1
|
Karimi N, Ahmadi V. Aquaporin Channels in Skin Physiology and Aging Pathophysiology: Investigating Their Role in Skin Function and the Hallmarks of Aging. BIOLOGY 2024; 13:862. [PMID: 39596817 PMCID: PMC11592281 DOI: 10.3390/biology13110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
This study examines the critical role of aquaporins (AQPs) in skin physiology and aging pathophysiology. The skin plays a vital role in maintaining homeostasis by acting as a protective barrier against external pathogens and excessive water loss, while also contributing to the appearance and self-esteem of individuals. Key physiological features, such as elasticity and repair capability, are essential for its proper function. However, with aging, these characteristics deteriorate, reducing the skin's ability to tolerate environmental stressors which contribute to external aging as well as internal aging processes, which negatively affect barrier function, immune response, and overall well-being. AQPs, primarily known for facilitating water transport, are significant for normal skin functions, including hydration and the movement of molecules like glycerol and hydrogen peroxide, which influence various cellular processes and functions. In this context, we categorized aquaporin dysfunction into several hallmarks of aging, including mitochondrial dysfunction, cellular senescence, stem cell depletion, impaired macroautophagy, dysbiosis, and inflamm-aging. Eight aquaporins (AQP1, 3, 5, 7, 8, 9, 10, and 11) are expressed in various skin cells, regulating essential processes such as cell migration, proliferation, differentiation, and also immune response. Dysregulation or altered expression of these proteins can enhance skin aging and related pathologies by activating these hallmarks. This study provides valuable insights into the potential of targeting aquaporins to mitigate skin aging and improve skin physiologic functions.
Collapse
Affiliation(s)
- Nazli Karimi
- Physiology Department, Medical Faculty, Hacettepe University, Ankara 06800, Turkey
| | - Vahid Ahmadi
- Dermatology Department, Beytepe Murat Erdi Eker State Hospital, Ankara 06800, Turkey
| |
Collapse
|
2
|
Chen J, Zhu X, Wang Z, Rützler M, Lu Q, Xu H, Andersson R, Dai Y, Shen Z, Calamita G, Xie S, Bai Y, Chen B. Inhibition of aquaporin-9 ameliorates severe acute pancreatitis and associated lung injury by NLRP3 and Nrf2/HO-1 pathways. Int Immunopharmacol 2024; 137:112450. [PMID: 38906007 DOI: 10.1016/j.intimp.2024.112450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Inflammation, apoptosis and oxidative stress play crucial roles in the deterioration of severe acute pancreatitis-associated acute respiratory distress syndrome (SAP-ARDS). Unfortunately, despite a high mortality rate of 45 %[1], there are limited treatment options available for ARDS outside of last resort options such as mechanical ventilation and extracorporeal support strategies[2]. This study investigated the potential therapeutic role and mechanisms of AQP9 inhibitor RG100204 in two animal models of severe acute pancreatitis, inducing acute respiratory distress syndrome: 1) a sodium-taurocholate induced rat model, and 2) and Cerulein and lipopolysaccharide induced mouse model. RG100204 treatment led to a profound reduction in inflammatory cytokine expression in pancreatic, and lung tissue, in both models. In addition, infiltration of CD68 + and CD11b + cells into these tissues were reduced in RG100204 treated SAP animals, and edema and SAP associated tissue damage were improved. Moreover, we demonstrate that RG100204 reduced apoptosis in the lungs of rat SAP animals, and reduces NF-κB signaling, NLRP3, expression, while profoundly increasing the Nrf2-dependent anti oxidative stress response. We conclude that AQP9 inhibition is a promising strategy for the treatment of pancreatitis and its systemic complications, such as ARDS.
Collapse
Affiliation(s)
- Jiawei Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiandong Zhu
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Ziqiong Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Michael Rützler
- ApoGlyx AB, Lund, Sweden, & Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Qiaohong Lu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongjie Xu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Roland Andersson
- Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Yinwei Dai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Zouwen Shen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Shangjing Xie
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yongheng Bai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Bicheng Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
3
|
da Silva IV, Mlinarić M, Lourenço AR, Pérez-Garcia O, Čipak Gašparović A, Soveral G. Peroxiporins and Oxidative Stress: Promising Targets to Tackle Inflammation and Cancer. Int J Mol Sci 2024; 25:8381. [PMID: 39125952 PMCID: PMC11313477 DOI: 10.3390/ijms25158381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins primarily known for facilitating water transport across cell membranes. In addition to the classical water transport function, peroxiporins have the unique capability to transport hydrogen peroxide (H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins as key players in redox biology and cellular signaling, with implications for understanding and treating various diseases linked to oxidative stress and inflammation. This review provides updated information on the physiological roles of peroxiporins and their implications in disease, emphasizing their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such as inflammation and cancer.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ana Rita Lourenço
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Olivia Pérez-Garcia
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | | | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
4
|
Zhang L, Liu Y, Wang K, Ou X, Zhou J, Zhang H, Huang M, Du Z, Qiang S. Integration of machine learning to identify diagnostic genes in leukocytes for acute myocardial infarction patients. J Transl Med 2023; 21:761. [PMID: 37891664 PMCID: PMC10612217 DOI: 10.1186/s12967-023-04573-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) has two clinical characteristics: high missed diagnosis and dysfunction of leukocytes. Transcriptional RNA on leukocytes is closely related to the course evolution of AMI patients. We hypothesized that transcriptional RNA in leukocytes might provide potential diagnostic value for AMI. Integration machine learning (IML) was first used to explore AMI discrimination genes. The following clinical study was performed to validate the results. METHODS A total of four AMI microarrays (derived from the Gene Expression Omnibus) were included in bioanalysis (220 sample size). Then, the clinical validation was finished with 20 AMI and 20 stable coronary artery disease patients (SCAD). At a ratio of 5:2, GSE59867 was included in the training set, while GSE60993, GSE62646, and GSE48060 were included in the testing set. IML was explicitly proposed in this research, which is composed of six machine learning algorithms, including support vector machine (SVM), neural network (NN), random forest (RF), gradient boosting machine (GBM), decision trees (DT), and least absolute shrinkage and selection operator (LASSO). IML had two functions in this research: filtered optimized variables and predicted the categorized value. Finally, The RNA of the recruited patients was analyzed to verify the results of IML. RESULTS Thirty-nine differentially expressed genes (DEGs) were identified between controls and AMI individuals from the training sets. Among the thirty-nine DEGs, IML was used to process the predicted classification model and identify potential candidate genes with overall normalized weights > 1. Finally, two genes (AQP9 and SOCS3) show their diagnosis value with the area under the curve (AUC) > 0.9 in both the training and testing sets. The clinical study verified the significance of AQP9 and SOCS3. Notably, more stenotic coronary arteries or severe Killip classification indicated higher levels of these two genes, especially SOCS3. These two genes correlated with two immune cell types, monocytes and neutrophils. CONCLUSION AQP9 and SOCS3 in leukocytes may be conducive to identifying AMI patients with SCAD patients. AQP9 and SOCS3 are closely associated with monocytes and neutrophils, which might contribute to advancing AMI diagnosis and shed light on novel genetic markers. Multiple clinical characteristics, multicenter, and large-sample relevant trials are still needed to confirm its clinical value.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, People's Republic of China
| | - Yue Liu
- Department of Nephropathy, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Kaiyue Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, People's Republic of China
| | - Xiangqin Ou
- The First Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, People's Republic of China
| | - Jiashun Zhou
- Tianjin Jinghai District Hospital, 14 Shengli Road, Jinghai, Tianjin, 301699, People's Republic of China
| | - Houliang Zhang
- Tianjin Jinghai District Hospital, 14 Shengli Road, Jinghai, Tianjin, 301699, People's Republic of China
| | - Min Huang
- Department of Nephropathy, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China
| | - Zhenfang Du
- Department of Nephropathy, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China.
| | - Sheng Qiang
- Department of Nephropathy, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Smith IM, Stroka KM. The multifaceted role of aquaporins in physiological cell migration. Am J Physiol Cell Physiol 2023; 325:C208-C223. [PMID: 37246634 PMCID: PMC10312321 DOI: 10.1152/ajpcell.00502.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.
Collapse
Affiliation(s)
- Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
6
|
Zahl S, Skauli N, Stahl K, Prydz A, Frey MM, Dissen E, Ottersen OP, Amiry-Moghaddam M. Aquaporin-9 in the Brain Inflammatory Response: Evidence from Mice Injected with the Parkinsonogenic Toxin MPP . Biomolecules 2023; 13:biom13040588. [PMID: 37189335 DOI: 10.3390/biom13040588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
More than 20 years have passed since the first demonstration of Aquaporin-9 (AQP9) in the brain. Yet its precise localization and function in brain tissue remain unresolved. In peripheral tissues, AQP9 is expressed in leukocytes where it is involved in systemic inflammation processes. In this study, we hypothesized that AQP9 plays a proinflammatory role in the brain, analogous to its role in the periphery. We also explored whether Aqp9 is expressed in microglial cells, which would be supportive of this hypothesis. Our results show that targeted deletion of Aqp9 significantly suppressed the inflammatory response to the parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+). This toxin induces a strong inflammatory response in brain. After intrastriatal injections of MPP+, the increase in transcript levels of proinflammatory genes was less pronounced in AQP9-/- mice compared with wild-type controls. Further, in isolated cell subsets, validated by flow cytometry we demonstrated that Aqp9 transcripts are expressed in microglial cells, albeit at lower concentrations than in astrocytes. The present analysis provides novel insight into the role of AQP9 in the brain and opens new avenues for research in the field of neuroinflammation and chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Soulmaz Zahl
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Nadia Skauli
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Katja Stahl
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Agnete Prydz
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Mina Martine Frey
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Erik Dissen
- Immunobiological Laboratory, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| | - Ole Petter Ottersen
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
- Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mahmood Amiry-Moghaddam
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105, Blindern, 0317 Oslo, Norway
| |
Collapse
|
7
|
Siwicki M, Kubes P. Neutrophils in host defense, healing, and hypersensitivity: Dynamic cells within a dynamic host. J Allergy Clin Immunol 2023; 151:634-655. [PMID: 36642653 DOI: 10.1016/j.jaci.2022.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 01/15/2023]
Abstract
Neutrophils are cells of the innate immune system that are extremely abundant in vivo and respond quickly to infection, injury, and inflammation. Their constant circulation throughout the body makes them some of the first responders to infection, and indeed they play a critical role in host defense against bacterial and fungal pathogens. It is now appreciated that neutrophils also play an important role in tissue healing after injury. Their short life cycle, rapid response kinetics, and vast numbers make neutrophils a highly dynamic and potentially extremely influential cell population. It has become clear that they are highly integrated with other cells of the immune system and can thus exert critical effects on the course of an inflammatory response; they can further impact tissue homeostasis and recovery after challenge. In this review, we discuss the fundamentals of neutrophils in host defense and healing; we explore the relationship between neutrophils and the dynamic host environment, including circadian cycles and the microbiome; we survey the field of neutrophils in asthma and allergy; and we consider the question of neutrophil heterogeneity-namely, whether there could be specific subsets of neutrophils that perform different functions in vivo.
Collapse
Affiliation(s)
- Marie Siwicki
- Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Paul Kubes
- Immunology Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
8
|
Abstract
Recent studies have shown that at least six aquaporins (AQPs), including AQP1, AQP3, AQP4, AQP5, AQP7, and AQP9, are expressed in immune system. These AQPs distribute in lymphocytes, macrophages, dendritic cells, and neutrophils, and mediate water and glycerol transportation in these cells, which play important roles in innate and adaptive immune functions. Immune system plays important roles in body physiological functions and health. Therefore, understanding the association between AQPs and immune system may provide approaches to prevent and treat related diseases. Here we will discuss the expression and physiological functions of AQPs in immune system and summarize recent researches on AQPs in immune diseases.
Collapse
Affiliation(s)
- Yazhu Quan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Bo Kan
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
9
|
Abstract
The skin is the largest organ of our body and plays a protective role against the external environment. The skin functions as a mechanical and water permeability barrier, assisting with thermoregulation and defending our body against a variety of stresses such as ultraviolet radiation, microbial infection, physical injuries, and chemical hazards. The structure of the skin consists of three main layers: the hypodermis, the dermis, and the epidermis. Aquaporins (AQPs) are a family of integral membrane proteins whose function is to regulate intracellular fluid hemostasis by facilitating the transportation of water, and in some cases small molecules, across the cell membranes. Up to six different AQPs (AQP1, 3, 5, 7, 9, and 10) are expressed in a variety of cell types in the skin. The AQP family plays an important role in these various locations, contributing to many key functions of the skin including hydration, wound healing, and immune responses. The involvement of different aquaporin family members in skin is discussed.
Collapse
Affiliation(s)
- Zhuming Yin
- Department of Breast Oncoplastic Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin, China
| | - Huiwen Ren
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Tanaka M, Ito A, Shiozawa S, Hara-Chikuma M. Anti-tumor effect of aquaporin 3 monoclonal antibody on syngeneic mouse tumor model. Transl Oncol 2022; 24:101498. [PMID: 35932594 PMCID: PMC9358462 DOI: 10.1016/j.tranon.2022.101498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Anti-AQP3 mAb suppressed tumor growth in syngeneic mouse tumor models. Administration of anti-AQP3 mAb to mice bearing carcinoma increased the M1/M2 ratio of TAMs. Administration of anti-AQP3 mAb improved the mitochondrial function of T cells in the TME. Anti-AQP3 mAb reduced carcinoma-mediated polarization of monocytes into M2-like TAMs.
Aquaporin-3 (AQP3), a water channel protein, has been found to be involved in cancer progression via water and small molecule transport function. However, drug development targeting AQP3 has not yet begun. Here, we showed that a recently established anti-AQP3 monoclonal antibody (mAb) suppresses tumor growth in allograft mouse colorectal tumor models produced using CT26 or MC38 cancer cells. Administration of the anti-AQP3 mAb to BALB/c mice with transplanted CT26 cells increased the M1/M2 ratio of tumor-associated macrophages (TAM) and improved the mitochondrial function of T cells in the tumor microenvironment (TME). Administration of anti-AQP3 mAb also restored the TAM-induced decrease in T cell proliferation. Macrophage depletion in wild-type mice counteracted the antitumor effect of anti-AQP3 mAb in the mouse tumor model, suggesting that one of the primary targets of anti-AQP3 mAb is macrophages. In in vitro studies using mice bone marrow monocytes and human monocyte THP-1 cells, anti-AQP3 mAb attenuated carcinoma cell-mediated polarization of monocytes into M2-like TAMs. These data suggest that anti-AQP3 mAb suppresses tumor growth by attenuating immunosuppressive M2-like TAMs, which in turn maintains the antitumor function of T cells in the TME. Thus, the anti-AQP3 mAb is a potential cancer therapy that functions by targeting TAMs.
Collapse
Affiliation(s)
- Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Anmi Ito
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Seiji Shiozawa
- Center for Integrated Medical Research, School of Medicine, Keio University,160-8582, Japan; Institute of Animal Experimentation, School of Medicine, Kurume University, 830-0011, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
11
|
Cheng Y, Zheng J, Zhan Y, Liu C, Lu B, Hu J. Identification of hub genes and pathophysiological mechanism related to acute unilateral vestibulopathy by integrated bioinformatics analysis. Front Neurol 2022; 13:987076. [PMID: 36237611 PMCID: PMC9552803 DOI: 10.3389/fneur.2022.987076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Background Although many pathological mechanisms and etiological hypotheses of acute unilateral vestibulopathy (AUVP) have been reported, but the actual etiology remains to be elucidated. Objective This study was based on comprehensive bioinformatics to identify the critical genes of AUVP and explore its pathological mechanism. Methods Gene expression profiles of AUVP and normal samples were collected from GSE146230 datasets of the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was constructed, and the WGCNA R-package extracted significant modules. The limma R-package was applied to identify differentially expressed genes (DEGs). The common genes of practical modules and DEGs were screened for GO and KEGG pathways analysis. The protein–protein interaction (PPI) layout and hub genes validation was created by Cytoscape software using the link from the STRING database. The functions of hub genes were predicted through the CTD (comparative genetics database). Results A total of 332 common genes were screened from practical modules and DEGs. Functional enrichment analysis revealed that these genes were predominantly associated with inflammation and infection. After construction of PPI, expressions of hub genes, and drawing ROC curves, LILRB2, FPR1, AQP9, and LILRA1 are highly expressed in AUVP (p < 0.05) and have a certain diagnostic efficacy for AUVP (AUC > 0.7), so they were selected as hub genes. The functions of hub genes suggested that the occurrence of AUVP may be related to inflammation, necrosis, hepatomegaly, and other conditions in CTD. Conclusion LILRB2, FPR1, AQP9, and LILRA1 may play essential roles in developing AUVP, providing new ideas for diagnosing and treating AUVP.
Collapse
|
12
|
Shi Y, Yasui M, Hara-Chikuma M. AQP9 transports lactate in tumor-associated macrophages to stimulate an M2-like polarization that promotes colon cancer progression. Biochem Biophys Rep 2022; 31:101317. [PMID: 35967760 PMCID: PMC9372591 DOI: 10.1016/j.bbrep.2022.101317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022] Open
Abstract
Macrophages play a major role in the immune defense against pathogenic factors; however, they can lead to tumor exacerbation and metastasis, as the tumor microenvironment (TME) polarizes tumor-associated macrophages (TAMs) into the M2 subtype. Lactate, a metabolite produced by carcinoma cells at high concentrations in the TME, induces an M2-polarization in macrophages, which ultimately leads to the secretion of factors, such as vascular endothelial growth factor (VEGF), and promotes tumor progression. However, the effect of TAM lactate import on tumor progression has not been fully elucidated. Aquaporin 9 (AQP9) is a transporter of water and glycerol expressed in macrophages. Here, we used a tumor allograft mouse model to show that AQP9 knockout (AQP9−/−) mice were more resistant against tumor cell growth and exhibited a suppressive M2-like polarization in tumor tissue than wild-type mice. Moreover, we discovered that the primary bone marrow-derived macrophages from AQP9−/− mice were less sensitive to lactate stimulation and exhibited reduced M2-like polarization as well as decreased VEGF production. To further investigate the role of AQP9 in macrophage polarization, we overexpressed AQP9 in Chinese hamster ovary cells and found that AQP9 functioned in lactate import. In contrast, primary AQP9−/− macrophages and AQP9 knockdown RAW264.7 cells exhibited a reduced lactate transport rate, suggesting the involvement of AQP9 in lactate transport in macrophages. Together, our results reveal the mechanism by which the TME modifies the polarization and function of tumor-infiltrating macrophages via AQP9 transport function. Tumor growth was suppressed in AQP9-deficient mice. M2-like TAMs were reduced in tumor tissues of AQP9-deficient mice. AQP9 deficiency attenuated lactate-induced M2 polarization in macrophages. AQP9 is a lactate transporter in macrophages.
Collapse
Affiliation(s)
- Yundi Shi
- Department of Pharmacology, Keio University School of Medicine, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Japan
- Center for Water Biology and Medicine, Keio University Global Research Institute, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, Keio University School of Medicine, Japan
- Corresponding author. Department of Pharmacology, Keio University, School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160, Japan.
| |
Collapse
|
13
|
da Silva IV, Garra S, Calamita G, Soveral G. The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 2022; 12:biom12070897. [PMID: 35883453 PMCID: PMC9313442 DOI: 10.3390/biom12070897] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention. Aquaporin-9 (AQP9) is the most expressed in the liver, with implications in general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities, facilitating glycerol and hydrogen peroxide (H2O2) diffusion across membranes. AQP9 is also expressed in other tissues, and their altered expression is described in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders. The present review compiles the current knowledge of AQP9 implication in diseases and highlights its potential as a new biomarker for diagnosis and prognosis in clinical medicine.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
- Correspondence: (G.C.); (G.S.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: (G.C.); (G.S.)
| |
Collapse
|
14
|
Mohammad S, O’Riordan CE, Verra C, Aimaretti E, Alves GF, Dreisch K, Evenäs J, Gena P, Tesse A, Rützler M, Collino M, Calamita G, Thiemermann C. RG100204, A Novel Aquaporin-9 Inhibitor, Reduces Septic Cardiomyopathy and Multiple Organ Failure in Murine Sepsis. Front Immunol 2022; 13:900906. [PMID: 35774785 PMCID: PMC9238327 DOI: 10.3389/fimmu.2022.900906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is caused by systemic infection and is a major health concern as it is the primary cause of death from infection. It is the leading cause of mortality worldwide and there are no specific effective treatments for sepsis. Gene deletion of the neutral solute channel Aquaporin 9 (AQP9) normalizes oxidative stress and improves survival in a bacterial endotoxin induced mouse model of sepsis. In this study we described the initial characterization and effects of a novel small molecule AQP9 inhibitor, RG100204, in a cecal ligation and puncture (CLP) induced model of polymicrobial infection. In vitro, RG100204 blocked mouse AQP9 H2O2 permeability in an ectopic CHO cell expression system and abolished the LPS induced increase in superoxide anion and nitric oxide in FaO hepatoma cells. Pre-treatment of CLP-mice with RG100204 (25 mg/kg p.o. before CLP and then again at 8 h after CLP) attenuated the hypothermia, cardiac dysfunction (systolic and diastolic), renal dysfunction and hepatocellular injury caused by CLP-induced sepsis. Post-treatment of CLP-mice with RG100204 also attenuated the cardiac dysfunction (systolic and diastolic), the renal dysfunction caused by CLP-induced sepsis, but did not significantly reduce the liver injury or hypothermia. The most striking finding was that oral administration of RG100204 as late as 3 h after the onset of polymicrobial sepsis attenuated the cardiac and renal dysfunction caused by severe sepsis. Immunoblot quantification demonstrated that RG100204 reduced activation of the NLRP3 inflammasome pathway. Moreover, myeloperoxidase activity in RG100204 treated lung tissue was reduced. Together these results indicate that AQP9 may be a novel drug target in polymicrobial sepsis.
Collapse
Affiliation(s)
- Shireen Mohammad
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Shireen Mohammad, ; Christoph Thiemermann,
| | - Caroline E. O’Riordan
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Chiara Verra
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Eleonora Aimaretti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | - Johan Evenäs
- Red Glead Discovery Akiebolag (AB), Lund, Sweden
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Angela Tesse
- Nantes Université, Instite National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Rescherche Scientifique (CNRS), l’institut du Thorax, Nantes, France
| | - Michael Rützler
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
- Apoglyx Akiebolag (AB), Lund, Sweden
| | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Bari, Italy
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Shireen Mohammad, ; Christoph Thiemermann,
| |
Collapse
|
15
|
Aquaporins: Unexpected actors in autoimmune diseases. Clin Exp Rheumatol 2022; 21:103131. [PMID: 35690248 DOI: 10.1016/j.autrev.2022.103131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
Aquaporins (AQPs), transmembrane proteins allowing the passage of water and sometimes other small solutes and molecules, are involved in autoimmune diseases including neuromyelitis optica, Sjögren's syndrome and rheumatoid arthritis. Both autoantibodies against AQPs and altered expression and/or trafficking of AQPs in various tissue cell types as well as inflammatory cells are playing key roles in pathogenesis of autoimmune diseases. Detection of autoantibodies against AQP4 in the central nervous system has paved the way for a deeper understanding in disease pathophysiology as well as enabling diagnosis. This review provides a comprehensive summary of the roles of AQPs in autoimmune diseases.
Collapse
|
16
|
Honda T, Keith YH. Novel Insights Into the Immune-Regulatory Functions of Mast Cells in the Cutaneous Immune Response. Front Immunol 2022; 13:898419. [PMID: 35634300 PMCID: PMC9134104 DOI: 10.3389/fimmu.2022.898419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Skin is a frontline organ that is continuously exposed to external stimuli, including pathogens. Various immune cells reside in the skin under physiological conditions and protect the body from the entry of pathogens/antigens by interacting with each other and orchestrating diverse cutaneous immune responses. To avoid unnecessary inflammation and tissue damage during the elimination of external pathogens and antigens, skin possesses regulatory systems that fine-tune these immune reactions. Mast cells (MCs) are one of the skin-resident immune cell populations that play both effector and regulatory functions in the cutaneous immune response. So far, the interleukin-10-mediated mechanisms have mostly been investigated as the regulatory mechanisms of MCs. Recent studies have elucidated other regulatory mechanisms of MCs, such as the maintenance of regulatory T/B cells and the programmed cell death protein-1/programmed cell death-ligand 1-mediated inhibitory pathway. These regulatory pathways of MCs have been suggested to play important roles in limiting the excessive inflammation in inflammatory skin diseases, such as contact and atopic dermatitis. The regulatory functions of MCs may also be involved in the escape mechanisms of antitumor responses in skin cancers, such as melanoma. Understanding and controlling the regulatory functions of skin MCs may lead to novel therapeutic strategies for inflammatory skin diseases and skin cancers.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- *Correspondence: Tetsuya Honda,
| | - Yuki Honda Keith
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Tricarico PM, Mentino D, De Marco A, Del Vecchio C, Garra S, Cazzato G, Foti C, Crovella S, Calamita G. Aquaporins Are One of the Critical Factors in the Disruption of the Skin Barrier in Inflammatory Skin Diseases. Int J Mol Sci 2022; 23:4020. [PMID: 35409378 PMCID: PMC8999368 DOI: 10.3390/ijms23074020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The skin is the largest organ of the human body, serving as an effective mechanical barrier between the internal milieu and the external environment. The skin is widely considered the first-line defence of the body, with an essential function in rejecting pathogens and preventing mechanical, chemical, and physical damages. Keratinocytes are the predominant cells of the outer skin layer, the epidermis, which acts as a mechanical and water-permeability barrier. The epidermis is a permanently renewed tissue where undifferentiated keratinocytes located at the basal layer proliferate and migrate to the overlying layers. During this migration process, keratinocytes undertake a differentiation program known as keratinization process. Dysregulation of this differentiation process can result in a series of skin disorders. In this context, aquaporins (AQPs), a family of membrane channel proteins allowing the movement of water and small neutral solutes, are emerging as important players in skin physiology and skin diseases. Here, we review the role of AQPs in skin keratinization, hydration, keratinocytes proliferation, water retention, barrier repair, wound healing, and immune response activation. We also discuss the dysregulated involvement of AQPs in some common inflammatory dermatological diseases characterised by skin barrier disruption.
Collapse
Affiliation(s)
- Paola Maura Tricarico
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy;
| | - Donatella Mentino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (D.M.); (S.G.)
| | - Aurora De Marco
- Section of Dermatology, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare, 11, 70121 Bari, Italy;
| | - Cecilia Del Vecchio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (D.M.); (S.G.)
| | - Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70121 Bari, Italy;
| | - Caterina Foti
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare, 11, 70121 Bari, Italy;
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy; (D.M.); (S.G.)
| |
Collapse
|
18
|
da Silva IV, Silva AG, Pimpão C, Soveral G. Skin aquaporins as druggable targets: Promoting health by addressing the disease. Biochimie 2021; 188:35-44. [PMID: 34097985 DOI: 10.1016/j.biochi.2021.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Skin is the most vulnerable organ of the human body since it is the first line of defense, covering the entire external body surface. Additionally, skin has a critical role in thermoregulation, sensation, immunological surveillance, and biochemical processes such as Vitamin D3 production by ultraviolet irradiation. The ability of the skin layers and resident cells to maintain skin physiology, such as hydration, regulation of keratinocytes proliferation and differentiation and wound healing, is supported by key proteins such as aquaporins (AQPs) that facilitate the movements of water and small neutral solutes across membranes. Various AQP isoforms have been detected in different skin-resident cells where they perform specific roles, and their dysregulation has been associated with several skin pathologies. This review summarizes the current knowledge of AQPs involvement in skin physiology and pathology, highlighting their potential as druggable targets for the treatment of skin disorders.
Collapse
Affiliation(s)
- Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| | - Andreia G Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| |
Collapse
|
19
|
Carino A, Graziosi L, Marchianò S, Biagioli M, Marino E, Sepe V, Zampella A, Distrutti E, Donini A, Fiorucci S. Analysis of Gastric Cancer Transcriptome Allows the Identification of Histotype Specific Molecular Signatures With Prognostic Potential. Front Oncol 2021; 11:663771. [PMID: 34012923 PMCID: PMC8126708 DOI: 10.3389/fonc.2021.663771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the fifth most common malignancy but the third leading cause of cancer-associated mortality worldwide. Therapy for gastric cancer remain largely suboptimal making the identification of novel therapeutic targets an urgent medical need. In the present study we have carried out a high-throughput sequencing of transcriptome expression in patients with gastric cancers. Twenty-four patients, among a series of 53, who underwent an attempt of curative surgery for gastric cancers in a single center, were enrolled. Patients were sub-grouped according to their histopathology into diffuse and intestinal types, and the transcriptome of the two subgroups assessed by RNAseq analysis and compared to the normal gastric mucosa. The results of this investigation demonstrated that the two histopathology phenotypes express two different patterns of gene expression. A total of 2,064 transcripts were differentially expressed between neoplastic and non-neoplastic tissues: 772 were specific for the intestinal type and 407 for the diffuse type. Only 885 transcripts were simultaneously differentially expressed by both tumors. The per pathway analysis demonstrated an enrichment of extracellular matrix and immune dysfunction in the intestinal type including CXCR2, CXCR1, FPR2, CARD14, EFNA2, AQ9, TRIP13, KLK11 and GHRL. At the univariate analysis reduced levels AQP9 was found to be a negative predictor of 4 years survival. In the diffuse type low levels CXCR2 and high levels of CARD14 mRNA were negative predictors of 4 years survival. In summary, we have identified a group of genes differentially regulated in the intestinal and diffuse histotypes of gastric cancers with AQP9, CARD14 and CXCR2 impacting on patients' prognosis, although CXCR2 is the only factor independently impacting overall survival.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Graziosi
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elisabetta Marino
- S.C.Gastroenterologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Annibale Donini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
20
|
Saika A, Nagatake T, Hirata SI, Sawane K, Adachi J, Abe Y, Isoyama J, Morimoto S, Node E, Tiwari P, Hosomi K, Matsunaga A, Honda T, Tomonaga T, Arita M, Kabashima K, Kunisawa J. ω3 fatty acid metabolite, 12-hydroxyeicosapentaenoic acid, alleviates contact hypersensitivity by downregulation of CXCL1 and CXCL2 gene expression in keratinocytes via retinoid X receptor α. FASEB J 2021; 35:e21354. [PMID: 33749892 DOI: 10.1096/fj.202001687r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/11/2022]
Abstract
ω3 fatty acids show potent bioactivities via conversion into lipid mediators; therefore, metabolism of dietary lipids is a critical determinant in the properties of ω3 fatty acids in the control of allergic inflammatory diseases. However, metabolic progression of ω3 fatty acids in the skin and their roles in the regulation of skin inflammation remains to be clarified. In this study, we found that 12-hydroxyeicosapentaenoic acid (12-HEPE), which is a 12-lipoxygenase metabolite of eicosapentaenoic acid, was the prominent metabolite accumulated in the skin of mice fed ω3 fatty acid-rich linseed oil. Consistently, the gene expression levels of Alox12 and Alox12b, which encode proteins involved in the generation of 12-HEPE, were much higher in the skin than in the other tissues (eg, gut). We also found that the topical application of 12-HEPE inhibited the inflammation associated with contact hypersensitivity by inhibiting neutrophil infiltration into the skin. In human keratinocytes in vitro, 12-HEPE inhibited the expression of two genes encoding neutrophil chemoattractants, CXCL1 and CXCL2, via retinoid X receptor α. Together, the present results demonstrate that the metabolic progression of dietary ω3 fatty acids differs in different organs, and identify 12-HEPE as the dominant ω3 fatty acid metabolite in the skin.
Collapse
Affiliation(s)
- Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - So-Ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Nippon Flour Mills Co., Ltd, Innovation Center, Atsugi, Japan
| | - Jun Adachi
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan.,Division of Molecular Diagnosis, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Eri Node
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Sagamihara, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Dermatology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, Osaka, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Faculty of Pharmacy, Keio University, Tokyo, Japan.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan.,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
21
|
Ablation of Aquaporin-9 Ameliorates the Systemic Inflammatory Response of LPS-Induced Endotoxic Shock in Mouse. Cells 2021; 10:cells10020435. [PMID: 33670755 PMCID: PMC7922179 DOI: 10.3390/cells10020435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Septic shock is the most severe complication of sepsis, being characterized by a systemic inflammatory response following bacterial infection, leading to multiple organ failure and dramatically high mortality. Aquaporin-9 (AQP9), a membrane channel protein mainly expressed in hepatocytes and leukocytes, has been recently associated with inflammatory and infectious responses, thus triggering strong interest as a potential target for reducing septic shock-dependent mortality. Here, we evaluated whether AQP9 contributes to murine systemic inflammation during endotoxic shock. Wild type (Aqp9+/+; WT) and Aqp9 gene knockout (Aqp9−/−; KO) male mice were submitted to endotoxic shock by i.p. injection of lipopolysaccharide (LPS; 40 mg/kg) and the related survival times were followed during 72 h. The electronic paramagnetic resonance and confocal microscopy were employed to analyze the nitric oxide (NO) and superoxide anion (O2−) production, and the expression of inducible NO-synthase (iNOS) and cyclooxigenase-2 (COX-2), respectively, in the liver, kidney, aorta, heart and lung of the mouse specimens. LPS-treated KO mice survived significantly longer than corresponding WT mice, and 25% of the KO mice fully recovered from the endotoxin treatment. The LPS-injected KO mice showed lower inflammatory NO and O2− productions and reduced iNOS and COX-2 levels through impaired NF-κB p65 activation in the liver, kidney, aorta, and heart as compared to the LPS-treated WT mice. Consistent with these results, the treatment of FaO cells, a rodent hepatoma cell line, with the AQP9 blocker HTS13268 prevented the LPS-induced increase of inflammatory NO and O2−. A role for AQP9 is suggested in the early acute phase of LPS-induced endotoxic shock involving NF-κB signaling. The modulation of AQP9 expression/function may reveal to be useful in developing novel endotoxemia therapeutics.
Collapse
|
22
|
da Silva IV, Soveral G. Aquaporins in Immune Cells and Inflammation: New Targets for Drug Development. Int J Mol Sci 2021; 22:ijms22041845. [PMID: 33673336 PMCID: PMC7917738 DOI: 10.3390/ijms22041845] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Abstract
The mammalian immune system senses foreign antigens by mechanisms that involve the interplay of various kinds of immune cells, culminating in inflammation resolution and tissue clearance. The ability of the immune cells to communicate (via chemokines) and to shift shape for migration, phagocytosis or antigen uptake is mainly supported by critical proteins such as aquaporins (AQPs) that regulate water fluid homeostasis and volume changes. AQPs are protein channels that facilitate water and small uncharged molecules’ (such as glycerol or hydrogen peroxide) diffusion through membranes. A number of AQP isoforms were found upregulated in inflammatory conditions and are considered essential for the migration and survival of immune cells. The present review updates information on AQPs’ involvement in immunity and inflammatory processes, highlighting their role as crucial players and promising targets for drug discovery.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: ; Tel.: +351-217946461
| |
Collapse
|
23
|
Liu X, Xu Q, Li Z, Xiong B. Integrated analysis identifies AQP9 correlates with immune infiltration and acts as a prognosticator in multiple cancers. Sci Rep 2020; 10:20795. [PMID: 33247170 PMCID: PMC7699650 DOI: 10.1038/s41598-020-77657-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin 9 (AQP9), as an aquaglyceroporin, is expressed in many immune cells and plays important role in tumor initiation and progression. However, the relationship between AQP9 and tumor-infiltrating cells, and its prognostic value in cancers still require comprehensive understanding. Herein, we aimed to elucidate the correlations of AQP9 with prognosis and immune infiltration levels in diverse cancers. We detected the expression and survival data of AQP9 through Oncomine, TIMER, Kaplan–Meier Plotter and PrognoScan databases. The correlations between AQP9 and immune infiltrates were analyzed in TIMER database. Our results found that high AQP9 expression was significantly correlated with worse prognosis in breast, colon and lung cancers, while predicted better prognosis in gastric cancer. Moreover, AQP9 had significant association with various immune infiltrating cells including CD8+ and CD4+ T cells, neutrophils, macrophages and dendritic cells (DCs), and diverse immune gene markers in BRCA, COAD, LUAD, LUSC and STAD. AQP9 was also significantly correlated with the regulation of tumor associated macrophages (TAM). These results indicate that AQP9 can play as a significant biomarker to determine the prognosis and the immune infiltrating levels in different cancers. It might also contribute to the development of the immunotherapy in breast, colon, lung and gastric cancers.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Qian Xu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zijing Li
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China. .,Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China. .,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, 430071, People's Republic of China. .,Hubei Cancer Clinical Study Center, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
24
|
IL-36 receptor antagonist deficiency resulted in delayed wound healing due to excessive recruitment of immune cells. Sci Rep 2020; 10:14772. [PMID: 32901055 PMCID: PMC7479622 DOI: 10.1038/s41598-020-71256-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
Loss-of-function homozygous or compound heterozygous mutations in IL36RN, which encodes interleukin-36 receptor antagonist (IL-36Ra), have been implicated in the pathogenesis of various skin disorders. Previous findings showed that IL-36γ promoted wound healing in mice; however, the pathogenic role of IL-36Ra in wound healing remains unclear. We elucidated the role of IL-36Ra, a regulator of IL-36 in tissue repair by investigating the recruitment of inflammatory cells and cytokine production in the absence of IL-36Ra. Full-thickness excisional wounds were made on the back of Il36rn-/- mice and healing was assessed by monitoring macroscopic wound sizes, numbers of infiltrated cells, and gene expression of inflammatory cytokines. Macroscopic wound healing, re-epithelialization, and granulation tissue formation were delayed by 3 days post-injury in Il36rn-/- mice. This delay was associated with increased infiltrations of neutrophils and macrophages, and increased expression of cytokines, such as IL-36γ, C-X-C motif chemokine ligand 1 (CXCL1), and transforming growth factor (TGF)-β. Importantly, administration of TAK-242, a toll-like receptor 4 (TLR4) inhibitor, caused normalization of wound healing in Il36rn-/- mice, abrogating the initial delay in tissue repair. These results showed that targeting TLR4- mediated infiltrations of immune cells and cytokine production could be beneficial in regulating wound healing in IL-36Ra-deficient skin disorders.
Collapse
|
25
|
TAK-242 ameliorates contact dermatitis exacerbated by IL-36 receptor antagonist deficiency. Sci Rep 2020; 10:734. [PMID: 31959814 PMCID: PMC6971010 DOI: 10.1038/s41598-020-57550-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/03/2020] [Indexed: 12/03/2022] Open
Abstract
Loss-of-function mutations in IL36RN cause generalized pustular psoriasis (GPP), which is characterized by neutrophil-infiltrated lesions. Neutrophils are important during contact hypersensitivity in mice. However, it has never been determined whether interleukin-36 receptor antagonist (IL-36Ra) deficiency is an exacerbating factor in contact dermatitis. We examined whether a loss-of-function IL36RN mutation exacerbates contact dermatitis and evaluated the changes in contact dermatitis-related cytokines. Wild-type and Il36rn−/− mice were treated with 1-fluoro-2,4-dinitorobenzene (DNFB) and evaluated for ear thickness, histopathological features, numbers of infiltrated neutrophils, and numbers of CD4 + and CD8 + T cells. Furthermore, mRNA levels of contact dermatitis-related cytokines were measured by real-time polymerase chain reaction, and effects of TAK-242, a toll-like receptor 4 (TLR4) inhibitor, on the contact hypersensitivity (CHS) response were evaluated. We found that the ear thickness, cytokine expression, and neutrophil infiltration significantly increased in Il36rn−/− mice compared with that in wild-type mice. TAK-242 alleviated CHS and prevented neutrophil infiltration, cytokine expression, and ear thickening in Il36rn−/− mice. These data indicate that Il36rn−/− mutations are an exacerbating factor for CHS and that TAK-242 can reduce the inflammatory responses that are associated with the CHS response.
Collapse
|
26
|
Bashant KR, Vassallo A, Herold C, Berner R, Menschner L, Subburayalu J, Kaplan MJ, Summers C, Guck J, Chilvers ER, Toepfner N. Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming. J Leukoc Biol 2019; 105:1143-1153. [PMID: 30835869 PMCID: PMC7587463 DOI: 10.1002/jlb.ma0718-295rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
It has become increasingly apparent that the biomechanical properties of neutrophils impact on their trafficking through the circulation and in particularly through the pulmonary capillary bed. The retention of polarized or shape-changed neutrophils in the lungs was recently proposed to contribute to acute respiratory distress syndrome pathogenesis. Accordingly, this study tested the hypothesis that neutrophil priming is coupled to morpho-rheological (MORE) changes capable of altering cell function. We employ real-time deformability cytometry (RT-DC), a recently developed, rapid, and sensitive way to assess the distribution of size, shape, and deformability of thousands of cells within seconds. During RT-DC analysis, neutrophils can be easily identified within anticoagulated "whole blood" due to their unique granularity and size, thus avoiding the need for further isolation techniques, which affect biomechanical cell properties. Hence, RT-DC is uniquely suited to describe the kinetics of MORE cell changes. We reveal that, following activation or priming, neutrophils undergo a short period of cell shrinking and stiffening, followed by a phase of cell expansion and softening. In some contexts, neutrophils ultimately recover their un-primed mechanical phenotype. The mechanism(s) underlying changes in human neutrophil size are shown to be Na+ /H+ antiport-dependent and are predicted to have profound implications for neutrophil movement through the vascular system in health and disease.
Collapse
Affiliation(s)
- Kathleen R Bashant
- Department of Medicine, University of Cambridge, Cambridge, UK
- National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Reinhard Berner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonhard Menschner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Jochen Guck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Nicole Toepfner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
27
|
Helou DG, Martin SF, Pallardy M, Chollet-Martin S, Kerdine-Römer S. Nrf2 Involvement in Chemical-Induced Skin Innate Immunity. Front Immunol 2019; 10:1004. [PMID: 31134077 PMCID: PMC6514534 DOI: 10.3389/fimmu.2019.01004] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
Exposure to certain chemicals disturbs skin homeostasis. In particular, protein-reactive chemical contact sensitizers trigger an inflammatory immune response resulting in eczema and allergic contact dermatitis. Chemical sensitizers activate innate immune cells which orchestrate the skin immune response. This involves oxidative and inflammatory pathways. In parallel, the Nrf2/Keap1 pathway, a major ubiquitous regulator of cellular oxidative and electrophilic stress is activated in the different skin innate immune cells including epidermal Langerhans cells and dermal dendritic cells, but also in keratinocytes. In this context, Nrf2 shows a strong protective capacity through the downregulation of both the oxidative stress and inflammatory pathways. In this review we highlight the important role of Nrf2 in the control of the innate immune response of the skin to chemical sensitizers.
Collapse
Affiliation(s)
- Doumet Georges Helou
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Stefan F Martin
- Allergy Research Group, Department of Dermatology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Pallardy
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,UF Auto-immunité et Hypersensibilités, Hôpital Bichat, APHP, Paris, France
| | - Saadia Kerdine-Römer
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, University Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
28
|
Sonntag Y, Gena P, Maggio A, Singh T, Artner I, Oklinski MK, Johanson U, Kjellbom P, Nieland JD, Nielsen S, Calamita G, Rützler M. Identification and characterization of potent and selective aquaporin-3 and aquaporin-7 inhibitors. J Biol Chem 2019; 294:7377-7387. [PMID: 30862673 DOI: 10.1074/jbc.ra118.006083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/04/2019] [Indexed: 01/21/2023] Open
Abstract
The aquaglyceroporins are a subfamily of aquaporins that conduct both water and glycerol. Aquaporin-3 (AQP3) has an important physiological function in renal water reabsorption, and AQP3-mediated hydrogen peroxide (H2O2) permeability can enhance cytokine signaling in several cell types. The related aquaglyceroporin AQP7 is required for dendritic cell chemokine responses and antigen uptake. Selective small-molecule inhibitors are desirable tools for investigating the biological and pathological roles of these and other AQP isoforms. Here, using a calcein fluorescence quenching assay, we screened a library of 7360 drug-like small molecules for inhibition of mouse AQP3 water permeability. Hit confirmation and expansion with commercially available substances identified the ortho-chloride-containing compound DFP00173, which inhibited mouse and human AQP3 with an IC50 of ∼0.1-0.4 μm but had low efficacy toward mouse AQP7 and AQP9. Surprisingly, inhibitor specificity testing revealed that the methylurea-linked compound Z433927330, a partial AQP3 inhibitor (IC50, ∼0.7-0.9 μm), is a potent and efficacious inhibitor of mouse AQP7 water permeability (IC50, ∼0.2 μm). Stopped-flow light scattering measurements confirmed that DFP00173 and Z433927330 inhibit AQP3 glycerol permeability in human erythrocytes. Moreover, DFP00173, Z433927330, and the previously identified AQP9 inhibitor RF03176 blocked aquaglyceroporin H2O2 permeability. Molecular docking to AQP3, AQP7, and AQP9 homology models suggested interactions between these inhibitors and aquaglyceroporins at similar binding sites. DFP00173 and Z433927330 constitute selective and potent AQP3 and AQP7 inhibitors, respectively, and contribute to a set of isoform-specific aquaglyceroporin inhibitors that will facilitate the evaluation of these AQP isoforms as drug targets.
Collapse
Affiliation(s)
- Yonathan Sonntag
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Patrizia Gena
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Anna Maggio
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Tania Singh
- the Stem Cell Center, Lund University, 22184 Lund, Sweden, and
| | - Isabella Artner
- the Stem Cell Center, Lund University, 22184 Lund, Sweden, and
| | - Michal K Oklinski
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Urban Johanson
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Per Kjellbom
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - John Dirk Nieland
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Søren Nielsen
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Giuseppe Calamita
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Michael Rützler
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
29
|
Nordzieke DE, Medraño-Fernandez I. The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling. Antioxidants (Basel) 2018; 7:antiox7110168. [PMID: 30463362 PMCID: PMC6262572 DOI: 10.3390/antiox7110168] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023] Open
Abstract
Membranes are of outmost importance to allow for specific signal transduction due to their ability to localize, amplify, and direct signals. However, due to the double-edged nature of reactive oxygen species (ROS)—toxic at high concentrations but essential signal molecules—subcellular localization of ROS-producing systems to the plasma membrane has been traditionally regarded as a protective strategy to defend cells from unwanted side-effects. Nevertheless, specialized regions, such as lipid rafts and caveolae, house and regulate the activated/inhibited states of important ROS-producing systems and concentrate redox targets, demonstrating that plasma membrane functions may go beyond acting as a securing lipid barrier. This is nicely evinced by nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases (NOX), enzymes whose primary function is to generate ROS and which have been shown to reside in specific lipid compartments. In addition, membrane-inserted bidirectional H2O2-transporters modulate their conductance precisely during the passage of the molecules through the lipid bilayer, ensuring time-scaled delivery of the signal. This review aims to summarize current evidence supporting the role of the plasma membrane as an organizing center that serves as a platform for redox signal transmission, particularly NOX-driven, providing specificity at the same time that limits undesirable oxidative damage in case of malfunction. As an example of malfunction, we explore several pathological situations in which an inflammatory component is present, such as inflammatory bowel disease and neurodegenerative disorders, to illustrate how dysregulation of plasma-membrane-localized redox signaling impacts normal cell physiology.
Collapse
Affiliation(s)
- Daniela E Nordzieke
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg August University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | - Iria Medraño-Fernandez
- Protein Transport and Secretion Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
30
|
De Santis S, Serino G, Fiorentino MR, Galleggiante V, Gena P, Verna G, Liso M, Massaro M, Lan J, Troisi J, Cataldo I, Bertamino A, Pinto A, Campiglia P, Santino A, Giannelli G, Fasano A, Calamita G, Chieppa M. Aquaporin 9 Contributes to the Maturation Process and Inflammatory Cytokine Secretion of Murine Dendritic Cells. Front Immunol 2018; 9:2355. [PMID: 30386332 PMCID: PMC6198254 DOI: 10.3389/fimmu.2018.02355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells able to trigger the adaptive immune response to specific antigens. When non-self-antigens are captured, DCs switch from an “immature” to a “mature” state to fulfill their function. Among the several surface proteins involved in DCs maturation, the role of aquaporins (AQPs) is still poorly understood. Here we investigated the expression profile of Aqps in murine bone marrow derived dendritic cells (BMDCs). Among the Aqps analyzed, Aqp9 was the most expressed by DCs. Its expression level was significantly upregulated 6 h following LPS exposure. Chemical inhibition of Aqp9 led to a decreased inflammatory cytokines secretion. BMDCs from AQP9-KO mice release lower amount of inflammatory cytokines and chemokines and increased release of IL-10. Despite the reduced release of inflammatory cytokines, Aqp9-KO mice were not protected from DSS induced colitis. All together, our data indicate that AQP9 blockade can be an efficient strategy to reduce DCs inflammatory response but it is not sufficient to protect from acute inflammatory insults such as DSS induced colitis.
Collapse
Affiliation(s)
- Stefania De Santis
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Italy.,Pineta Grande Hospital, Castelvolturno, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Maria R Fiorentino
- Harvard Medical School Division of Pediatric Gastroenterology and Nutrition and Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Vanessa Galleggiante
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Patrizia Gena
- Department of Medicine and Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Giulio Verna
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Marina Liso
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Monica Massaro
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Jinggang Lan
- Harvard Medical School Division of Pediatric Gastroenterology and Nutrition and Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Jacopo Troisi
- Department of Medicine and Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy.,Theoreo srl-Spin-off Company of the University of Salerno, Salerno, Italy
| | - Ilaria Cataldo
- Department of Medicine and Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | | | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, Italy.,European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, Lecce, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Alessio Fasano
- Harvard Medical School Division of Pediatric Gastroenterology and Nutrition and Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States.,European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Giuseppe Calamita
- Department of Medicine and Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy.,Department of Pharmacy, University of Salerno, Fisciano, Italy
| |
Collapse
|
31
|
Schiffman C, McHale CM, Hubbard AE, Zhang L, Thomas R, Vermeulen R, Li G, Shen M, Rappaport SM, Yin S, Lan Q, Smith MT, Rothman N. Identification of gene expression predictors of occupational benzene exposure. PLoS One 2018; 13:e0205427. [PMID: 30300410 PMCID: PMC6177191 DOI: 10.1371/journal.pone.0205427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previously, using microarrays and mRNA-Sequencing (mRNA-Seq) we found that occupational exposure to a range of benzene levels perturbed gene expression in peripheral blood mononuclear cells. OBJECTIVES In the current study, we sought to identify gene expression biomarkers predictive of benzene exposure below 1 part per million (ppm), the occupational standard in the U.S. METHODS First, we used the nCounter platform to validate altered expression of 30 genes in 33 unexposed controls and 57 subjects exposed to benzene (<1 to ≥5 ppm). Second, we used SuperLearner (SL) to identify a minimal number of genes for which altered expression could predict <1 ppm benzene exposure, in 44 subjects with a mean air benzene level of 0.55±0.248 ppm (minimum 0.203ppm). RESULTS nCounter and microarray expression levels were highly correlated (coefficients >0.7, p<0.05) for 26 microarray-selected genes. nCounter and mRNA-Seq levels were poorly correlated for 4 mRNA-Seq-selected genes. Using negative binomial regression with adjustment for covariates and multiple testing, we confirmed differential expression of 23 microarray-selected genes in the entire benzene-exposed group, and 27 genes in the <1 ppm-exposed subgroup, compared with the control group. Using SL, we identified 3 pairs of genes that could predict <1 ppm benzene exposure with cross-validated AUC estimates >0.9 (p<0.0001) and were not predictive of other exposures (nickel, arsenic, smoking, stress). The predictive gene pairs are PRG2/CLEC5A, NFKBI/CLEC5A, and ACSL1/CLEC5A. They play roles in innate immunity and inflammatory responses. CONCLUSIONS Using nCounter and SL, we validated the altered expression of multiple mRNAs by benzene and identified gene pairs predictive of exposure to benzene at levels below the US occupational standard of 1ppm.
Collapse
Affiliation(s)
- Courtney Schiffman
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Cliona M. McHale
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Alan E. Hubbard
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Luoping Zhang
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Reuben Thomas
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Roel Vermeulen
- Institute of Risk assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Guilan Li
- Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Min Shen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, United States of America
| | - Stephen M. Rappaport
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Songnian Yin
- Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, United States of America
| | - Martyn T. Smith
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, United States of America
| |
Collapse
|
32
|
Rump K, Adamzik M. Function of aquaporins in sepsis: a systematic review. Cell Biosci 2018; 8:10. [PMID: 29449936 PMCID: PMC5807818 DOI: 10.1186/s13578-018-0211-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/02/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Sepsis is a common cause of death in intensive care units worldwide. Due to the high complexity of this immunological syndrome development of novel therapeutic strategies is urgent. Promising drug targets or biomarkers may depict aquaporins (AQPs) as they regulate crucial key mechanisms of sepsis. MAIN BODY Here we report on base of the current literature that several AQPs are involved in different physiological processes of sepsis. In immune system mainly AQPs 3, 5 and 9 seem to be important, as they regulate the migration of different immune cells. Several studies showed that AQP3 is essential for T cell function and macrophage migration and that AQP5 and AQP9 regulate neutrophil cell migration and impact sepsis survival. Additionally, to the function in immune system AQPs 1 and 5 play a role in sepsis induced lung injury and their downregulation after inflammatory stimuli impair lung injury. By contrast, AQP4 expression is up-regulated during brain inflammation and aggravates brain edema in sepsis. In kidney AQP2 expression is downregulated during sepsis and can cause renal failure. Some studies also suggest a role of AQP1 in cardiac function. CONCLUSION In conclusion, AQPs are involved in many physiological dysfunctions in sepsis and their expressions are differently regulated. Additional research on the regulatory mechanisms of aquaporins may identify potential therapeutic targets.
Collapse
Affiliation(s)
- Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, In der Schornau 23-25, 45882 Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum-Langendreer, Ruhr-Universität Bochum, In der Schornau 23-25, 45882 Bochum, Germany
| |
Collapse
|
33
|
Nagatake T, Shiogama Y, Inoue A, Kikuta J, Honda T, Tiwari P, Kishi T, Yanagisawa A, Isobe Y, Matsumoto N, Shimojou M, Morimoto S, Suzuki H, Hirata SI, Steneberg P, Edlund H, Aoki J, Arita M, Kiyono H, Yasutomi Y, Ishii M, Kabashima K, Kunisawa J. The 17,18-epoxyeicosatetraenoic acid-G protein-coupled receptor 40 axis ameliorates contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques. J Allergy Clin Immunol 2017; 142:470-484.e12. [PMID: 29288079 DOI: 10.1016/j.jaci.2017.09.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/02/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Metabolites of eicosapentaenoic acid exert various physiologic actions. 17,18-Epoxyeicosatetraenoic acid (17,18-EpETE) is a recently identified new class of antiallergic and anti-inflammatory lipid metabolite of eicosapentaenoic acid, but its effects on skin inflammation and the underlying mechanisms remain to be investigated. OBJECTIVE We evaluated the effectiveness of 17,18-EpETE for control of contact hypersensitivity in mice and cynomolgus macaques. We further sought to reveal underlying mechanisms by identifying the responsible receptor and cellular target of 17,18-EpETE. METHODS Contact hypersensitivity was induced by topical application of 2,4-dinitrofluorobenzene. Skin inflammation and immune cell populations were analyzed by using flow cytometric, immunohistologic, and quantitative RT-PCR analyses. Neutrophil mobility was examined by means of imaging analysis in vivo and neutrophil culture in vitro. The receptor for 17,18-EpETE was identified by using the TGF-α shedding assay, and the receptor's involvement in the anti-inflammatory effects of 17,18-EpETE was examined by using KO mice and specific inhibitor treatment. RESULTS We found that preventive or therapeutic treatment with 17,18-EpETE ameliorated contact hypersensitivity by inhibiting neutrophil mobility in mice and cynomolgus macaques. 17,18-EpETE was recognized by G protein-coupled receptor (GPR) 40 (also known as free fatty acid receptor 1) and inhibited chemoattractant-induced Rac activation and pseudopod formation in neutrophils. Indeed, the antiallergic inflammatory effect of 17,18-EpETE was abolished in the absence or inhibition of GPR40. CONCLUSION 17,18-EpETE inhibits neutrophil mobility through GPR40 activation, which is a potential therapeutic target to control allergic inflammatory diseases.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Yumiko Shiogama
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Tsukuba, Japan
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Takayuki Kishi
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Atsushi Yanagisawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Japan
| | - Yosuke Isobe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Naomi Matsumoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Michiko Shimojou
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - So-Ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Pär Steneberg
- Umea Center for Molecular Medicine, Umea University, Umea, Sweden
| | - Helena Edlund
- Umea Center for Molecular Medicine, Umea University, Umea, Sweden
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-ku, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, Tsukuba, Japan; Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, Institute of Medical Science, University of Tokyo, Tokyo, Japan; Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Suita, Japan.
| |
Collapse
|
34
|
|
35
|
Lindskog C, Asplund A, Catrina A, Nielsen S, Rützler M. A Systematic Characterization of Aquaporin-9 Expression in Human Normal and Pathological Tissues. J Histochem Cytochem 2016; 64:287-300. [PMID: 27026296 DOI: 10.1369/0022155416641028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/01/2016] [Indexed: 11/22/2022] Open
Abstract
AQP9 is known to facilitate hepatocyte glycerol uptake. Murine AQP9 protein expression has been verified in liver, skin, epididymis, epidermis and neuronal cells using knockout mice. Further expression sites have been reported in humans. We aimed to verify AQP9 expression in a large set of human normal organs, different cancer types, rheumatoid arthritis synovial biopsies as well as in cell lines and primary cells. Combining standardized immunohistochemistry with high-throughput mRNA sequencing, we found that AQP9 expression in normal tissues was limited, with high membranous expression only in hepatocytes. In cancer tissues, AQP9 expression was mainly found in hepatocellular carcinomas, suggesting no general contribution of AQP9 to carcinogenesis. AQP9 expression in a subset of rheumatoid arthritis synovial tissue samples was affected by Humira, thereby supporting a suggested role of TNFα in AQP9 regulation in this disease. Among cell lines and primary cells, LP-1 myeloma cells expressed high levels of AQP9, whereas low expression was observed in a few other lymphoid cell lines. AQP9 mRNA and protein expression was absent in HepG2 hepatocellular carcinoma cells. Overall, AQP9 expression in human tissues appears to be more selective than in mice.
Collapse
Affiliation(s)
- Cecilia Lindskog
- Science for Life Laboratory, Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden (CL, AA)
| | - Anna Asplund
- Science for Life Laboratory, Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden (CL, AA)
| | - Anca Catrina
- Rheumatology Clinic, Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden (AC)
| | - Søren Nielsen
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden (SN, MR)
| | - Michael Rützler
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden (SN, MR),Institute for Health Science and Technology, Aalborg University, Aalborg Ø, Denmark (MR)
| |
Collapse
|
36
|
Watanabe S, Moniaga CS, Nielsen S, Hara-Chikuma M. Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 2016; 471:191-7. [PMID: 26837049 DOI: 10.1016/j.bbrc.2016.01.153] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/24/2016] [Indexed: 12/24/2022]
Abstract
Aquaporin (AQP) 9, a member of the transmembrane water channel family, is defined as a water/glycerol transporting protein. Some AQPs including AQP3 and AQP8 have been recently found to transport hydrogen peroxide (H2O2). Here we show that AQP9 facilitates the membrane transport of H2O2 in human and mice cells. Enforced expression of human AQP9 in Chinese hamster ovary-K1 potentiated the increase in cellular H2O2 after adding exogenous H2O2. In contrast, AQP9 knockdown by siRNA in human hepatoma HepG2 cells reduced the import of extracellular H2O2. In addition, the uptake of extracellular H2O2 was suppressed in erythrocytes and bone marrow-derived mast cells from AQP9 knockout mice compared with wild-type cells. Coincidentally, H2O2-induced cytotoxicity was attenuated by AQP9 deficiency in human and mice cells. Our findings implicate the involvement of AQP9 in H2O2 transport in human and mice cells.
Collapse
Affiliation(s)
- Sachiko Watanabe
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Catharina Sagita Moniaga
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, Aalborg, 9220, Denmark
| | - Mariko Hara-Chikuma
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
37
|
Jones CN, Hoang AN, Martel JM, Dimisko L, Mikkola A, Inoue Y, Kuriyama N, Yamada M, Hamza B, Kaneki M, Warren HS, Brown DE, Irimia D. Microfluidic assay for precise measurements of mouse, rat, and human neutrophil chemotaxis in whole-blood droplets. J Leukoc Biol 2016; 100:241-7. [PMID: 26819316 DOI: 10.1189/jlb.5ta0715-310rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/04/2016] [Indexed: 01/04/2023] Open
Abstract
Animal models of human disease differ in innate immune responses to stress, pathogens, or injury. Precise neutrophil phenotype measurements could facilitate interspecies comparisons. However, such phenotype comparisons could not be performed accurately with the use of current assays, as they require the separation of neutrophils from blood using species-specific protocols, and they introduce distinct artifacts. Here, we report a microfluidic technology that enables robust characterization of neutrophil migratory phenotypes in a manner independent of the donor species and performed directly in a droplet of whole blood. The assay relies on the particular ability of neutrophils to deform actively during chemotaxis through microscale channels that block the advance of other blood cells. Neutrophil migration is measured directly in blood, in the presence of other blood cells and serum factors. Our measurements reveal important differences among migration counts, velocity, and directionality among neutrophils from 2 common mouse strains, rats, and humans.
Collapse
Affiliation(s)
- Caroline N Jones
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anh N Hoang
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph M Martel
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurie Dimisko
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Mikkola
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yoshitaka Inoue
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina Yamada
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bashar Hamza
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - H Shaw Warren
- Department of Pediatrics and Medicine, Infectious Disease Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane E Brown
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; and
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|