in complex genomes. Therefore, CRISPR technology supports the enhancement of traits beneficial for agricultural productivity and facilitates applications in medicine. Furthermore, we must acknowledge the inherent deficiencies and technical challenges of the CRISPR/Cas9 technology while also anticipating emerging technologies poised to surpass CRISPR/Cas9 as the next milestones in gene editing. We hypothesize that with the continuous advancements in gene editing technologies and successful integration of traits beneficial to both agricultural productivity and medical applications, the goal of developing dual-purpose pigs for both agricultural and medical use can ultimately be achieved.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Xiupeng Huo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Ying Zhu
- The Breeding Center of Felid of Hengdao He Zi (Heilongjiang), Harbin 150028, China;
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
4
|
Chen X, Yang G, Ji P, Liu G, Zhang L. Identification of Site in the UTY Gene as Safe Harbor Locus on the Y Chromosome of Pig. Genes (Basel) 2024; 15:1005. [PMID: 39202365 PMCID: PMC11353466 DOI: 10.3390/genes15081005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Genomic Safe Harbors (GSH) are loci used for the insertion of exogenous genetic elements, enabling exogenous gene expressing predictably without alterations of the host genome. These sites are becoming increasingly important as the gene editing technologies advance rapidly. Currently, only a few GSHs have been identified in the pig genome. In this study, a novel strategy was demonstrated for the efficient insertion of exogenous genetic material into the third exon of the UTY gene on the Y chromosome using CRISPR/Cas9-mediated homology arm-mediated end joining. The safety of the locus was verified according to the proper expression of the inserted EGFP gene without altering the expression of UTY. This approach enables the integration and expression of the exogenous gene at this locus, indicating that the UTY locus serves as a genomic safe harbor site for gene editing in the pig genome. Located on the Y chromosome, this site can be utilized for sex-biased pig breeding and developing biomedical models.
Collapse
Affiliation(s)
- Xiaomei Chen
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Guang Yang
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Pengyun Ji
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
| | - Guoshi Liu
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Lu Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.C.); (G.Y.); (P.J.); (G.L.)
- College of Animal Science and Technology, Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
5
|
Miao J, Zhang K, Yang Y, Xu S, Du J, Wu T, Tao C, Wang Y, Yang S. Single-nucleus transcriptomics reveal cardiac cell type-specific diversification in metabolic disease transgenic pigs. iScience 2024; 27:110015. [PMID: 38868189 PMCID: PMC11166884 DOI: 10.1016/j.isci.2024.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Cardiac damage is widely present in patients with metabolic diseases, but the exact pathophysiological mechanisms involved remain unclear. The porcine heart is an ideal material for cardiovascular research due to its similarities to the human heart. This study evaluated pathological features and performed single-nucleus RNA sequencing (snRNA-seq) on myocardial samples from both wild-type and metabolic disease-susceptible transgenic pigs (previously established). We found that transgenic pigs exhibited lipid metabolism disturbances and myocardial injury after a high-fat high-sucrose diet intervention. snRNA-seq reveals the cellular landscape of healthy and metabolically disturbed pig hearts and identifies the major cardiac cell populations affected by metabolic diseases. Within metabolic disorder hearts, metabolically active cardiomyocytes exhibited impaired function and reduced abundance. Moreover, massive numbers of reparative LYVE1+ macrophages were lost. Additionally, proinflammatory endothelial cells were activated with high expression of multiple proinflammatory cytokines. Our findings provide insights into the cellular mechanisms of metabolic disease-induced myocardial injury.
Collapse
Affiliation(s)
- Jiakun Miao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Kaiyi Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yu Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shuang Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Juan Du
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Tianwen Wu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Cong Tao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yanfang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Shulin Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
6
|
Yu Z, Shi J, Zhang J, Wu Y, Shen R, Fei J. Comparative study on the expression characteristics of transgenes inserted into the Gt(ROSA)26Sor and H11 loci in mice. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1687-1698. [PMID: 38752269 PMCID: PMC11693873 DOI: 10.3724/abbs.2024081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/22/2024] [Indexed: 01/06/2025] Open
Abstract
The Gt(ROSA)26Sor ( ROSA26) and H11 loci are commonly used as safe harbors for the construction of targeted transgenic mice. However, it remains unclear whether these two loci have distinct effects on transgene expression. In this study, we insert three differently colored fluorescent protein expression cassettes (EGFP, tdTomato and mTagBFP2) driven by the CAG promoter into the ROSA26 and H11 loci. We generate five single-transgenic mouse models and a triple-transgenic mouse model expressing three distinct fluorescent proteins simultaneously. Our results reveal that the efficiency of transgene expression is greater at the ROSA26 locus with a reverse orientation relative to the transcription of the ROSA26 gene. In most tissues examined, the efficiency of transgene expression at the ROSA26 locus exceeds that at the H11 locus. Moreover, the expression profiles of identical transgenes display discrepancies across various tissues, and notably, substantial heterogeneity in transgene expression is discernible within cells of the same tissue. Our findings offer a valuable reference for the selection of safe harbors and strategies for the construction of transgenic mouse models.
Collapse
Affiliation(s)
- Zhilan Yu
- School of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Jiahao Shi
- School of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Jingyu Zhang
- School of Life Science and TechnologyTongji UniversityShanghai200092China
| | - Youbing Wu
- Shanghai Engineering Research Center for Model
OrganismsSMOCShanghai201203China
| | - Ruling Shen
- Shanghai Laboratory Animal Research CenterShanghai201203China
| | - Jian Fei
- School of Life Science and TechnologyTongji UniversityShanghai200092China
- Shanghai Engineering Research Center for Model
OrganismsSMOCShanghai201203China
| |
Collapse
|
7
|
Zhang C, Chang F, Miao H, Fu Y, Tong X, Feng Y, Zheng W, Ma X. Construction and application of a multifunctional CHO cell platform utilizing Cre/ lox and Dre/ rox site-specific recombination systems. Front Bioeng Biotechnol 2023; 11:1320841. [PMID: 38173869 PMCID: PMC10761530 DOI: 10.3389/fbioe.2023.1320841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
During the development of traditional Chinese hamster ovary (CHO) cell lines, target genes randomly integrate into the genome upon entering the nucleus, resulting in unpredictable productivity of cell clones. The characterization and screening of high-yielding cell lines is a time-consuming and expensive process. Site-specific integration is recognized as an effective approach for overcoming random integration and improving production stability. We have designed a multifunctional expression cassette, called CDbox, which can be manipulated by the site-specific recombination systems Cre/lox and Dre/rox. The CDbox expression cassette was inserted at the Hipp11(H11) locus hotspot in the CHO-K1 genome using CRISPR/Cas9 technology, and a compliant CHO-CDbox cell platform was screened and obtained. The CHO-CDbox cell platform was transformed into a pool of EGFP-expressing cells using Cre/lox recombinase-mediated cassette exchange (RMCE) in only 2 weeks, and this expression remained stable for at least 75 generations without the need for drug stress. Subsequently, we used the Dre/rox system to directly eliminate the EGFP gene. In addition, two practical applications of the CHO-CDbox cell platform were presented. The first was the quick construction of the Pembrolizumab antibody stable expression strain, while the second was a protocol for the integration of surface-displayed and secreted antibodies on CHO cells. The previous research on site-specific integration of CHO cells has always focused on the single functionality of insertion of target genes. This newly developed CHO cell platform is expected to offer expanded applicability for protein production and gene function studies.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hui Miao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yunhui Fu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xikui Tong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yu Feng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Yum SY, Choi W, Kim S, Jang G, Koo O. Identification AAVS1-like locus from the porcine genome and site-specific integration of recombinase-mediated cassette exchange using CRISPR/Cas9. Anim Biotechnol 2023; 34:4730-4735. [PMID: 36905152 DOI: 10.1080/10495398.2023.2187408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Gene integration at site-specific loci is a critical approach for understanding the function of a gene in cells or animals. The AAVS1 locus is a well-known safe harbor for human and mouse studies. In this study, we found an AAVS1-like sequence (pAAVS1) in the porcine genome using the Genome Browser and designed TALEN and CRISPR/Cas9 to target the pAAVS1. The efficiency of CRISPR/Cas9 in porcine cells was superior to that of TALEN. We added a loxP-lox2272 sequences to the pAAVS1 targeting donor vector containing GFP for further exchange of various transgenes via recombinase-mediated cassette exchange (RMCE). The donor vector and CRISPR/Cas9 components were transfected into porcine fibroblasts. Targeted cells of CRISPR/Cas9-mediated homologous recombination were identified by antibiotic selection. Gene knock-in was confirmed by PCR. To induce RMCE, another donor vector containing the loxP-lox2272 and inducible Cre recombinase was cloned. The Cre-donor vector was transfected into the pAAVS1 targeted cell line, and RMCE was induced by adding doxycycline to the culture medium. RMCE in porcine fibroblasts was confirmed using PCR. In conclusion, gene targeting at the pAAVS1 and RMCE in porcine fibroblasts was successful. This technology will be useful for future porcine transgenesis studies and the generation of stable transgenic pigs.
Collapse
Affiliation(s)
- Soo-Young Yum
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
- LARTBio Incorp, Seoul, Republic of Korea
| | - Woojae Choi
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | | | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
- LARTBio Incorp, Seoul, Republic of Korea
- BK21 Plus program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Green Bio Science Technology, Seoul National University, Pyeongchang-gun, Republic of Korea
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Okjae Koo
- ToolGen, Inc, Seoul, South Korea
- nSAGE Inc., Incheon, South Korea
- SeaWith Inc., Daegu, South Korea
| |
Collapse
|
9
|
Zhang H, Duan K, Du Y, Xiao S, Fang L, Zhou Y. One-Step Assembly of a PRRSV Infectious cDNA Clone and a Convenient CRISPR/Cas9-Based Gene-Editing Technology for Manipulation of PRRSV Genome. Viruses 2023; 15:1816. [PMID: 37766223 PMCID: PMC10536534 DOI: 10.3390/v15091816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has been a persistent challenge for the swine industry for over three decades due to the lack of effective treatments and vaccines. Reverse genetics systems have been extensively employed to build rapid drug screening platforms and develop genetically engineered vaccines. Herein, we rescued recombinant PRRS virus (rPRRSV) WUH3 using an infectious cDNA clone of PRRSV WUH3 acquired through a BstXI-based one-step-assembly approach. The rPRRSV WUH3 and its parental PRRSV WUH3 share similar plaque sizes and multiple-step growth curves. Previously, gene-editing of viral genomes depends on appropriate restrictive endonucleases, which are arduous to select in some specific viral genes. Thus, we developed a restrictive endonucleases-free method based on CRISPR/Cas9 to edit the PRRSV genome. Using this method, we successfully inserted the exogenous gene (EGFP gene as an example) into the interval between ORF1b and ORF2a of the PRRSV genome to generate rPRRSV WUH3-EGFP, or precisely mutated the lysine (K) at position 150 of PRRSV nsp1α to glutamine (Q) to acquire rPRRSV WUH3 nsp1α-K150Q. Taken together, our study provides a rapid and convenient method for the development of genetically engineered vaccines against PRRSV and the study on the functions of PRRSV genes.
Collapse
Affiliation(s)
- Hejin Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Kaiqi Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yingbin Du
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (K.D.); (Y.D.); (S.X.); (L.F.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
10
|
Dehdilani N, Goshayeshi L, Yousefi Taemeh S, Bahrami AR, Rival Gervier S, Pain B, Dehghani H. Integrating Omics and CRISPR Technology for Identification and Verification of Genomic Safe Harbor Loci in the Chicken Genome. Biol Proced Online 2023; 25:18. [PMID: 37355580 DOI: 10.1186/s12575-023-00210-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND One of the most prominent questions in the field of transgenesis is 'Where in the genome to integrate a transgene?'. Escape from epigenetic silencing and promoter shutdown of the transgene needs reliable genomic safe harbor (GSH) loci. Advances in genome engineering technologies combined with multi-omics bioinformatics data have enabled rational evaluation of GSH loci in the host genome. Currently, no validated GSH loci have been evaluated in the chicken genome. RESULTS Here, we analyzed and experimentally examined two GSH loci in the genome of chicken cells. To this end, putative GSH loci including chicken HIPP-like (cHIPP; between DRG1 and EIF4ENIF1 genes) and chicken ROSA-like (cROSA; upstream of the THUMPD3 gene) were predicted using multi-omics bioinformatics data. Then, the durable expression of the transgene was validated by experimental characterization of continuously-cultured isogenous cell clones harboring DsRed2-ΔCMV-EGFP cassette in the predicted loci. The weakened form of the CMV promoter (ΔCMV) allowed the precise evaluation of GSH loci in a locus-dependent manner compared to the full-length CMV promoter. CONCLUSIONS cHIPP and cROSA loci introduced in this study can be reliably exploited for consistent bio-manufacturing of recombinant proteins in the genetically-engineered chickens. Also, results showed that the genomic context dictates the expression of transgene controlled by ΔCMV in GSH loci.
Collapse
Affiliation(s)
- Nima Dehdilani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Lena Goshayeshi
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sara Yousefi Taemeh
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sylvie Rival Gervier
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Bertrand Pain
- Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, 69500, Bron, France
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran.
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
11
|
Jin Q, Liu X, Zhuang Z, Huang J, Gou S, Shi H, Zhao Y, Ouyang Z, Liu Z, Li L, Mao J, Ge W, Chen F, Yu M, Guan Y, Ye Y, Tang C, Huang R, Wang K, Lai L. Doxycycline-dependent Cas9-expressing pig resources for conditional in vivo gene nullification and activation. Genome Biol 2023; 24:8. [PMID: 36650523 PMCID: PMC9843877 DOI: 10.1186/s13059-023-02851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND CRISPR-based toolkits have dramatically increased the ease of genome and epigenome editing. SpCas9 is the most widely used nuclease. However, the difficulty of delivering SpCas9 and inability to modulate its expression in vivo hinder its widespread adoption in large animals. RESULTS Here, to circumvent these obstacles, a doxycycline-inducible SpCas9-expressing (DIC) pig model was generated by precise knock-in of the binary tetracycline-inducible expression elements into the Rosa26 and Hipp11 loci, respectively. With this pig model, in vivo and/or in vitro genome and epigenome editing could be easily realized. On the basis of the DIC system, a convenient Cas9-based conditional knockout strategy was devised through controlling the expression of rtTA component by tissue-specific promoter, which allows the one-step generation of germline-inherited pigs enabling in vivo spatiotemporal control of gene function under simple chemical induction. To validate the feasibility of in vivo gene mutation with DIC pigs, primary and metastatic pancreatic ductal adenocarcinoma was developed by delivering a single AAV6 vector containing TP53-sgRNA, LKB1-sgRNA, and mutant human KRAS gene into the adult pancreases. CONCLUSIONS Together, these results suggest that DIC pig resources will provide a powerful tool for conditional in vivo genome and epigenome modification for fundamental and applied research.
Collapse
Affiliation(s)
- Qin Jin
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Xiaoyi Liu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenpeng Zhuang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiayuan Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510633, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Hui Shi
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Yu Zhao
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, China
| | - Zhen Ouyang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, China
| | - Zhaoming Liu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, China
| | - Lei Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junjie Mao
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Weikai Ge
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, China
| | - Manya Yu
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Yezhi Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510633, China
| | - Yinghua Ye
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, China
| | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510633, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, China.
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529020, China.
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| |
Collapse
|
12
|
Monteiro CJ, Heery DM, Whitchurch JB. Modern Approaches to Mouse Genome Editing Using the CRISPR-Cas Toolbox and Their Applications in Functional Genomics and Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:13-40. [PMID: 37486514 DOI: 10.1007/978-3-031-33325-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Mice have been used in biological research for over a century, and their immense contribution to scientific breakthroughs can be seen across all research disciplines, with some of the main beneficiaries being the fields of medicine and life sciences. Genetically engineered mouse models (GEMMs), along with other model organisms, are fundamentally important research tools frequently utilised to enhance our understanding of pathophysiology and biological mechanisms behind disease. In the 1980s, it became possible to precisely edit the mouse genome to create gene knockout and knock-in mice, although with low efficacy. Recent advances utilising CRISPR-Cas technologies have considerably improved our ability to do this with ease and precision, while also allowing the generation of desired genetic variants from single nucleotide substitutions to large insertions/deletions. It is now quick and relatively easy to genetically edit somatic cells which were previously more recalcitrant to traditional approaches. Further refinements have created a 'CRISPR toolkit' that has expanded the use of CRISPR-Cas beyond gene knock-ins and knockouts. In this chapter, we review some of the latest applications of CRISPR-Cas technologies in GEMMs, including nuclease-dead Cas9 systems for activation or repression of gene expression, base editing and prime editing. We also discuss improvements in Cas9 specificity, targeting efficacy and delivery methods in mice. Throughout, we provide examples wherein CRISPR-Cas technologies have been applied to target clinically relevant genes in preclinical GEMMs, both to generate humanised models and for experimental gene therapy research.
Collapse
Affiliation(s)
- Cintia J Monteiro
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
13
|
Zhang Y, Xu S, Jin Q, Luo J, Gao C, Jayaprakash S, Wang H, Zhuang L, He J. Establishment of transgenic pigs overexpressing human PKD2-D511V mutant. Front Genet 2022; 13:1059682. [DOI: 10.3389/fgene.2022.1059682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous missense mutations have been reported in autosomal dominant polycystic kidney disease which is one of the most common renal genetic disorders. The underlying mechanism for cystogenesis is still elusive, partly due to the lack of suitable animal models. Currently, we tried to establish a porcine transgenic model overexpressing human PKD2-D511V (hPKD2-D511V), which is a dominant-negative mutation in the vertebrate in vitro models. A total of six cloned pigs were finally obtained using somatic cell nuclear transfer. However, five with functional hPKD2-D511V died shortly after birth, leaving only one with the dysfunctional transgenic event to survive. Compared with the WT pigs, the demised transgenic pigs had elevated levels of hPKD2 expression at the mRNA and protein levels. Additionally, no renal malformation was observed, indicating that hPKD2-D511V did not alter normal kidney development. RNA-seq analysis also revealed that several ADPKD-related pathways were disturbed when overexpressing hPKD2-D511V. Therefore, our study implies that hPKD2-D511V may be lethal due to the dominant-negative effect. Hence, to dissect how PKD2-D511V drives renal cystogenesis, it is better to choose in vitro or invertebrate models.
Collapse
|
14
|
Jin Q, Yang X, Gou S, Liu X, Zhuang Z, Liang Y, Shi H, Huang J, Wu H, Zhao Y, Ouyang Z, Zhang Q, Liu Z, Chen F, Ge W, Xie J, Li N, Lai C, Zhao X, Wang J, Lian M, Li L, Quan L, Ye Y, Lai L, Wang K. Double knock-in pig models with elements of binary Tet-On and phiC31 integrase systems for controllable and switchable gene expression. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2269-2286. [PMID: 35596888 DOI: 10.1007/s11427-021-2088-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/20/2022] [Indexed: 06/15/2023]
Abstract
Inducible expression systems are indispensable for precise regulation and in-depth analysis of biological process. Binary Tet-On system has been widely employed to regulate transgenic expression by doxycycline. Previous pig models with tetracycline regulatory elements were generated through random integration. This process often resulted in uncertain expression and unpredictable phenotypes, thus hindering their applications. Here, by precise knock-in of binary Tet-On 3G elements into Rosa26 and Hipp11 locus, respectively, a double knock-in reporter pig model was generated. We characterized excellent properties of this system for controllable transgenic expression both in vitro and in vivo. Two attP sites were arranged to flank the tdTomato to switch reporter gene. Single or multiple gene replacement was efficiently and faithfully achieved in fetal fibroblasts and nuclear transfer embryos. To display the flexible application of this system, we generated a pig strain with Dox-inducing hKRASG12D expression through phiC31 integrase-mediated cassette exchange. After eight months of Dox administration, squamous cell carcinoma developed in the nose, mouth, and scrotum, which indicated this pig strain could serve as an ideal large animal model to study tumorigenesis. Overall, the established pig models with controllable and switchable transgene expression system will provide a facilitating platform for transgenic and biomedical research.
Collapse
Affiliation(s)
- Qin Jin
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Xiaoyu Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Xiaoyi Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Zhenpeng Zhuang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yanhui Liang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Hui Shi
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jiayuan Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510633, China
| | - Han Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yu Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Zhen Ouyang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Zhaoming Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Fangbing Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Weikai Ge
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jingke Xie
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Nan Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Chengdan Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Xiaozhu Zhao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Jiaowei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Meng Lian
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Lei Li
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Longquan Quan
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Yinghua Ye
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Kepin Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Sanya institute of Swine resource, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hainan Provincial Research Center of Laboratory Animals, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
15
|
Zhu Y, Zhou Z, Huang T, Zhang Z, Li W, Ling Z, Jiang T, Yang J, Yang S, Xiao Y, Charlier C, Georges M, Yang B, Huang L. Mapping and analysis of a spatiotemporal H3K27ac and gene expression spectrum in pigs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1517-1534. [PMID: 35122624 DOI: 10.1007/s11427-021-2034-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
The limited knowledge of genomic noncoding and regulatory regions has restricted our ability to decipher the genetic mechanisms underlying complex traits in pigs. In this study, we characterized the spatiotemporal landscape of putative enhancers and promoters and their target genes by combining H3K27ac-targeted ChIP-Seq and RNA-Seq in fetal (prenatal days 74-75) and adult (postnatal days 132-150) tissues (brain, liver, heart, muscle and small intestine) sampled from Asian aboriginal Bama Xiang and European highly selected Large White pigs of both sexes. We identified 101,290 H3K27ac peaks, marking 18,521 promoters and 82,769 enhancers, including peaks that were active across all tissues and developmental stages (which could indicate safe harbor locus for exogenous gene insertion) and tissue- and developmental stage-specific peaks (which regulate gene pathways matching tissue- and developmental stage-specific physiological functions). We found that H3K27ac and DNA methylation in the promoter region of the XIST gene may be involved in X chromosome inactivation and demonstrated the utility of the present resource for revealing the regulatory patterns of known causal genes and prioritizing candidate causal variants for complex traits in pigs. In addition, we identified an average of 1,124 super-enhancers per sample and found that they were more likely to show tissue-specific activity than ordinary peaks. We have developed a web browser to improve the accessibility of the results ( http://segtp.jxau.edu.cn/pencode/?genome=susScr11 ).
Collapse
Affiliation(s)
- Yaling Zhu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Laboratory Animal Research Center, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhimin Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tao Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wanbo Li
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziqi Ling
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Tao Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawen Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Siyu Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yanyuan Xiao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Carole Charlier
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Unit of Animal Genomics, GIGA-Institute and Faculty of Veterinary Medicine, University of Liege, 4000, Liege, Belgium
| | - Michel Georges
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Unit of Animal Genomics, GIGA-Institute and Faculty of Veterinary Medicine, University of Liege, 4000, Liege, Belgium
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
16
|
Identification of the CKM Gene as a Potential Muscle-Specific Safe Harbor Locus in Pig Genome. Genes (Basel) 2022; 13:genes13050921. [PMID: 35627307 PMCID: PMC9140944 DOI: 10.3390/genes13050921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Genetically modified pigs have shown considerable application potential in the fields of life science research and livestock breeding. Nevertheless, a barrier impedes the production of genetically modified pigs. There are too few safe harbor loci for the insertion of foreign genes into the pig genome. Only a few loci (pRosa26, pH11 and Pifs501) have been successfully identified to achieve the ectopic expression of foreign genes and produce gene-edited pigs. Here, we use CRISPR/Cas9-mediated homologous directed repair (HDR) to accurately knock the exogenous gene-of-interest fragments into an endogenous CKM gene in the porcine satellite cells. After porcine satellite cells are induced to differentiate, the CKM gene promoter simultaneously initiates the expression of the CKM gene and the exogenous gene. We infer preliminarily that the CKM gene can be identified as a potential muscle-specific safe harbor locus in pigs for the integration of exogenous gene-of-interest fragments.
Collapse
|
17
|
Lin Y, Li J, Li C, Tu Z, Li S, Li XJ, Yan S. Application of CRISPR/Cas9 System in Establishing Large Animal Models. Front Cell Dev Biol 2022; 10:919155. [PMID: 35656550 PMCID: PMC9152178 DOI: 10.3389/fcell.2022.919155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The foundation for investigating the mechanisms of human diseases is the establishment of animal models, which are also widely used in agricultural industry, pharmaceutical applications, and clinical research. However, small animals such as rodents, which have been extensively used to create disease models, do not often fully mimic the key pathological changes and/or important symptoms of human disease. As a result, there is an emerging need to establish suitable large animal models that can recapitulate important phenotypes of human diseases for investigating pathogenesis and developing effective therapeutics. However, traditional genetic modification technologies used in establishing small animal models are difficultly applied for generating large animal models of human diseases. This difficulty has been overcome to a great extent by the recent development of gene editing technology, especially the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In this review, we focus on the applications of CRISPR/Cas9 system to establishment of large animal models, including nonhuman primates, pigs, sheep, goats and dogs, for investigating disease pathogenesis and treatment. We also discuss the limitations of large animal models and possible solutions according to our current knowledge. Finally, we sum up the applications of the novel genome editing tool Base Editors (BEs) and its great potential for gene editing in large animals.
Collapse
|
18
|
Habu T, Ishikawa H, Kim J. Gulo gene locus, a new Gene Editing locus for mammalian cells. Biotechnol J 2022; 17:e2100493. [PMID: 35416422 DOI: 10.1002/biot.202100493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
Abstract
Transgene technology is valuable and helpful in many fields, including basic medical and biological research, biotechnology, and therapy. Recent advances in targeting technology accelerate the production of transgenic plants and animals and the application for gene therapy. To develop the technology, we examine the utility as the new safe harbor locus, L-Gulono-γ-lactone oxidase (Gulo) locus in human and mice. We performed experiments in vitro and in vivo knockout and knockin mouse and cell lines to validate their applicability using these loci. The Gulo locus might be good candidates for safe harbor loci for transgenic research. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Toshiyuki Habu
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Hyogo, Nishinomiya, 663-8558, Japan
| | - Honoka Ishikawa
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Hyogo, Nishinomiya, 663-8558, Japan
| | - Jiyeong Kim
- Department of Food Sciences and Nutrition, School of Food Sciences and Nutrition, Mukogawa Women's University, Hyogo, Nishinomiya, 663-8558, Japan
| |
Collapse
|
19
|
Ma X, Zeng W, Wang L, Cheng R, Zhao Z, Huang C, Sun Z, Tao P, Wang T, Zhang J, Liu L, Duan X, Niu D. Validation of reliable safe harbor locus for efficient porcine transgenesis. Funct Integr Genomics 2022; 22:553-563. [PMID: 35412198 DOI: 10.1007/s10142-022-00859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Transgenic technology is now widely used in biomedical and agricultural fields. Transgenesis is commonly achieved through random integration which might cause some uncertain consequences. The site-specific integration could avoid this disadvantage. This study aimed to screen and validate the best safe harbor (SH) locus for efficient porcine transgenesis. First, the cells carrying the EGFP reporter construct at four different SH loci (ROSA26, AAVS1, H11 and COL1A1) were achieved through CRSIPR/Cas9-mediated HDR. At the COL1A1 and ROSA26 loci, a higher mRNA and protein expression of EGFP was detected, and it was correlated with a lower level of DNA methylation of the EGFP promoter, hEF1α. A decreased H3K27me3 modification of the hEF1α promoter at the COL1A1 locus was also detected. For the safety of transgenesis at different SH locus, we found that transgenesis could relatively alter the expression of the adjacent endogenous genes, but the influence was limited. We also did not observe any off-target cleavage for the selected sgRNAs of the COL1A1 and ROSA26 loci. In conclusion, the COL1A1 and ROSA26 were confirmed to be the best two SH loci with the COL1A1 being more competitive for porcine transgenesis. This work would greatly facilitate porcine genome engineering and transgenic pig production.
Collapse
Affiliation(s)
- Xiang Ma
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China
| | - Weijun Zeng
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China
| | - Lei Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China
| | - Rui Cheng
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China
| | - Zeying Zhao
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China
| | - Caiyun Huang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China
| | - Zhongxin Sun
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China
| | - Peipei Tao
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, 211300, Jiangsu, China
| | - Jufang Zhang
- Cosmetic and Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, 310006, Zhejiang, China
| | - Lu Liu
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China.
| | - Xing Duan
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China.
| | - Dong Niu
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 666 Wusu street, Lin'an District, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
20
|
Use of Genome Editing Techniques to Produce Transgenic Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:279-297. [PMID: 34807447 PMCID: PMC9810480 DOI: 10.1007/978-3-030-85686-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recombinant proteins are essential for the treatment and diagnosis of clinical human ailments. The availability and biological activity of recombinant proteins is heavily influenced by production platforms. Conventional production platforms such as yeast, bacteria, and mammalian cells have biological and economical challenges. Transgenic livestock species have been explored as an alternative production platform for recombinant proteins, predominantly through milk secretion; the strategy has been demonstrated to produce large quantities of biologically active proteins. The major limitation of utilizing livestock species as bioreactors has been efforts required to alter the genome of livestock. Advancements in the genome editing field have drastically improved the ability to genetically engineer livestock species. Specifically, genome editing tools such as the CRISPR/Cas9 system have lowered efforts required to generate genetically engineered livestock, thus minimizing restrictions on the type of genetic modification in livestock. In this review, we discuss characteristics of transgenic animal bioreactors and how the use of genome editing systems enhances design and availability of the animal models.
Collapse
|
21
|
Viana JN, Edney S, Gondalia S, Mauch C, Sellak H, O'Callaghan N, Ryan JC. Trends and gaps in precision health research: a scoping review. BMJ Open 2021; 11:e056938. [PMID: 34697128 PMCID: PMC8547511 DOI: 10.1136/bmjopen-2021-056938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To determine progress and gaps in global precision health research, examining whether precision health studies integrate multiple types of information for health promotion or restoration. DESIGN Scoping review. DATA SOURCES Searches in Medline (OVID), PsycINFO (OVID), Embase, Scopus, Web of Science and grey literature (Google Scholar) were carried out in June 2020. ELIGIBILITY CRITERIA Studies should describe original precision health research; involve human participants, datasets or samples; and collect health-related information. Reviews, editorial articles, conference abstracts or posters, dissertations and articles not published in English were excluded. DATA EXTRACTION AND SYNTHESIS The following data were extracted in independent duplicate: author details, study objectives, technology developed, study design, health conditions addressed, precision health focus, data collected for personalisation, participant characteristics and sentence defining 'precision health'. Quantitative and qualitative data were summarised narratively in text and presented in tables and graphs. RESULTS After screening 8053 articles, 225 studies were reviewed. Almost half (105/225, 46.7%) of the studies focused on developing an intervention, primarily digital health promotion tools (80/225, 35.6%). Only 28.9% (65/225) of the studies used at least four types of participant data for tailoring, with personalisation usually based on behavioural (108/225, 48%), sociodemographic (100/225, 44.4%) and/or clinical (98/225, 43.6%) information. Participant median age was 48 years old (IQR 28-61), and the top three health conditions addressed were metabolic disorders (35/225, 15.6%), cardiovascular disease (29/225, 12.9%) and cancer (26/225, 11.6%). Only 68% of the studies (153/225) reported participants' gender, 38.7% (87/225) provided participants' race/ethnicity, and 20.4% (46/225) included people from socioeconomically disadvantaged backgrounds. More than 57% of the articles (130/225) have authors from only one discipline. CONCLUSIONS Although there is a growing number of precision health studies that test or develop interventions, there is a significant gap in the integration of multiple data types, systematic intervention assessment using randomised controlled trials and reporting of participant gender and ethnicity. Greater interdisciplinary collaboration is needed to gather multiple data types; collectively analyse big and complex data; and provide interventions that restore, maintain and/or promote good health for all, from birth to old age.
Collapse
Affiliation(s)
- John Noel Viana
- Responsible Innovation Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Queensland, Australia
- Australian National Centre for the Public Awareness of Science, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sarah Edney
- Physical Activity and Nutrition Determinants in Asia (PANDA) programme, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Shakuntla Gondalia
- Precision Health Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Adelaide, South Australia, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, South Australia, Australia
| | - Chelsea Mauch
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, South Australia, Australia
| | - Hamza Sellak
- Precision Health Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Adelaide, South Australia, Australia
- Data61, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Victoria, Australia
| | - Nathan O'Callaghan
- Precision Health Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Adelaide, South Australia, Australia
| | - Jillian C Ryan
- Precision Health Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Adelaide, South Australia, Australia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Adelaide, South Australia, Australia
| |
Collapse
|
22
|
Kemter E, Müller A, Neukam M, Ivanova A, Klymiuk N, Renner S, Yang K, Broichhagen J, Kurome M, Zakhartchenko V, Kessler B, Knoch KP, Bickle M, Ludwig B, Johnsson K, Lickert H, Kurth T, Wolf E, Solimena M. Sequential in vivo labeling of insulin secretory granule pools in INS- SNAP transgenic pigs. Proc Natl Acad Sci U S A 2021; 118:e2107665118. [PMID: 34508004 PMCID: PMC8449372 DOI: 10.1073/pnas.2107665118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
β cells produce, store, and secrete insulin upon elevated blood glucose levels. Insulin secretion is a highly regulated process. The probability for insulin secretory granules to undergo fusion with the plasma membrane or being degraded is correlated with their age. However, the molecular features and stimuli connected to this behavior have not yet been fully understood. Furthermore, our understanding of β cell function is mostly derived from studies of ex vivo isolated islets in rodent models. To overcome this translational gap and study insulin secretory granule turnover in vivo, we have generated a transgenic pig model with the SNAP-tag fused to insulin. We demonstrate the correct targeting and processing of the tagged insulin and normal glycemic control of the pig model. Furthermore, we show specific single- and dual-color granular labeling of in vivo-labeled pig pancreas. This model may provide unprecedented insights into the in vivo insulin secretory granule behavior in an animal close to humans.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Andreas Müller
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Martin Neukam
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Ivanova
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Kaiyuan Yang
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Klaus-Peter Knoch
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marc Bickle
- Technology Development Studio (TDS), Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Barbara Ludwig
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research, 85764 Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering Technology Platform, Technische Universität Dresden, 01307 Dresden, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany;
- Center for Innovative Medical Models, Ludwig Maximilian University of Munich, 81377 Munich, Germany
- German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Michele Solimena
- German Center for Diabetes Research, 85764 Neuherberg, Germany;
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich, University Hospital Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
23
|
Gu H, Zhou Y, Yang J, Li J, Peng Y, Zhang X, Miao Y, Jiang W, Bu G, Hou L, Li T, Zhang L, Xia X, Ma Z, Xiong Y, Zuo B. Targeted overexpression of PPARγ in skeletal muscle by random insertion and CRISPR/Cas9 transgenic pig cloning enhances oxidative fiber formation and intramuscular fat deposition. FASEB J 2021; 35:e21308. [PMID: 33481304 DOI: 10.1096/fj.202001812rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/11/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a master regulator of adipogenesis and lipogenesis. To understand its roles in fiber formation and fat deposition in skeletal muscle, we successfully generated muscle-specific overexpression of PPARγ in two pig models by random insertion and CRISPR/Cas9 transgenic cloning procedures. The content of intramuscular fat was significantly increased in PPARγ pigs while had no changes on lean meat ratio. PPARγ could promote adipocyte differentiation by activating adipocyte differentiating regulators such as FABP4 and CCAAT/enhancer-binding protein (C/EBP), along with enhanced expression of LPL, FABP4, and PLIN1 to proceed fat deposition. Proteomics analyses demonstrated that oxidative metabolism of fatty acids and respiratory chain were activated in PPARγ pigs, thus, gathered more Ca2+ in PPARγ pigs. Raising of Ca2+ could result in increased phosphorylation of CAMKII and p38 MAPK in PPARγ pigs, which can stimulate MEF2 and PGC1α to affect fiber type and oxidative capacity. These results support that skeletal muscle-specific overexpression of PPARγ can promote oxidative fiber formation and intramuscular fat deposition in pigs.
Collapse
Affiliation(s)
- Hao Gu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ying Zhou
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jianan Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yaxin Peng
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xia Zhang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yiliang Miao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Wei Jiang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Guowei Bu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Liming Hou
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ting Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Lin Zhang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiaoliang Xia
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhiyuan Ma
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Bo Zuo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
24
|
Zhang K, Tao C, Xu J, Ruan J, Xia J, Zhu W, Xin L, Ye H, Xie N, Xia B, Li C, Wu T, Wang Y, Schroyen M, Xiao X, Fan J, Yang S. CD8 + T Cells Involved in Metabolic Inflammation in Visceral Adipose Tissue and Liver of Transgenic Pigs. Front Immunol 2021; 12:690069. [PMID: 34322121 PMCID: PMC8311854 DOI: 10.3389/fimmu.2021.690069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Anti-inflammatory therapies have the potential to become an effective treatment for obesity-related diseases. However, the huge gap of immune system between human and rodent leads to limitations of drug discovery. This work aims at constructing a transgenic pig model with higher risk of metabolic diseases and outlining the immune responses at the early stage of metaflammation by transcriptomic strategy. We used CRISPR/Cas9 techniques to targeted knock-in three humanized disease risk genes, GIPRdn , hIAPP and PNPLA3I148M . Transgenic effect increased the risk of metabolic disorders. Triple-transgenic pigs with short-term diet intervention showed early symptoms of type 2 diabetes, including glucose intolerance, pancreatic lipid infiltration, islet hypertrophy, hepatic lobular inflammation and adipose tissue inflammation. Molecular pathways related to CD8+ T cell function were significantly activated in the liver and visceral adipose samples from triple-transgenic pigs, including antigen processing and presentation, T-cell receptor signaling, co-stimulation, cytotoxicity, and cytokine and chemokine secretion. The similar pro-inflammatory signaling in liver and visceral adipose tissue indicated that there might be a potential immune crosstalk between the two tissues. Moreover, genes that functionally related to liver antioxidant activity, mitochondrial function and extracellular matrix showed distinct expression between the two groups, indicating metabolic stress in transgenic pigs' liver samples. We confirmed that triple-transgenic pigs had high coincidence with human metabolic diseases, especially in the scope of inflammatory signaling at early stage metaflammation. Taken together, this study provides a valuable large animal model for the clinical study of metaflammation and metabolic diseases.
Collapse
Affiliation(s)
- Kaiyi Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianping Xu
- The Ministry of Health Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinxue Ruan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jihan Xia
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wenjuan Zhu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leilei Xin
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huaqiong Ye
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Xie
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boce Xia
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenxiao Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianwen Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Xinhua Xiao
- The Ministry of Health Key Laboratory of Endocrinology, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children’s Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shulin Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Key Laboratory of Animal Genetics Breeding and Reproduction, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Abstract
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
26
|
Owen JR, Hennig SL, McNabb BR, Mansour TA, Smith JM, Lin JC, Young AE, Trott JF, Murray JD, Delany ME, Ross PJ, Van Eenennaam AL. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. BMC Genomics 2021; 22:118. [PMID: 33581720 PMCID: PMC7881600 DOI: 10.1186/s12864-021-07418-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/31/2021] [Indexed: 12/31/2022] Open
Abstract
Background The homologous recombination (HR) pathway is largely inactive in early embryos prior to the first cell division, making it difficult to achieve targeted gene knock-ins. The homology-mediated end joining (HMEJ)-based strategy has been shown to increase knock-in efficiency relative to HR, non-homologous end joining (NHEJ), and microhomology-mediated end joining (MMEJ) strategies in non-dividing cells. Results By introducing gRNA/Cas9 ribonucleoprotein complex and a HMEJ-based donor template with 1 kb homology arms flanked by the H11 safe harbor locus gRNA target site, knock-in rates of 40% of a 5.1 kb bovine sex-determining region Y (SRY)-green fluorescent protein (GFP) template were achieved in Bos taurus zygotes. Embryos that developed to the blastocyst stage were screened for GFP, and nine were transferred to recipient cows resulting in a live phenotypically normal bull calf. Genomic analyses revealed no wildtype sequence at the H11 target site, but rather a 26 bp insertion allele, and a complex 38 kb knock-in allele with seven copies of the SRY-GFP template and a single copy of the donor plasmid backbone. An additional minor 18 kb allele was detected that looks to be a derivative of the 38 kb allele resulting from the deletion of an inverted repeat of four copies of the SRY-GFP template. Conclusion The allelic heterogeneity in this biallelic knock-in calf appears to have resulted from a combination of homology directed repair, homology independent targeted insertion by blunt-end ligation, NHEJ, and rearrangement following editing of the gRNA target site in the donor template. This study illustrates the potential to produce targeted gene knock-in animals by direct cytoplasmic injection of bovine embryos with gRNA/Cas9, although further optimization is required to ensure a precise single-copy gene integration event. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07418-3.
Collapse
Affiliation(s)
- Joseph R Owen
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Sadie L Hennig
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Bret R McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Tamer A Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Department of Clinical Pathology, School of Medicine, University of Mansoura, Mansoura, Egypt
| | - Justin M Smith
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Jason C Lin
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Amy E Young
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Josephine F Trott
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - James D Murray
- Department of Animal Science, University of California - Davis, Davis, CA, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Mary E Delany
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Pablo J Ross
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | | |
Collapse
|
27
|
Gene insertion in Saccharomyces cerevisiae using the CRISPR/Cas9 system. 3 Biotech 2021; 11:90. [PMID: 33520576 DOI: 10.1007/s13205-021-02648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022] Open
Abstract
The aim of this work was to rapidly and efficiently insert target DNA sequences into predetermined genomic sites in Saccharomyces cerevisiae. In this study, we designed two technical routes for gene insertion in the S. cerevisiae genome based on the CRISPR/Cas9 system, and a CRISPR array was inserted into the Amp site and the crRNA site of the pCRCT plasmid, respectively. The CRISPR array consists of a 100 bp donor sequence, the target gene and guide sequence. A 100 bp donor sequence was designed to have two 50 bp homology arms flanking the Cas9 cutting site and incorporate 8 bp or 1000 bp deletions including the PAM sequence, where the target gene was also inserted. The results showed that using only one pCRCTG plasmid and a 100 bp dsDNA mutagenizing homologous recombination donor, we can successfully insert a 2.9 kb gene fragment at the target site of the S. cerevisiae genome. However, inserting the CRISPR array into the crRNA site has a higher recombination efficiency than inserting into the Amp site. This recombination strategy represents a powerful tool for creating yeast strains with target gene inserts.
Collapse
|
28
|
Webster D, Bondareva A, Solin S, Goldsmith T, Su L, Lara NDLEM, Carlson DF, Dobrinski I. Targeted Gene Editing in Porcine Spermatogonia. Front Genet 2021; 11:627673. [PMID: 33584819 PMCID: PMC7876475 DOI: 10.3389/fgene.2020.627673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 01/15/2023] Open
Abstract
To study the pathophysiology of human diseases, develop innovative treatments, and refine approaches for regenerative medicine require appropriate preclinical models. Pigs share physiologic and anatomic characteristics with humans and are genetically more similar to humans than are mice. Genetically modified pigs are essential where rodent models do not mimic the human disease phenotype. The male germline stem cell or spermatogonial stem cell (SSC) is unique; it is the only cell type in an adult male that divides and contributes genes to future generations, making it an ideal target for genetic modification. Here we report that CRISPR/Cas9 ribonucleoprotein (RNP)-mediated gene editing in porcine spermatogonia that include SSCs is significantly more efficient than previously reported editing with TALENs and allows precise gene editing by homology directed repair (HDR). We also established homology-mediated end joining (HMEJ) as a second approach to targeted gene editing to enable introduction of larger transgenes and/or humanizing parts of the pig genome for disease modeling or regenerative medicine. In summary, the approaches established in the current study result in efficient targeted genome editing in porcine germ cells for precise replication of human disease alleles.
Collapse
Affiliation(s)
| | - Alla Bondareva
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Staci Solin
- Recombinetics, Inc., St. Paul, MN, United States
| | | | - Lin Su
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Establishment of a Cre-rat resource for creating conditional and physiological relevant models of human diseases. Transgenic Res 2021; 30:91-104. [PMID: 33481207 PMCID: PMC7854434 DOI: 10.1007/s11248-020-00226-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/28/2020] [Indexed: 10/25/2022]
Abstract
The goal of this study is to establish a Cre/loxP rat resource for conditional and physiologically predictive rat models of human diseases. The laboratory rat (R. norvegicus) is a central experimental animal in several fields of biomedical research, such as cardiovascular diseases, aging, infectious diseases, autoimmunity, cancer models, transplantation biology, inflammation, cancer risk assessment, industrial toxicology, pharmacology, behavioral and addiction studies, and neurobiology. Up till recently, the ability of creating genetically modified rats has been limited compared to that in the mouse mainly due to lack of genetic manipulation tools and technologies in the rat. Recent advances in nucleases, such as CRISPR/Cas9 (clustered regularly-interspaced short palindromic repeats/CRISPR associated protein 9), as well as TARGATT™ integrase system enables fast, efficient and site-specific introduction of exogenous genetic elements into the rat genome. Here, we report the generation of a collection of tissue-specific, inducible transgenic Cre rats as tool models using TARGATT™, CRISPR/Cas9 and random transgenic approach. More specifically, we generated Cre driver rat models that allow controlled gene expression or knockout (conditional models) both temporally and spatially through the Cre-ERT2/loxP system. A total of 10 Cre rat lines and one Cre reporter/test line were generated, including eight (8) Cre lines for neural specific and two (2) lines for cardiovascular specific Cre expression. All of these lines have been deposited with the Rat Resource and Research Center and provide a much-needed resource for the bio-medical community who employ rat models for their studies of human diseases.
Collapse
|
30
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
31
|
Yuan H, Ruan Y, Tan Y, Reed-Maldonado AB, Chen Y, Zhao D, Wang Z, Zhou F, Peng D, Banie L, Wang G, Liu J, Lin G, Qi LS, Lue TF. Regenerating Urethral Striated Muscle by CRISPRi/dCas9-KRAB-Mediated Myostatin Silencing for Obesity-Associated Stress Urinary Incontinence. CRISPR J 2020; 3:562-572. [PMID: 33346712 PMCID: PMC7757699 DOI: 10.1089/crispr.2020.0077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Overweight females are prone to obesity-associated stress urinary incontinence (OA-SUI), and there are no definitive medical therapies for this common urologic condition. This study was designed to test the hypothesis that regenerative therapy to restore urethral striated muscle (stM) and pelvic floor muscles might represent a valuable therapeutic approach. For the in vitro experiment, single-guide RNAs targeting myostatin (MSTN) were used for CRISPRi/dCas9-Kruppel associated box (KRAB)-mediated gene silencing. For the in vivo experiment, a total of 14 female lean ZUC-Leprfa 186 and 14 fatty ZUC-Leprfa 185 rats were used as control and CRISPRi-MSTN treated groups, respectively. The results indicated that lentivirus-mediated expression of MSTN CRISPRi/dCas9-KRAB caused sustained downregulation of MSTN in rat L6 myoblast cells and significantly enhanced myogenesis in vitro. In vivo, the urethral sphincter injection of lentiviral-MSTN sgRNA and lentiviral-dCas9-KRAB significantly increased the leak point pressure, the thickness of the stM layer, the ratio of stM to smooth muscle, and the number of neuromuscular junctions. Downregulation of MSTN with CRISPRi/dCas9-KRAB-mediated gene silencing significantly enhanced myogenesis in vitro and in vivo. It also improved urethral continence in the OA-SUI rat model.
Collapse
Affiliation(s)
- Huixing Yuan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Yan Tan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Amanda B. Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
- Department of Urology, Tripler Army Medical Center, 1 Jarrett White Road, Honolulu, Hawaii, USA; and Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Yinwei Chen
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Dehua Zhao
- Department of Bioengineering, Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Zhao Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Feng Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Lei S. Qi
- Department of Bioengineering, Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| | - Tom F. Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA; Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, California, USA
| |
Collapse
|
32
|
Hassebroek VA, Park H, Pandey N, Lerbakken BT, Aksenova V, Arnaoutov A, Dasso M, Azuma Y. PICH regulates the abundance and localization of SUMOylated proteins on mitotic chromosomes. Mol Biol Cell 2020; 31:2537-2556. [PMID: 32877270 PMCID: PMC7851874 DOI: 10.1091/mbc.e20-03-0180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proper chromosome segregation is essential for faithful cell division and if not maintained results in defective cell function caused by the abnormal distribution of genetic information. Polo-like kinase 1-interacting checkpoint helicase (PICH) is a DNA translocase essential for chromosome bridge resolution during mitosis. Its function in resolving chromosome bridges requires both DNA translocase activity and ability to bind chromosomal proteins modified by the small ubiquitin-like modifier (SUMO). However, it is unclear how these activities cooperate to resolve chromosome bridges. Here, we show that PICH specifically disperses SUMO2/3 foci on mitotic chromosomes. This PICH function is apparent toward SUMOylated topoisomerase IIα (TopoIIα) after inhibition of TopoIIα by ICRF-193. Conditional depletion of PICH using the auxin-inducible degron (AID) system resulted in the retention of SUMO2/3-modified chromosomal proteins, including TopoIIα, indicating that PICH functions to reduce the association of these proteins with chromosomes. Replacement of PICH with its translocase-deficient mutants led to increased SUMO2/3 foci on chromosomes, suggesting that the reduction of SUMO2/3 foci requires the remodeling activity of PICH. In vitro assays showed that PICH specifically attenuates SUMOylated TopoIIα activity using its SUMO-binding ability. Taking the results together, we propose a novel function of PICH in remodeling SUMOylated proteins to ensure faithful chromosome segregation.
Collapse
Affiliation(s)
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Nootan Pandey
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | | | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Yoshiaki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045,*Address correspondence to: Yoshiaki Azuma ()
| |
Collapse
|
33
|
Ma X, Cao R, Xiao H, Cao Z. Establishment of a type II insulin-like growth factor receptor gene site-integrated SKBR3 cell line using CRISPR/Cas9. Oncol Lett 2020; 20:354. [PMID: 33123265 PMCID: PMC7586281 DOI: 10.3892/ol.2020.12216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER-2)+ breast cancer has a high recurrence rate and a poor prognosis, with drug resistance contributing to disease progression. The present study aimed to establish a SKBR3 cell line with type II insulin-like growth factor receptor (IGR-IIR) gene site integration using the CRISPR/Cas9 system, and to provide a cell model for exploring the mechanism responsible for the effect of IGF-IIR on trastuzumab resistance in HER-2+ breast cancer cells. In the present study, six single guide (sg)RNA pairs according to the adeno-associated virus integration site 1 (AAVS1) gene sequence were designed and synthesized, and the Universal CRISPR Activity assay CRISPR/Cas9 rapid construction and activity detection kit was used to connect the annealed oligo with the pCS vector. The sgRNA with the highest efficiency was selected to construct a Cas9/sgRNA expression vector using AsiSI + Bstz17I restriction enzymes to cut IGF-IIR. The fragment was ligated into an human AAVS1-KI vector to construct the IGF-IIR targeting vector. The Cas9/sgRNA and IGF-IIR targeting vectors were electroporated into SKBR3 cells, screened using puromycin and identified via PCR, and the mixed cloned cells generated via IGF-IIR gene targeted integration were obtained. The semi-solid and limited dilution methods were used for monoclonal cell preparation, and the results revealed that a Cas9/sgRNA vector that targeted the AAVS1 was successfully constructed. sgRNA activity detection demonstrated that sgRNA2 had the highest efficiency, while enzyme digestion and sequencing confirmed that the IGF-IIR target vector was successfully constructed. The optimum conditions for electrotransfection were 1,200 V, 20 ms and 2 pulses, and the optimal screening concentration of puromycin was 0.5 µg/ml. Using these conditions, the IGF-IIR targeting vector and pCS-sgRNA2 plasmid were successfully transfected into SKBR3 cells, and PCR identification and sequencing verified the correct genotype of mixed clone fragments. The monoclonal cells proliferate slowly and gradually underwent apoptosis. Overall, the present study successfully obtained a mixed clone cell line with site-specific integration of the IGF-IIR gene at the AAVS1.
Collapse
Affiliation(s)
- Xinyu Ma
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Ru Cao
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Haiyan Xiao
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Zhongwei Cao
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| |
Collapse
|
34
|
Identification of ACTB Gene as a Potential Safe Harbor Locus in Pig Genome. Mol Biotechnol 2020; 62:589-597. [PMID: 32979185 DOI: 10.1007/s12033-020-00276-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Transgenic pigs play an important role in biomedicine and agriculture. The "safe harbor" locus maintains consistent foreign gene expression in cells and is important for transgenic pig generation. However, as only several safe harbor loci(Rosa26, pH11 and Pifs501) have been identified in pigs, meeting the needs of the insertion of various foreign genes is difficult. In this study, we develop a novel strategy for the efficient knock-in of gene-of-interest fragments into endogenous beta-actin(ACTB) gene via CRISPR/Cas9 mediated homologous recombination with normal expression of ACTB. Thus, we provide an alternative strategy to integrate exogenous genes into the pig genome that can be applied to agricultural breeding and biomedical models.
Collapse
|
35
|
Xu K, Zhou Y, Mu Y, Liu Z, Hou S, Xiong Y, Fang L, Ge C, Wei Y, Zhang X, Xu C, Che J, Fan Z, Xiang G, Guo J, Shang H, Li H, Xiao S, Li J, Li K. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. eLife 2020; 9:57132. [PMID: 32876563 PMCID: PMC7467724 DOI: 10.7554/elife.57132] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and transmissible gastroenteritis virus (TGEV) are two highly infectious and lethal viruses causing major economic losses to pig production. Here, we report generation of double-gene-knockout (DKO) pigs harboring edited knockout alleles for known receptor proteins CD163 and pAPN and show that DKO pigs are completely resistant to genotype 2 PRRSV and TGEV. We found no differences in meat-production or reproductive-performance traits between wild-type and DKO pigs, but detected increased iron in DKO muscle. Additional infection challenge experiments showed that DKO pigs exhibited decreased susceptibility to porcine deltacoronavirus (PDCoV), thus offering unprecedented in vivo evidence of pAPN as one of PDCoV receptors. Beyond showing that multiple gene edits can be combined in a livestock animal to achieve simultaneous resistance to two major viruses, our study introduces a valuable model for investigating infection mechanisms of porcine pathogenic viruses that exploit pAPN or CD163 for entry.
Collapse
Affiliation(s)
- Kui Xu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguo Liu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaohua Hou
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yujian Xiong
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changli Ge
- Shandong Landsee Genetics Co., Ltd., Rizhao, China
| | - Yinghui Wei
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuling Zhang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changjiang Xu
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingjing Che
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziyao Fan
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangming Xiang
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiankang Guo
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haitao Shang
- Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Hua Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Julang Li
- Department of Animal BioSciences, University of Guelph, Ontario, Canada
| | - Kui Li
- State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
36
|
Lee K, Farrell K, Uh K. Application of genome-editing systems to enhance available pig resources for agriculture and biomedicine. Reprod Fertil Dev 2020; 32:40-49. [PMID: 32188556 DOI: 10.1071/rd19273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditionally, genetic engineering in the pig was a challenging task. Genetic engineering of somatic cells followed by somatic cell nuclear transfer (SCNT) could produce genetically engineered (GE) pigs carrying site-specific modifications. However, due to difficulties in engineering the genome of somatic cells and developmental defects associated with SCNT, a limited number of GE pig models were reported. Recent developments in genome-editing tools, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system, have markedly changed the effort and time required to produce GE pig models. The frequency of genetic engineering in somatic cells is now practical. In addition, SCNT is no longer essential in producing GE pigs carrying site-specific modifications, because direct injection of genome-editing systems into developing embryos introduces targeted modifications. To date, the CRISPR/Cas9 system is the most convenient, cost-effective, timely and commonly used genome-editing technology. Several applicable biomedical and agricultural pig models have been generated using the CRISPR/Cas9 system. Although the efficiency of genetic engineering has been markedly enhanced with the use of genome-editing systems, improvements are still needed to optimally use the emerging technology. Current and future advances in genome-editing strategies will have a monumental effect on pig models used in agriculture and biomedicine.
Collapse
Affiliation(s)
- Kiho Lee
- Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Tech, Blacksburg, Virgina 24061, USA; and Corresponding author.
| | - Kayla Farrell
- Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Tech, Blacksburg, Virgina 24061, USA
| | - Kyungjun Uh
- Department of Animal and Poultry Sciences, Litton-Reaves Hall, Virginia Tech, Blacksburg, Virgina 24061, USA
| |
Collapse
|
37
|
Huang J, Wang A, Huang C, Sun Y, Song B, Zhou R, Li L. Generation of Marker-Free pbd-2 Knock-in Pigs Using the CRISPR/Cas9 and Cre/loxP Systems. Genes (Basel) 2020; 11:genes11080951. [PMID: 32824735 PMCID: PMC7465224 DOI: 10.3390/genes11080951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Porcine β-defensin 2 (PBD-2), expressed by different tissues of pigs, is a multifunctional cationic peptide with antimicrobial, immunomodulatory and growth-promoting abilities. As the latest generation of genome-editing tool, CRISPR/Cas9 system makes it possible to enhance the expression of PBD-2 in pigs by site-specific knock-in of pbd-2 gene into the pig genome. In this study, we aimed to generate marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems. Two copies of pbd-2 gene linked by a T2A sequence were inserted into the porcine Rosa26 locus through CRISPR/Cas9-mediated homology-directed repair. The floxed selectable marker gene neoR, used for G418 screening of positive cell clones, was removed by cell-penetrating Cre recombinase with a recombination efficiency of 48.3%. Cloned piglets were produced via somatic cell nuclear transfer and correct insertion of pbd-2 genes was confirmed by PCR and Southern blot. Immunohistochemistry and immunofluorescence analyses indicated that expression levels of PBD-2 in different tissues of transgenic (TG) piglets were significantly higher than those of their wild-type (WT) littermates. Bactericidal assays demonstrated that there was a significant increase in the antimicrobial properties of the cell culture supernatants of porcine ear fibroblasts from the TG pigs in comparison to those from the WT pigs. Altogether, our study improved the protein expression level of PBD-2 in pigs by site-specific integration of pbd-2 into the pig genome, which not only provided an effective pig model to study the anti-infection mechanisms of PBD-2 but also a promising genetic material for the breeding of disease-resistant pigs.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (C.H.)
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
| | - Antian Wang
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Chao Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (C.H.)
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
| | - Yufan Sun
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Bingxiao Song
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.H.); (C.H.)
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| | - Lu Li
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China; (A.W.); (Y.S.); (B.S.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, China
- Correspondence: (R.Z.); (L.L.)
| |
Collapse
|
38
|
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is a precise genome manipulating tool that can produce targeted gene mutations in various cells and organisms. Although CRISPR/Cas9 can efficiently generate gene knockout, the gene knock-in (KI) efficiency mediated by homology-directed repair remains low, especially for large fragment integration. In this study, we established an efficient method for the CRISPR/Cas9-mediated integration of large transgene cassette, which carries salivary gland-expressed multiple digestion enzymes (≈ 20 kbp) in CEP112 locus in pig fetal fibroblasts (PFFs). Our results showed that using an optimal homology donor with a short and a long arm yielded the best CRISPR/Cas9-mediated KI efficiency in CEP112 locus, and the targeting efficiency in CEP112 locus was higher than in ROSA26 locus. The CEP112 KI cell lines were used as nuclear donors for somatic cell nuclear transfer to create genetically modified pigs. We found that KI pig (705) successfully expressed three microbial enzymes (β-glucanase, xylanase, and phytase) in salivary gland. This finding suggested that the CEP112 locus supports exogenous gene expression by a tissue-specific promoter. In summary, we successfully targeted CEP112 locus in pigs by using our optimal homology arm system and established a modified pig model for foreign digestion enzyme expression in the saliva.
Collapse
|
39
|
Lee K, Uh K, Farrell K. Current progress of genome editing in livestock. Theriogenology 2020; 150:229-235. [PMID: 32000993 DOI: 10.1016/j.theriogenology.2020.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Historically, genetic engineering in livestock proved to be challenging. Without stable embryonic stem cell lines to utilize, somatic cell nuclear transfer (SCNT) had to be employed to produce many of the genetically engineered (GE) livestock models. Through the genetic engineering of somatic cells followed by SCNT, GE livestock models could be generated carrying site-specific modifications. Although successful, only a few GE livestock models were generated because of low efficiency and associated birth defects. Recently, there have been major strides in the development of genome editing tools: Zinc-Finger Nucleases (ZFNs), Transcription activator-like effector nucleases (TALENS), and Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated 9 (Cas9) system. These tools rely on the generation of a double strand DNA break, followed by one of two repair pathways: non-homologous end joining (NHEJ) or homology directed repair (HDR). Compared to the traditional approaches, these tools dramatically reduce time and effort needed to establish a GE animal. Another benefit of utilizing genome editing tools is the application of direct injection into developing embryos to induce targeted mutations, therefore, eliminating side effects associated with SCNT. Emerging technological advancements of genome editing systems have dramatically improved efficiency to generate GE livestock models for both biomedical and agricultural purposes. Although the efficiency of genome editing tools has revolutionized GE livestock production, improvements for safe and consistent application are desired. This review will provide an overview of genome editing techniques, as well as examples of GE livestock models for agricultural and biomedical purposes.
Collapse
Affiliation(s)
- Kiho Lee
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Kyungjun Uh
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kayla Farrell
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
40
|
Identification of ADPKD-Related Genes and Pathways in Cells Overexpressing PKD2. Genes (Basel) 2020; 11:genes11020122. [PMID: 31979107 PMCID: PMC7074416 DOI: 10.3390/genes11020122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/17/2022] Open
Abstract
Consistent with the gene dosage effect hypothesis, renal cysts can arise in transgenic murine models overexpressing either PKD1 or PKD2, which are causal genes for autosomal dominant polycystic kidney disease (ADPKD). To determine whether PKD gene overexpression is a universal mechanism driving cystogenesis or is merely restricted to rodents, other animal models are required. Previously, we failed to observe any renal cysts in a transgenic porcine model of PKD2 overexpression partially due to epigenetic silencing of the transgene. Thus, to explore the feasibility of porcine models and identify potential genes/pathways affected in ADPKD, LLC-PK1 cells with high PKD2 expression were generated. mRNA sequencing (RNA-seq) was performed, and MYC, IER3, and ADM were found to be upregulated genes common to the different PKD2 overexpression cell models. MYC is a well-characterized factor contributing to cystogenesis, and ADM is a biomarker for chronic kidney disease. Thus, these genes might be indicators of disease progression. Additionally, some ADPKD-associated pathways, e.g., the mitogen-activated protein kinase (MAPK) pathway, were enriched in the cells. Moreover, gene ontology (GO) analysis demonstrated that proliferation, apoptosis, and cell cycle regulation, which are hallmarks of ADPKD, were altered. Therefore, our experiment identified some biomarkers or indicators of ADPKD, indicating that high PKD2 expression would likely drive cystogenesis in future porcine models.
Collapse
|
41
|
Browning J, Rooney M, Hams E, Takahashi S, Mizuno S, Sugiyama F, Fallon PG, Kelly VP. Highly efficient CRISPR-targeting of the murine Hipp11 intergenic region supports inducible human transgene expression. Mol Biol Rep 2019; 47:1491-1498. [PMID: 31811500 DOI: 10.1007/s11033-019-05204-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/21/2019] [Indexed: 01/21/2023]
Abstract
Safe harbor loci allow predicable integration of a transgene into the genome without perturbing endogenous gene activity and for decades have been exploited in the mouse to investigate gene function, generate humanised models and create tissue specific reporter and Cre recombinase expressing lines. Herein, we show that the murine Hipp11 intergenic region can facilitate highly efficient integration of a large transgene-the human CD1A promoter and coding region-by means of CRISPR-Cas9 mediated homology directed repair. The data shows that the single copy human CD1A transgene is faithfully expressed in an inducible manner in homozygous animals in both macrophage and dendritic cells. Our results validate the Hipp11 intergenic region as being a highly amenable target site for functional transgene integration in mouse.
Collapse
Affiliation(s)
- Jill Browning
- School of Biochemistry& Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Michael Rooney
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Satoru Takahashi
- 1-1-1 Tennodai Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seiya Mizuno
- 1-1-1 Tennodai Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Fumihiro Sugiyama
- 1-1-1 Tennodai Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Padraic G Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Vincent P Kelly
- School of Biochemistry& Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
42
|
Dai B, Zhang M, Yuan JL, Ren LQ, Han XY, Liu DJ. Integrative Analysis of Methylation and Transcriptional Profiles to Reveal the Genetic Stability of Cashmere Traits in the Tβ4 Overexpression of Cashmere Goats. Animals (Basel) 2019; 9:ani9121002. [PMID: 31756916 PMCID: PMC6940810 DOI: 10.3390/ani9121002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/27/2019] [Accepted: 11/18/2019] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cashmere goats have double coats consisting of non-medullated fine inner hairs or cashmere fibers produced by secondary hair follicles (SHFs) and guard hairs produced by primary hair follicles (PHFs). Cashmere is an important economic product worldwide and the world market for cashmere is increasing while the current production of cashmere is limited. Thymosin β4 (Tβ4), a 4.9-kDa protein, contains 43 amino acids. Here, we produced Tβ4 overexpression (Tβ4-OE) offspring using two methods. The somatic cell nuclear transfer (SCNT) goats had increased hair follicle development and higher cashmere yields than wild type (WT) and natural mating (NM) goats. Taken together, our results showed that DNA methylation affected the expression of differentially expressed genes (DEGs) between generations and the genetic stability of cashmere traits. Abstract DNA methylation alteration is frequently observed in exogenous gene silencing and may play important roles in the genetic stability of traits. Cashmere is derived from the secondary hair follicles (SHFs) of cashmere goats, which are morphogenetically distinct from primary hair follicles (PHFs). Here, in light of having initially produced 15 Tβ4 overexpression (Tβ4-OE) cashmere goats which had more SHFs than the wild type (WT) goats, and produced more cashmere, we produced Tβ4-OE offsprings both via somatic cell nuclear transfer (SCNT) and via natural mating (NM). However, the desired trait exhibited lower fixation in the line-bred offspring compared to the SCNT offspring. Integrative analysis of methylation and transcriptional profiles showed that this might be due to the influence of methylation on the expression of differentially expressed genes (DEGs) between generations, which was mutually consistent with the results of the functional and pathway enrichment analysis of differentially methylated regions (DMRs) and DEGs. Overall, our study systematically describes the DNA methylation characteristics between generations of cashmere goats and provides a basis for improving genetic stability.
Collapse
|
43
|
Platt JL, Cascalho M, Piedrahita JA. Xenotransplantation: Progress Along Paths Uncertain from Models to Application. ILAR J 2019; 59:286-308. [PMID: 30541147 DOI: 10.1093/ilar/ily015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
For more than a century, transplantation of tissues and organs from animals into man, xenotransplantation, has been viewed as a potential way to treat disease. Ironically, interest in xenotransplantation was fueled especially by successful application of allotransplantation, that is, transplantation of human tissue and organs, as a treatment for a variety of diseases, especially organ failure because scarcity of human tissues limited allotransplantation to a fraction of those who could benefit. In principle, use of animals such as pigs as a source of transplants would allow transplantation to exert a vastly greater impact than allotransplantation on medicine and public health. However, biological barriers to xenotransplantation, including immunity of the recipient, incompatibility of biological systems, and transmission of novel infectious agents, are believed to exceed the barriers to allotransplantation and presently to hinder clinical applications. One way potentially to address the barriers to xenotransplantation is by genetic engineering animal sources. The last 2 decades have brought progressive advances in approaches that can be applied to genetic modification of large animals. Application of these approaches to genetic engineering of pigs has contributed to dramatic improvement in the outcome of experimental xenografts in nonhuman primates and have encouraged the development of a new type of xenograft, a reverse xenograft, in which human stem cells are introduced into pigs under conditions that support differentiation and expansion into functional tissues and potentially organs. These advances make it appropriate to consider the potential limitation of genetic engineering and of current models for advancing the clinical applications of xenotransplantation and reverse xenotransplantation.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Marilia Cascalho
- Surgery, Microbiology & Immunology, and Transplantation Biology, University of Michigan, Ann Arbor, Michigan
| | - Jorge A Piedrahita
- Translational Medicine and The Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
44
|
Zhang J, Zhu Z, Yue W, Li J, Chen Q, Yan Y, Lei A, Hua J. Establishment of CRISPR/Cas9-Mediated Knock-in System for Porcine Cells with High Efficiency. Appl Biochem Biotechnol 2019; 189:26-36. [PMID: 30859452 DOI: 10.1007/s12010-019-02984-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/01/2019] [Indexed: 11/27/2022]
Abstract
Since the birth of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, the new genome engineering technology has become a hot topic in the scientific community. However, for swine, the system of pig cells' homology directed repair (HDR) is generally unstable and costly. Here, we aim to make knock-in of porcine cells more realizable. The Rosa26 locus was chosen for gene editing. Through the optimization of strategy, an efficient sgRNA was selected by TIDE analysis. Correspondingly, a vector system was constructed for gene insertion in pRosa26 locus by homologous recombination. A large percentage of cells whose gene is edited easily result in apoptosis. To improve the positive rate, culturing systems have been optimized. Sequence alignment and nuclear transfer confirmed that we got two knock-in cell lines and transgene primary porcine fetal fibroblasts (PFFs) successfully. Results showed that the gene editing platform we used can obtain genetically modified pig cells stably and efficiently. This system can contribute to pig gene research and production of transgenic pigs.
Collapse
Affiliation(s)
- Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhenshuo Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wei Yue
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaxin Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qiang Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan Yan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Anmin Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
45
|
Han X, Xiong Y, Zhao C, Xie S, Li C, Li X, Liu X, Li K, Zhao S, Ruan J. Identification of Glyceraldehyde-3-Phosphate Dehydrogenase Gene as an Alternative Safe Harbor Locus in Pig Genome. Genes (Basel) 2019; 10:E660. [PMID: 31470649 PMCID: PMC6770653 DOI: 10.3390/genes10090660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/20/2023] Open
Abstract
The ectopic overexpression of foreign genes in animal genomes is an important strategy for gain-of-function study and establishment of transgenic animal models. Previous studies showed that two loci (Rosa26 and pH11) were identified as safe harbor locus in pig genomes, which means foreign genes can be integrated into this locus for stable expression. Moreover, integration of a transgene may interfere with the endogenous gene expression of the target locus after the foreign fragments are inserted. Here, we provide a new strategy for efficient transgene knock-in in the endogenous GAPDH gene via CRISPR/Cas9 mediated homologous recombination. This strategy has no influence on the expression of the endogenous GAPDH gene. Thus, the GAPDH locus is a new alternative safe harbor locus in the pig genome for foreign gene knock-ins. This strategy is promising for agricultural breeding and biomedical model applications.
Collapse
Affiliation(s)
- Xiaosong Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Youcai Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production-Swine Breeding and Reproduction Innovation Platform, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
- College of Life Science, Foshan University, Guangdong 528231, China.
| |
Collapse
|
46
|
Wang R, Zhang JY, Lu KH, Lu SS, Zhu XX. Efficient generation of GHR knockout Bama minipig fibroblast cells using CRISPR/Cas9-mediated gene editing. In Vitro Cell Dev Biol Anim 2019; 55:784-792. [PMID: 31456163 DOI: 10.1007/s11626-019-00397-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
Abstract
Dwarfism, also known as growth hormone deficiency (GHD), is a disease caused by genetic mutations that result in either a lack of growth hormone or insufficient secretion of growth hormone, resulting in a person's inability to grow normally. In the past, many studies focusing on GHD have made use of models of other diseases such as metabolic or infectious diseases. A viable GHD specific model system has not been used previously, thus limiting the interpretation of GHD results. The Bama minipig is unique to Guangxi province and has strong adaptability and disease resistance, and an incredibly short stature, which is especially important for the study of GHD. In addition, studies of GHR knockout Bama minipigs and GHR knockout Bama minipig fibroblast cells generated using CRISPR/Cas9 have not been previously reported. Therefore, the Bama minipig was selected as an animal model and as a tool for the study of GHD in this work. In this study, a Cas9 plasmid with sgRNA targeting the first exon of the GHR gene was transfected into Bama minipig kidney fibroblast cells to generate 22 GHR knockout Bama minipig kidney fibroblast cell lines (12 male monoclonal cells and 10 female monoclonal cells). After culture and identification, 11 of the 12 male clone cell lines showed double allele mutations, and the rate of positive alteration of GHR was 91.67%. Diallelic mutation of the target sequence occurred in 10 female clonal cell lines, with an effective positive mutation rate of 100%. Our experimental results not only showed that CRISPR/Cas9 could efficiently be used for gene editing in Bama minipig cells but also identified a highly efficient target site for the generation of a GHR knockout in other porcine models. Thus, the generation of GHR knockout male and female Bama fibroblast cells could lay a foundation for the birth of a future dwarfism model pig. We anticipate that the "mini" Bama minipig will be of improved use for biomedical and agricultural scientific research and for furthering our understanding of the genetic underpinnings of GHD.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Jian-Ying Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China.
| | - Xiang-Xing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources; Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology; Faculty of Animal Science & Technology, Guangxi University, Nanning, 530004, China. .,Guangdong Center of Gene Editing Engineering, Foshan University, Foshan, 528000, China.
| |
Collapse
|
47
|
Savvulidi F, Ptacek M, Savvulidi Vargova K, Stadnik L. Manipulation of spermatogonial stem cells in livestock species. J Anim Sci Biotechnol 2019; 10:46. [PMID: 31205688 PMCID: PMC6560896 DOI: 10.1186/s40104-019-0355-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
We are entering an exciting epoch in livestock biotechnology during which the fundamental approaches (such as transgenesis, spermatozoa cryopreservation and artificial insemination) will be enhanced based on the modern understanding of the biology of spermatogonial stem cells (SSCs) combined with the outstanding recent advances in genomic editing technologies and in vitro cell culture systems. The general aim of this review is to outline comprehensively the promising applications of SSC manipulation that could in the nearest future find practical application in livestock breeding. Here, we will focus on 1) the basics of mammalian SSC biology; 2) the approaches for SSC isolation and purification; 3) the available in vitro systems for the stable expansion of isolated SSCs; 4) a discussion of how the manipulation of SSCs can accelerate livestock transgenesis; 5) a thorough overview of the techniques of SSC transplantation in livestock species (including the preparation of recipients for SSC transplantation, the ultrasonographic-guided SSC transplantation technique in large farm animals, and the perspectives to improve further the SSC transplantation efficiency), and finally, 6) why SSC transplantation is valuable to extend the techniques of spermatozoa cryopreservation and/or artificial insemination. For situations where no reliable data have yet been obtained for a particular livestock species, we will rely on the data obtained from studies conducted in rodents because the knowledge gained from rodent research is translatable to livestock species to a great extent. On the other hand, we will draw special attention to situations where such translation is not possible.
Collapse
Affiliation(s)
- Filipp Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Martin Ptacek
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| | - Karina Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 128 53 Prague, Czech Republic
| | - Ludek Stadnik
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Suchdol Czech Republic
| |
Collapse
|
48
|
Park CY, Sung JJ, Cho SR, Kim J, Kim DW. Universal Correction of Blood Coagulation Factor VIII in Patient-Derived Induced Pluripotent Stem Cells Using CRISPR/Cas9. Stem Cell Reports 2019; 12:1242-1249. [PMID: 31105049 PMCID: PMC6565751 DOI: 10.1016/j.stemcr.2019.04.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
Hemophilia A (HA) is caused by genetic mutations in the blood coagulation factor VIII (FVIII) gene. Genome-editing approaches can be used to target the mutated site itself in patient-derived induced pluripotent stem cells (iPSCs). However, these approaches can be hampered by difficulty in preparing thousands of editing platforms for each corresponding variant found in HA patients. Here, we report a universal approach to correct the various mutations in HA patient iPSCs by the targeted insertion of the FVIII gene into the human H11 site via CRISPR/Cas9. We derived corrected clones from two types of patient iPSCs with frequencies of up to 64% and 66%, respectively, without detectable unwanted off-target mutations. Moreover, we demonstrated that endothelial cells differentiated from the corrected iPSCs successfully secreted functional protein. This strategy may provide a universal therapeutic method for correcting all genetic variants found in HA patients. Two types of FVIII mutations were corrected using Cas9-mediated KI in patient iPSCs Targeted KI of the FVIII into the H11 site induced the production of functional protein Whole-genome sequencing analyses revealed no off-target mutations in the corrected iPSCs
Collapse
Affiliation(s)
- Chul-Yong Park
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Jea Sung
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jongwan Kim
- S.Biomedics Co., Ltd, 28 Seongsui-ro, 26-gil, Seongdong-gu, Seoul 04797, Korea
| | - Dong-Wook Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Korea; Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
49
|
Improved Delivery of CRISPR/Cas9 System Using Magnetic Nanoparticles into Porcine Fibroblast. Mol Biotechnol 2019; 61:173-180. [PMID: 30560399 DOI: 10.1007/s12033-018-0145-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically modified pigs play an important role in agriculture and biomedical research; hence, new efficient methods are needed to obtain genetically engineered cells and animals. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated) system represents an effective genome editing tool. It consists of two key molecules: single guide RNA (sgRNA) and the Cas9 endonuclease that can be introduced into the cells as one plasmid. Typical delivery methods for CRISPR/Cas9 components are limited by low transfection efficiency or toxic effects on cells. Here, we describe the use of magnetic nanoparticles and gradient magnetic field to improve delivery of CRISPR/Cas9 constructs into porcine fetal fibroblasts. Polyethylenimine-coated nanoparticles with magnetic iron oxide core were used to form magnetic plasmid DNA lipoplexes. CRISPR/Cas9 construct was prepared to induce site-specific cutting at the porcine H11 locus. Quantitative assessment of genomic cleavage by sequence trace decomposition demonstrated that the magnetofection efficiency was more than 3.5 times higher compared to the classic lipofection method. The Tracking of Indels by Decomposition web tool precisely determined the spectrum of indels that occurred. Simultaneously, no additional cytotoxicity associated with the utilization of magnetic nanoparticles was observed. Our results indicate that magnetofection enables effective delivery of the CRISPR/Cas9 construct into porcine fetal fibroblasts with low cell toxicity.
Collapse
|
50
|
Generation of H11-albumin-rtTA Transgenic Mice: A Tool for Inducible Gene Expression in the Liver. G3-GENES GENOMES GENETICS 2019; 9:591-599. [PMID: 30591434 PMCID: PMC6385985 DOI: 10.1534/g3.118.200963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The modification of the mouse genome by site-specific gene insertion of transgenes and other genetic elements allows the study of gene function in different developmental stages and in the pathogenesis of diseases. Here, we generated a “genomic safe harbor” Hipp11 (H11) locus-specific knock-in transgenic mouse line in which the albumin promoter is used to drive the expression of the reverse tetracycline transactivator (rtTA) in the liver. The newly generated H11-albumin-rtTA transgenic mice were bred with tetracycline-operator-Histone-2B-green fluorescent protein (TetO-H2BGFP) mice to assess inducibility and tissue-specificity. Expression of the H2BGFP fusion protein was observed exclusively upon doxycycline (Dox) induction in the liver of H11-albumin-rtTA/TetO-H2BGFP double transgenic mice. To further analyze the ability of the Dox-inducible H11-albumin-rtTA mice to implement conditional DNA recombination, H11-albumin-rtTA transgenic mice were crossed with TetO-Cre and Ai14 mice to generate H11-albumin-rtTA/TetO-Cre/Ai14 triple transgenic mice. We successfully confirmed that the Cre-mediated recombination efficiency was as strong in Dox-induced H11-albumin-rtTA /TetO-Cre/Ai14 mice as in the control albumin-Cre/A14 mice. Finally, to characterize the expression-inducing effects of Dox in H11-albumin-rtTA/TetO-H2BGFP mice in detail, we examined GFP expression in embryos at different developmental stages and found that newly conceived H11-albumin-rtTA/TetO-H2BGFP embryos of Dox-treated pregnant female mice were expressing reporter GFP by E16.5. Our study demonstrates that these new H11-albumin-rtTA transgenic mice are a powerful and efficient tool for the temporally and spatially conditional manipulation of gene expression in the liver, and illustrates how genetic crosses with these new mice enable the generation of complex multi-locus transgenic animals for mechanistic studies.
Collapse
|