1
|
Sankaran DG, Zhu H, Maymi VI, Forlastro IM, Jiang Y, Laniewski N, Scheible KM, Rudd BD, Grimson AW. Gene Regulatory Programs that Specify Age-Related Differences during Thymocyte Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599011. [PMID: 38948840 PMCID: PMC11212896 DOI: 10.1101/2024.06.14.599011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
T cell development is fundamental to immune system establishment, yet how this development changes with age remains poorly understood. Here, we construct a transcriptional and epigenetic atlas of T cell developmental programs in neonatal and adult mice, revealing the ontogeny of divergent gene regulatory programs and their link to age-related differences in phenotype and function. Specifically, we identify a gene module that diverges with age from the earliest stages of genesis and includes programs that govern effector response and cell cycle regulation. Moreover, we reveal that neonates possess more accessible chromatin during early thymocyte development, likely establishing poised gene expression programs that manifest later in thymocyte development. Finally, we leverage this atlas, employing a CRISPR-based perturbation approach coupled with single-cell RNA sequencing as a readout to uncover a conserved transcriptional regulator, Zbtb20, that contributes to age-dependent differences in T cell development. Altogether, our study defines transcriptional and epigenetic programs that regulate age-specific differences in T cell development.
Collapse
|
2
|
Zhong X, Peddada N, Wang J, Moresco JJ, Zhan X, Shelton JM, SoRelle JA, Keller K, Lazaro DR, Moresco EMY, Choi JH, Beutler B. OVOL2 sustains postnatal thymic epithelial cell identity. Nat Commun 2023; 14:7786. [PMID: 38012144 PMCID: PMC10682436 DOI: 10.1038/s41467-023-43456-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Distinct pathways and molecules may support embryonic versus postnatal thymic epithelial cell (TEC) development and maintenance. Here, we identify a mechanism by which TEC numbers and function are maintained postnatally. A viable missense allele (C120Y) of Ovol2, expressed ubiquitously or specifically in TECs, results in lymphopenia, in which T cell development is compromised by loss of medullary TECs and dysfunction of cortical TECs. We show that the epithelial identity of TECs is aberrantly subverted towards a mesenchymal state in OVOL2-deficient mice. We demonstrate that OVOL2 inhibits the epigenetic regulatory BRAF-HDAC complex, specifically disrupting RCOR1-LSD1 interaction. This causes inhibition of LSD1-mediated H3K4me2 demethylation, resulting in chromatin accessibility and transcriptional activation of epithelial genes. Thus, OVOL2 controls the epigenetic landscape of TECs to enforce TEC identity. The identification of a non-redundant postnatal mechanism for TEC maintenance offers an entry point to understanding thymic involution, which normally begins in early adulthood.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Nagesh Peddada
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - James J Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Xiaowei Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
- Department of Population and Data Sciences, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8821, USA
| | - John M Shelton
- Intermal Medicine-Histopathology Core, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Jeffrey A SoRelle
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9072, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9063, USA
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Danielle Renee Lazaro
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8505, USA.
| |
Collapse
|
3
|
Su X, Li X, Wang S, Xue X, Liu R, Bai X, Gong P, Feng C, Cao L, Wang T, Ding Y, Jiang J, Chen Y, Shi Y, Shao C. Nitric oxide-dependent immunosuppressive function of thymus-derived mesenchymal stromal/stem cells. Biol Direct 2023; 18:59. [PMID: 37723551 PMCID: PMC10506207 DOI: 10.1186/s13062-023-00415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The thymus is required for T cell development and the formation of the adaptive immunity. Stromal cells, which include thymic epithelial cells (TECs) and mesenchymal stromal cells (MSCs), are essential for thymic function. However, the immunomodulatory function of thymus-derived MSCs (T-MSCs) has not been fully explored. METHODS MSCs were isolated from mouse thymus and their general characteristics including surface markers and multi-differentiation potential were characterized. The immunomodulatory function of T-MSCs stimulated by IFN-γ and TNF-α was evaluated in vitro and in vivo. Furthermore, the spatial distribution of MSCs in the thymus was interrogated by using tdTomato-flox mice corssed to various MSC lineage Cre recombinase lines. RESULTS A subset of T-MSCs express Nestin, and are mainly distributed in the thymic medulla region and cortical-medulla junction, but not in the capsule. The Nestin-positive T-MSCs exhibit typical immunophenotypic characteristics and differentiation potential. Additionally, when stimulated with IFN-γ and TNF-α, they can inhibit activated T lymphocytes as efficiently as BM-MSCs, and this function is dependent on the production of nitric oxide (NO). Additionally, the T-MSCs exhibit a remarkable therapeutic efficacy in acute liver injury and inflammatory bowel disease (IBD). CONCLUSIONS Nestin-positive MSCs are mainly distributed in medulla and cortical-medulla junction in thymus and possess immunosuppressive ability upon stimulation by inflammatory cytokines. The findings have implications in understanding the physiological function of MSCs in thymus.
Collapse
Affiliation(s)
- Xiao Su
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaolei Li
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Shiqing Wang
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaotong Xue
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Rui Liu
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Xiaojing Bai
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Pixia Gong
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Chao Feng
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Lijuan Cao
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Tingting Wang
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Yayun Ding
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Junjie Jiang
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Yongjing Chen
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China
| | - Yufang Shi
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China.
| | - Changshun Shao
- First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Suzhou Medical College, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
4
|
Cisneros B, García-Aguirre I, Unzueta J, Arrieta-Cruz I, González-Morales O, Domínguez-Larrieta JM, Tamez-González A, Leyva-Gómez G, Magaña JJ. Immune system modulation in aging: Molecular mechanisms and therapeutic targets. Front Immunol 2022; 13:1059173. [PMID: 36591275 PMCID: PMC9797513 DOI: 10.3389/fimmu.2022.1059173] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The function of the immune system declines during aging, compromising its response against pathogens, a phenomenon termed as "immunosenescence." Alterations of the immune system undergone by aged individuals include thymic involution, defective memory T cells, impaired activation of naïve T cells, and weak memory response. Age-linked alterations of the innate immunity comprise perturbed chemotactic, phagocytic, and natural killing functions, as well as impaired antigen presentation. Overall, these alterations result in chronic low-grade inflammation (inflammaging) that negatively impacts health of elderly people. In this review, we address the most relevant molecules and mechanisms that regulate the relationship between immunosenescence and inflammaging and provide an updated description of the therapeutic strategies aimed to improve immunity in aged individuals.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ian García-Aguirre
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, Mexico,Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México, Mexico
| | - Juan Unzueta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, División de Investigación, Instituto Nacional de Geriatría, Secretaría de Salud, Ciudad de México, Mexico
| | - Oscar González-Morales
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Jalisco, Mexico
| | - Juan M. Domínguez-Larrieta
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Nuevo León, Mexico
| | - Aura Tamez-González
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico,*Correspondence: Gerardo Leyva-Gómez, ; Jonathan J. Magaña,
| | - Jonathan J. Magaña
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Ciudad de México, Mexico,Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Secretaría de Salud, Ciudad de México, Mexico,*Correspondence: Gerardo Leyva-Gómez, ; Jonathan J. Magaña,
| |
Collapse
|
5
|
Toledo B, Picon-Ruiz M, Marchal JA, Perán M. Dual Role of Fibroblasts Educated by Tumour in Cancer Behavior and Therapeutic Perspectives. Int J Mol Sci 2022; 23:15576. [PMID: 36555218 PMCID: PMC9778751 DOI: 10.3390/ijms232415576] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Tumours are complex systems with dynamic interactions between tumour cells, non-tumour cells, and extracellular components that comprise the tumour microenvironment (TME). The majority of TME's cells are cancer-associated fibroblasts (CAFs), which are crucial in extracellular matrix (ECM) construction, tumour metabolism, immunology, adaptive chemoresistance, and tumour cell motility. CAF subtypes have been identified based on the expression of protein markers. CAFs may act as promoters or suppressors in tumour cells depending on a variety of factors, including cancer stage. Indeed, CAFs have been shown to promote tumour growth, survival and spread, and secretome changes, but they can also slow tumourigenesis at an early stage through mechanisms that are still poorly understood. Stromal-cancer interactions are governed by a variety of soluble factors that determine the outcome of the tumourigenic process. Cancer cells release factors that enhance the ability of fibroblasts to secrete multiple tumour-promoting chemokines, acting on malignant cells to promote proliferation, migration, and invasion. This crosstalk between CAFs and tumour cells has given new prominence to the stromal cells, from being considered as mere physical support to becoming key players in the tumour process. Here, we focus on the concept of cancer as a non-healing wound and the relevance of chronic inflammation to tumour initiation. In addition, we review CAFs heterogeneous origins and markers together with the potential therapeutic implications of CAFs "re-education" and/or targeting tumour progression inhibition.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
| | - Manuel Picon-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| |
Collapse
|
6
|
Abstract
The microenvironment of the thymus is composed of a group of stromal cells that include endoderm-derived thymic epithelial cells (TECs) and mesenchymal stromal cells such as fibroblasts and serves as a site for the development of T cells. TECs are known to play an essential role in T cell differentiation and selection. Mesenchymal stromal cells have been less studied in terms of their immunological significance compared to TECs. Recently, new technologies have made it possible to identify and characterize mesenchymal stromal cells in the thymus, revealing their unique functions in thymic organogenesis and T cell development. This review outlines the current views on mesenchymal stromal cells in the thymus, particularly highlighting the newly discovered function of thymic fibroblasts in T cell repertoire selection.
Collapse
Affiliation(s)
- Takeshi Nitta
- grid.26999.3d0000 0001 2151 536XDepartment of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Shichkin VP, Antica M. Key Factors for Thymic Function and Development. Front Immunol 2022; 13:926516. [PMID: 35844535 PMCID: PMC9280625 DOI: 10.3389/fimmu.2022.926516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The thymus is the organ responsible for T cell development and the formation of the adaptive immunity function. Its multicellular environment consists mainly of the different stromal cells and maturing T lymphocytes. Thymus-specific progenitors of epithelial, mesenchymal, and lymphoid cells with stem cell properties represent only minor populations. The thymic stromal structure predominantly determines the function of the thymus. The stromal components, mostly epithelial and mesenchymal cells, form this specialized area. They support the consistent developmental program of functionally distinct conventional T cell subpopulations. These include the MHC restricted single positive CD4+ CD8- and CD4- CD8+ cells, regulatory T lymphocytes (Foxp3+), innate natural killer T cells (iNKT), and γδT cells. Several physiological causes comprising stress and aging and medical treatments such as thymectomy and chemo/radiotherapy can harm the thymus function. The present review summarizes our knowledge of the development and function of the thymus with a focus on thymic epithelial cells as well as other stromal components and the signaling and transcriptional pathways underlying the thymic cell interaction. These critical thymus components are significant for T cell differentiation and restoring the thymic function after damage to reach the therapeutic benefits.
Collapse
|
8
|
Peng Q, Shan D, Cui K, Li K, Zhu B, Wu H, Wang B, Wong S, Norton V, Dong Y, Lu YW, Zhou C, Chen H. The Role of Endothelial-to-Mesenchymal Transition in Cardiovascular Disease. Cells 2022; 11:1834. [PMID: 35681530 PMCID: PMC9180466 DOI: 10.3390/cells11111834] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is the process of endothelial cells progressively losing endothelial-specific markers and gaining mesenchymal phenotypes. In the normal physiological condition, EndoMT plays a fundamental role in forming the cardiac valves of the developing heart. However, EndoMT contributes to the development of various cardiovascular diseases (CVD), such as atherosclerosis, valve diseases, fibrosis, and pulmonary arterial hypertension (PAH). Therefore, a deeper understanding of the cellular and molecular mechanisms underlying EndoMT in CVD should provide urgently needed insights into reversing this condition. This review summarizes a 30-year span of relevant literature, delineating the EndoMT process in particular, key signaling pathways, and the underlying regulatory networks involved in CVD.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Shan
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beibei Wang
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Scott Wong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vikram Norton
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yao Wei Lu
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Handel AE, Cheuk S, Dhalla F, Maio S, Hübscher T, Rota I, Deadman ME, Ekwall O, Lütolf M, Weinberg K, Holländer G. Developmental dynamics of the neural crest-mesenchymal axis in creating the thymic microenvironment. SCIENCE ADVANCES 2022; 8:eabm9844. [PMID: 35559672 PMCID: PMC9106291 DOI: 10.1126/sciadv.abm9844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The thymic stroma is composed of epithelial and nonepithelial cells providing separate microenvironments controlling homing, differentiation, and selection of hematopoietic precursor cells to functional T cells. Here, we explore at single-cell resolution the complex composition and dynamic changes of the nonepithelial stromal compartment across different developmental stages in the human and mouse thymus, and in an experimental model of the DiGeorge syndrome, the most common form of human thymic hypoplasia. The detected gene expression signatures identify previously unknown stromal subtypes and relate their individual molecular profiles to separate differentiation trajectories and functions, revealing an unprecedented heterogeneity of different cell types that emerge at discrete developmental stages and vary in their expression of key regulatory signaling circuits and extracellular matrix components. Together, these findings highlight the dynamic complexity of the nonepithelial thymus stroma and link this to separate instructive roles essential for normal thymus organogenesis and tissue maintenance.
Collapse
Affiliation(s)
- Adam E. Handel
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stanley Cheuk
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Fatima Dhalla
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stefano Maio
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tania Hübscher
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Ioanna Rota
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mary E. Deadman
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Lütolf
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Kenneth Weinberg
- Division of Stem Cell Transplantation and Regenerative Medicine Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Georg Holländer
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
10
|
Chakrabarti S, Hoque M, Jamil NZ, Singh VJ, Pollacksmith D, Meer N, Pezzano MT. Bone Marrow-Derived Cells Contribute to the Maintenance of Thymic Stroma including TECs. J Immunol Res 2022; 2022:6061746. [PMID: 35528618 PMCID: PMC9076333 DOI: 10.1155/2022/6061746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022] Open
Abstract
In paradox to critical functions for T-cell selection and self-tolerance, the thymus undergoes profound age-associated atrophy and loss of T-cell function, further enhanced by cancer therapies. Identifying thymic epithelial progenitor populations capable of forming functional thymic tissue will be critical in understanding thymic epithelial cell (TEC) ontogeny and designing strategies to reverse involution. We identified a new population of progenitor cells, present in both the thymus and bone marrow (BM) of mice, that coexpress the hematopoietic marker CD45 and the definitive thymic epithelial marker EpCAM and maintain the capacity to form functional thymic tissue. Confocal analysis and qRT-PCR of sorted cells from both BM and thymus confirmed coexpression of CD45 and EpCAM. Grafting of C57BL/6 fetal thymi under the kidney capsule of H2BGFP transgenic mice revealed that peripheral CD45+ EpCAM+ GFP-expressing cells migrate into the developing thymus and contribute to both TECs and FSP1-expressing thymic stroma. Sorted BM-derived CD45+ EpCAM+ cells contribute to reaggregate thymic organ cultures (RTOCs) and differentiate into keratin and FoxN1-expressing TECs, demonstrating that BM cells can contribute to the maintenance of TEC microenvironments previously thought to be derived solely from endoderm. BM-derived CD45+ EpCAM+ cells represent a new source of progenitor cells that contribute to thymic homeostasis. Future studies will characterize the contribution of BM-derived CD45+ EpCAM+ TEC progenitors to distinct functional TEC microenvironments in both the steady-state thymus and under conditions of demand. Cell therapies utilizing this population may help counteract thymic involution in cancer patients.
Collapse
Affiliation(s)
- Shami Chakrabarti
- Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Mohammed Hoque
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Nawshin Zara Jamil
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Varan J. Singh
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Daniel Pollacksmith
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Neelab Meer
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
| | - Mark T. Pezzano
- Department of Biology, City College of New York CUNY, New York, NY 10031, USA
- Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
11
|
Liang Z, Zhang Q, Zhang Z, Sun L, Dong X, Li T, Tan L, Xie X, Sun L, Zhao Y. The Development and Survival of Thymic Epithelial Cells Require TSC1-Dependent Negative Regulation of mTORC1 Activity. THE JOURNAL OF IMMUNOLOGY 2021; 207:2039-2050. [PMID: 34535574 DOI: 10.4049/jimmunol.2100463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
Thymic epithelial cells (TECs) are critical for the development and generation of functionally competent T cells. Until now, the mechanism that regulates the survival of TECs is poorly understood. In the current study, we found that Tsc1 controls the homeostasis of medullary TECs (mTECs) by inhibiting lysosomal-mediated apoptosis pathway in mice. TEC-specific deletion of Tsc1 predominately decreased the cell number of mTECs and, to a lesser content, affected the development cortical TECs. The defect of mTECs caused by Tsc1 deficiency in mice impaired thymocyte development and peripheral T cell homeostasis. Mechanistically, Tsc1 deficiency did not affect the cell proliferation of mTECs but increased the apoptosis of mTECs significantly. RNA-sequencing analysis showed that pathways involved in lysosomal biogenesis, cell metabolism, and apoptosis were remarkably elevated in Tsc1-deficient mTECs compared with their wild-type counterparts. Tsc1-deficient mTECs exhibited overproduction of reactive oxygen species and malfunction of lysosome, with lysosome membrane permeabilization and the release of cathepsin B and cathepsin L to the cytosol, which then lead to Bid cleaved into active truncated Bid and subsequently intrinsic apoptosis. Finally, we showed that the impaired development of mTECs could be partially reversed by decreasing mTORC1 activity via haploinsufficiency of Raptor Thus, Tsc1 is essential for the homeostasis of mTECs by inhibiting lysosomal-mediated apoptosis through mTORC1-dependent pathways.
Collapse
Affiliation(s)
- Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tianxiu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xubiao Xie
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China; and .,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; .,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Cao H, Wang W, Xiao J, Huang D, Gao Y, Zhu D. Comparison of two methods for isolation and culture of human foreskin fibroblasts. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:800-808. [PMID: 34565722 PMCID: PMC10929966 DOI: 10.11817/j.issn.1672-7347.2021.200431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The efficient acquisition and purification of fibroblasts as ideal seed cells are very important. For optimization of the isolation and culture of human foreskin fibroblasts (HFF), we compared the improved tissue culture method (ITCM) and the enzyme digestion method (EDM). METHODS In ITCM, the skin tissue was digested with 0.1% Type II collagenase overnight at 4 ℃, the epidermis was separated from the dermis and digested again with 0.25% trypsin at room temperature for 15 min, and then the tissue block was attached to the culture dish. In EDM, the skin tissue was digested with 0.25% trypsin overnight at 4 ℃, the epidermis was separated from the dermis and digested with 0.1% Type II collagenase overnight at 4 ℃, the tissue block was filtered and squeezed together with the enzyme mixture, the filter was rinsed with medium containing fetal bovine serum, and the cell suspension was cultured. Both ITCM and EDM used 2 digestion enzymes, but the order, digestion time, and temperature of the 2 enzymes were different. The final inoculations of ITCM and EDM in the dishes for subsequent culture were tissue blocks and cell suspensions, respectively. In this study, HFF cells were isolated and cultured with ITCM and EDM, and the cell morphology was observed from Passage 0 to Passage 3 in the ITCM and EDM groups. The cell purity was identified by staining for vimentin, CD68, and Pan-keratin. The growth curves of Passage 3 were plotted to compare the proliferation ability of the 2 groups. Passage 3 HFF cells in the ITCM and EDM groups were irradiated with medium-wave ultraviolet (UVB) at an energy value of 120 mJ/cm2 to establish a light damage model. The experiments were grouped into an UVB group and a control group (Control) according to the presence or absence of UVB irradiation. Platelet-poor plasma (PPP) was extracted by secondary centrifugation, and the HFF cells of ITCM and EDM groups were cultured in groups using complete medium containing different concentrations (0, 2.5%, 5.0%, and 10.0%) of PPP, and the proliferation of damaged cells was detected by cell counting kit-8 after 24 h of PPP incubation. RESULTS A large number of HFF could be observed in the ITCM group up to day 3, which was less affected by impurities; the observation of HFF morphology in the EDM group was affected by more impurities. By day 9, cells in both ITCM and EDM groups could be passaged; HFF isolated and cultured in vitro by the 2 methods showed long spindle-shaped, swirling growth. The positive rates of vimentin in the ITCM and EDM groups when HFF cells were cultured up to Passage 2 were significantly different [(97.36±0.76)% vs (99.4±0.56)%, P<0.01)]. The positive rates of CD68 were also significantly different [(70.8±0.46)% vs (78.37±0.75)%, P<0.01]. The expressions of pan-keratin in the ITCM group and the EDM group were positive and negative, respectively. There was no difference in vimentin and pan-keratin staining results between the ITCM group and the EDM group when HFF were cultured to Passage 3. The positive rates of CD68 between the ITCM group and the EDM group were significantly different [(74.73±1.37)% vs (85.27±2.63)%, P<0.001]. The proliferative capacity of HFF cells in Passage 3 was significantly higher in the EDM group than that in the ITCM group (P<0.05). After UVB (120 mJ/cm2) irradiation, HFFs procured by the 2 isolation methods showed damage. The damage repair test demonstrated that the 2.5% PPP+UVB irradiation group showed significantly higher repair competence than the other groups (all P<0.05). CONCLUSIONS In contrast with HFFs isolated via ITCM, HFF cells isolated by EDM have a faster purification rate and a stronger proliferative capacity. Therapy with PPP can moderately repair UVB-induced damage to HFFs. The results provide a theoretical basis for clinical treatment studies in the future.
Collapse
Affiliation(s)
- Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208.
| | - Wei Wang
- Department of Dermatology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - Jingchuan Xiao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208
| | - Dan Zhu
- Central Laboratory, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208
| |
Collapse
|
13
|
Lagares D, Hinz B. Animal and Human Models of Tissue Repair and Fibrosis: An Introduction. Methods Mol Biol 2021; 2299:277-290. [PMID: 34028750 DOI: 10.1007/978-1-0716-1382-5_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reductionist cell culture systems are not only convenient but essential to understand molecular mechanisms of myofibroblast activation and action in carefully controlled conditions. However, tissue myofibroblasts do not act in isolation and the complexity of tissue repair and fibrosis in humans cannot be captured even by the most elaborate culture models. Over the past five decades, numerous animal models have been developed to study different aspects of myofibroblast biology and interactions with other cells and extracellular matrix. The underlying principles can be broadly classified into: (1) organ injury by trauma such as prototypical full thickness skin wounds or burns; (2) mechanical challenges, such as pressure overload of the heart by ligature of the aorta or the pulmonary vein; (3) toxic injury, such as administration of bleomycin to lungs and carbon tetrachloride to the liver; (4) organ infection with viruses, bacteria, and parasites, such as nematode infections of liver; (5) cytokine and inflammatory models, including local delivery or viral overexpression of active transforming growth factor beta; (6) "lifestyle" and metabolic models such as high-fat diet; and (7) various genetic models. We will briefly summarize the most widely used mouse models used to study myofibroblasts in tissue repair and fibrosis as well as genetic tools for manipulating myofibroblast repair functions in vivo.
Collapse
Affiliation(s)
- David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Am J Cancer Res 2021; 11:8322-8336. [PMID: 34373744 PMCID: PMC8343997 DOI: 10.7150/thno.62378] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells are well-known for adapting their metabolism to maintain high proliferation rates and survive in unfavorable environments with low oxygen and nutritional deficiency. Metabolic reprogramming most commonly arises from the tumor microenvironment (TME). The events of metabolic pathways include the Warburg effect, shift in Krebs cycle metabolites, and increase rate of oxidative phosphorylation that provides the energy for the development and invasion of cancer cells. The TME and shift in tumor metabolism shows a close relationship through bidirectional signaling pathways between the stromal and tumor cells. Cancer-associated fibroblasts (CAFs) are the main type of stromal cells in the TME and consist of a heterogeneous and plastic population that play key roles in tumor growth and metastatic capacity. Emerging evidence suggests that CAFs act as major regulators in shaping tumor metabolism especially through the dysregulation of several metabolic pathways, including glucose, amino acid, and lipid metabolism. The arrangement of these metabolic switches is believed to shape distinct CAF behavior and change tumor cell behavior by the CAFs. The crosstalk between cancer cells and CAFs is associated with cell metabolic reprogramming that contributes to cancer cell growth, progression, and evasion from cancer therapies. But the mechanism and process of this interaction remain unclear. This review aimed to highlight the metabolic couplings between tumor cells and CAFs. We reviewed the recent literature supporting an important role of CAFs in the regulation of cancer cell metabolism, and the relevant pathways, which may serve as targets for therapeutic interventions.
Collapse
|
15
|
Nitta T, Ota A, Iguchi T, Muro R, Takayanagi H. The fibroblast: An emerging key player in thymic T cell selection. Immunol Rev 2021; 302:68-85. [PMID: 34096078 PMCID: PMC8362222 DOI: 10.1111/imr.12985] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Fibroblasts have recently attracted attention as a key stromal component that controls the immune responses in lymphoid tissues. The thymus has a unique microenvironment comprised of a variety of stromal cells, including fibroblasts and thymic epithelial cells (TECs), the latter of which is known to be important for T cell development because of their ability to express self‐antigens. Thymic fibroblasts contribute to thymus organogenesis during embryogenesis and form the capsule and medullary reticular network in the adult thymus. However, the immunological significance of thymic fibroblasts has thus far only been poorly elucidated. In this review, we will summarize the current views on the development and functions of thymic fibroblasts as revealed by new technologies such as multicolor flow cytometry and single cell–based transcriptome profiling. Furthermore, the recently discovered role of medullary fibroblasts in the establishment of T cell tolerance by producing a unique set of self‐antigens will be highlighted.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Han J, Zúñiga-Pflücker JC. A 2020 View of Thymus Stromal Cells in T Cell Development. THE JOURNAL OF IMMUNOLOGY 2021; 206:249-256. [PMID: 33397738 DOI: 10.4049/jimmunol.2000889] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
The thymus is an intricate primary lymphoid organ, wherein bone marrow-derived lymphoid progenitor cells are induced to develop into functionally competent T cells that express a diverse TCR repertoire, which is selected to allow for the recognition of foreign Ags while avoiding self-reactivity or autoimmunity. Thymus stromal cells, which can include all non-T lineage cells, such as thymic epithelial cells, endothelial cells, mesenchymal/fibroblast cells, dendritic cells, and B cells, provide signals that are essential for thymocyte development as well as for the homeostasis of the thymic stroma itself. In this brief review, we focus on the key roles played by thymic stromal cells during early stages of T cell development, such as promoting the homing of thymic-seeding progenitors, inducing T lineage differentiation, and supporting thymocyte survival and proliferation. We also discuss recent advances on the transcriptional regulation that govern thymic epithelial cell function as well as the cellular and molecular changes that are associated with thymic involution and regeneration.
Collapse
Affiliation(s)
- Jianxun Han
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; and
| | - Juan Carlos Zúñiga-Pflücker
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; and.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
17
|
James KD, Jenkinson WE, Anderson G. Non-Epithelial Stromal Cells in Thymus Development and Function. Front Immunol 2021; 12:634367. [PMID: 33717173 PMCID: PMC7946857 DOI: 10.3389/fimmu.2021.634367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
The thymus supports T-cell development via specialized microenvironments that ensure a diverse, functional and self-tolerant T-cell population. These microenvironments are classically defined as distinct cortex and medulla regions that each contain specialized subsets of stromal cells. Extensive research on thymic epithelial cells (TEC) within the cortex and medulla has defined their essential roles during T-cell development. Significantly, there are additional non-epithelial stromal cells (NES) that exist alongside TEC within thymic microenvironments, including multiple subsets of mesenchymal and endothelial cells. In contrast to our current understanding of TEC biology, the developmental origins, lineage relationships, and functional properties, of NES remain poorly understood. However, experimental evidence suggests these cells are important for thymus function by either directly influencing T-cell development, or by indirectly regulating TEC development and/or function. Here, we focus attention on the contribution of NES to thymic microenvironments, including their phenotypic identification and functional classification, and explore their impact on thymus function.
Collapse
Affiliation(s)
- Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Bautista JL, Cramer NT, Miller CN, Chavez J, Berrios DI, Byrnes LE, Germino J, Ntranos V, Sneddon JB, Burt TD, Gardner JM, Ye CJ, Anderson MS, Parent AV. Single-cell transcriptional profiling of human thymic stroma uncovers novel cellular heterogeneity in the thymic medulla. Nat Commun 2021; 12:1096. [PMID: 33597545 PMCID: PMC7889611 DOI: 10.1038/s41467-021-21346-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/22/2021] [Indexed: 01/02/2023] Open
Abstract
The thymus' key function in the immune system is to provide the necessary environment for the development of diverse and self-tolerant T lymphocytes. While recent evidence suggests that the thymic stroma is comprised of more functionally distinct subpopulations than previously appreciated, the extent of this cellular heterogeneity in the human thymus is not well understood. Here we use single-cell RNA sequencing to comprehensively profile the human thymic stroma across multiple stages of life. Mesenchyme, pericytes and endothelial cells are identified as potential key regulators of thymic epithelial cell differentiation and thymocyte migration. In-depth analyses of epithelial cells reveal the presence of ionocytes as a medullary population, while the expression of tissue-specific antigens is mapped to different subsets of epithelial cells. This work thus provides important insight on how the diversity of thymic cells is established, and how this heterogeneity contributes to the induction of immune tolerance in humans.
Collapse
Affiliation(s)
- Jhoanne L Bautista
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan T Cramer
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Corey N Miller
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Chavez
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - David I Berrios
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren E Byrnes
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Joe Germino
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Vasilis Ntranos
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Julie B Sneddon
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, CA, USA
| | - Trevor D Burt
- Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Division of Neonatology and the Children's Health & Discovery Initiative, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - James M Gardner
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Chun J Ye
- Bakar Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Mark S Anderson
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Audrey V Parent
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Nitta T, Takayanagi H. Non-Epithelial Thymic Stromal Cells: Unsung Heroes in Thymus Organogenesis and T Cell Development. Front Immunol 2021; 11:620894. [PMID: 33519827 PMCID: PMC7840694 DOI: 10.3389/fimmu.2020.620894] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022] Open
Abstract
The stromal microenvironment in the thymus is essential for generating a functional T cell repertoire. Thymic epithelial cells (TECs) are numerically and phenotypically one of the most prominent stromal cell types in the thymus, and have been recognized as one of most unusual cell types in the body by virtue of their unique functions in the course of the positive and negative selection of developing T cells. In addition to TECs, there are other stromal cell types of mesenchymal origin, such as fibroblasts and endothelial cells. These mesenchymal stromal cells are not only components of the parenchymal and vascular architecture, but also have a pivotal role in controlling TEC development, although their functions have been less extensively explored than TECs. Here, we review both the historical studies on and recent advances in our understanding of the contribution of such non-TEC stromal cells to thymic organogenesis and T cell development. In particular, we highlight the recently discovered functional effect of thymic fibroblasts on T cell repertoire selection.
Collapse
Affiliation(s)
- Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
20
|
Hsu HP, Chen YT, Chen YY, Lin CY, Chen PY, Liao SY, Lim CCY, Yamaguchi Y, Hsu CL, Dzhagalov IL. Heparan sulfate is essential for thymus growth. J Biol Chem 2021; 296:100419. [PMID: 33600795 PMCID: PMC7974028 DOI: 10.1016/j.jbc.2021.100419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Thymus organogenesis and T cell development are coordinated by various soluble and cell-bound molecules. Heparan sulfate (HS) proteoglycans can interact with and immobilize many soluble mediators, creating fields or gradients of secreted ligands. While the role of HS in the development of many organs has been studied extensively, little is known about its function in the thymus. Here, we examined the distribution of HS in the thymus and the effect of its absence on thymus organogenesis and T cell development. We found that HS was expressed most abundantly on the thymic fibroblasts and at lower levels on endothelial, epithelial, and hematopoietic cells. To study the function of HS in the thymus, we eliminated most of HS in this organ by genetically disrupting the glycosyltransferase Ext1 that is essential for its synthesis. The absence of HS greatly reduced the size of the thymus in fetal thymic organ cultures and in vivo, in mice, and decreased the production of T cells. However, no specific blocks in T cell development were observed. Wild-type thymic fibroblasts were able to physically bind the homeostatic chemokines CCL19, CCL21, and CXCL12 ex vivo. However, this binding was abolished upon HS degradation, disrupting the CCL19/CCL21 chemokine gradients and causing impaired migration of dendritic cells in thymic slices. Thus, our results show that HS plays an essential role in the development and growth of the thymus and in regulating interstitial cell migration.
Collapse
Affiliation(s)
- Hsuan-Po Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Tzu Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ying Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yu Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Po-Yu Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shio-Yi Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ivan L Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
21
|
Fibroblasts as a source of self-antigens for central immune tolerance. Nat Immunol 2020; 21:1172-1180. [PMID: 32839611 DOI: 10.1038/s41590-020-0756-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
Fibroblasts are one of the most common but also neglected types of stromal cells, the heterogeneity of which underlies the specific function of tissue microenvironments in development and regeneration. In the thymus, autoreactive T cells are thought to be negatively selected by reference to the self-antigens expressed in medullary epithelial cells, but the contribution of other stromal cells to tolerance induction has been poorly examined. In the present study, we report a PDGFR+ gp38+ DPP4- thymic fibroblast subset that is required for T cell tolerance induction. The deletion of the lymphotoxin β-receptor in thymic fibroblasts caused an autoimmune phenotype with decreased expression of tissue-restricted and fibroblast-specific antigens, offering insight into the long-sought target of lymphotoxin signaling in the context of the regulation of autoimmunity. Thus, thymic medullary fibroblasts play an essential role in the establishment of central tolerance by producing a diverse array of self-antigens.
Collapse
|
22
|
Koliaraki V, Prados A, Armaka M, Kollias G. The mesenchymal context in inflammation, immunity and cancer. Nat Immunol 2020; 21:974-982. [PMID: 32747813 DOI: 10.1038/s41590-020-0741-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
Mesenchymal cells are mesoderm-derived stromal cells that are best known for providing structural support to organs, synthesizing and remodeling the extracellular matrix (ECM) and regulating development, homeostasis and repair of tissues. Recent detailed mechanistic insights into the biology of fibroblastic mesenchymal cells have revealed they are also significantly involved in immune regulation, stem cell maintenance and blood vessel function. It is now becoming evident that these functions, when defective, drive the development of complex diseases, such as various immunopathologies, chronic inflammatory disease, tissue fibrosis and cancer. Here, we provide a concise overview of the contextual contribution of fibroblastic mesenchymal cells in physiology and disease and bring into focus emerging evidence for both their heterogeneity at the single-cell level and their tissue-specific, spatiotemporal functional diversity.
Collapse
Affiliation(s)
- Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Marietta Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece. .,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece. .,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
23
|
Abstract
Understanding the pathogenesis of certain viral agents is essential for developing new treatments and obtaining a clinical cure. With the onset of the new coronavirus (SARS-CoV-2) pandemic in the beginning of 2020, a rush to conduct studies and develop drugs has led to the publication of articles that seek to address knowledge gaps and contribute to the global scientific research community. There are still no reports on the infectivity or repercussions of SARS-CoV-2 infection on the central lymphoid organ, the thymus, nor on thymocytes or thymic epithelial cells. In this brief review, we present a hypothesis about lymphopenia observed in SARS patients and the probable pathological changes that the thymus may undergo due to this new virus.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Glycopeptide epitope facilitates HIV-1 envelope specific humoral immune responses by eliciting T cell help. Nat Commun 2020; 11:2550. [PMID: 32439962 PMCID: PMC7242320 DOI: 10.1038/s41467-020-16319-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
The inherent molecular complexity of human pathogens requires that mammals evolved an adaptive immune system equipped to handle presentation of non-conventional MHC ligands derived from disease-causing agents, such as HIV-1 envelope (Env) glycoprotein. Here, we report that a CD4+ T cell repertoire recognizes a glycopeptide epitope on gp120 presented by MHCII pathway. This glycopeptide is strongly immunogenic in eliciting glycan-dependent cellular and humoral immune responses. The glycopeptide specific CD4+ T cells display a prominent feature of Th2 and Th17 differentiation and exert high efficacy and potency to help Env trimer humoral immune responses. Glycopeptide-induced CD4+ T cell response prior to Env trimer immunization elicits neutralizing antibody development and production of antibodies facilitating uptake of immunogens by antigen-presenting cells. Our identification of gp120 glycopeptide–induced, T cell–specific immune responses offers a foundation for developing future knowledge-based vaccines that elicit strong and long-lasting protective immune responses against HIV-1 infection. T cells recognize peptide antigens presented in the context of MHC but can additionally recognize non-conventional ligands. Here the authors show T cells specific for a HIV-1 associated glycopeptide antigen presented by MHC class II help envelope (Env) trimer induced humoral immune responses.
Collapse
|
25
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020; 367:367/6480/eaay3224. [PMID: 32079746 DOI: 10.1126/science.aay3224] [Citation(s) in RCA: 427] [Impact Index Per Article: 85.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/16/2020] [Indexed: 11/03/2022]
Abstract
The thymus provides a nurturing environment for the differentiation and selection of T cells, a process orchestrated by their interaction with multiple thymic cell types. We used single-cell RNA sequencing to create a cell census of the human thymus across the life span and to reconstruct T cell differentiation trajectories and T cell receptor (TCR) recombination kinetics. Using this approach, we identified and located in situ CD8αα+ T cell populations, thymic fibroblast subtypes, and activated dendritic cell states. In addition, we reveal a bias in TCR recombination and selection, which is attributed to genomic position and the kinetics of lineage commitment. Taken together, our data provide a comprehensive atlas of the human thymus across the life span with new insights into human T cell development.
Collapse
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK.,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK.,WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Great Ormond Street Institute of Child Health, University College London, London, UK.,Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. .,Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
26
|
Park JE, Botting RA, Domínguez Conde C, Popescu DM, Lavaert M, Kunz DJ, Goh I, Stephenson E, Ragazzini R, Tuck E, Wilbrey-Clark A, Roberts K, Kedlian VR, Ferdinand JR, He X, Webb S, Maunder D, Vandamme N, Mahbubani KT, Polanski K, Mamanova L, Bolt L, Crossland D, de Rita F, Fuller A, Filby A, Reynolds G, Dixon D, Saeb-Parsy K, Lisgo S, Henderson D, Vento-Tormo R, Bayraktar OA, Barker RA, Meyer KB, Saeys Y, Bonfanti P, Behjati S, Clatworthy MR, Taghon T, Haniffa M, Teichmann SA. A cell atlas of human thymic development defines T cell repertoire formation. Science 2020. [DOI: 10.1126/science.aay3224 32079746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rachel A. Botting
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Dorin-Mirel Popescu
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Daniel J. Kunz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Issac Goh
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Emily Stephenson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roberta Ragazzini
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Anna Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Veronika R. Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
| | - Simone Webb
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Maunder
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Krishnaa T. Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Crossland
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Fabrizio de Rita
- Department of Adult Congenital Heart Disease and Paediatric Cardiology/Cardiothoracic Surgery, Freeman Hospital, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Andrew Fuller
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew Filby
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gary Reynolds
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Steven Lisgo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Deborah Henderson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Omer A. Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, UK
- WT-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Paola Bonfanti
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0SP, UK
| | - Menna R. Clatworthy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge CB2 0QQ, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE2 4LP, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| |
Collapse
|
27
|
Autologous fibroblasts induce fibrosis of the nucleus pulposus to maintain the stability of degenerative intervertebral discs. Bone Res 2020; 8:7. [PMID: 32128275 PMCID: PMC7015945 DOI: 10.1038/s41413-019-0082-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 10/04/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023] Open
Abstract
Lumbar degenerative disc diseases cause low back pain (LBP). The maintenance of the height and stability of the intervertebral disc (IVD) space is an effective treatment for LBP. The following study evaluated the effects of fibroblast injection on intervertebral disc degeneration (IDD) in a preclinical setting. Compared with the IDD group, the fibroblast treatment group demonstrated effective maintenance of IVD height, reduced endplate degeneration, and improved nuclear magnetic resonance signals and overall histological structure. In doing so, fibrotic IVDs maintained the stability and biomechanics of the vertebra. This finding is in agreement with clinical findings that human nucleus pulposus (NP) fibrosis is essential for the maintenance of IVD height and mechanical properties in patients following percutaneous endoscopic lumbar discectomy (PELD). Mechanistically, we demonstrated that injected fibroblasts not only proliferated but also induced NP cells to adopt a fibrotic phenotype via the secretion of TGF-β. Finally, to better mimic human conditions, the efficacy of autologous fibroblast injection in the treatment of IDD was further examined in a nonhuman primate cynomolgus monkey model due to their capacity for upright posture. We showed that the injection of fibroblasts could maintain the IVD height and rescue IVD signals in cynomolgus monkeys. Taken together, the results of our study reveal that autologous fibroblast injection can enhance the natural process of fibrosis during acute and subacute stages of stress-induced IDD. Fibrotic IVDs can maintain the stability, biological activity, and mechanical properties of the intervertebral space, thus providing a new direction for the treatment of intervertebral space-derived lumbar degenerative diseases.
Collapse
|
28
|
Luan R, Liang Z, Zhang Q, Sun L, Zhao Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 2019; 107:42-49. [PMID: 31238242 DOI: 10.1016/j.diff.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 01/15/2023]
Abstract
Functional mature T cells are generated in the thymus. Thymic epithelial cells (TECs) provide the essential microenvironment for T cell development and maturation. According to their function and localization, TECs are roughly divided into cortical TECs (cTECs) and medullary TECs (mTECs), which are responsible for positive and negative selection, respectively. This review summarizes the current understanding of TEC biology, the identification of fetal and adult bipotent TEC progenitors, and the signaling pathways that control the development and maturation of TECs. The understanding of the ontogeny, differentiation, maturation and function of cTECs lags behind that of mTECs. Better understanding TEC biology will provide clues about TEC development and the applications of thymus engineering.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
29
|
Marsh E, Gonzalez DG, Lathrop EA, Boucher J, Greco V. Positional Stability and Membrane Occupancy Define Skin Fibroblast Homeostasis In Vivo. Cell 2018; 175:1620-1633.e13. [PMID: 30415836 DOI: 10.1016/j.cell.2018.10.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023]
Abstract
Fibroblasts are an essential cellular and structural component of our organs. Despite several advances, the critical behaviors that fibroblasts utilize to maintain their homeostasis in vivo have remained unclear. Here, by tracking the same skin fibroblasts in live mice, we show that fibroblast position is stable over time and that this stability is maintained despite the loss of neighboring fibroblasts. In contrast, fibroblast membranes are dynamic during homeostasis and extend to fill the space of lost neighboring fibroblasts in a Rac1-dependent manner. Positional stability is sustained during aging despite a progressive accumulation of gaps in fibroblast nuclei organization, while membrane occupancy continues to be maintained. This work defines positional stability and cell occupancy as key principles of skin fibroblast homeostasis in vivo, throughout the lifespan of mice, and identifies membrane extension in the absence of migration as the core cellular mechanism to carry out these principles.
Collapse
Affiliation(s)
- Edward Marsh
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jonathan Boucher
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Dermatology & Cell Biology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
30
|
Sun C, Chen SY. RGC32 Promotes Bleomycin-Induced Systemic Sclerosis in a Murine Disease Model by Modulating Classically Activated Macrophage Function. THE JOURNAL OF IMMUNOLOGY 2018; 200:2777-2785. [PMID: 29507108 DOI: 10.4049/jimmunol.1701542] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/10/2018] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a multisystem autoimmune disorder that is characterized by inflammation and fibrosis in the skin and internal organs. Previous studies indicate that inflammatory cells and cytokines play essential roles in the pathogenesis of SSc; however, the mechanisms that underlie the inflammation-driven development of SSc are not fully understood. In this study, we show that response gene to complement 32 (RGC32) is abundantly expressed in mouse macrophages in the early stage of bleomycin-induced SSc. Importantly, RGC32 is required to induce the inflammatory response during the onset of SSc, because RGC32 deficiency in mice significantly ameliorates skin and lung sclerosis and inhibits the expression of inflammatory mediators inducible NO synthase (iNOS) and IL-1β in macrophages. RGC32 appears to be a novel regulator for the differentiation of classically activated macrophages (M1 macrophages). IFN-γ and LPS stimulation induces RGC32 expression in primary peritoneal macrophages and bone marrow-derived macrophages. RGC32 deficiency impairs the polarization of M1 macrophages and attenuates iNOS and IL-1β production. Mechanistically, RGC32 interacts with NF-κB proteins and promotes iNOS and IL-1β expression by binding to their promoters. Collectively, our data reveal that RGC32 promotes the onset of SSc by regulating the inflammatory response of M1 macrophages, and it may serve as a promising therapeutic target for treating SSc.
Collapse
Affiliation(s)
- Chenming Sun
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602
| |
Collapse
|
31
|
S100A4 promotes lung tumor development through β-catenin pathway-mediated autophagy inhibition. Cell Death Dis 2018; 9:277. [PMID: 29449540 PMCID: PMC5833421 DOI: 10.1038/s41419-018-0319-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022]
Abstract
Autophagy has emerged as a critical pathway in tumor development. S100A4 plays important roles in tumor metastasis, but its role in regulating autophagy has not been well characterized. In this study, we found that S100A4 was significantly upregulated in lung adenocarcinoma tissues. Clinical investigation demonstrated that high expression level of S100A4 was associated with tumor size and advanced tumor grades of lung adenocarcinoma patients. Moreover, our results revealed that extracellular S100A4 or overexpression of S100A4 inhibited starvation-induced autophagy and promoted cell proliferation in lung cancer cells in vitro; whereas small interfering RNA (siRNA)-mediated suppression of S100A4 increased autophagy and reduced cell viability in both A549 and LLC cells. Additionally, S100A4 inhibited starvation-induced autophagy to promote tumor cell viability via the Wnt pathway. Increased expression of β-catenin consistently led to a decreased LC3-II protein abundance. Further, the inhibitory effect of S100A4 on autophagy and its promotion role in cell proliferation was abolished in A549 and LLC cells using the receptor for advanced glycation end products (RAGE)-specific inhibitor (FPS-ZM1). S100A4-deficient mice showed retarded tumor development. This effect was well correlated with increased expression of autophagy markers. Our findings demonstrate that S100A4 promotes lung tumor development through inhibiting autophagy in a β-catenin signaling and S100A4 receptor RAGE-dependent manner, which provides a novel mechanism of S100A4-associated promotion of tumor development.
Collapse
|
32
|
Liang Z, Zhang L, Su H, Luan R, Na N, Sun L, Zhao Y, Zhang X, Zhang Q, Li J, Zhang L, Zhao Y. MTOR signaling is essential for the development of thymic epithelial cells and the induction of central immune tolerance. Autophagy 2018; 14:505-517. [PMID: 29099279 DOI: 10.1080/15548627.2017.1376161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thymic epithelial cells (TECs) are critical for the establishment and maintenance of appropriate microenvironment for the positive and negative selection of thymocytes and the induction of central immune tolerance. Yet, little about the molecular regulatory network on TEC development and function is understood. Here, we demonstrate that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) is essential for proper development and functional maturation of TECs. Pharmacological inhibition of MTOR activity by rapamycin (RPM) causes severe thymic atrophy and reduction of TECs. TEC-specific deletion of Mtor causes the severe reduction of mTECs, the blockage of thymocyte differentiation and output, the reduced generation of thymic regulatory T (Treg) cells and the impaired expression of tissue-restricted antigens (TRAs) including Fabp2, Ins1, Tff3 and Chrna1 molecules. Importantly, specific deletion of Mtor in TECs causes autoimmune diseases characterized by enhanced tissue immune cell infiltration and the presence of autoreactive antibodies. Mechanistically, Mtor deletion causes overdegradation of CTNNB1/Beta-Catenin due to excessive autophagy and the attenuation of WNT (wingless-type MMTV integration site family) signaling in TECs. Selective inhibition of autophagy significantly rescued the poor mTEC development caused by Mtor deficiency. Altogether, MTOR is essential for TEC development and maturation by regulating proliferation and WNT signaling activity through autophagy. The present study also implies that long-term usage of RPM might increase the risk of autoimmunity by impairing TEC maturation and function.
Collapse
Affiliation(s)
- Zhanfeng Liang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Lianjun Zhang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Huiting Su
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Rong Luan
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ning Na
- c Department of Kidney Transplantation , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Lina Sun
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yang Zhao
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Xiaodong Zhang
- d Department of Urology , Beijing Chaoyang Hospital, Capital Medical University , Chaoyang District, Beijing , China
| | - Qian Zhang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Juan Li
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Lianfeng Zhang
- e Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Yong Zhao
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
33
|
Song A, Zhu L, Gorantla G, Berdysz O, Amici SA, Guerau-de-Arellano M, Madalena KM, Lerch JK, Liu X, Quan N. Salient type 1 interleukin 1 receptor expression in peripheral non-immune cells. Sci Rep 2018; 8:723. [PMID: 29335509 PMCID: PMC5768710 DOI: 10.1038/s41598-018-19248-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Interleukin 1 is a pleiotropic cytokine that mediates diverse functions through its receptor, type I interleukin 1 receptor (IL-1R1). Most previous studies have focused on the expression and function of IL-1R1 in immune cells. Here we performed a comprehensive mapping of IL-1R1 distribution in multiple peripheral tissues using our IL-1R1 reporter (IL-1R1GR/GR) mice. This method yielded the highest sensitivity of in situ detection of IL-1R1 mRNA and protein. Besides validating previously reported IL-1R1 expression in the endocrine tissues including pituitary and pancreas, our results refuted previously reported exclusive IL-1R1 expression in neurons of the spinal cord dorsal horn and dorsal root ganglia (DRG). Instead, IL-1R1 expression was detected in endothelial cells within DRG, spinal cord, pancreas, colon, muscles and many immune organs. In addition, gp38+ fibroblastic reticular cells (FRCs), rather than tissue macrophages or other immune cells, were found to express high levels of IL-1R1 in colon and many immune organs. A functional test of spleen FRCs showed that they responded rapidly to systemic IL-1β stimulation in vivo. Taken together, this study provides a rigorous re-examination of IL-1R1 expression in peripheral tissues and reveals tissue FRCs as a previously unappreciated novel high IL-1R1-expressing cell type in peripheral IL-1 signaling.
Collapse
Affiliation(s)
- Anping Song
- Department of Oncolgy, Tongji Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430030, P. R. China
| | - Ling Zhu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephanie A Amici
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Mireia Guerau-de-Arellano
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathryn M Madalena
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, 43210, USA
| | - Jessica K Lerch
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute for Behavioral Medicine Research, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute for Behavioral Medicine Research, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| |
Collapse
|
34
|
Majumdar S, Nandi D. Thymic Atrophy: Experimental Studies and Therapeutic Interventions. Scand J Immunol 2017; 87:4-14. [PMID: 28960415 DOI: 10.1111/sji.12618] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The thymus is essential for T cell development and maturation. It is extremely sensitive to atrophy, wherein loss in cellularity of the thymus and/or disruption of the thymic architecture occur. This may lead to lower naïve T cell output and limited TCR diversity. Thymic atrophy is often associated with ageing. What is less appreciated is that proper functioning of the thymus is critical for reduction in morbidity and mortality associated with various clinical conditions including infections and transplantation. Therefore, therapeutic interventions which possess thymopoietic potential and lower thymic atrophy are required. These treatments enhance thymic output, which is a vital factor in generating favourable outcomes in clinical conditions. In this review, experimental studies on thymic atrophy in rodents and clinical cases where the thymus atrophies are discussed. In addition, mechanisms leading to thymic atrophy during ageing as well as during various stress conditions are reviewed. Therapies such as zinc supplementation, IL7 administration, leptin treatment, keratinocyte growth factor administration and sex steroid ablation during thymic atrophy involving experiments in animals and various clinical scenarios are reviewed. Interventions that have been used across different scenarios to reduce the extent of thymic atrophy and enhance its output are discussed. This review aims to speculate on the roles of combination therapies, which by acting additively or synergistically may further alleviate thymic atrophy and boost its function, thereby strengthening cellular T cell responses.
Collapse
Affiliation(s)
- S Majumdar
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| | - D Nandi
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
35
|
Sheridan JM, Keown A, Policheni A, Roesley SN, Rivlin N, Kadouri N, Ritchie ME, Jain R, Abramson J, Heng TS, Gray DH. Thymospheres Are Formed by Mesenchymal Cells with the Potential to Generate Adipocytes, but Not Epithelial Cells. Cell Rep 2017; 21:934-942. [DOI: 10.1016/j.celrep.2017.09.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/28/2017] [Accepted: 09/26/2017] [Indexed: 11/28/2022] Open
|
36
|
Wu W, Shi Y, Xia H, Chai Q, Jin C, Ren B, Zhu M. Epithelial LTβR signaling controls the population size of the progenitors of medullary thymic epithelial cells in neonatal mice. Sci Rep 2017; 7:44481. [PMID: 28290551 PMCID: PMC5349570 DOI: 10.1038/srep44481] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
The establishment of T cell central tolerance critically relies on the development and maintenance of the medullary thymic epithelial cells (mTECs). Disrupted signaling of lymphotoxin beta receptor (LTβR) results in dramatically reduced mTEC population. However, whether LTβR directly or indirectly control mTECs remains undetermined; how LTβR controls this process also remain unclear. In this study, by utilizing K14-Cre × Ltbrfl/fl conditional knockout (cKO) mice, we show that epithelial intrinsic LTβR was essential for the mTEC development postnatally. Mechanistically, LTβR did not directly impact the proliferation or survival of mTECs; the maturation of mTECs from MHC-IIlo to MHC-IIhi stage was also unaltered in the absence of LTβR; interestingly, the number of mTEC progenitors (Cld3,4hiSSEA-1+) was found significantly reduced in LTβR cKO mice at the neonatal stage, but not at E18.5. Consequently, epithelial deficiency of LTβR resulted in significant defect of thymic negative selection as demonstrated using OT-I and RIP-OVA transgenic mouse system. In summary, our study clarifies the epithelial intrinsic role of LTβR on mTEC development and function; more importantly, it reveals a previously unrecognized function of LTβR on the control of the size of mTEC progenitor population.
Collapse
Affiliation(s)
- Weiwei Wu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoyao Shi
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Xia
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Chai
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Caiwei Jin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boyang Ren
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Glycyrrhizin Ameliorates Fibrosis, Vasculopathy, and Inflammation in Animal Models of Systemic Sclerosis. J Invest Dermatol 2016; 137:631-640. [PMID: 27777101 DOI: 10.1016/j.jid.2016.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 08/06/2016] [Accepted: 08/17/2016] [Indexed: 02/08/2023]
Abstract
Systemic sclerosis (SSc) is a multisystem inflammatory and vascular disease resulting in extensive tissue fibrosis. Glycyrrhizin, clinically used for chronic hepatic diseases and itching dermatitis, modulates the pathological processes of inflammation, vasculopathy, and fibrosis in human diseases and their animal models. Therefore, we investigated a potential impact of glycyrrhizin on the key pathological manifestations of SSc, including inflammation, vasculopathy, and tissue fibrosis, with bleomycin-treated mice mimicking the fibrotic and inflammatory components of SSc and endothelial cell-specific Fli1-knockout mice recapitulating SSc vasculopathy. Glycyrrhizin significantly ameliorated dermal fibrosis in bleomycin-treated mice, which was partly attributable to blockade of transforming growth factor-β signaling in dermal fibroblasts through the down-regulation of thrombospondin 1, a latent transforming growth factor-β receptor, and transcription factors Smad3 and Ets1. Furthermore, bleomycin-dependent induction of T helper type 2-skewed immune polarization, M2 macrophage infiltration, and endothelial-to-mesenchymal transition were greatly suppressed in mice administered glycyrrhizin. Glycyrrhizin also improved vascular permeability of endothelial cell-specific Fli1-knockout mice by increasing the expression of molecules regulating vascular integrity. These results indicate that glycyrrhizin ameliorates bleomycin-induced dermal fibrosis through the inhibition of fibroblast activation, T helper type 2-skewed immune polarization, M2 macrophage infiltration, and endothelial-to-mesenchymal transition and improves endothelial Fli1 deficiency-dependent vascular disintegrity, implying its potential as a disease-modifying drug for SSc.
Collapse
|
38
|
Abstract
The receptor for advanced glycation end products (RAGE) is a novel protein increasingly studied in the pathogenesis of type 1 diabetes (T1D). RAGE is expressed by several immune cell types, including T cells, antigen-presenting cells, endothelial cells, and the endocrine cells of the pancreatic islets. RAGE binds various ligands including advanced glycation end products (AGEs), high-mobility group box protein 1 (HMGB1), S100 proteins, β-amyloid, β-sheet fibrils, and lipopolysaccharide. AGEs are a particularly interesting ligand because their exogenous introduction into the body can be accelerated by the consumption of AGE-rich processed foods. This review will detail RAGE isoforms and its ligands and discuss how RAGE binding on the aforementioned cells could be linked to T1D pathogenesis.
Collapse
Affiliation(s)
- Sherman S Leung
- Glycation and Diabetes, Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent St, Woolloongabba, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Josephine M Forbes
- Glycation and Diabetes, Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent St, Woolloongabba, Brisbane, Queensland, Australia.
- Mater Clinical School, School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Danielle J Borg
- Glycation and Diabetes, Mater Research Institute, Translational Research Institute, The University of Queensland, 37 Kent St, Woolloongabba, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Swonger JM, Liu JS, Ivey MJ, Tallquist MD. Genetic tools for identifying and manipulating fibroblasts in the mouse. Differentiation 2016; 92:66-83. [PMID: 27342817 PMCID: PMC5079827 DOI: 10.1016/j.diff.2016.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/18/2023]
Abstract
The use of mouse genetic tools to track and manipulate fibroblasts has provided invaluable in vivo information regarding the activities of these cells. Recently, many new mouse strains have been described for the specific purpose of studying fibroblast behavior. Colorimetric reporter mice and lines expressing Cre are available for the study of fibroblasts in the organs prone to fibrosis, including heart, kidney, liver, lung, and skeletal muscle. In this review we summarize the current state of the models that have been used to define tissue resident fibroblast populations. While these complex genetic reagents provide unique insights into the process of fibrosis, they also require a thorough understanding of the caveats and limitations. Here, we discuss the specificity and efficiency of the available genetic models and briefly describe how they have been used to document the mechanisms of fibrosis.
Collapse
Affiliation(s)
- Jessica M Swonger
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jocelyn S Liu
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Malina J Ivey
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Michelle D Tallquist
- Departments of Medicine and Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|
40
|
Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. THE JOURNAL OF IMMUNOLOGY 2016; 196:4760-70. [DOI: 10.4049/jimmunol.1502499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/28/2016] [Indexed: 12/22/2022]
|