1
|
Céspedes N, Tsolis RM, Piliponsky AM, Luckhart S. The type 2 immune response in gut homeostasis and parasite transmission in malaria. Trends Parasitol 2025; 41:38-51. [PMID: 39658487 DOI: 10.1016/j.pt.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Malaria predisposes to concomitant bacteremia, resulting in increased mortality risk. Previous studies indicated that malaria causes structural changes in the intestine, induces tolerogenic immune responses, inhibits neutrophil recruitment, suppresses innate synthesis of IFN-γ, dysregulates mast cells (MCs) and basophils, and induces Th2-type immune responses. These can reduce parasite control while increasing enteropathogenic dissemination. Moreover, there is growing evidence that Th2 immunity, while protecting the host from overwhelming inflammation, may also contribute to increased parasite transmission. This review explores the roles of the regulatory immune response in bacterial coinfections and parasite transmission in malaria.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, CA, USA
| | - Adrian M Piliponsky
- Department of Pediatrics and Department of Pathology, Seattle Children's Research Institute, Seattle, WA, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA; Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
2
|
Kumar T, Maitra S, Rai R, Priyanka, Maitra S, Tirkey NN, Kumari R. The dichotomy between probiotic lactic acid bacteria and Plasmodium: A promising therapeutic avenue. Acta Trop 2024; 257:107284. [PMID: 38857820 DOI: 10.1016/j.actatropica.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Our understanding of gut microbial populations and their immense influence on host immunity, health, and diseases has increased deeply in recent years. Numerous reports have identified the role of mosquito and mammalian gut microbiota in the modulation of host susceptibility to Plasmodium infection. Artemisinin resistance in malaria-endemic regions necessitates the development of new, safer, and more affordable treatments to supplement existing therapies. In this review, we compiled a colossal amount of data from numerous studies that have assessed the roles played by gut microbial communities in Plasmodium infection, progression, transmission, and severity. Most interestingly, our study points to the overwhelming evidence from experimental studies in mural malaria to human trials, suggesting that the presence of lactic acid bacteria in the gut microbiota of mammalian hosts provides a great degree of protection against malaria. Therefore, our study provides a compelling narrative for probiotic administration as an adjunct therapy for combatting malaria.
Collapse
Affiliation(s)
- Tarkeshwar Kumar
- Department of Zoology, Panch Pargana Kisan College, Ranchi University, Ranchi, Jharkhand, 835204, India.
| | - Satarupa Maitra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Richa Rai
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Priyanka
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| | - Satwat Maitra
- Noida International Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | | | - Rajesh Kumari
- Department of Zoology, Allahabad University, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
3
|
Céspedes N, Donnelly EL, Hansten G, Fellows AM, Dobson M, Kaylor HL, Coles TA, Schauer J, Van de Water J, Luckhart S. Mast cell-derived IL-10 protects intestinal barrier integrity during malaria in mice and regulates parasite transmission to Anopheles stephensi with a female-biased immune response. Infect Immun 2024; 92:e0036023. [PMID: 38299826 PMCID: PMC10929420 DOI: 10.1128/iai.00360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Malaria is strongly predisposed to bacteremia, which is associated with increased gastrointestinal permeability and a poor clinical prognosis. We previously identified mast cells (MCs) as mediators of intestinal permeability in malaria and described multiple cytokines that rise with parasitemia, including interleukin (IL)-10, which could protect the host from an inflammatory response and alter parasite transmission to Anopheles mosquitoes. Here, we used the Cre-loxP system and non-lethal Plasmodium yoelii yoelii 17XNL to study the roles of MC-derived IL-10 in malaria immunity and transmission. Our data suggest a sex-biased and local inflammatory response mediated by MC-derived IL-10, supported by early increased number and activation of MCs in females relative to males. Increased parasitemia in female MC IL-10 (-) mice was associated with increased ileal levels of chemokines and plasma myeloperoxidase (MPO). We also observed increased intestinal permeability in female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice but no differences in blood bacterial 16S DNA levels. Transmission success of P. yoelii to A. stephensi was higher in female relative to male mice and from female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice. These patterns were associated with increased plasma levels of pro-inflammatory cytokines in female MC IL-10 (-) mice and increased plasma levels of chemokines and markers of neutrophil activation in male MC IL-10 (-) mice. Overall, these data suggest that MC-derived IL-10 protects intestinal barrier integrity, regulates parasite transmission, and controls local and systemic host immune responses during malaria, with a female bias.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Erinn L. Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Gretchen Hansten
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Abigail M. Fellows
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Megan Dobson
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Taylor A. Coles
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California, USA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, California, USA
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho, USA
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
4
|
Aželytė J, Maitre A, Abuin-Denis L, Piloto-Sardiñas E, Wu-Chuang A, Žiegytė R, Mateos-Hernández L, Obregón D, Cabezas-Cruz A, Palinauskas V. Impact of Plasmodium relictum Infection on the Colonization Resistance of Bird Gut Microbiota: A Preliminary Study. Pathogens 2024; 13:91. [PMID: 38276164 PMCID: PMC10819382 DOI: 10.3390/pathogens13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Avian malaria infection has been known to affect host microbiota, but the impact of Plasmodium infection on the colonization resistance in bird gut microbiota remains unexplored. This study investigated the dynamics of Plasmodium relictum infection in canaries, aiming to explore the hypothesis that microbiota modulation by P. relictum would reduce colonization resistance. Canaries were infected with P. relictum, while a control group was maintained. The results revealed the presence of P. relictum in the blood of all infected canaries. Analysis of the host microbiota showed no significant differences in alpha diversity metrics between infected and control groups. However, significant differences in beta diversity indicated alterations in the microbial taxa composition of infected birds. Differential abundance analysis identified specific taxa with varying prevalence between infected and control groups at different time points. Network analysis demonstrated a decrease in correlations and revealed that P. relictum infection compromised the bird microbiota's ability to resist the removal of taxa but did not affect network robustness with the addition of new nodes. These findings suggest that P. relictum infection reduces gut microbiota stability and has an impact on colonization resistance. Understanding these interactions is crucial for developing strategies to enhance colonization resistance and maintain host health in the face of parasitic infections.
Collapse
Affiliation(s)
- Justė Aželytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; (J.A.); (R.Ž.)
| | - Apolline Maitre
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L’Elevage (SELMET-LRDE), F-20250 Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, F-20250 Corte, France
| | - Lianet Abuin-Denis
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 between 158 and 190, Havana CU-10600, Cuba
| | - Elianne Piloto-Sardiñas
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
- Direction of Animal Health, National Center for Animal and Plant Health, Carretera de Tapaste y Autopista Nacional, Apartado Postal 10, San José de las Lajas CU-32700, Cuba
| | - Alejandra Wu-Chuang
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
| | - Rita Žiegytė
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; (J.A.); (R.Ž.)
| | - Lourdes Mateos-Hernández
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Alejandro Cabezas-Cruz
- Anses, National Research Institute for Agriculture, Food and the Environment (INRAE), Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France; (A.M.); (L.A.-D.); (E.P.-S.); (A.W.-C.); (L.M.-H.)
| | - Vaidas Palinauskas
- Nature Research Centre, Akademijos 2, LT-08412 Vilnius, Lithuania; (J.A.); (R.Ž.)
| |
Collapse
|
5
|
Navine AK, Paxton KL, Paxton EH, Hart PJ, Foster JT, McInerney N, Fleischer RC, Videvall E. Microbiomes associated with avian malaria survival differ between susceptible Hawaiian honeycreepers and sympatric malaria-resistant introduced birds. Mol Ecol 2023; 32:6659-6670. [PMID: 36281504 DOI: 10.1111/mec.16743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
Of the estimated 55 Hawaiian honeycreepers (subfamily Carduelinae) only 17 species remain, nine of which the International Union for Conservation of Nature considers endangered. Among the most pressing threats to honeycreeper survival is avian malaria, caused by the introduced blood parasite Plasmodium relictum, which is increasing in distribution in Hawai'i as a result of climate change. Preventing further honeycreeper decline will require innovative conservation strategies that confront malaria from multiple angles. Research on mammals has revealed strong connections between gut microbiome composition and malaria susceptibility, illuminating a potential novel approach to malaria control through the manipulation of gut microbiota. One honeycreeper species, Hawai'i 'amakihi (Chlorodrepanis virens), persists in areas of high malaria prevalence, indicating they have acquired some level of immunity. To investigate if avian host-specific microbes may be associated with malaria survival, we characterized cloacal microbiomes and malaria infection for 174 'amakihi and 172 malaria-resistant warbling white-eyes (Zosterops japonicus) from Hawai'i Island using 16S rRNA gene metabarcoding and quantitative polymerase chain reaction. Neither microbial alpha nor beta diversity covaried with infection, but 149 microbes showed positive associations with malaria survivors. Among these were Escherichia and Lactobacillus spp., which appear to mitigate malaria severity in mammalian hosts, revealing promising candidates for future probiotic research for augmenting malaria immunity in sensitive endangered species.
Collapse
Affiliation(s)
- Amanda K Navine
- Biology Department, University of Hawai'i at Hilo, Hilo, Hawaii, USA
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Kristina L Paxton
- Hawai'i Cooperative Studies Unit, University of Hawai'i at Hilo, Hawai'i National Park, Hawaii, USA
| | - Eben H Paxton
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawai'i National Park, Hawaii, USA
| | - Patrick J Hart
- Biology Department, University of Hawai'i at Hilo, Hilo, Hawaii, USA
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Nancy McInerney
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Elin Videvall
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Sriboonvorakul N, Chotivanich K, Silachamroon U, Phumratanaprapin W, Adams JH, Dondorp AM, Leopold SJ. Intestinal injury and the gut microbiota in patients with Plasmodium falciparum malaria. PLoS Pathog 2023; 19:e1011661. [PMID: 37856470 PMCID: PMC10586672 DOI: 10.1371/journal.ppat.1011661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
The pathophysiology of severe falciparum malaria involves a complex interaction between the host, parasite, and gut microbes. In this review, we focus on understanding parasite-induced intestinal injury and changes in the human intestinal microbiota composition in patients with Plasmodium falciparum malaria. During the blood stage of P. falciparum infection, infected red blood cells adhere to the vascular endothelium, leading to widespread microcirculatory obstruction in critical tissues, including the splanchnic vasculature. This process may cause intestinal injury and gut leakage. Epidemiological studies indicate higher rates of concurrent bacteraemia in severe malaria cases. Furthermore, severe malaria patients exhibit alterations in the composition and diversity of the intestinal microbiota, although the exact contribution to pathophysiology remains unclear. Mouse studies have demonstrated that the gut microbiota composition can impact susceptibility to Plasmodium infections. In patients with severe malaria, the microbiota shows an enrichment of pathobionts, including pathogens that are known to cause concomitant bloodstream infections. Microbial metabolites have also been detected in the plasma of severe malaria patients, potentially contributing to metabolic acidosis and other clinical complications. However, establishing causal relationships requires intervention studies targeting the gut microbiota.
Collapse
Affiliation(s)
- Natthida Sriboonvorakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Udomsak Silachamroon
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Weerapong Phumratanaprapin
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stije J. Leopold
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Center, location AMC, the Netherlands
| |
Collapse
|
7
|
Mandal RK, Schmidt NW. Mechanistic insights into the interaction between the host gut microbiome and malaria. PLoS Pathog 2023; 19:e1011665. [PMID: 37824458 PMCID: PMC10569623 DOI: 10.1371/journal.ppat.1011665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Malaria is a devastating infectious disease and significant global health burden caused by the bite of a Plasmodium-infected female Anopheles mosquito. Gut microbiota was recently discovered as a risk factor of severe malaria. This review entails the recent advances on the impact of gut microbiota composition on malaria severity and consequence of malaria infection on gut microbiota in mammalian hosts. Additionally, this review provides mechanistic insight into interactions that might occur between gut microbiota and host immunity which in turn can modulate malaria severity. Finally, approaches to modulate gut microbiota composition are discussed. We anticipate this review will facilitate novel hypotheses to move the malaria-gut microbiome field forward.
Collapse
Affiliation(s)
- Rabindra K. Mandal
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indiana, United States of America
| | - Nathan W. Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indiana, United States of America
| |
Collapse
|
8
|
Fitri LE, Sardjono TW, Winaris N, Pawestri AR, Endharti AT, Norahmawati E, Handayani D, Kurniawan SN, Azizah S, Alifia LI, Asiyah R, Ayuningtyas TR. Bifidobacterium longum Administration Diminishes Parasitemia and Inflammation During Plasmodium berghei Infection in Mice. J Inflamm Res 2023; 16:1393-1404. [PMID: 37006809 PMCID: PMC10065020 DOI: 10.2147/jir.s400782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/17/2023] [Indexed: 03/28/2023] Open
Abstract
Purpose During Plasmodium berghei (P. berghei) infection, infected erythrocytes are sequestered in gut tissues through microvascular circulation, leading to dysbiosis. This study aimed to investigate the effect of Lactobacillus casei (L. casei) and Bifidobacterium longum (B. longum) administration on the parasitemia level, gut microbiota composition, expression of cluster of differentiation 103 (CD103) in intestinal dendritic and T regulatory cells (T reg), plasma interferon gamma (IFN-γ) and tumor necrosis factor (TNF-α) levels in P. berghei infected mice. Methods P. berghei was inoculated intraperitoneally. Infected mice were randomly divided into 5 groups and treated with either L. casei, B. longum, or the combination of both for 5 days before up to 6 days post-infection (p.i). The control group was treated with phosphate-buffered saline (PBS), while uninfected mice were used as negative control. Levels of CD103 and forkhead box P3 (FoxP3) expression were measured by direct immunofluorescense, while plasma IFN-γ and TNF-α level were determined using enzyme-linked immunosorbent assay (ELISA). Results All treated groups showed an increase in parasitemia from day 2 to day 6 p.i, which was significant at day 2 p.i (p = 0.001), with the group receiving B. longum displaying the lowest degree of parasitemia. Significant reduction in plasma IFN-γ and TNF-α levels was observed in the group receiving B. longum (p = 0.022 and p = 0.026, respectively). The CD103 and FoxP3 expression was highest in the group receiving B. longum (p = 0.01 and p = 0.02, respectively). Conclusion B. longum showed the best protective effect against Plasmodium infection by reducing the degree of parasitemia and modulating the gut immunity. This provides a basis for further research involving probiotic supplementation in immunity modulation of infectious diseases.
Collapse
Affiliation(s)
- Loeki Enggar Fitri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease, and Malaria (ATOM) Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Teguh Wahju Sardjono
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease, and Malaria (ATOM) Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Correspondence: Teguh Wahju Sardjono, Department of Parasitology, Faculty of Medicine Universitas Brawijaya, Jl. Veteran, Malang, 65145, Indonesia, Tel +62 341 569117, Fax +62 341 564755, Email
| | - Nuning Winaris
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease, and Malaria (ATOM) Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Aulia Rahmi Pawestri
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- AIDS, Toxoplasma, Opportunistic Disease, and Malaria (ATOM) Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Agustina Tri Endharti
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Eviana Norahmawati
- Department of Anatomical Pathology, Dr. Saiful Anwar Hospital/Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Dian Handayani
- Department of Nutrition, Faculty of Health Sciences, Universitas Brawijaya, Malang, Indonesia
| | | | - Syafiatul Azizah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Lustyafa Inassani Alifia
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Parasitology, Faculty of Medicine, University of Muhammadiyah Malang, Malang, Indonesia
| | - Rokhmatul Asiyah
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- State University of Malang, Malang, Indonesia
| | - Tita Rachma Ayuningtyas
- Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
9
|
Farinella DN, Kaur S, Tran V, Cabrera-Mora M, Joyner CJ, Lapp SA, Pakala SB, Nural MV, DeBarry JD, Kissinger JC, Jones DP, Moreno A, Galinski MR, Cordy RJ. Malaria disrupts the rhesus macaque gut microbiome. Front Cell Infect Microbiol 2023; 12:1058926. [PMID: 36710962 PMCID: PMC9880479 DOI: 10.3389/fcimb.2022.1058926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Previous studies have suggested that a relationship exists between severity and transmissibility of malaria and variations in the gut microbiome, yet only limited information exists on the temporal dynamics of the gut microbial community during a malarial infection. Here, using a rhesus macaque model of relapsing malaria, we investigate how malaria affects the gut microbiome. In this study, we performed 16S sequencing on DNA isolated from rectal swabs of rhesus macaques over the course of an experimental malarial infection with Plasmodium cynomolgi and analyzed gut bacterial taxa abundance across primary and relapsing infections. We also performed metabolomics on blood plasma from the animals at the same timepoints and investigated changes in metabolic pathways over time. Members of Proteobacteria (family Helicobacteraceae) increased dramatically in relative abundance in the animal's gut microbiome during peak infection while Firmicutes (family Lactobacillaceae and Ruminococcaceae), Bacteroidetes (family Prevotellaceae) and Spirochaetes amongst others decreased compared to baseline levels. Alpha diversity metrics indicated decreased microbiome diversity at the peak of parasitemia, followed by restoration of diversity post-treatment. Comparison with healthy subjects suggested that the rectal microbiome during acute malaria is enriched with commensal bacteria typically found in the healthy animal's mucosa. Significant changes in the tryptophan-kynurenine immunomodulatory pathway were detected at peak infection with P. cynomolgi, a finding that has been described previously in the context of P. vivax infections in humans. During relapses, which have been shown to be associated with less inflammation and clinical severity, we observed minimal disruption to the gut microbiome, despite parasites being present. Altogether, these data suggest that the metabolic shift occurring during acute infection is associated with a concomitant shift in the gut microbiome, which is reversed post-treatment.
Collapse
Affiliation(s)
| | - Sukhpreet Kaur
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - ViLinh Tran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Monica Cabrera-Mora
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chester J. Joyner
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Stacey A. Lapp
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Suman B. Pakala
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Mustafa V. Nural
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Jeremy D. DeBarry
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States,Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Jessica C. Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States,Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States,Department of Genetics, University of Georgia, Athens, GA, United States
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Alberto Moreno
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Regina Joice Cordy
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States,*Correspondence: Regina Joice Cordy,
| |
Collapse
|
10
|
Alloo J, Leleu I, Grangette C, Pied S. Parasite infections, neuroinflammation, and potential contributions of gut microbiota. Front Immunol 2022; 13:1024998. [PMID: 36569929 PMCID: PMC9772015 DOI: 10.3389/fimmu.2022.1024998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Many parasitic diseases (including cerebral malaria, human African trypanosomiasis, cerebral toxoplasmosis, neurocysticercosis and neuroschistosomiasis) feature acute or chronic brain inflammation processes, which are often associated with deregulation of glial cell activity and disruption of the brain blood barrier's intactness. The inflammatory responses of astrocytes and microglia during parasite infection are strongly influenced by a variety of environmental factors. Although it has recently been shown that the gut microbiota influences the physiology and immunomodulation of the central nervous system in neurodegenerative diseases like Alzheimer's disease and Parkinson's, the putative link in parasite-induced neuroinflammatory diseases has not been well characterized. Likewise, the central nervous system can influence the gut microbiota. In parasite infections, the gut microbiota is strongly perturbed and might influence the severity of the central nervous system inflammation response through changes in the production of bacterial metabolites. Here, we review the roles of astrocytes and microglial cells in the neuropathophysiological processes induced by parasite infections and their possible regulation by the gut microbiota.
Collapse
Affiliation(s)
| | | | | | - Sylviane Pied
- Center for Infection and Immunity of Lille-CIIL, Centre National de la Recherche Scientifique-CNRS UMR 9017-Institut National de la Recherche Scientifique et Médicale-Inserm U1019, Institut Pasteur de Lille, Univ. Lille, Lille, France
| |
Collapse
|
11
|
Mooney JP, DonVito SM, Lim R, Keith M, Pickles L, Maguire EA, Wagner-Gamble T, Oldfield T, Bermejo Pariente A, Ehimiyein AM, Philbey AA, Bottomley C, Riley EM, Thompson J. Intestinal inflammation and increased intestinal permeability in Plasmodium chabaudi AS infected mice. Wellcome Open Res 2022; 7:134. [PMID: 36408291 PMCID: PMC9647155 DOI: 10.12688/wellcomeopenres.17781.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Gastrointestinal symptoms are commonly associated with acute Plasmodium spp infection. Malaria-associated enteritis may provide an opportunity for enteric pathogens to breach the intestinal mucosa, resulting in life-threatening systemic infections. Methods: To investigate whether intestinal pathology also occurs during infection with a murine model of mild and resolving malaria, C57BL/6J mice were inoculated with recently mosquito-transmitted Plasmodium chabaudi AS. At schizogony, intestinal tissues were collected for quantification and localisation of immune mediators and malaria parasites, by PCR and immunohistochemistry. Inflammatory proteins were measured in plasma and faeces and intestinal permeability was assessed by FITC-dextran translocation after oral administration. Results: Parasitaemia peaked at approx. 1.5% at day 9 and resolved by day 14, with mice experiencing significant and transient anaemia but no weight loss. Plasma IFNγ, TNFα and IL10 were significantly elevated during peak infection and quantitative RT-PCR of the intestine revealed a significant increase in transcripts for ifng and cxcl10. Histological analysis revealed parasites within blood vessels of both the submucosa and intestinal villi and evidence of mild crypt hyperplasia. In faeces, concentrations of the inflammatory marker lactoferrin were significantly raised on days 9 and 11 and FITC-dextran was detected in plasma on days 7 to 14. At day 11, plasma FITC-dextran concentration was significantly positively correlated with peripheral parasitemia and faecal lactoferrin concentration. Conclusions: In summary, using a relevant, attenuated model of malaria, we have found that acute infection is associated with intestinal inflammation and increased intestinal permeability. This model can now be used to explore the mechanisms of parasite-induced intestinal inflammation and to assess the impact of increased intestinal permeability on translocation of enteropathogens.
Collapse
Affiliation(s)
- Jason P Mooney
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Sophia M DonVito
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Rivka Lim
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Marianne Keith
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lia Pickles
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Eleanor A Maguire
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Tara Wagner-Gamble
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Thomas Oldfield
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Ana Bermejo Pariente
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
- Editorial Team, F1000 Ltd., London, UK
| | - Ajoke M Ehimiyein
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Adrian A Philbey
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom., Edinburgh, EH25 9RG, UK
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Joanne Thompson
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| |
Collapse
|
12
|
Babatunde KA, Adenuga OF. Neutrophils in malaria: A double-edged sword role. Front Immunol 2022; 13:922377. [PMID: 35967409 PMCID: PMC9367684 DOI: 10.3389/fimmu.2022.922377] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human peripheral blood. They form the first line of defense against invading foreign pathogens and might play a crucial role in malaria. According to World Health Organization (WHO), malaria is a globally significant disease caused by protozoan parasites from the Plasmodium genus, and it's responsible for 627,000 deaths in 2020. Neutrophils participate in the defense response against the malaria parasite via phagocytosis and reactive oxygen species (ROS) production. Neutrophils might also be involved in the pathogenesis of malaria by the release of toxic granules and the release of neutrophil extracellular traps (NETs). Intriguingly, malaria parasites inhibit the anti-microbial function of neutrophils, thus making malaria patients more susceptible to secondary opportunistic Salmonella infections. In this review, we will provide a summary of the role of neutrophils during malaria infection, some contradicting mouse model neutrophil data and neutrophil-related mechanisms involved in malaria patients' susceptibility to bacterial infection.
Collapse
Affiliation(s)
- Kehinde Adebayo Babatunde
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | | |
Collapse
|
13
|
Mukherjee D, Chora ÂF, Lone JC, Ramiro RS, Blankenhaus B, Serre K, Ramirez M, Gordo I, Veldhoen M, Varga-Weisz P, Mota MM. Host lung microbiota promotes malaria-associated acute respiratory distress syndrome. Nat Commun 2022; 13:3747. [PMID: 35768411 PMCID: PMC9243033 DOI: 10.1038/s41467-022-31301-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022] Open
Abstract
Severe malaria can manifest itself with a variety of well-recognized clinical phenotypes that are highly predictive of death - severe anaemia, coma (cerebral malaria), multiple organ failure, and respiratory distress. The reasons why an infected individual develops one pathology rather than another remain poorly understood. Here we use distinct rodent models of infection to show that the host microbiota is a contributing factor for the development of respiratory distress syndrome and host mortality in the context of malaria infections (malaria-associated acute respiratory distress syndrome, MA-ARDS). We show that parasite sequestration in the lung results in sustained immune activation. Subsequent production of the anti-inflammatory cytokine IL-10 by T cells compromises microbial control, leading to severe lung disease. Notably, bacterial clearance with linezolid, an antibiotic commonly used in the clinical setting to control lung-associated bacterial infections, prevents MA-ARDS-associated lethality. Thus, we propose that the host's anti-inflammatory response to limit tissue damage can result in loss of microbial control, which promotes MA-ARDS. This must be considered when intervening against life-threatening respiratory complications.
Collapse
Affiliation(s)
- Debanjan Mukherjee
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Ângelo Ferreira Chora
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Jean-Christophe Lone
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
- School of Life Sciences, University of Essex, Colchester, UK
| | | | - Birte Blankenhaus
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Mário Ramirez
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marc Veldhoen
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Patrick Varga-Weisz
- School of Life Sciences, University of Essex, Colchester, UK
- São Paulo Excellence Chair, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal.
| |
Collapse
|
14
|
Mooney JP, DonVito SM, Lim R, Keith M, Pickles L, Maguire EA, Wagner-Gamble T, Oldfield T, Bermejo Pariente A, Ehimiyein AM, Philbey AA, Bottomley C, Riley EM, Thompson J. Intestinal inflammation and increased intestinal permeability in Plasmodium chabaudi AS infected mice. Wellcome Open Res 2022; 7:134. [PMID: 36408291 PMCID: PMC9647155 DOI: 10.12688/wellcomeopenres.17781.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Gastrointestinal symptoms are commonly associated with acute Plasmodium spp infection. Malaria-associated enteritis may provide an opportunity for enteric pathogens to breach the intestinal mucosa, resulting in life-threatening systemic infections. Methods: To investigate whether intestinal pathology also occurs during infection with a murine model of mild and resolving malaria, C57BL/6J mice were inoculated with recently mosquito-transmitted Plasmodium chabaudi AS. At schizogony, intestinal tissues were collected for quantification and localisation of immune mediators and malaria parasites, by PCR and immunohistochemistry. Inflammatory proteins were measured in plasma and faeces and intestinal permeability was assessed by FITC-dextran translocation after oral administration. Results: Parasitaemia peaked at approx. 1.5% at day 9 and resolved by day 14, with mice experiencing significant and transient anaemia but no weight loss. Plasma IFN-γ, TNF-α and IL10 were significantly elevated during peak infection and quantitative RT-PCR of the intestine revealed a significant increase in transcripts for ifng and cxcl10. Histological analysis revealed parasites within blood vessels of both the submucosa and intestinal villi and evidence of mild crypt hyperplasia. In faeces, concentrations of the inflammatory marker lactoferrin were significantly raised on days 9 and 11 and FITC-dextran was detected in plasma on days 7 to 14. At day 11, plasma FITC-dextran concentration was significantly positively correlated with peripheral parasitemia and faecal lactoferrin concentration. Conclusions: In summary, using a relevant, attenuated model of malaria, we have found that acute infection is associated with intestinal inflammation and increased intestinal permeability. This model can now be used to explore the mechanisms of parasite-induced intestinal inflammation and to assess the impact of increased intestinal permeability on translocation of enteropathogens.
Collapse
Affiliation(s)
- Jason P Mooney
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Sophia M DonVito
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Rivka Lim
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Marianne Keith
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Lia Pickles
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Eleanor A Maguire
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Tara Wagner-Gamble
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Thomas Oldfield
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Ana Bermejo Pariente
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
- Editorial Team, F1000 Ltd., London, UK
| | - Ajoke M Ehimiyein
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
- Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Adrian A Philbey
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom., Edinburgh, EH25 9RG, UK
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| | - Joanne Thompson
- Institute of Immunology and Infection Research, University of Ediburgh, Edinburgh, Midlothian, EH93JT, UK
| |
Collapse
|
15
|
Possible Interactions between Malaria, Helminthiases and the Gut Microbiota: A Short Review. Microorganisms 2022; 10:microorganisms10040721. [PMID: 35456772 PMCID: PMC9025727 DOI: 10.3390/microorganisms10040721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Malaria, caused by the Plasmodium species, is an infectious disease responsible for more than 600 thousand deaths and more than 200 million morbidity cases annually. With above 90% of those deaths and cases, sub-Saharan Africa is affected disproportionately. Malaria clinical manifestations range from asymptomatic to simple, mild, and severe disease. External factors such as the gut microbiota and helminthiases have been shown to affect malaria clinical manifestations. However, little is known about whether the gut microbiota has the potential to influence malaria clinical manifestations in humans. Similarly, many previous studies have shown divergent results on the effects of helminths on malaria clinical manifestations. To date, a few studies, mainly murine, have shown the gut microbiota’s capacity to modulate malaria’s prospective risk of infection, transmission, and severity. This short review seeks to summarize recent literature about possible interactions between malaria, helminthiases, and the gut microbiota. The knowledge from this exercise will inform innovation possibilities for future tools, technologies, approaches, and policies around the prevention and management of malaria in endemic countries.
Collapse
|
16
|
Ulusan Bagci O, Caner A. The interaction of gut microbiota with parasitic protozoa. J Parasit Dis 2022; 46:8-11. [PMID: 35299914 PMCID: PMC8901934 DOI: 10.1007/s12639-021-01443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022] Open
Abstract
The human intestinal microbiota is composed of a complex combination of microorganisms including bacteria, virus, and eukaryotes. The microbiota plays a critical role in homeostasis through creating a mucosal barrier, providing protective responses to pathogens, and affecting the immune system and metabolism of the host. Molecules secreted by parasites can alter composition of microbiota both by acting directly on the microbial community and indirectly by affecting the host physiology. On the other hand, the microbiota composition can affect the survival, physiology, and virulence of many parasitic protozoa. Explanation of possible interactions between the microbiota, immune response, and protozoa may further clarify the underlying mechanisms of infectivity, clinical variations, and life-cycle of protozoa.
Collapse
Affiliation(s)
- Ozlem Ulusan Bagci
- grid.8302.90000 0001 1092 2592Department of Parasitology, Faculty of Medicine, Ege University Medical School, 35100 Bornova, Izmir, Turkey
| | - Ayse Caner
- grid.8302.90000 0001 1092 2592Department of Parasitology, Faculty of Medicine, Ege University Medical School, 35100 Bornova, Izmir, Turkey ,grid.8302.90000 0001 1092 2592Cancer Research Center, Ege University, Izmir, Turkey ,grid.240145.60000 0001 2291 4776Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
17
|
Yawen Z, Xiangyun C, Binyou L, Xingchen Y, Taiping L, Xuedong Z, Jiyao L, Lei C, Wenyue X, Biao R. The dynamic landscape of parasitemia dependent intestinal microbiota shifting and the correlated gut transcriptome during Plasmodium yoelii infection. Microbiol Res 2022; 258:126994. [DOI: 10.1016/j.micres.2022.126994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
|
18
|
Céspedes N, Donnelly EL, Lowder C, Hansten G, Wagers D, Briggs AM, Schauer J, Haapanen L, Åbrink M, Van de Water J, Luckhart S. Mast Cell Chymase/Mcpt4 Suppresses the Host Immune Response to Plasmodium yoelii, Limits Malaria-Associated Disruption of Intestinal Barrier Integrity and Reduces Parasite Transmission to Anopheles stephensi. Front Immunol 2022; 13:801120. [PMID: 35154114 PMCID: PMC8829543 DOI: 10.3389/fimmu.2022.801120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
An increase in mast cells (MCs) and MCs mediators has been observed in malaria-associated bacteremia, however, the role of these granulocytes in malarial immunity is poorly understood. Herein, we studied the role of mouse MC protease (Mcpt) 4, an ortholog of human MC chymase, in malaria-induced bacteremia using Mcpt4 knockout (Mcpt4-/-) mice and Mcpt4+/+ C57BL/6J controls, and the non-lethal mouse parasite Plasmodium yoelii yoelii 17XNL. Significantly lower parasitemia was observed in Mcpt4-/- mice compared with Mcpt4+/+ controls by day 10 post infection (PI). Although bacterial 16S DNA levels in blood were not different between groups, increased intestinal permeability to FITC-dextran and altered ileal adherens junction E-cadherin were observed in Mcpt4-/- mice. Relative to infected Mcpt4+/+ mice, ileal MC accumulation in Mcpt4-/- mice occurred two days earlier and IgE levels were higher by days 8-10 PI. Increased levels of circulating myeloperoxidase were observed at 6 and 10 days PI in Mcpt4+/+ but not Mcpt4-/- mice, affirming a role for neutrophil activation that was not predictive of parasitemia or bacterial 16S copies in blood. In contrast, early increased plasma levels of TNF-α, IL-12p40 and IL-3 were observed in Mcpt4-/- mice, while levels of IL-2, IL-10 and MIP1β (CCL4) were increased over the same period in Mcpt4+/+ mice, suggesting that the host response to infection was skewed toward a type-1 immune response in Mcpt4-/- mice and type-2 response in Mcpt4+/+ mice. Spearman analysis revealed an early (day 4 PI) correlation of Mcpt4-/- parasitemia with TNF-α and IFN-γ, inflammatory cytokines known for their roles in pathogen clearance, a pattern that was observed in Mcpt4+/+ mice much later (day 10 PI). Transmission success of P. y. yoelii 17XNL to Anopheles stephensi was significantly higher from infected Mcpt4-/- mice compared with infected Mcpt4+/+ mice, suggesting that Mcpt4 also impacts transmissibility of sexual stage parasites. Together, these results suggest that early MCs activation and release of Mcpt4 suppresses the host immune response to P. y. yoelii 17XNL, perhaps via degradation of TNF-α and promotion of a type-2 immune response that concordantly protects epithelial barrier integrity, while limiting the systemic response to bacteremia and parasite transmissibility.
Collapse
Affiliation(s)
- Nora Céspedes
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Erinn L. Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Casey Lowder
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Gretchen Hansten
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Delaney Wagers
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Anna M. Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Joseph Schauer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Lori Haapanen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences & Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
19
|
Donnelly E, de Water JV, Luckhart S. Malaria-induced bacteremia as a consequence of multiple parasite survival strategies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100036. [PMID: 34841327 PMCID: PMC8610325 DOI: 10.1016/j.crmicr.2021.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Globally, malaria continues to be an enormous public health burden, with concomitant parasite-induced damage to the gastrointestinal (GI) barrier resulting in bacteremia-associated morbidity and mortality in both adults and children. Infected red blood cells sequester in and can occlude the GI microvasculature, ultimately leading to disruption of the tight and adherens junctions that would normally serve as a physical barrier to translocating enteric bacteria. Mast cell (MC) activation and translocation to the GI during malaria intensifies damage to the physical barrier and weakens the immunological barrier through the release of enzymes and factors that alter the host response to escaped enteric bacteria. In this context, activated MCs release Th2 cytokines, promoting a balanced Th1/Th2 response that increases local and systemic allergic inflammation while protecting the host from overwhelming Th1-mediated immunopathology. Beyond the mammalian host, recent studies in both the lab and field have revealed an association between a Th2-skewed host response and success of parasite transmission to mosquitoes, biology that is evocative of parasite manipulation of the mammalian host. Collectively, these observations suggest that malaria-induced bacteremia may be, in part, an unintended consequence of a Th2-shifted host response that promotes parasite survival and transmission. Future directions of this work include defining the factors and mechanisms that precede the development of bacteremia, which will enable the development of biomarkers to simplify diagnostics, the identification of therapeutic targets to improve patient outcomes and better understanding of the consequences of clinical interventions to transmission blocking strategies.
Collapse
Affiliation(s)
- Erinn Donnelly
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Judy Van de Water
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California, Davis, CA, USA
| | - Shirley Luckhart
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| |
Collapse
|
20
|
Walker GT, Yang G, Tsai JY, Rodriguez JL, English BC, Faber F, Souvannaseng L, Butler BP, Tsolis RM. Malaria parasite infection compromises colonization resistance to an enteric pathogen by reducing gastric acidity. SCIENCE ADVANCES 2021; 7:eabd6232. [PMID: 34193410 PMCID: PMC8245046 DOI: 10.1126/sciadv.abd6232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
Malaria parasite infection weakens colonization resistance against Salmonella enterica serovar (S.) Typhimurium. S. Typhimurium is a member of the Enterobacterales, a taxon that increases in abundance when the colonic microbiota is disrupted or when the colonic mucosa is inflamed. However, here, we show that infection of mice with Plasmodium yoelii enhances S. Typhimurium colonization by weakening host control in the upper GI tract. P. yoelii-infected mice had elevated gastric pH. Stimulation of gastric acid secretion during P. yoelii infection restored stomach acidity and colonization resistance, demonstrating that parasite-induced hypochlorhydria increases gastric survival of S. Typhimurium. Furthermore, blockade of P. yoelii-induced TNF-α signaling was sufficient to prevent elevation of gastric pH and enhance S. Typhimurium colonization during concurrent infection. Collectively, these data suggest that abundance in the fecal microbiota of facultative anaerobes, such as S. Typhimurium, can be increased by suppressing antibacterial defenses in the upper GI tract, such as gastric acid.
Collapse
Affiliation(s)
- Gregory T Walker
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Guiyan Yang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Julia Y Tsai
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Jorge L Rodriguez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Bevin C English
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Franziska Faber
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- Institute for Molecular Infection Biology (IMIB), Faculty of Medicine, University of Würzburg, D-97080 Würzburg, Germany
| | - Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA
- Mouse Biology Program, University of California Davis, Davis, CA, USA
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Brian P Butler
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
21
|
Events associated with susceptibility to invasive Salmonella enterica serovar Typhi in BALB/c mice previously infected with Plasmodium berghei ANKA. Sci Rep 2021; 11:2730. [PMID: 33526848 PMCID: PMC7851127 DOI: 10.1038/s41598-021-82330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Numerous mechanisms have been proposed to explain why patients with malaria are more susceptible to bloodstream invasions by Salmonella spp., however there are still several unknown critical factors regarding the pathogenesis of coinfection. From a coinfection model, in which an S. enterica serovar Typhi (S_Typhi) was chosen to challenge mice that had been infected 24 h earlier with Plasmodium berghei ANKA (P.b_ANKA), we evaluated the influence of malaria on cytokine levels, the functional activity of femoral bone marrow-derived macrophages and neutrophils, and intestinal permeability. The cytokine profile over eight days of coinfection showed exacerbation in the cytokines MCP-1, IFNγ and TNFα in relation to the increase seen in animals with malaria. The cytokine profile was associated with a considerably reduced neutrophil and macrophage count and a prominent dysfunction, especially in ex vivo neutrophils in coinfected mice, though without bacterial modulation that could influence the invasion capacity of ex vivo S_Typhi obtained from liver macerate in non-phagocyte cells. Finally, irregularities in the integrity of intestinal tissue evidenced ruptures in the enterocyte layer, a presence of mononuclear leukocytes in the enterocyte layer, an increase of goblet cells in the enterocyte layer and a high volume of leukocyte infiltrate in the sub-mucosa were greatly increased in coinfected animals. Increases of mononuclear leukocytes in the enterocyte layer and volume of leukocyte infiltrate in the sub-mucosa were also seen in monoinfected animals with P. berghei ANKA. Our findings suggest malaria causes a disarrangement of intestinal homeostasis, exacerbation of proinflammatory cytokines and dysfunction in neutrophils that render the host susceptible to bacteremia by Salmonella spp.
Collapse
|
22
|
Sey ICM, Ehimiyein AM, Bottomley C, Riley EM, Mooney JP. Does Malaria Cause Diarrhoea? A Systematic Review. Front Med (Lausanne) 2020; 7:589379. [PMID: 33330549 PMCID: PMC7717985 DOI: 10.3389/fmed.2020.589379] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Malaria is a systemic febrile disease that may progress to prostration, respiratory distress, encephalopathy, anemia, and death. Malaria is also an established risk factor for invasive bacterial disease caused, in the majority of cases, by invasive enteropathogens and in particular by non-Typhoidal Salmonella (NTS). Whilst various malaria-related pathologies have been implicated in the risk of NTS bacteraemia in animal models, including intestinal dysbiosis and loss of gut homeostasis, clinical evidence is lacking. As a first step in gathering such evidence, we conducted a systematic review of clinical and epidemiological studies reporting the prevalence of diarrhoea among malaria cases and vice versa. Database searches for "plasmodium" and "diarrhoea" identified 1,771 articles; a search for "plasmodium" and "gastroenteritis" identified a further 215 articles. After review, 66 articles specified an association between the search terms and referred primarily, but not exclusively, to Plasmodium falciparum infections. Overall, between 1.6 and 44% of patients with acute malaria infection reported symptoms of diarrhoea (812 of 7,267 individuals, 11%) whereas 5-42% of patients presenting to hospital with diarrhoea had an underlying malaria parasite infection (totaling 749 of 2,937 individuals, 26%). However, given the broad range of estimates, a paucity of purposeful case control or longitudinal studies, and varied or poorly specified definitions of diarrhoea, the literature provides limited evidence to draw any firm conclusions. The relationship between malaria and gastrointestinal disturbance thus remains unclear. Carefully designed case-control studies and prospective longitudinal studies are required to confidently assess the prevalence and significance of intestinal manifestations of malaria parasite infection.
Collapse
Affiliation(s)
- Isatou C M Sey
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ajoke M Ehimiyein
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Department of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason P Mooney
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Immune Response and Microbiota Profiles during Coinfection with Plasmodium vivax and Soil-Transmitted Helminths. mBio 2020; 11:mBio.01705-20. [PMID: 33082257 PMCID: PMC7587435 DOI: 10.1128/mbio.01705-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Plasmodium (malaria) and helminth parasite coinfections are frequent, and both infections can be affected by the host gut microbiota. However, the relationship between coinfection and the gut microbiota is unclear. By performing comprehensive analyses on blood/stool samples from 130 individuals in Colombia, we found that the gut microbiota may have a stronger relationship with the number of P. vivax (malaria) parasites than with the number of helminth parasites infecting a host. Microbiota analysis identified more predictors of the P. vivax parasite burden, whereas analysis of blood samples identified predictors of the helminth parasite burden. These results were unexpected, because we expected each parasite to be associated with greater differences in its biological niche (blood for P. vivax and the intestine for helminths). Instead, we find that bacterial taxa were the strongest predictors of P. vivax parasitemia levels, while circulating TGF-β levels were the strongest predictor of helminth parasite burdens. The role of the gut microbiota during coinfection with soil-transmitted helminths (STH) and Plasmodium spp. is poorly understood. We examined peripheral blood and fecal samples from 130 individuals who were either infected with Plasmodium vivax only, coinfected with P. vivax and STH, infected with STH alone, or not infected with either P. vivax or STH. In addition to a complete blood count (CBC) with differential, transcriptional profiling of peripheral blood samples was performed by transcriptome sequencing (RNA-Seq), fecal microbial communities were determined by 16S rRNA gene sequencing, and circulating cytokine levels were measured by bead-based immunoassays. Differences in blood cell counts, including an increased percentage of neutrophils, associated with a transcriptional signature of neutrophil activation, were driven primarily by P. vivax infection. P. vivax infection was also associated with increased levels of interleukin 6 (IL-6), IL-8, and IL-10; these cytokine levels were not affected by STH coinfection. Surprisingly, P. vivax infection was more strongly associated with differences in the microbiota than STH infection. Children infected with only P. vivax exhibited elevated Bacteroides and reduced Prevotella and Clostridiaceae levels, but these differences were not observed in individuals coinfected with STH. We also observed that P. vivax parasitemia was higher in the STH-infected population. When we used machine learning to identify the most important predictors of the P. vivax parasite burden (among P. vivax-infected individuals), bacterial taxa were the strongest predictors of parasitemia. In contrast, circulating transforming growth factor β (TGF-β) was the strongest predictor of the Trichuris trichiura egg burden. This study provides unexpected evidence that the gut microbiota may have a stronger link with P. vivax than with STH infection.
Collapse
|
24
|
Labarta-Bajo L, Gramalla-Schmitz A, Gerner RR, Kazane KR, Humphrey G, Schwartz T, Sanders K, Swafford A, Knight R, Raffatellu M, Zúñiga EI. CD8 T cells drive anorexia, dysbiosis, and blooms of a commensal with immunosuppressive potential after viral infection. Proc Natl Acad Sci U S A 2020; 117:24998-25007. [PMID: 32958643 PMCID: PMC7547153 DOI: 10.1073/pnas.2003656117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Infections elicit immune adaptations to enable pathogen resistance and/or tolerance and are associated with compositional shifts of the intestinal microbiome. However, a comprehensive understanding of how infections with pathogens that exhibit distinct capability to spread and/or persist differentially change the microbiome, the underlying mechanisms, and the relative contribution of individual commensal species to immune cell adaptations is still lacking. Here, we discovered that mouse infection with a fast-spreading and persistent (but not a slow-spreading acute) isolate of lymphocytic choriomeningitis virus induced large-scale microbiome shifts characterized by increased Verrucomicrobia and reduced Firmicute/Bacteroidetes ratio. Remarkably, the most profound microbiome changes occurred transiently after infection with the fast-spreading persistent isolate, were uncoupled from sustained viral loads, and were instead largely caused by CD8 T cell responses and/or CD8 T cell-induced anorexia. Among the taxa enriched by infection with the fast-spreading virus, Akkermansia muciniphila, broadly regarded as a beneficial commensal, bloomed upon starvation and in a CD8 T cell-dependent manner. Strikingly, oral administration of A. muciniphila suppressed selected effector features of CD8 T cells in the context of both infections. Our findings define unique microbiome differences after chronic versus acute viral infections and identify CD8 T cell responses and downstream anorexia as driver mechanisms of microbial dysbiosis after infection with a fast-spreading virus. Our data also highlight potential context-dependent effects of probiotics and suggest a model in which changes in host behavior and downstream microbiome dysbiosis may constitute a previously unrecognized negative feedback loop that contributes to CD8 T cell adaptations after infections with fast-spreading and/or persistent pathogens.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Anna Gramalla-Schmitz
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Romana R Gerner
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Division of Host-Microbe Systems & Therapeutics, University of California San Diego, La Jolla, CA 92093
| | - Katelynn R Kazane
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093
| | - Gregory Humphrey
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Tara Schwartz
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Karenina Sanders
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Austin Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA 92093
| | - Manuela Raffatellu
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
- Division of Host-Microbe Systems & Therapeutics, University of California San Diego, La Jolla, CA 92093
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093
- Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University-University of California San Diego, La Jolla, CA 92093
| | - Elina I Zúñiga
- Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA 92093;
| |
Collapse
|
25
|
Waide ML, Schmidt NW. The gut microbiome, immunity, and Plasmodium severity. Curr Opin Microbiol 2020; 58:56-61. [PMID: 33007644 DOI: 10.1016/j.mib.2020.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Malaria continues to pose a severe threat to over half of the world's population each year. With no long-term, effective vaccine available and a growing resistance to antimalarials, there is a need for innovative methods of Plasmodium treatment. Recent evidence has pointed to a role of the composition of the gut microbiota in the severity of Plasmodium infection in both animal models and human studies. Further evidence has shown that the gut microbiota influences the adaptive immune response of the host, the arm of the immune system necessary for Plasmodium clearance, sustained Plasmodium immunity, and vaccine efficacy. Together, this illustrates the future potential of gut microbiota modulation as a novel method of preventing severe malaria.
Collapse
Affiliation(s)
- Morgan L Waide
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA; Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan W Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Mandal RK, Crane RJ, Berkley JA, Gumbi W, Wambua J, Ngoi JM, Ndungu FM, Schmidt NW. Longitudinal Analysis of Infant Stool Bacteria Communities Before and After Acute Febrile Malaria and Artemether-Lumefantrine Treatment. J Infect Dis 2020; 220:687-698. [PMID: 30590681 PMCID: PMC6639600 DOI: 10.1093/infdis/jiy740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/22/2018] [Indexed: 12/24/2022] Open
Abstract
Background Gut microbiota were recently shown to impact malaria disease progression and outcome, and prior studies have shown that Plasmodium infections increase the likelihood of enteric bacteria causing systemic infections. Currently, it is not known whether Plasmodium infection impacts human gut microbiota as a prelude to bacteremia or whether antimalarials affect gut microbiota. Our goal was to determine to what degree Plasmodium infections and antimalarial treatment affect human gut microbiota. Methods One hundred Kenyan infants underwent active surveillance for malaria from birth to 10 months of age. Each malaria episode was treated with artemether-lumefantrine (AL). Any other treatments, including antibiotics, were recorded. Stool samples were collected on an approximately biweekly basis. Ten children were selected on the basis of stool samples having been collected before (n = 27) or after (n = 17) a malaria episode and without antibiotics having been administered between collections. These samples were subjected to 16S ribosomal ribonucleic acid gene (V3–V4 region) sequencing. Results Bacterial community network analysis revealed no obvious differences in the before and after malaria/AL samples, which was consistent with no difference in alpha and beta diversity and taxonomic analysis at the family and genus level with one exception. At the sequence variant (SV) level, akin to bacterial species, only 1 of the top 100 SVs was significantly different. In addition, predicted metagenome analysis revealed no significant difference in metagenomic capacity between before and after malaria/AL samples. The number of malaria episodes, 1 versus 2, explained significant variation in gut microbiota composition of the infants. Conclusions In-depth bioinformatics analysis of stool bacteria has revealed for the first time that human malaria episode/AL treatment have minimal effects on gut microbiota in Kenyan infants.
Collapse
Affiliation(s)
- Rabindra K Mandal
- Department of Microbiology and Immunology, University of Louisville, Kentucky
| | - Rosie J Crane
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, United Kingdom
| | - James A Berkley
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, United Kingdom
| | - Wilson Gumbi
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | | | - Nathan W Schmidt
- Department of Microbiology and Immunology, University of Louisville, Kentucky
| |
Collapse
|
27
|
Mooney JP, Qendro T, Keith M, Philbey AW, Groves HT, Tregoning JS, Goodier MR, Riley EM. Natural Killer Cells Dampen the Pathogenic Features of Recall Responses to Influenza Infection. Front Immunol 2020; 11:135. [PMID: 32117282 PMCID: PMC7019041 DOI: 10.3389/fimmu.2020.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
Despite evidence of augmented Natural Killer (NK) cell responses after influenza vaccination, the role of these cells in vaccine-induced immunity remains unclear. Here, we hypothesized that NK cells might increase viral clearance but possibly at the expense of increased severity of pathology. On the contrary, we found that NK cells serve a homeostatic role during influenza virus infection of vaccinated mice, allowing viral clearance with minimal pathology. Using a diphtheria toxin receptor transgenic mouse model, we were able to specifically deplete NKp46+ NK cells through the administration of diphtheria toxin. Using this model, we assessed the effect of NK cell depletion prior to influenza challenge in vaccinated and unvaccinated mice. NK-depleted, vaccinated animals lost significantly more weight after viral challenge than vaccinated NK intact animals, indicating that NK cells ameliorate disease in vaccinated animals. However, there was also a significant reduction in viral load in NK-depleted, unvaccinated animals indicating that NK cells also constrain viral clearance. Depletion of NK cells after vaccination, but 21 days before infection, did not affect viral clearance or weight loss—indicating that it is the presence of NK cells during the infection itself that promotes homeostasis. Further work is needed to identify the mechanism(s) by which NK cells regulate adaptive immunity in influenza-vaccinated animals to allow efficient and effective virus control whilst simultaneously minimizing inflammation and pathology.
Collapse
Affiliation(s)
- Jason P Mooney
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Tedi Qendro
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Marianne Keith
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian W Philbey
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Helen T Groves
- Department of Medicine, Imperial College London, London, United Kingdom
| | - John S Tregoning
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Mukherjee D, Chora ÂF, Mota MM. Microbiota, a Third Player in the Host-Plasmodium Affair. Trends Parasitol 2019; 36:11-18. [PMID: 31787522 DOI: 10.1016/j.pt.2019.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
Plasmodium, the causative agent of malaria, is responsible for more than 200 million new infections and 400 000 deaths yearly. While in recent years the influence of the microbiota in homeostasis and a wide variety of disorders has taken center stage, its contribution during malaria infections has only now started to emerge. The few published studies suggest two distinct but complementary directions. Plasmodium infections can cause significant alterations in host (at least gut) microbiota, and host gut microbiota can influence the clinical outcome of malaria infections. In this opinion article, we highlight the most fundamental unanswered questions in the field that will, hopefully, point future research directions towards unveiling key mechanistic insights of the Plasmodium-host-microbiota axis.
Collapse
Affiliation(s)
- Debanjan Mukherjee
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Ângelo Ferreira Chora
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
29
|
Brabin B, Tinto H, Roberts SA. Testing an infection model to explain excess risk of preterm birth with long-term iron supplementation in a malaria endemic area. Malar J 2019; 18:374. [PMID: 31771607 PMCID: PMC6880560 DOI: 10.1186/s12936-019-3013-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background In view of recent evidence from a randomized trial in Burkina Faso that periconceptional iron supplementation substantially increases risk of spontaneous preterm birth (< 37 weeks) in first pregnancies (adjusted relative risk = 2.22; 95% CI 1.39–3.61), explanation is required to understand potential mechanisms, including progesterone mediated responses, linking long-term iron supplementation, malaria and gestational age. Methods The analysis developed a model based on a dual hit inflammatory mechanism arising from simultaneous malaria and gut infections, supported in part by published trial results. This model is developed to understand mechanisms linking iron supplementation, malaria and gestational age. Background literature substantiates synergistic inflammatory effects of these infections where trial data is unavailable. A path modelling exercise assessed direct and indirect paths influencing preterm birth and gestation length. Results A dual hit hypothesis incorporates two main pathways for pro-inflammatory mechanisms, which in this model, interact to increase hepcidin expression. Trial data showed preterm birth was positively associated with C-reactive protein (P = 0.0038) an inflammatory biomarker. The malaria pathway upregulates C-reactive protein and serum hepcidin, thereby reducing iron absorption. The enteric pathway results from unabsorbed gut iron, which induces microbiome changes and pathogenic gut infections, initiating pro-inflammatory events with lipopolysaccharide expression. Data from the trial suggest that raised hepcidin concentration is a mediating catalyst, being inversely associated with shorter gestational age at delivery (P = 0.002) and positively with preterm incidence (P = 0.007). A segmented regression model identified a change-point consisting of two segments before and after a sharp rise in hepcidin concentration. This showed a post change hepcidin elevation in women with increasing C-reactive protein values in late gestation (post-change slope 0.55. 95% CI 0.39–0.92, P < 0.001). Path modelling confirmed seasonal malaria effects on preterm birth, with mediation through C-reactive protein and (non-linear) hepcidin induction. Conclusions Following long-term iron supplementation, dual inflammatory pathways that mediate hepcidin expression and culminate in progesterone withdrawal may account for the reduction in gestational age observed in first pregnancies in this area of high malaria exposure. If correct, this model strongly suggests that in such areas, effective infection control is required prior to iron supplementation to avoid increasing preterm births. Trial registration NCT01210040. Registered with Clinicaltrials.gov on 27th September 2010
Collapse
Affiliation(s)
- Bernard Brabin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK. .,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK. .,Global Child Health Group, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - Halidou Tinto
- Clinical Research Unit of Nanoro (URCN/IRSS), Nanoro, Burkina Faso
| | - Stephen A Roberts
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| |
Collapse
|
30
|
Oral Administration of Clinically Relevant Antimalarial Drugs Does Not Modify the Murine Gut Microbiota. Sci Rep 2019; 9:11952. [PMID: 31420579 PMCID: PMC6697685 DOI: 10.1038/s41598-019-48454-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/06/2019] [Indexed: 11/21/2022] Open
Abstract
Malaria is an infectious disease responsible for the death of around 450,000 people annually. As an effective vaccine against the parasite that causes malaria is not available, antimalarial drug treatments are critical in fighting the disease. Previous data has shown that the gut microbiota is important in modulating the severity of malaria. Although it is well appreciated that antibiotics substantially alter the gut microbiota, it is largely unknown how antimalarial drugs impact the gut microbiota. We show here that the two commonly used artemisinin combination therapies of artesunate plus amodiaquine and artemether plus lumefantrine do not change the gut microbiota. The overall relative species abundance and alpha diversity remained stable after treatment, while beta diversity analysis showed minimal changes due to drug treatment, which were transient and quickly returned to baseline. Additionally, treatment with antimalarial drugs did not change the kinetics of later Plasmodium infection. Taken together, antimalarial drug administration does not affect the gut microbiota.
Collapse
|
31
|
Shen SS, Qu XY, Zhang WZ, Li J, Lv ZY. Infection against infection: parasite antagonism against parasites, viruses and bacteria. Infect Dis Poverty 2019; 8:49. [PMID: 31200765 PMCID: PMC6570864 DOI: 10.1186/s40249-019-0560-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Infectious diseases encompass a large spectrum of diseases that threaten human health, and coinfection is of particular importance because pathogen species can interact within the host. Currently, the antagonistic relationship between different pathogens during concurrent coinfections is defined as one in which one pathogen either manages to inhibit the invasion, development and reproduction of the other pathogen or biologically modulates the vector density. In this review, we provide an overview of the phenomenon and mechanisms of antagonism of coinfecting pathogens involving parasites. Main body This review summarizes the antagonistic interaction between parasites and parasites, parasites and viruses, and parasites and bacteria. At present, relatively clear mechanisms explaining polyparasitism include apparent competition, exploitation competition, interference competition, biological control of intermediate hosts or vectors and suppressive effect on transmission. In particular, immunomodulation, including the suppression of dendritic cell (DC) responses, activation of basophils and mononuclear macrophages and adjuvant effects of the complement system, is described in detail. Conclusions In this review, we summarize antagonistic concurrent infections involving parasites and provide a functional framework for in-depth studies of the underlying mechanisms of coinfection with different microorganisms, which will hasten the development of promising antimicrobial alternatives, such as novel antibacterial vaccines or biological methods of controlling infectious diseases, thus relieving the overwhelming burden of ever-increasing antimicrobial resistance. Electronic supplementary material The online version of this article (10.1186/s40249-019-0560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Shi Shen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiao-Yan Qu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Wei-Zhe Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jian Li
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China
| | - Zhi-Yue Lv
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.
| |
Collapse
|
32
|
Morffy Smith CD, Gong M, Andrew AK, Russ BN, Ge Y, Zadeh M, Cooper CA, Mohamadzadeh M, Moore JM. Composition of the gut microbiota transcends genetic determinants of malaria infection severity and influences pregnancy outcome. EBioMedicine 2019; 44:639-655. [PMID: 31160271 PMCID: PMC6606560 DOI: 10.1016/j.ebiom.2019.05.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Malaria infection in pregnancy is a major cause of maternal and foetal morbidity and mortality worldwide. Mouse models for gestational malaria allow for the exploration of the mechanisms linking maternal malaria infection and poor pregnancy outcomes in a tractable model system. The composition of the gut microbiota has been shown to influence susceptibility to malaria infection in inbred virgin mice. In this study, we explore the ability of the gut microbiota to modulate malaria infection severity in pregnant outbred Swiss Webster mice. METHODS In Swiss Webster mice, the composition of the gut microbiota was altered by disrupting the native gut microbes through broad-spectrum antibiotic treatment, followed by the administration of a faecal microbiota transplant derived from mice possessing gut microbes reported previously to confer susceptibility or resistance to malaria. Female mice were infected with P. chabaudi chabaudi AS in early gestation, and the progression of infection and pregnancy were tracked throughout gestation. To assess the impact of maternal infection on foetal outcomes, dams were sacrificed at term to assess foetal size and viability. Alternatively, pups were delivered by caesarean section and fostered to assess neonatal survival and pre-weaning growth in the absence of maternal morbidity. A group of dams was also euthanized at mid-gestation to assess infection and pregnancy outcomes. FINDINGS Susceptibility to infection varied significantly as a function of source of transplanted gut microbes. Parasite burden was negatively correlated with the abundance of five specific OTUs, including Akkermansia muciniphila and OTUs classified as Allobaculum, Lactobacillus, and S24-7 species. Reduced parasite burden was associated with reduced maternal morbidity and improved pregnancy outcomes. Pups produced by dams with high parasite burdens displayed a significant reduction in survival in the first days of life relative to those from malaria-resistant dams when placed with foster dams. At midgestation, plasma cytokine levels were similar across all groups, but expression of IFNγ in the conceptus was elevated in infected dams, and IL-10 only in susceptible dams. In the latter, transcriptional and microscopic evidence of monocytic infiltration was observed with high density infection; likewise, accumulation of malaria haemozoin was enhanced in this group. These responses, combined with reduced vascularization of the placenta in this group, may contribute to poor pregnancy outcomes. Thus, high maternal parasite burden and associated maternal responses, potentially dictated by the gut microbial community, negatively impacts term foetal health and survival in the early postnatal period. INTERPRETATION The composition of the gut microbiota in Plasmodium chabaudi chabaudi AS-infected pregnant Swiss Webster mice transcends the outbred genetics of the Swiss Webster mouse stock as a determinant of malaria infection severity, subsequently influencing pregnancy outcomes in malaria-exposed progeny. FUND: Research reported in this manuscript was supported by the University of Florida College of Veterinary Medicine (JMM, MM, and MG), the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, and the Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health under award numbers T32AI060546 (to CDMS), R01HD46860 and R21AI111242 (to JMM), and R01 DK109560 (to MM). MG was supported by Department of Infectious Diseases and Immunology and University of Florida graduate assistantships. AA was supported by the 2017-2019 Peach State LSAMP Bridge to the Doctorate Program at the University of Georgia (National Science Foundation, Award # 1702361). The content is solely the responsibility of the authors and does not necessarily represent official views of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institute of Allergy and Infectious Diseases, the National Institute of Diabetes and Digestive and Kidney Diseases, or the National Institutes of Health.
Collapse
Affiliation(s)
- Catherine D Morffy Smith
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Minghao Gong
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Alicer K Andrew
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Brittany N Russ
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Yong Ge
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Caitlin A Cooper
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, United States
| | - Julie M Moore
- Department of Infectious Diseases and the Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States.
| |
Collapse
|
33
|
Alamer E, Carpio VH, Ibitokou SA, Kirtley ML, Phoenix IR, Opata MM, Wilson KD, Cong Y, Dann SM, Chopra AK, Stephens R. Dissemination of non-typhoidal Salmonella during Plasmodium chabaudi infection affects anti-malarial immunity. Parasitol Res 2019; 118:2277-2285. [PMID: 31119381 DOI: 10.1007/s00436-019-06349-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/09/2019] [Indexed: 01/18/2023]
Abstract
Malaria-associated bacteremia accounts for up to one-third of deaths from severe malaria, and non-typhoidal Salmonella (NTS) has been reported as a major complication of severe malarial infection. Patients who develop NTS bacteremia during Plasmodium infection show higher mortality rates than individuals with malaria alone. Systemic bacteremia can be caused by a wound or translocation from epithelial or endothelial sites. NTS is an intestinal pathogen, however the contribution of bacterial translocation from the intestinal tract during Plasmodium infection is not well studied. Here, we investigated the integrity of the intestinal barrier function of P. chabaudi-infected mice using large molecules and Salmonella infection. Intestinal histology and the adaptive immune response to malaria were also studied using light microscopy and flow cytometry. P. chabaudi infection compromised intestinal barrier function, which led to increased intestinal cellular infiltration. In addition, we observed increased serum lipopolysaccharide binding protein and leakage of soluble molecules from the intestine into the blood in infected mice. Plasmodium infection also increased intestinal translocation and dissemination of NTS to the liver. The adaptive immune response to P. chabaudi infection was also significantly impacted by NTS translocation. Reduced B and T cell activation were observed in co-infected animals, suggesting interference in the malaria-specific immune responses by bacteremia. These studies demonstrate that P. chabaudi infection induces failure of the barrier function of the intestinal wall and enhanced intestinal bacterial translocation, affecting anti-malarial immunity.
Collapse
Affiliation(s)
- Edrous Alamer
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Samad A Ibitokou
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Inaia R Phoenix
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Michael M Opata
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Kyle D Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Sara M Dann
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA
| | - Robin Stephens
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| |
Collapse
|
34
|
Differential Sensitivity to Plasmodium yoelii Infection in C57BL/6 Mice Impacts Gut-Liver Axis Homeostasis. Sci Rep 2019; 9:3472. [PMID: 30837607 PMCID: PMC6401097 DOI: 10.1038/s41598-019-40266-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Experimental models of malaria have shown that infection with specific Plasmodium species in certain mouse strains can transiently modulate gut microbiota and cause intestinal shortening, indicating a disruption of gut homeostasis. Importantly, changes in gut homeostasis have not been characterized in the context of mild versus severe malaria. We show that severe Plasmodium infection in mice disrupts homeostasis along the gut-liver axis in multiple ways compared to mild infection. High parasite burden results in a larger influx of immune cells in the lamina propria and mice with high parasitemia display specific metabolomic profiles in the ceca and plasma during infection compared to mice with mild parasitemia. Liver damage was also more pronounced and longer lasting during severe infection, with concomitant changes in bile acids in the gut. Finally, severe Plasmodium infection changes the functional capacity of the microbiota, enhancing bacterial motility and amino acid metabolism in mice with high parasite burden compared to a mild infection. Taken together, Plasmodium infections have diverse effects on host gut homeostasis relative to the severity of infection that may contribute to enteric bacteremia that is associated with malaria.
Collapse
|
35
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
36
|
Mooney JP, Galloway LJ, Riley EM. Malaria, anemia, and invasive bacterial disease: A neutrophil problem? J Leukoc Biol 2018; 105:645-655. [PMID: 30570786 PMCID: PMC6487965 DOI: 10.1002/jlb.3ri1018-400r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022] Open
Abstract
Invasive bacterial disease is well described in immunocompromised hosts, including those with malaria infection. One bacterial infection frequently observed in children with Plasmodium falciparum infection is nontyphoidal salmonella (NTS) infection, in which a typically intestinal infection becomes systemic with serious, often fatal, consequences. In this review, we consider the role of malaria‐induced immunoregulatory responses in tipping the balance from tissue homeostasis during malaria infection to risk of invasive NTS. Also, neutrophils are crucial in the clearance of NTS but their ability to mount an oxidative burst and kill intracellular Salmonella is severely compromised during, and for some time after, an acute malaria infection. Here, we summarize the evidence linking malaria and invasive NTS infections; describe the role of neutrophils in clearing NTS infections; review evidence for neutrophil dysfunction in malaria infections; and explore roles of heme oxygenase‐1, IL‐10, and complement in mediating this dysfunction. Finally, given the epidemiological evidence that low density, subclinical malaria infections pose a risk for invasive NTS infections, we consider whether the high prevalence of such infections might underlie the very high incidence of invasive bacterial disease across much of sub‐Saharan Africa.
Collapse
Affiliation(s)
- Jason P Mooney
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Lauren J Galloway
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Eleanor M Riley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
37
|
Ippolito MM, Denny JE, Langelier C, Sears CL, Schmidt NW. Malaria and the Microbiome: A Systematic Review. Clin Infect Dis 2018; 67:1831-1839. [PMID: 29701835 PMCID: PMC6260159 DOI: 10.1093/cid/ciy374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background The microbiome influences malaria parasite fitness and transmission efficiency in mosquitoes and appears to affect malaria dynamics in mammalian hosts as well. Nascent research examining the interrelationship of malaria and the mammalian microbiome has yielded interesting insights inviting further study. Methods We conducted a systematic review of the literature examining associations between the microbiome and malaria in mammalian hosts. An electronic search algorithm was adapted to PubMed, MEDLINE, Scopus, Embase, and Web of Science, and reference lists of relevant sources were manually searched. Identified studies were screened and assessed independently by 2 authors, and results were compiled in a qualitative synthesis of the evidence. Results Ten relevant studies were identified. They demonstrate associations between certain intestinal communities and protection against Plasmodium infection and modulation of disease severity. Plasmodium infection acutely and reversibly reshapes gut microbial composition in mice. The makeup of human skin microbial communities may influence mosquito attraction and thus disease transmission. Conclusions Early research supports a relationship between malaria and the microbiome. The evidence is incomplete, but the observed associations are evocative and signal a promising avenue of inquiry. Microbiome-based studies of malaria can be readily integrated into field-based research.
Collapse
Affiliation(s)
- Matthew M Ippolito
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
- Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joshua E Denny
- Department of Microbiology and Immunology, University of Louisville, Kentucky
| | - Charles Langelier
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, University of Louisville, Kentucky
| |
Collapse
|
38
|
Mooney JP, Barry A, Gonçalves BP, Tiono AB, Awandu SS, Grignard L, Drakeley CJ, Bottomley C, Bousema T, Riley EM. Haemolysis and haem oxygenase-1 induction during persistent "asymptomatic" malaria infection in Burkinabé children. Malar J 2018; 17:253. [PMID: 29980206 PMCID: PMC6035425 DOI: 10.1186/s12936-018-2402-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The haemolysis associated with clinical episodes of malaria results in the liberation of haem, which activates the enzyme haem oxygenase-1 (HO-1). HO-1 has been shown to reduce neutrophil function and increase susceptibility to invasive bacterial disease. However, the majority of community-associated malaria infections are subclinical, often termed "asymptomatic" and the consequences of low-grade haemolysis during subclinical malaria infection are unknown. STUDY DESIGN AND RESULTS As part of an ongoing study of subclinical malaria in Burkina Faso, 23 children with subclinical Plasmodium falciparum infections (determined by qPCR) were compared with 21 village-matched uninfected control children. Infected children showed evidence of persistent haemolysis over 35 days, with raised plasma haem and HO-1 concentrations. Concentrations of IL-10, which can also directly activate HO-1, were also higher in infected children compared to uninfected children. Regression analysis revealed that HO-1 was associated with haemolysis, but not with parasite density, anaemia or IL-10 concentration. CONCLUSIONS This study reveals that subclinical P. falciparum malaria infection is associated with sustained haemolysis and the induction of HO-1. Given the association between HO-1, neutrophil dysfunction and increased risk of Salmonella bacteraemia, prolonged HO-1 induction may explain epidemiological associations and geographic overlap between malaria and invasive bacterial disease. Further studies are needed to understand the consequences of persistent subclinical malaria infection, low-grade haemolysis and raised HO-1 on immune cell function and risk of comorbidities.
Collapse
Affiliation(s)
- Jason P Mooney
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK. .,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Université de Ouagadougou, Ouagadougou, Burkina Faso
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Université de Ouagadougou, Ouagadougou, Burkina Faso
| | - Shehu S Awandu
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
39
|
Hunter P. Co-infection: when whole can be greater than the sum: The complex reaction to co-infection of different pathogens can generate variable symptoms. EMBO Rep 2018; 19:embr.201846601. [PMID: 29980591 DOI: 10.15252/embr.201846601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
40
|
Abstract
Malaria elimination efforts are hindered by the prevalence of asymptomatic infections, which frequently go undetected and untreated. Consequently, there is a pressing need for improved diagnostic screening methods. Based on extensive collections of skin odors from human populations in Kenya, we report broad and consistent effects of malaria infection on human volatile emissions. Furthermore, we found that predictive models based on machine learning algorithms reliably determined infection status based on volatile biomarkers and, critically, identified asymptomatic infections with 100% sensitivity, even in the case of low-level infections not detectable by microscopy. These findings suggest that volatile biomarkers have significant potential for the development of robust, noninvasive screening methods for detecting symptomatic and asymptomatic malaria infections under field conditions. Malaria remains among the world’s deadliest diseases, and control efforts depend critically on the availability of effective diagnostic tools, particularly for the identification of asymptomatic infections, which play a key role in disease persistence and may account for most instances of transmission but often evade detection by current screening methods. Research on humans and in animal models has shown that infection by malaria parasites elicits changes in host odors that influence vector attraction, suggesting that such changes might yield robust biomarkers of infection status. Here we present findings based on extensive collections of skin volatiles from human populations with high rates of malaria infection in Kenya. We report broad and consistent effects of malaria infection on human volatile profiles, as well as significant divergence in the effects of symptomatic and asymptomatic infections. Furthermore, predictive models based on machine learning algorithms reliably determined infection status based on volatile biomarkers. Critically, our models identified asymptomatic infections with 100% sensitivity, even in the case of low-level infections not detectable by microscopy, far exceeding the performance of currently available rapid diagnostic tests in this regard. We also identified a set of individual compounds that emerged as consistently important predictors of infection status. These findings suggest that volatile biomarkers may have significant potential for the development of a robust, noninvasive screening method for detecting malaria infections under field conditions.
Collapse
|
41
|
Salmonella-Mediated Inflammation Eliminates Competitors for Fructose-Asparagine in the Gut. Infect Immun 2018; 86:IAI.00945-17. [PMID: 29483291 DOI: 10.1128/iai.00945-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica elicits intestinal inflammation to gain access to nutrients. One of these nutrients is fructose-asparagine (F-Asn). The availability of F-Asn to Salmonella during infection is dependent upon Salmonella pathogenicity islands 1 and 2, which in turn are required to provoke inflammation. Here, we determined that F-Asn is present in mouse chow at approximately 400 pmol/mg (dry weight). F-Asn is also present in the intestinal tract of germfree mice at 2,700 pmol/mg (dry weight) and in the intestinal tract of conventional mice at 9 to 28 pmol/mg. These findings suggest that the mouse intestinal microbiota consumes F-Asn. We utilized heavy-labeled precursors of F-Asn to monitor its formation in the intestine, in the presence or absence of inflammation, and none was observed. Finally, we determined that some members of the class Clostridia encode F-Asn utilization pathways and that they are eliminated from highly inflamed Salmonella-infected mice. Collectively, our studies identify the source of F-Asn as the diet and that Salmonella-mediated inflammation is required to eliminate competitors and allow the pathogen nearly exclusive access to this nutrient.
Collapse
|
42
|
Immunological bases of increased susceptibility to invasive nontyphoidal Salmonella infection in children with malaria and anaemia. Microbes Infect 2017; 20:589-598. [PMID: 29248635 PMCID: PMC6250906 DOI: 10.1016/j.micinf.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/01/2023]
Abstract
Malaria and anaemia are key underlying factors for iNTS disease in African children. Knowledge of clinical and epidemiological risk-factors for iNTS disease has not been paralleled by an in-depth knowledge of the immunobiology of the disease. Herein, we review human and animal studies on mechanisms of increased susceptibility to iNTS in children.
Collapse
|
43
|
Anderson CJ, Kendall MM. Salmonella enterica Serovar Typhimurium Strategies for Host Adaptation. Front Microbiol 2017; 8:1983. [PMID: 29075247 PMCID: PMC5643478 DOI: 10.3389/fmicb.2017.01983] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
Bacterial pathogens must sense and respond to newly encountered host environments to regulate the expression of critical virulence factors that allow for niche adaptation and successful colonization. Among bacterial pathogens, non-typhoidal serovars of Salmonella enterica, such as serovar Typhimurium (S. Tm), are a primary cause of foodborne illnesses that lead to hospitalizations and deaths worldwide. S. Tm causes acute inflammatory diarrhea that can progress to invasive systemic disease in susceptible patients. The gastrointestinal tract and intramacrophage environments are two critically important niches during S. Tm infection, and each presents unique challenges to limit S. Tm growth. The intestinal tract is home to billions of commensal microbes, termed the microbiota, which limits the amount of available nutrients for invading pathogens such as S. Tm. Therefore, S. Tm encodes strategies to manipulate the commensal population and side-step this nutritional competition. During subsequent stages of disease, S. Tm resists host immune cell mechanisms of killing. Host cells use antimicrobial peptides, acidification of vacuoles, and nutrient limitation to kill phagocytosed microbes, and yet S. Tm is able to subvert these defense systems. In this review, we discuss recently described molecular mechanisms that S. Tm uses to outcompete the resident microbiota within the gastrointestinal tract. S. Tm directly eliminates close competitors via bacterial cell-to-cell contact as well as by stimulating a host immune response to eliminate specific members of the microbiota. Additionally, S. Tm tightly regulates the expression of key virulence factors that enable S. Tm to withstand host immune defenses within macrophages. Additionally, we highlight the chemical and physical signals that S. Tm senses as cues to adapt to each of these environments. These strategies ultimately allow S. Tm to successfully adapt to these two disparate host environments. It is critical to better understand bacterial adaptation strategies because disruption of these pathways and mechanisms, especially those shared by multiple pathogens, may provide novel therapeutic intervention strategies.
Collapse
Affiliation(s)
- Christopher J Anderson
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| | - Melissa M Kendall
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,, Charlottesville, VA, United States
| |
Collapse
|
44
|
Pseudogenization of the Secreted Effector Gene sseI Confers Rapid Systemic Dissemination of S. Typhimurium ST313 within Migratory Dendritic Cells. Cell Host Microbe 2017; 21:182-194. [PMID: 28182950 DOI: 10.1016/j.chom.2017.01.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 12/23/2022]
Abstract
Genome degradation correlates with host adaptation and systemic disease in Salmonella. Most lineages of the S. enterica subspecies Typhimurium cause gastroenteritis in humans; however, the recently emerged ST313 lineage II pathovar commonly causes systemic bacteremia in sub-Saharan Africa. ST313 lineage II displays genome degradation compared to gastroenteritis-associated lineages; yet, the mechanisms and causal genetic differences mediating these infection phenotypes are largely unknown. We find that the ST313 isolate D23580 hyperdisseminates from the gut to systemic sites, such as the mesenteric lymph nodes (MLNs), via CD11b+ migratory dendritic cells (DCs). This hyperdissemination was facilitated by the loss of sseI, which encodes an effector that inhibits DC migration in gastroenteritis-associated isolates. Expressing functional SseI in D23580 reduced the number of infected migratory DCs and bacteria in the MLN. Our study reveals a mechanism linking pseudogenization of effectors with the evolution of niche adaptation in a bacterial pathogen.
Collapse
|
45
|
Barash NR, Maloney JG, Singer SM, Dawson SC. Giardia Alters Commensal Microbial Diversity throughout the Murine Gut. Infect Immun 2017; 85:e00948-16. [PMID: 28396324 PMCID: PMC5442636 DOI: 10.1128/iai.00948-16] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/26/2017] [Indexed: 12/17/2022] Open
Abstract
Giardia lamblia is the most frequently identified protozoan cause of intestinal infection. Over 200 million people are estimated to have acute or chronic giardiasis, with infection rates approaching 90% in areas where Giardia is endemic. Despite its significance in global health, the mechanisms of pathogenesis associated with giardiasis remain unclear, as the parasite neither produces a known toxin nor induces a robust inflammatory response. Giardia colonization and proliferation in the small intestine of the host may, however, disrupt the ecological homeostasis of gastrointestinal commensal microbes and contribute to diarrheal disease associated with giardiasis. To evaluate the impact of Giardia infection on the host microbiota, we used culture-independent methods to quantify shifts in the diversity of commensal microbes throughout the gastrointestinal tract in mice infected with Giardia We discovered that Giardia's colonization of the small intestine causes a systemic dysbiosis of aerobic and anaerobic commensal bacteria. Specifically, Giardia colonization is typified by both expansions in aerobic Proteobacteria and decreases in anaerobic Firmicutes and Melainabacteria in the murine foregut and hindgut. Based on these shifts, we created a quantitative index of murine Giardia-induced microbial dysbiosis. This index increased at all gut regions during the duration of infection, including both the proximal small intestine and the colon. Giardiasis could be an ecological disease, and the observed dysbiosis may be mediated directly via the parasite's unique anaerobic fermentative metabolism or indirectly via parasite induction of gut inflammation. This systemic alteration of murine gut commensal diversity may be the cause or the consequence of inflammatory and metabolic changes throughout the gut. Shifts in the commensal microbiota may explain observed variations in giardiasis between hosts with respect to host pathology, degree of parasite colonization, infection initiation, and eventual clearance.
Collapse
Affiliation(s)
- N R Barash
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, California, USA
| | - J G Maloney
- Departments of Biology and Microbiology & Immunology, Georgetown University, Washington, DC, USA
| | - S M Singer
- Departments of Biology and Microbiology & Immunology, Georgetown University, Washington, DC, USA
| | - S C Dawson
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, California, USA
| |
Collapse
|
46
|
Chen J, Huang C, Wang J, Zhou H, Lu Y, Lou L, Zheng J, Tian L, Wang X, Cao Z, Zeng Y. Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One 2017; 12:e0176583. [PMID: 28441432 PMCID: PMC5404871 DOI: 10.1371/journal.pone.0176583] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Intestinal barrier dysfunction plays an important role in acute necrotizing pancreatitis (ANP) and intestinal microbiota dysbiosis was involved in intestinal barrier failure. Paneth cells protect intestinal barrier and are associated with intestinal microbiota. Here, we investigated changes in intestinal microbiota and antimicrobial peptides of Paneth cells in ileum during ANP. METHODS Rats with ANP were established by retrograde injection of 3.5% sodium taurocholate into biliopancreatic duct and sacrificed at 24h and 48h, respectively. Injuries of pancreas and distal ileum were evaluated by histopathological score. Intestinal barrier function was assessed by plasma diamine oxidase activity (DAO) and D-lactate. Systemic and intestinal inflammation was evaluated by TNFα, IL-1β and IL-17A concentration by ELISA, respectively. 16S rRNA high throughput sequencing on fecal samples was used to investigate the changes in intestinal microbiota in the ANP group at 48h. Lysozyme and α-defensin5 were measured by real-time PCR, western blot and immunofluoresence. RESULTS ANP rats had more severe histopathological injuries in pancreas and distal ileum, injured intestinal barrier and increased expression of TNFα, IL-1β and IL-17A in plasma and distal ileum compared with those of the sham-operated (SO) group. Principal component analysis (PCA) showed structural segregation between the SO and ANP groups. Operational taxonomic unit (OTU) number and ACE index revealed decreased microbiota diversity in the ANP group. Taxonomic analysis showed dysbiosis of intestinal microbiota structure. At phyla level, Saccharibacteria and Tenericutes decreased significantly. At genus level, Escherichia-Shigella and Phascolarctobacterium increased significantly, while Candidatus_Saccharimonas, Prevotellaceae_UCG-001, Lachnospiraceae_UCG-001, Ruminiclostridium_5 and Ruminococcaceae_UCG-008 decreased significantly. Lysozyme and α-defensin5 mRNA expression levels decreased significantly in ANP group at 48h. Protein expression of lysozyme decreased in ANP groups at 24h and 48h. Meanwhile, the relative abundance of Escherichia-Shigella correlated inversely with the decrease in lysozyme. CONCLUSION The disorder in intestinal microbiota and decreases of Paneth cell antimicrobial peptides might participate in the pathogenesis of intestinal barrier dysfunction during ANP.
Collapse
Affiliation(s)
- Jing Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunlan Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Wang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihong Lou
- International Medical Care Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyuan Zheng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Tian
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongwei Cao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Velly H, Britton RA, Preidis GA. Mechanisms of cross-talk between the diet, the intestinal microbiome, and the undernourished host. Gut Microbes 2017; 8:98-112. [PMID: 27918230 PMCID: PMC5390823 DOI: 10.1080/19490976.2016.1267888] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023] Open
Abstract
Undernutrition remains one of the most pressing global health challenges today, contributing to nearly half of all deaths in children under five years of age. Although insufficient dietary intake and environmental enteric dysfunction are often inciting factors, evidence now suggests that unhealthy gut microbial populations perpetuate the vicious cycle of pathophysiology that results in persistent growth impairment in children. The metagenomics era has facilitated new research identifying an altered microbiome in undernourished hosts and has provided insight into a number of mechanisms by which these alterations may affect growth. This article summarizes a range of observational studies that highlight differences in the composition and function of gut microbiota between undernourished and healthy children; discusses dietary, environmental and host factors that shape this altered microbiome; examines the consequences of these changes on host physiology; and considers opportunities for microbiome-targeting therapies to combat the global challenge of child undernutrition.
Collapse
Affiliation(s)
- Helene Velly
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert A. Britton
- Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Geoffrey A. Preidis
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
48
|
Acute ileitis facilitates infection with multidrug resistant Pseudomonas aeruginosa in human microbiota-associated mice. Gut Pathog 2017; 9:4. [PMID: 28115993 PMCID: PMC5241993 DOI: 10.1186/s13099-017-0154-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023] Open
Abstract
Background The rising incidence of multidrug resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa has become a serious issue in prevention of its spread particularly among hospitalized patients. It is, however, unclear whether distinct conditions such as acute intestinal inflammation facilitate P. aeruginosa infection of vertebrate hosts. Methods and results To address this, we analysed P. aeruginosa infection in human microbiota-associated (hma) mice with acute ileitis induced by peroral Toxoplasma gondii challenge. When perorally infected with P. aeruginosa at day 3 post ileitis induction, hma mice displayed higher intestinal P. aeruginosa loads as compared to hma mice without ileitis. However, the overall intestinal microbiota composition was not disturbed by P. aeruginosa (except for lowered bifidobacterial populations), and the infection did not further enhance ileal immune cell responses. Pro-inflammatory cytokines including IFN-γ and IL-12p70 were similarly increased in ileum and mesenteric lymph nodes of P. aeruginosa infected and uninfected hma mice with ileitis. The anti-inflammatory cytokine IL-10 increased multifold upon ileitis induction, but interestingly more distinctly in P. aeruginosa infected as compared to uninfected controls. Immune responses were not restricted to the intestines as indicated by elevated pro-inflammatory cytokine levels in liver and kidney upon ileitis induction. However, except for hepatic TNF-α levels, P. aeruginosa infection did not result in more distinct pro-inflammatory cytokine secretion in liver and kidney of hma mice with ileitis. Whereas viable intestinal bacteria were more frequently detected in systemic compartments such as spleen and cardiac blood of P. aeruginosa infected than uninfected mice at day 7 following ileitis induction, P. aeruginosa infection did not exacerbate systemic pro-inflammatory sequelae, but resulted in lower IL-10 serum levels. Conclusion Acute intestinal inflammation facilitates infection of the vertebrate host with MDR bacteria including P. aeruginosa and might also pose particularly hospitalized patients at risk for acquisition. Since acute T. gondii induced inflammation might mask immunopathology caused by P. aeruginosa, a subacute or chronic inflammation model might be better suited to investigate the potential role of P. aeruginosa infection in the aggravation of intestinal disease. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0154-4) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Bhattacharjee S, Kalbfuss N, Prazeres da Costa C. Parasites, microbiota and metabolic disease. Parasite Immunol 2016; 39. [DOI: 10.1111/pim.12390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/03/2016] [Indexed: 12/28/2022]
Affiliation(s)
- S. Bhattacharjee
- Institute for Medical Microbiology, Immunology and Hygiene; Technische Universität München (TUM); München Germany
| | - N. Kalbfuss
- Institute for Medical Microbiology, Immunology and Hygiene; Technische Universität München (TUM); München Germany
| | - C. Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene; Technische Universität München (TUM); München Germany
| |
Collapse
|
50
|
Lokken KL, Walker GT, Tsolis RM. Disseminated infections with antibiotic-resistant non-typhoidal Salmonella strains: contributions of host and pathogen factors. Pathog Dis 2016; 74:ftw103. [PMID: 27765795 DOI: 10.1093/femspd/ftw103] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 11/14/2022] Open
Abstract
Non-typhoidal Salmonella enterica serovars (NTS) are generally associated with gastroenteritis; however, the very young and elderly, as well as individuals with compromised immunity, are at risk of developing disseminated infection that can manifest as bacteremia or focal infections at systemic sites. Disseminated NTS infections can be fatal and are responsible for over 600 000 deaths annually. Most of these deaths are in sub-Saharan Africa, where multidrug-resistant NTS clones are currently circulating in a population with a high proportion of individuals that are susceptible to disseminated disease. This review considers how genome degradation observed in African NTS isolates has resulted in phenotypic differences in traits related to environmental persistence and host-pathogen interactions. Further, it discusses host mechanisms promoting susceptibility to invasive infection with NTS in individuals with immunocompromising conditions. We conclude that mechanistic knowledge of how risk factors compromise immunity to disseminated NTS infection will be important for the design of interventions to protect against systemic disease.
Collapse
Affiliation(s)
- Kristen L Lokken
- Medical Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Gregory T Walker
- Medical Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Renée M Tsolis
- Medical Microbiology and Immunology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|