1
|
Kim HB, Kim H, Oh SH, Kang MJ, Park JH, Lee SB, Shim S, Lee HJ, Yoo KC, Jang H. Bixin alleviates radiation-induced intestinal damage via inflammation regulation and barrier recovery. Int J Radiat Biol 2025:1-10. [PMID: 40397619 DOI: 10.1080/09553002.2025.2505523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/15/2025] [Accepted: 05/05/2025] [Indexed: 05/23/2025]
Abstract
PURPOSE Radiotherapy for cancer treatment or unintentional exposure to ionizing radiation causes severe damage to the unaffected tissues of the digestive system, including gastrointestinal (GI) tract. Radiation exposure leads to an inflammatory response, and uncontrolled inflammation exacerbates radiation-induced tissue injury. Bixin is a liposoluble apocarotenoid isolated from Bixa orrellana seeds, which effectively attenuates several inflammatory diseases. In this study, we investigated whether bixin mitigated radiation-induced intestinal damage through an examination of its role in inflammation and the protection of the epithelial barrier. MATERIALS AND METHODS To determine the therapeutic effects of bixin in treating radiation-induced intestinal damage, we carried out histological analyses, inflammatory response examinations, and barrier function assessments using a mouse model of radiation-induced enteropathy. RESULTS We uncovered that bixin effectively mitigates radiation-induced enteropathy by suppressing the inflammatory response, reducing inflammatory cell accumulation, and limiting cytokine expression in the radiation-induced intestinal injury. In a mouse model of acute radiation-induced intestinal injury, treatment with bixin enhanced nuclear factor erythroid-2-related factor 2 (NRF2) activation and promoted tight junction expression in the epithelium, while also hindering bacterial translocation to the mesenteric lymph nodes. CONCLUSION Bixin represents a potential therapeutic candidate for the treatment of radiation-induced enteropathy.
Collapse
Affiliation(s)
- Han Byul Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hyewon Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Su-Hyun Oh
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Min-Ji Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Jung Hwan Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Seung Bum Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Sehwan Shim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hae-June Lee
- College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Ki-Chun Yoo
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | - Hyosun Jang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Science, Seoul, Korea
| |
Collapse
|
2
|
Abe JI, Allen BG, Beyer AM, Lewandowski D, Mapuskar KA, Subramanian V, Tamplin MR, Grumbach IM. Radiation-Induced Macrovessel/Microvessel Disease. Arterioscler Thromb Vasc Biol 2024; 44:2407-2415. [PMID: 39445428 PMCID: PMC11842029 DOI: 10.1161/atvbaha.124.319866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Radiation therapy (RT) is a cornerstone in cancer treatment (used in 50% of cases), yet challenges persist because damage to normal tissue through direct impact of radiation or bystander effects is inevitable. Injury of macrovessels by RT manifests as obstructive disease, which is akin to atherosclerotic disease. Historically observed in coronary arteries of patients treated for breast cancer and lymphoma, it also affects patients receiving contemporary therapy for lung and chest cancers. Moreover, radiation at various sites can lead to peripheral vascular disease. An aspect of radiation-induced injury that has received little attention is microvascular injury, which typically results from damage to the endothelium and is considered the primary driver of RT-induced toxicity in the skin, kidney, and brain. This review delves into the clinical manifestations of RT-induced vascular disease, signaling pathways, cellular targets affected by radiation injury, and preclinical models of RT-induced vascular injury. The goal is to inspire the development of innovative strategies to prevent RT-related cardiovascular disease.
Collapse
Affiliation(s)
- Jun-Ichi Abe
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston (J.-I.A.)
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology (B.G.A., K.A.M., I.M.G.), Carver College of Medicine, University of Iowa
| | - Andreas M Beyer
- Department of Pharmacology and Physiology, Cardiovascular Center (A.M.B.), Medical College of Wisconsin, Milwaukee
| | - David Lewandowski
- Division of Cardiology/Cardiovascular Medicine, Department of Medicine (D.L.), Medical College of Wisconsin, Milwaukee
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology (B.G.A., K.A.M., I.M.G.), Carver College of Medicine, University of Iowa
| | - Vikram Subramanian
- Department of Internal Medicine, Abboud Cardiovascular Research Center (V.S., M.R.T., I.M.G.), Carver College of Medicine, University of Iowa
| | - Michelle R Tamplin
- Department of Internal Medicine, Abboud Cardiovascular Research Center (V.S., M.R.T., I.M.G.), Carver College of Medicine, University of Iowa
| | - Isabella M Grumbach
- Free Radical and Radiation Biology Program, Department of Radiation Oncology (B.G.A., K.A.M., I.M.G.), Carver College of Medicine, University of Iowa
- Department of Internal Medicine, Abboud Cardiovascular Research Center (V.S., M.R.T., I.M.G.), Carver College of Medicine, University of Iowa
- Iowa City VA Healthcare System (I.M.G.)
| |
Collapse
|
3
|
Mendes Wefelnberg M, Moll M, von Stein P, Guthoff H, Heindl LM, Wawer Matos Reimer P, Rokohl AC, Simon M, Zubac D, Baumann FT. Eight weeks of exercise intervention improves visuomotor and functional capacity, performance, and physiological profile in a patient with choroidal melanoma. J Appl Physiol (1985) 2024; 136:799-806. [PMID: 38385179 DOI: 10.1152/japplphysiol.00840.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The aim of this case study was to investigate the effects of an 8-wk combined exercise intervention, consisting of visual-coordinative and high-intensity interval training (HIIT), on the physical and visuomotor-functional capacity, performance, and physiological profile of a moderately active 29-yr-old man diagnosed with choroidal melanoma of the left eye. Data were collected on three occasions: at the initial diagnosis (T0), after hospitalization and radiotherapy treatment (T1), and following the recovery through the exercise intervention (T2), spanning a total of 17 wk. The primary outcome variables consisted of visuomotor and functional tests (VFTs), cardiorespiratory fitness (CRF), and microvascular circulation measured via flicker light-induced dilation (FiD). For visuomotor tests in general, a significant decline was observed between baseline T0 and T1 (by 6%-22%), followed by significant improvements at T2 (by 11%-36%), surpassing the initially observed T0 values. The cardiopulmonary exercise testing (CPET)-derived parameters exhibited a similar pattern, declining from T0 to T1 [by 8%-12% for peak V̇o2, peak power output (PO), and CPET duration, respectively], with a subsequent recovery observed in response to 8 wk of exercise training (T2), resulting in increases of 11%-25% for V̇o2, peak PO, and CPET duration. Interestingly, the dilation of both arteries and veins in response to the FiD stimulus exhibited a twofold increase compared with baseline levels. Our results suggest that the 8-wk exercise intervention improved patients' VFT and CRF profiles and exceeded baseline values. Additional investigation, particularly through randomized controlled trials, is needed to comprehensively explain changes in FiD.NEW & NOTEWORTHY Results presented here suggest that combined visual-coordinative and HIIT training improves the visual-functional capacity, performance, and physiological profile of choroidal melanoma patients during treatment recovery. This case study lays the groundwork for further research concerning exercise therapy in this unique patient population. In addition, further investigation is required to fully comprehend the combined effects of exercise and radiation therapy on vasculature and oxygenation in patients with choroidal melanoma.
Collapse
Affiliation(s)
- Michael Mendes Wefelnberg
- Department I of Internal Medicine, Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf, University Hospital of Cologne, Cologne, Germany
| | - Madeline Moll
- Department I of Internal Medicine, Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf, University Hospital of Cologne, Cologne, Germany
| | - Philipp von Stein
- Clinic III for Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Clinic III for Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ludwig M Heindl
- Center for Integrated Oncology Aachen, Bonn, Köln, Düsseldorf, University Cologne, Cologne, Germany
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philomena Wawer Matos Reimer
- Center for Integrated Oncology Aachen, Bonn, Köln, Düsseldorf, University Cologne, Cologne, Germany
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander C Rokohl
- Center for Integrated Oncology Aachen, Bonn, Köln, Düsseldorf, University Cologne, Cologne, Germany
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Simon
- Center for Integrated Oncology Aachen, Bonn, Köln, Düsseldorf, University Cologne, Cologne, Germany
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Damir Zubac
- Department I of Internal Medicine, Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf, University Hospital of Cologne, Cologne, Germany
| | - Freerk T Baumann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen, Bonn, Cologne, Düsseldorf, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Lu Q, Liang Y, Tian S, Jin J, Zhao Y, Fan H. Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. TOXICS 2023; 11:1011. [PMID: 38133412 PMCID: PMC10747544 DOI: 10.3390/toxics11121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Radiation-induced intestinal injury (RIII) is one of the most common intestinal complications caused by radiotherapy for pelvic and abdominal tumors and it seriously affects the quality of life of patients. However, the treatment of acute RIII is essentially symptomatic and nutritional support treatment and an ideal means of prevention and treatment is lacking. Researchers have conducted studies at the cellular and animal levels and found that some chemical or biological agents have good therapeutic effects on RIII and may be used as potential candidates for clinical treatment. This article reviews the injury mechanism and potential treatment strategies based on cellular and animal experiments to provide new ideas for the diagnosis and treatment of RIII in clinical settings.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
5
|
Mondini M, Guipaud O, François A, Mathieu N, Deutsch É, Milliat F. [Interactions between vascular endothelium and immune cells: A key control point of radiation-induced digestive lesions]. Cancer Radiother 2023; 27:643-647. [PMID: 37516639 DOI: 10.1016/j.canrad.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 07/31/2023]
Abstract
Radiation-induced toxicity of the digestive tract is a major clinical concern as many cancer survivors have received radiotherapy for tumours of the abdominopelvic area. The coordination and orchestration of a tissue's response to stress depend not only on the phenotype of the cells that make up the tissue but also on cell-cell interactions. The digestive system, i.e., the intestine/colon/rectum, is made up of a range of different cell populations: epithelial cells, stromal cells, i.e. endothelial cells and mesenchymal lineages, immune cells and nerve cells. Moreover, each of these populations is heterogeneous and presents very significant plasticity and differentiation states. The pathogenesis of radiation-induced digestive lesions is an integrated process that involves multiple cellular compartments interacting in a complex sequence of events. Understanding all the cellular events and communication networks that contribute to the tissue's response to stress is therefore a major conceptual and methodological scientific challenge. The study of heterogeneous populations of cells in a tissue is now possible thanks to "single cell' RNA sequencing and spatial transcriptomics techniques, which enable a comprehensive study of the transcriptomic profiles of individual cells in an integrated system. In addition, the mathematical and bioinformatics tools that are now available for the large-scale analysis of data allow the inference of cell-cell communication networks. Such approaches have become possible through advances in bioinformatics algorithms for the analysis and deciphering of interaction networks. Interactions influence the tissue regeneration process through expression of various molecules, including metabolites, integrins, junction proteins, ligands, receptors and proteins secreted into the extracellular space. The vascular network is viewed as a key player in the progression of digestive lesions, which are characterised by infiltration of a range of immune cells. A better characterisation of endothelium/immune cell interactions in suitable preclinical models, as well as in humans, may help to identify some promising therapeutic targets for the prediction, prevention or treatment of digestive toxicity after radiotherapy.
Collapse
Affiliation(s)
- M Mondini
- Gustave-Roussy, Inserm U1030, université Paris-Saclay, Villejuif, France
| | - O Guipaud
- Institut de radioprotection et de sûreté nucléaire (IRSN), PSE-Sante/Seramed/LRMed, 92260 Fontenay-aux-Roses, France
| | - A François
- Institut de radioprotection et de sûreté nucléaire (IRSN), PSE-Sante/Seramed/LRMed, 92260 Fontenay-aux-Roses, France
| | - N Mathieu
- Institut de radioprotection et de sûreté nucléaire (IRSN), PSE-Sante/Seramed/LRMed, 92260 Fontenay-aux-Roses, France
| | - É Deutsch
- Gustave-Roussy, Inserm U1030, université Paris-Saclay, Villejuif, France; Service de radiothérapie oncologique, Gustave-Roussy, Villejuif, France
| | - F Milliat
- Institut de radioprotection et de sûreté nucléaire (IRSN), PSE-Sante/Seramed/LRMed, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|
6
|
Qiu J, Fang Y, Xiao S, Zeng F. AP2a-Mediated Upregulation of miR-125a-5p Ameliorates Radiation-Induced Oxidative Stress Injury via BRD4/Nrf2/HO-1 Signaling. Radiat Res 2023; 199:148-160. [PMID: 36469904 DOI: 10.1667/rade-22-00107.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/27/2022] [Indexed: 12/12/2022]
Abstract
Radiation therapy is widely used to restrain tumor progression, but it is always accompanied by damage to healthy tissues. We aimed to probe the impact and mechanism of activator protein 2a (AP2a) and miR-125a-5p in radiation-induced oxidative stress injury. Human umbilical vein endothelial cells (HUVECs) were treated with X rays to induce radiation injury in vitro. Cell viability was measured using MTT assays. Flow cytometry assay was employed to detect the apoptosis rate. Oxidative stress markers were evaluated by detection kits. Gene or protein levels were determined by RT-qPCR or Western blotting. Validation of the interaction of miR-125a-5p with BRD4 and AP2a was conducted by dual luciferase assay or ChIP. MiR-125a-5p and AP2a were decreased in irradiated HUVECs, whereas BRD4 was increased. MiR-125a-5p overexpression or BRD4 silencing alleviated the cell viability decline, apoptosis, and oxidative stress injury caused by radiation treatment. MiR-125a-5p repressed the BRD4 level. The protective effects of miR-125a-5p overexpression in the radiation-induced oxidative injury were impeded by BRD4 overexpression. Moreover, AP2a bound to the promoter of miR-125a-5p. MiR-125a-5p inhibition reversed the effects of AP2a overexpression on radiational oxidative injury by modulating Nrf2/HO-1 signaling. AP2a transcriptionally activated miR-125a-5p ameliorated oxidative stress injury of HUVECs caused by radiation through Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Jun Qiu
- The Second Tumor Ward, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410016, Hunan Province, P.R. China
| | - Yi Fang
- Department of Anesthesiology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410006, Hunan Province, P.R. China
| | - Shengyi Xiao
- The Second Tumor Ward, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410016, Hunan Province, P.R. China
| | - Furen Zeng
- The Second Tumor Ward, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410016, Hunan Province, P.R. China
| |
Collapse
|
7
|
Huang Z, Chen G, Deng F, Li Y. Nanostructured Graphdiyne: Synthesis and Biomedical Applications. Int J Nanomedicine 2022; 17:6467-6490. [PMID: 36573204 PMCID: PMC9789722 DOI: 10.2147/ijn.s383707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Graphdiyne (GDY) is a 2D carbon allotrope that features a one-atom-thick network of sp- and sp2-hybridized carbon atoms with high degrees of π conjugation. Due to its distinct electronic, chemical, mechanical, and magnetic properties, GDY has attracted great attention and shown great potential in various fields, such as catalysis, energy storage, and the environment. Preparation of GDY with various nanostructures, including 0D quantum dots, 1D nanotubes/nanowires/nanoribbons, 2D nanosheets/nanowalls/ordered stripe arrays, and 3D nanospheres, greatly improves its function and has propelled its applications forward. High biocompatibility and stability make GDY a promising candidate for biomedical applications. This review introduces the latest developments in fabrication of GDY-based nanomaterials with various morphologies and summarizes their propective use in the biomedical domain, specifically focusing on their potential advantages and applications for biosensing, cancer diagnosis and therapy, radiation protection, and tissue engineering.
Collapse
Affiliation(s)
- Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Guanhui Chen
- Department of Stomatology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People’s Republic of China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| | - Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People's Republic of China
| |
Collapse
|
8
|
Chopra S, Shankavaram U, Bylicky M, Dalo J, Scott K, Aryankalayil MJ, Coleman CN. Profiling mRNA, miRNA and lncRNA expression changes in endothelial cells in response to increasing doses of ionizing radiation. Sci Rep 2022; 12:19941. [PMID: 36402833 PMCID: PMC9675751 DOI: 10.1038/s41598-022-24051-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/09/2022] [Indexed: 11/21/2022] Open
Abstract
Recent and past research have highlighted the importance of the endothelium in the manifestation of radiation injury. Our primary focus is on medical triage and management following whole body or partial-body irradiation. Here we investigated the usability of endothelial cells' radiation response for biodosimetry applications. We profiled the transcriptome in cultured human endothelial cells treated with increasing doses of X-rays. mRNA expression changes were useful 24 h and 72 h post-radiation, microRNA and lncRNA expression changes were useful 72 h after radiation. More mRNA expressions were repressed than induced while more miRNA and lncRNA expressions were induced than repressed. These novel observations imply distinct radiation responsive regulatory mechanisms for coding and non-coding transcripts. It also follows how different RNA species should be explored as biomarkers for different time-points. Radiation-responsive markers which could classify no radiation (i.e., '0 Gy') and dose-differentiating markers were also predicted. IPA analysis showed growth arrest-related processes at 24 h but immune response coordination at the 72 h post-radiation. Collectively, these observations suggest that endothelial cells have a precise dose and time-dependent response to radiation. Further studies in the laboratory are examining if these differences could be captured in the extracellular vesicles released by irradiated endothelial cells.
Collapse
Affiliation(s)
- Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Michelle Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Juan Dalo
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Kevin Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA.
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Morilla I, Chan P, Caffin F, Svilar L, Selbonne S, Ladaigue S, Buard V, Tarlet G, Micheau B, Paget V, François A, Souidi M, Martin JC, Vaudry D, Benadjaoud MA, Milliat F, Guipaud O. Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation. iScience 2022; 25:103685. [PMID: 35106469 PMCID: PMC8786676 DOI: 10.1016/j.isci.2021.103685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/04/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers-i.e. miRNome, targeted transcriptome, proteome, and metabolome-in irradiated primary human endothelial cells cultured in vitro. We then designed a strategy of deep learning as in convolutional graph networks that facilitates unsupervised high-level feature extraction of important omics data to learn how ionizing radiation-induced endothelial dysfunction may evolve over time. Last, we present experimental data showing that some of the features identified using our approach are involved in the alteration of angiogenesis by ionizing radiation.
Collapse
Affiliation(s)
- Ian Morilla
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
- Corresponding author
| | - Philippe Chan
- Normandie Univ, UNIROUEN, PISSARO Proteomic Platform, 76821 Mont Saint-Aignan, France
| | - Fanny Caffin
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Ljubica Svilar
- Aix Marseille Univ, INSERM, INRA, C2VN, 13007 Marseille, France
- CriBioM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, 13205 Marseille Cedex 01, France
| | - Sonia Selbonne
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Ségolène Ladaigue
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
- Sorbonne University, Doctoral College, 75005 Paris, France
| | - Valérie Buard
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Georges Tarlet
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Béatrice Micheau
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Vincent Paget
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Agnès François
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Maâmar Souidi
- IRSN, Radiobiology of Accidental Exposure Laboratory (LRAcc), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Jean-Charles Martin
- Aix Marseille Univ, INSERM, INRA, C2VN, 13007 Marseille, France
- CriBioM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, 13205 Marseille Cedex 01, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, PISSARO Proteomic Platform, 76821 Mont Saint-Aignan, France
| | - Mohamed-Amine Benadjaoud
- IRSN, Radiobiology and Regenerative Medicine Research Service (SERAMED), 92260 Fontenay-Aux-Roses, France
| | - Fabien Milliat
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Olivier Guipaud
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
- Corresponding author
| |
Collapse
|
10
|
Benadjaoud MA, Soysouvanh F, Tarlet G, Paget V, Buard V, Santos de Andrade H, Morilla I, Dos Santos M, Bertho A, l'Homme B, Gruel G, François A, Mondini M, Deutsch E, Guipaud O, Milliat F. Deciphering the Dynamic Molecular Program of Radiation-Induced Endothelial Senescence. Int J Radiat Oncol Biol Phys 2021; 112:975-985. [PMID: 34808254 DOI: 10.1016/j.ijrobp.2021.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced cellular senescence is a double-edged sword, acting as both a tumor suppression process limiting tumor proliferation, and a crucial process contributing to normal tissue injury. Endothelial cells play a role in normal tissue injury after radiation therapy. Recently, a study observed an accumulation of senescent endothelial cells (ECs) around radiation-induced lung focal lesions following stereotactic radiation injury in mice. However, the effect of radiation on EC senescence remains unclear because it depends on dose and fractionation, and because the senescent phenotype is heterogeneous and dynamic. METHODS AND MATERIALS Using a systems biology approach in vitro, we deciphered the dynamic senescence-associated transcriptional program induced by irradiation. RESULTS Flow cytometry and single-cell RNA sequencing experiments revealed the heterogeneous senescent status of irradiated ECs and allowed to deciphered the molecular program involved in this status. We identified the Interleukin-1 signaling pathway as a key player in the radiation-induced premature senescence of ECs, as well as the endothelial-to-mesenchymal transition process, which shares strong hallmarks of senescence. CONCLUSIONS Our work provides crucial information on the dynamics of the radiation-induced premature senescence process, the effect of the radiation dose, as well as the molecular program involved in the heterogeneous senescent status of ECs.
Collapse
Affiliation(s)
- Mohamed Amine Benadjaoud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses; IRSN, Department of Radiobiology and Regenerative Medicine, Fontenay-aux-Roses
| | - Frédéric Soysouvanh
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses; Sorbonne University, Doctoral College, Paris
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Henrique Santos de Andrade
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Ian Morilla
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Morgane Dos Santos
- IRSN, Radiobiology of Accidental Exposure Laboratory, Fontenay-aux-Roses
| | - Annaïg Bertho
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses; IRSN, Department of Radiobiology and Regenerative Medicine, Fontenay-aux-Roses
| | - Bruno l'Homme
- IRSN, Radiobiology of Accidental Exposure Laboratory, Fontenay-aux-Roses
| | - Gaëtan Gruel
- IRSN, Radiobiology of Accidental Exposure Laboratory, Fontenay-aux-Roses
| | - Agnès François
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif; French National Institute of Health and Medical Research (INSERM), Villejuif; Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre; INSERM U1030 Gustave Roussy, Villejuif
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif; French National Institute of Health and Medical Research (INSERM), Villejuif; Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre; INSERM U1030 Gustave Roussy, Villejuif; Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie, Villejuif, France
| | - Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Fabien Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses.
| |
Collapse
|
11
|
Cohen C, Le Goff O, Soysouvanh F, Vasseur F, Tanou M, Nguyen C, Amrouche L, Le Guen J, Saltel-Fulero O, Meunier T, Nguyen-Khoa T, Rabant M, Nochy D, Legendre C, Friedlander G, Childs BG, Baker DJ, Knebelmann B, Anglicheau D, Milliat F, Terzi F. Glomerular endothelial cell senescence drives age-related kidney disease through PAI-1. EMBO Mol Med 2021; 13:e14146. [PMID: 34725920 PMCID: PMC8573606 DOI: 10.15252/emmm.202114146] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying the development of glomerular lesions during aging are largely unknown. It has been suggested that senescence might play a role, but the pathophysiological link between senescence and lesion development remains unexplained. Here, we uncovered an unexpected role for glomerular endothelial cells during aging. In fact, we discovered a detrimental cross-talk between senescent endothelial cells and podocytes, through PAI-1. In vivo, selective inactivation of PAI-1 in endothelial cells protected glomeruli from lesion development and podocyte loss in aged mice. In vitro, blocking PAI-1 in supernatants from senescent endothelial cells prevented podocyte apoptosis. Consistently, depletion of senescent cells prevented podocyte loss in old p16 INK-ATTAC transgenic mice. Importantly, these experimental findings are relevant to humans. We showed that glomerular PAI-1 expression was predictive of poor outcomes in transplanted kidneys from elderly donors. In addition, we observed that in elderly patients, urinary PAI-1 was associated with age-related chronic kidney disease. Altogether, these results uncover a novel mechanism of kidney disease and identify PAI-1 as a promising biomarker of kidney dysfunction in allografts from elderly donors.
Collapse
Affiliation(s)
- Camille Cohen
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Océane Le Goff
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Frédéric Soysouvanh
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire Radiobiologie des Expositions Médicale, Fontenay-aux-Roses, France
| | - Florence Vasseur
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Marine Tanou
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Clément Nguyen
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Lucile Amrouche
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Julien Le Guen
- Service de Gériatrie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Oriana Saltel-Fulero
- Service de Gériatrie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Tanguy Meunier
- Service de Gériatrie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Thao Nguyen-Khoa
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Biochimie, Hôpital Necker Enfants Malades, AP-HP Centre, Université de Paris, Paris, France
| | - Marion Rabant
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service d'Anatomo-Pathologie, AP-HP, Hôpital Necker Enfants Malades, AP-HP Centre, Université de Paris, Paris, France
| | - Dominique Nochy
- Service d'Anatomo-Pathologie, Hôpital Européen George Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Christophe Legendre
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Gérard Friedlander
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Bennett G Childs
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daren J Baker
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Bertrand Knebelmann
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Dany Anglicheau
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire Radiobiologie des Expositions Médicale, Fontenay-aux-Roses, France
| | - Fabiola Terzi
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| |
Collapse
|
12
|
Ben Kacem M, Benadjaoud MA, Dos Santos M, Buard V, Tarlet G, Le Guen B, François A, Guipaud O, Milliat F, Paget V. Variation of 4 MV X-ray dose rate in fractionated irradiation strongly impacts biological endothelial cell response in vitro. Int J Radiat Biol 2021; 98:50-59. [PMID: 34705615 DOI: 10.1080/09553002.2022.1998703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Even though X-ray beams are widely used in medical diagnosis or radiotherapy, the comparisons of their dose rates are scarce. We have recently demonstrated in vitro (clonogenic assay, cell viability, cell cycle, senescence) and in vivo (weight follow-up of animals and bordering epithelium staining of lesion), that for a single dose of irradiation, the relative biological effectiveness (RBE) deviates from 1 (up to twofold greater severe damage at the highest dose rate depending on the assay) when increasing the dose rate of high energy X-ray beams. MATERIAL AND METHODS To further investigate the impact of the dose rate on RBE, in this study, we performed in vitro fractionated irradiations by using the same two dose rates (0.63 and 2.5 Gy.min-1) of high-energy X-rays (both at 4 MV) on normal endothelial cells (HUVECs). We investigated the viability/mortality, characterized radiation-induced senescence by using flow cytometry and measured gene analysis deregulations on custom arrays. RESULTS The overall results enlighten that, in fractionated irradiations when varying the dose rate of high-energy X-rays, the RBE of photons deviates from 1 (up to 2.86 for viability/mortality experiments performed 21 days postirradiation). CONCLUSION These results strengthen the interest of multiparametric analysis approaches in providing an accurate evaluation of the outcomes of irradiated cells in support of clonogenic assays, especially when such assays are not feasible.
Collapse
Affiliation(s)
- Mariam Ben Kacem
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Mohamed A Benadjaoud
- Department of RAdiobiology and regenerative MEDicine (SERAMED), Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc), Fontenay-aux-Roses, France
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | | | - A François
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - O Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - F Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), Department of RAdiobiology and regenerative MEDicine (SERAMED), Laboratory of MEDical Radiobiology (LRMed), Fontenay-aux-Roses, France
| |
Collapse
|
13
|
Lei X, He N, Zhu L, Zhou M, Zhang K, Wang C, Huang H, Chen S, Li Y, Liu Q, Han Z, Guo Z, Han Z, Li Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles Attenuate Radiation-Induced Lung Injury via miRNA-214-3p. Antioxid Redox Signal 2021; 35:849-862. [PMID: 32664737 DOI: 10.1089/ars.2019.7965] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aims: Radiotherapy is an effective treatment for thoracic malignancies, but it can cause pulmonary injury and may lead to respiratory failure in a subset of patients. Extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) are now recognized as a new candidate for cell-free treatment of lung diseases. Here, we investigated whether MSC-derived EVs (MSC-EVs) could ameliorate radiation-induced lung injury. Results: We exposed mice to thoracic radiation with a total dose of 15 Gy and assessed the protective effects of MSC-EVs on endothelial cells damage, vascular permeability, inflammation, and fibrosis. We found that MSC-EVs attenuated radiation-induced lung vascular damage, inflammation, and fibrosis. Moreover, MSC-EVs reduced the levels of radiation-induced DNA damage by downregulating ATM/P53/P21 signaling. Our results confirmed that the downregulation of ataxia telangiectasia mutated (ATM) was regulated by miR-214-3p, which was enriched in MSC-EVs. Further analysis demonstrated that MSC-EVs inhibited the senescence-associated secretory phenotype development and attenuated the radiation-induced injury of endothelial cells. Innovation and Conclusion: Our study reveals that MSC-EVs can reduce pulmonary radiation injury through transferring miR-214-3p, providing new avenues to minimize lung injury from radiation therapy. Antioxid. Redox Signal. 35, 849-862.
Collapse
Affiliation(s)
- Xudan Lei
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, China
| | - Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Lihong Zhu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Manqian Zhou
- Department of Radiation Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Kaiyue Zhang
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Chen Wang
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Haoyan Huang
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Shang Chen
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Yuhao Li
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Zhibo Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China.,Jiangxi Engineering Research Center for Stem Cell, Shangrao, China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Zhongchao Han
- Tianjin Key Laboratory of Engineering Technologies for Cell Pharmaceutical, National Engineering Research Center of Cell Products, AmCellGene Co., Ltd., Tianjin, China.,Jiangxi Engineering Research Center for Stem Cell, Shangrao, China
| | - Zongjin Li
- Lab of Molecular Imaging and Stem Cell Therapy, Nankai University School of Medicine, Tianjin, China.,The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Ying H, Fang M, Hang QQ, Chen Y, Qian X, Chen M. Pirfenidone modulates macrophage polarization and ameliorates radiation-induced lung fibrosis by inhibiting the TGF-β1/Smad3 pathway. J Cell Mol Med 2021; 25:8662-8675. [PMID: 34327818 PMCID: PMC8435416 DOI: 10.1111/jcmm.16821] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 01/10/2023] Open
Abstract
Radiation-induced lung injury (RILI) mainly contributes to the complications of thoracic radiotherapy. RILI can be divided into radiation pneumonia (RP) and radiation-induced lung fibrosis (RILF). Once RILF occurs, patients will eventually develop irreversible respiratory failure; thus, a new treatment strategy to prevent RILI is urgently needed. This study explored the therapeutic effect of pirfenidone (PFD), a Food and Drug Administration (FDA)-approved drug for (IPF) treatment, and its mechanism in the treatment of RILF. In vivo, C57BL/6 mice received a 50 Gy dose of X-ray radiation to the whole thorax with or without the administration of PFD. Collagen deposition and fibrosis in the lung were reversed by PFD treatment, which was associated with reduced M2 macrophage infiltration and inhibition of the transforming growth factor-β1 (TGF-β1)/Drosophila mothers against the decapentaplegic 3 (Smad3) signalling pathway. Moreover, PFD treatment decreased the radiation-induced expression of TGF-β1 and phosphorylation of Smad3 in alveolar epithelial cells (AECs) and vascular endothelial cells (VECs). Furthermore, IL-4-induced M2 macrophage polarization and IL-13-induced M2 macrophage polarization were suppressed by PFD treatment in vitro, resulting in reductions in the release of arginase-1 (ARG-1), chitinase 3-like 3 (YM-1) and TGF-β1. Notably, the PFD-induced inhibitory effects on M2 macrophage polarization were associated with downregulation of nuclear factor kappa-B (NF-κB) p50 activity. Additionally, PFD could significantly inhibit ionizing radiation-induced chemokine secretion in MLE-12 cells and consequently impair the migration of RAW264.7 cells. PFD could also eliminate TGF-β1 from M2 macrophages by attenuating the activation of TGF-β1/Smad3. In conclusion, PFD is a potential therapeutic agent to ameliorate fibrosis in RILF by reducing M2 macrophage infiltration and inhibiting the activation of TGF-β1/Smad3.
Collapse
Affiliation(s)
- Hangjie Ying
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Min Fang
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.,The Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qing Qing Hang
- The Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, China
| | - Yamei Chen
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xu Qian
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,The Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ming Chen
- Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, China.,Zhejiang Key Laboratory of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, China.,The Department of Thoracic Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
15
|
Constanzo J, Faget J, Ursino C, Badie C, Pouget JP. Radiation-Induced Immunity and Toxicities: The Versatility of the cGAS-STING Pathway. Front Immunol 2021; 12:680503. [PMID: 34079557 PMCID: PMC8165314 DOI: 10.3389/fimmu.2021.680503] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
In the past decade, radiation therapy (RT) entered the era of personalized medicine, following the striking improvements in radiation delivery and treatment planning optimization, and in the understanding of the cancer response, including the immunological response. The next challenge is to identify the optimal radiation regimen(s) to induce a clinically relevant anti-tumor immunity response. Organs at risks and the tumor microenvironment (e.g. endothelial cells, macrophages and fibroblasts) often limit the radiation regimen effects due to adverse toxicities. Here, we reviewed how RT can modulate the immune response involved in the tumor control and side effects associated with inflammatory processes. Moreover, we discussed the versatile roles of tumor microenvironment components during RT, how the innate immune sensing of RT-induced genotoxicity, through the cGAS-STING pathway, might link the anti-tumor immune response, radiation-induced necrosis and radiation-induced fibrosis, and how a better understanding of the switch between favorable and deleterious events might help to define innovative approaches to increase RT benefits in patients with cancer.
Collapse
Affiliation(s)
- Julie Constanzo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Julien Faget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Chiara Ursino
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards Public Health England Chilton, Didcot, United Kingdom
| | - Jean-Pierre Pouget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
16
|
Hong T, Wang R, Wang X, Yang S, Wang W, Gao Q, Zhang X. Interplay Between the Intestinal Microbiota and Acute Graft-Versus-Host Disease: Experimental Evidence and Clinical Significance. Front Immunol 2021; 12:644982. [PMID: 33815399 PMCID: PMC8010685 DOI: 10.3389/fimmu.2021.644982] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for many hematological disorders and autoimmune diseases, but acute graft-versus-host disease (aGVHD) has remained a major obstacle that limits allo-HSCT and exhibits a daunting mortality rate. The gastrointestinal system is among the most common sites affected by aGVHD. Experimental advances in the field of intestinal microbiota research enhanced our understanding - not only of the quantity and diversity of intestinal microbiota - but also their association with homeostasis of the immune system and disease pathogenesis, including that of aGVHD. Meanwhile, ever-growing clinical evidence suggest that the intestinal microbiota is dysregulated in patients who develop aGVHD and that the imbalance may affect clinical outcomes, indicating a potential predictive role for microbiota dysregulation in aGVHD severity and prognosis. The current animal and human studies investigating the intestinal microbiota in aGVHD and the understanding of the influence and management of the microbiota in the clinic are reviewed herein. Taken together, monitoring and remodeling the intestinal microecology following allo-HSCT may provide us with promising avenues for diagnosing, preventing or treating aGVHD in the clinic.
Collapse
Affiliation(s)
- Tao Hong
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihao Wang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
17
|
Kwak SY, Park S, Kim H, Lee SJ, Jang WS, Kim MJ, Lee S, Jang WI, Kim AR, Kim EH, Shim S, Jang H. Atorvastatin Inhibits Endothelial PAI-1-Mediated Monocyte Migration and Alleviates Radiation-Induced Enteropathy. Int J Mol Sci 2021; 22:ijms22041828. [PMID: 33673196 PMCID: PMC7917640 DOI: 10.3390/ijms22041828] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/15/2023] Open
Abstract
Intestinal injury is observed in cancer patients after radiotherapy and in individuals exposed to radiation after a nuclear accident. Radiation disrupts normal vascular homeostasis in the gastrointestinal system by inducing endothelial damage and senescence. Despite advances in medical technology, the toxicity of radiation to healthy tissue remains an issue. To address this issue, we investigated the effect of atorvastatin, a commonly prescribed hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor of cholesterol synthesis, on radiation-induced enteropathy and inflammatory responses. We selected atorvastatin based on its pleiotropic anti-fibrotic and anti-inflammatory effects. We found that atorvastatin mitigated radiation-induced endothelial damage by regulating plasminogen activator inhibitor-1 (PAI-1) using human umbilical vein endothelial cells (HUVECs) and mouse model. PAI-1 secreted by HUVECs contributed to endothelial dysfunction and trans-endothelial monocyte migration after radiation exposure. We observed that PAI-1 production and secretion was inhibited by atorvastatin in irradiated HUVECs and radiation-induced enteropathy mouse model. More specifically, atorvastatin inhibited PAI-1 production following radiation through the JNK/c-Jun signaling pathway. Together, our findings suggest that atorvastatin alleviates radiation-induced enteropathy and supports the investigation of atorvastatin as a radio-mitigator in patients receiving radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sehwan Shim
- Correspondence: (S.S.); (H.J.); Tel.: +82-2-3399-5873 (S.S.); +82-2-970-1302 (H.J.)
| | - Hyosun Jang
- Correspondence: (S.S.); (H.J.); Tel.: +82-2-3399-5873 (S.S.); +82-2-970-1302 (H.J.)
| |
Collapse
|
18
|
Graphdiyne nanoradioprotector with efficient free radical scavenging ability for mitigating radiation-induced gastrointestinal tract damage. Biomaterials 2020; 244:119940. [DOI: 10.1016/j.biomaterials.2020.119940] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
|
19
|
Sadhukhan R, Leung JWC, Garg S, Krager KJ, Savenka AV, Basnakian AG, Pathak R. Fractionated radiation suppresses Kruppel-like factor 2 pathway to a greater extent than by single exposure to the same total dose. Sci Rep 2020; 10:7734. [PMID: 32382091 PMCID: PMC7206069 DOI: 10.1038/s41598-020-64672-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/15/2020] [Indexed: 01/21/2023] Open
Abstract
Kruppel-like factor 2 (KLF2) is a positive transcriptional regulator of several endothelial protective molecules, including thrombomodulin (TM), a surface receptor, and endothelial nitric oxide synthase (eNOS), an enzyme that generates nitric oxide (NO). Loss of TM and eNOS causes endothelial dysfunction, which results in suppressed generation of activated protein C (APC) by TM-thrombin complex and in upregulation of intercellular adhesion molecule 1 (ICAM-1). Mechanistic studies revealed that activation of extracellular signal-regulated kinase 5 (ERK5) via upregulation of myocyte enhancer factor 2 (MEF2) induces KLF2 expression. Radiation causes endothelial dysfunction, but no study has investigated radiation's effects on the KLF2 pathway. Because fractionated radiation is routinely used during cancer radiotherapy, we decided to delineate the effects of radiation dose fractionation on the KLF2 signaling cascade at early time points (up to 24 h). We exposed human primary endothelial cells to radiation as a series of fractionated or as a single exposure, with the same total dose delivered to each group. We measured the expression and activity of critical members of the KLF2 pathway at subsequent time points, and determined whether pharmacological upregulation of KLF2 can reverse the radiation effects. Compared to single exposure, fractionated radiation profoundly suppressed KLF2, TM, and eNOS levels, subdued APC generation, declined KLF2 binding ability to TM and eNOS promoters, enhanced ICAM-1 expression, and decreased expression of upstream regulators of KLF2 (ERK5 and MEF2). Pharmacological inhibitors of the mevalonate pathway prevented fractionated-radiation-induced suppression of KLF2, TM, and eNOS expression. Finally, fractionated irradiation to thoracic region more profoundly suppressed KLF2 and enhanced ICAM-1 expression than single exposure in the lung at 24 h. These data clearly indicate that radiation dose fractionation plays a critical role in modulating levels of KLF2, its upstream regulators, and its downstream target molecules in endothelial cells. Our findings will provide important insights for selecting fractionated regimens during radiotherapy and for developing strategies to alleviate radiotherapy-induced toxicity to healthy tissues.
Collapse
Affiliation(s)
- Ratan Sadhukhan
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Justin W C Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarthak Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kimberly J Krager
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alena V Savenka
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
20
|
Yao L, Wright MF, Farmer BC, Peterson LS, Khan AM, Zhong J, Gewin L, Hao CM, Yang HC, Fogo AB. Fibroblast-specific plasminogen activator inhibitor-1 depletion ameliorates renal interstitial fibrosis after unilateral ureteral obstruction. Nephrol Dial Transplant 2020; 34:2042-2050. [PMID: 31071225 DOI: 10.1093/ndt/gfz050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) expression increases extracellular matrix deposition and contributes to interstitial fibrosis in the kidney after injury. While PAI-1 is ubiquitously expressed in the kidney, we hypothesized that interstitial fibrosis is strongly dependent on fibroblast-specific PAI-1 (fbPAI-1). METHODS Tenascin C Cre (TNC Cre) and fbPAI-1 knockdown (KD) mice with green fluorescent protein (GFP) expressed within the TNC construct underwent unilateral ureteral obstruction and were sacrificed 10 days later. RESULTS GFP+ cells in fbPAI-1 KD mice showed significantly reduced PAI-1 expression. Interstitial fibrosis, measured by Sirius red staining and collagen I western blot, was significantly decreased in fbPAI-1 KD compared with TNC Cre mice. There was no significant difference in transforming growth factor β (TGF-β) expression or its activation between the two groups. However, GFP+ cells from fbPAI-1 KD mice had lower TGF β and connective tissue growth factor (CTGF) expression. The number of fibroblasts was decreased in fbPAI-1 KD compared with TNC Cre mice, correlating with decreased alpha smooth muscle actin (α-SMA) expression and less fibroblast cell proliferation. TNC Cre mice had decreased E-cadherin, a marker of differentiated tubular epithelium, in contrast to preserved expression in fbPAI-1 KD. F4/80-expressing cells, mostly CD11c+/F4/80+ cells, were increased while M1 macrophage markers were decreased in fbPAI-1 KD compared with TNC Cre mice. CONCLUSION These findings indicate that fbPAI-1 depletion ameliorates interstitial fibrosis by decreasing fibroblast proliferation in the renal interstitium, with resulting decreased collagen I. This is linked to decreased M1 macrophages and preserved tubular epithelium.
Collapse
Affiliation(s)
- Lan Yao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Medical Healthcare Center, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - M Frances Wright
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brandon C Farmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| | - Laura S Peterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amir M Khan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Leslie Gewin
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Pediatric Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA.,Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
21
|
Variation of 4 MV X-ray dose rate strongly impacts biological response both in vitro and in vivo. Sci Rep 2020; 10:7021. [PMID: 32341396 PMCID: PMC7184727 DOI: 10.1038/s41598-020-64067-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/10/2020] [Indexed: 01/10/2023] Open
Abstract
Whereas an RBE > 1 is described for very low-energy X-ray beams (in the range of 25–50 kV), there is a consensus that the RBE of X-rays (from 0.1 to 3 MeV) is equal to 1, whatever the energy or dose rate of the beam. Comparisons of X-ray beam dose rates are scarce even though these beams are widely used in medical diagnosis or radiotherapy. By using two dose rates (0.63 and 2.5 Gy.min−1) of high-energy X-rays on normal endothelial cells (HUVECs), we have studied the clonogenic assay, but also viability/mortality, cell cycle analysis and measured cellular senescence by flow cytometry, and have performed gene analysis on custom arrays. In order to consolidate these data, we performed localized irradiation of exteriorized small intestine at 0.63 and 2.5 Gy.min−1. Interestingly, in vivo validation has shown a significantly higher loss of weight at the higher dose when irradiating to 19 Gy a small fragment of exteriorized small intestine of C57Bl6J mice. Nevertheless, no significant differences were observed in lesioned scores between the two dose rates, while bordering epithelium staining indicated twofold greater severe damage at 2.5 Gy.min−1 compared to 0.63 Gy.min−1 at one week post-irradiation. Taken together, these experiments systematically show that the relative biological effectiveness of photons is different from 1 when varying the dose rate of high-energy X-rays. Moreover, these results strongly suggest that, in support of clonogenic assay, multiparametric analysis should be considered to provide an accurate evaluation of the outcome of irradiated cells.
Collapse
|
22
|
Huh JW, Tanksley J, Chino J, Willett CG, Dewhirst MW. Long-term Consequences of Pelvic Irradiation: Toxicities, Challenges, and Therapeutic Opportunities with Pharmacologic Mitigators. Clin Cancer Res 2020; 26:3079-3090. [PMID: 32098770 DOI: 10.1158/1078-0432.ccr-19-2744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/17/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022]
Abstract
A percentage of long-term cancer survivors who receive pelvic irradiation will develop treatment-related late effects, collectively termed pelvic radiation disease. Thus, there is a need to prevent or ameliorate treatment-related late effects in these patients. Modern radiotherapy methods can preferentially protect normal tissues from radiation toxicities to permit higher doses to targets. However, concerns about chronic small bowel toxicity, for example, still constrain the prescription dose. This provides strong rationale for considering adding pharmacologic mitigators. Implementation of modern targeted radiotherapy methods enables delivery of focused radiation to target volumes, while minimizing dose to normal tissues. In prostate cancer, these technical advances enabled safe radiation dose escalation and better local tumor control without increasing normal tissue complications. In other pelvic diseases, these new radiotherapy methods have not resulted in the low probability of normal tissue damage achieved with prostate radiotherapy. The persistence of toxicity provides rationale for pharmacologic mitigators. Several new agents could be readily tested in clinical trials because they are being or have been studied in human patients already. Although there are promising preclinical data supporting mitigators, no clinically proven options to treat or prevent pelvic radiation disease currently exist. This review highlights therapeutic options for prevention and/or treatment of pelvic radiation disease, using pharmacologic mitigators. Successful development of mitigators would reduce the number of survivors who suffer from these devastating consequences of pelvic radiotherapy. It is important to note that pharmacologic mitigators to ameliorate pelvic radiation disease may be applicable to other irradiated sites in which chronic toxicity impairs quality of life.
Collapse
Affiliation(s)
- Jung Wook Huh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jarred Tanksley
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Junzo Chino
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Christopher G Willett
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
23
|
Stereotactic Lung Irradiation in Mice Promotes Long-Term Senescence and Lung Injury. Int J Radiat Oncol Biol Phys 2020; 106:1017-1027. [PMID: 31987976 DOI: 10.1016/j.ijrobp.2019.12.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Lung cancer will be treated more frequently using stereotactic body radiation therapy, and preclinical research to model long-term toxicity of ablative doses of radiation is crucial. Stereotactic lung irradiation of a small volume can induce radiation pneumonitis and fibrosis in normal tissues. METHODS AND MATERIALS Senescence has been reported to contribute to lung fibrosis, and we investigated in vivo the effects of ablative doses of ionizing radiation on senescence-associated processes. The left lung of p16INK4a-LUC knock-in mice was exposed to a single dose or fractionated radiation doses in a millimetric volume using a small animal radiation research platform. RESULTS Single or fractionated ablative radiation induces acute and very long-term p16INK4a activation in the irradiated lung target volume associated with lung injury. We observed a panel of heterogeneous senescent cells including pneumocytes, macrophages, and endothelial cells that accumulated around the radiation-induced lung focal lesion, suggesting that different senescent cell types may contribute to radiation injury. CONCLUSIONS This work provides important information on the long-term effects of ablative radiation doses in the normal lung and strongly suggests that stress-induced senescence is involved in stereotactic body radiation therapy-induced late fibrosis.
Collapse
|
24
|
Roy SJ, Koval OM, Sebag SC, Ait-Aissa K, Allen BG, Spitz DR, Grumbach IM. Inhibition of CaMKII in mitochondria preserves endothelial barrier function after irradiation. Free Radic Biol Med 2020; 146:287-298. [PMID: 31711984 PMCID: PMC7274136 DOI: 10.1016/j.freeradbiomed.2019.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 01/03/2023]
Abstract
Damage to the microvascular endothelium is an important part of normal tissue injury after radiation exposure and driven by the production of pro-oxidants. The Ca2+/calmodulin-dependent protein kinase II is present in the mitochondrial matrix (mitoCaMKII) where it regulates Ca2+ uptake via the mitochondrial Ca2+ uniporter (MCU) and pro-oxidant production. Here, we demonstrate that radiation exposure disrupts endothelial cell barrier integrity in vitro, but can be abrogated by inhibition of mitoCaMKII, MCU, or opening of the mitochondrial transition pore. Scavenging of mitochondrial pro-oxidants with mitoTEMPO before, but not after irradiation, protected barrier function. Furthermore, markers of apoptosis and mitochondrial pro-oxidant production were elevated at 24 h following irradiation and abolished by mitoCaMKII inhibition. Endothelial barrier dysfunction was detected as early as 2 h after irradiation. Despite only mildly impaired mitochondrial respiration, the intracellular ATP levels were significantly reduced 4 h after irradiation and correlated with barrier function. MitoCaMKII inhibition improved intracellular ATP concentrations by increasing glycolysis. Finally, DNA double strand break repair and non-homologous end joining, two major drivers of ATP consumption after irradiation, were greatly increased but not significantly affected by mitoCaMKII inhibition. These findings support the hypothesis that mitoCaMKII activity is linked to mitochondrial pro-oxidant production, reduced ATP production, and loss of endothelial barrier function following irradiation. The inhibition of mitoCaMKII is a promising approach to limiting radiation-induced endothelial injury.
Collapse
Affiliation(s)
- Stephen J Roy
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA
| | - Olha M Koval
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA
| | - Sara C Sebag
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA
| | - Karima Ait-Aissa
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, B180 Medical Laboratories, University of Iowa, Iowa City, IA, 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, B180 Medical Laboratories, University of Iowa, Iowa City, IA, 52242, USA
| | - Isabella M Grumbach
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, 169 Newton Rd, 4336 PBDB, University of Iowa, Iowa City, IA, 52242, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, B180 Medical Laboratories, University of Iowa, Iowa City, IA, 52242, USA; Veterans Affairs Health Care System, 601 Hwy 6 West Iowa City, IA, 52246, USA.
| |
Collapse
|
25
|
Groux-Degroote S, Cavdarli S, Uchimura K, Allain F, Delannoy P. Glycosylation changes in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:111-156. [PMID: 31997767 DOI: 10.1016/bs.apcsb.2019.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in a number of inflammatory diseases. Pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of glycan chains, inducing the expression of specific carbohydrate antigens at the cell surface that can be recognized by different types of lectins or by bacterial adhesins, contributing to the development of diseases. Glycosylation can also regulate biological functions of immune cells by recruiting leukocytes to inflammation sites with pro- or anti-inflammatory effects. Cell surface proteoglycans provide a large panel of binding sites for many mediators of inflammation, and regulate their bio-availability and functions. In this review, we summarize the current knowledge of the glycosylation changes occurring in mucin type O-linked glycans, glycosaminoglycans, as well as in glycosphingolipids, with a particular focus on cystic fibrosis and neurodegenerative diseases, and their consequences on cell interactions and disease progression.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Sumeyye Cavdarli
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Kenji Uchimura
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Fabrice Allain
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Philippe Delannoy
- University Lille, CNRS, UMR 8576 - UGSF - Unite de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
26
|
Novel treatment planning approaches to enhance the therapeutic ratio: targeting the molecular mechanisms of radiation therapy. Clin Transl Oncol 2019; 22:447-456. [PMID: 31254253 DOI: 10.1007/s12094-019-02165-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/16/2019] [Indexed: 12/16/2022]
Abstract
Radiation acts not only through cell death but has also angiogenic, immunomodulatory and bystander effects. The realization of its systemic implications has led to extensive research on the combination of radiotherapy with systemic treatments, including immunotherapy and antiangiogenic agents. Parameters such as dose, fractionation and sequencing of treatments are key determinants of the outcome. However, recent high-quality research indicates that these are not the only radiation therapy parameters that influence its systemic effect. To effectively integrate systemic agents with radiation therapy, these new aspects of radiation therapy planning will have to be taken into consideration in future clinical trials. Our aim is to review these new treatment planning parameters that can influence the balance between contradicting effects of radiation therapy so as to enhance the therapeutic ratio.
Collapse
|
27
|
Tao X, Sun M, Chen M, Ying R, Su W, Zhang J, Xie X, Wei W, Meng X. HMGB1-modified mesenchymal stem cells attenuate radiation-induced vascular injury possibly via their high motility and facilitation of endothelial differentiation. Stem Cell Res Ther 2019; 10:92. [PMID: 30867070 PMCID: PMC6416980 DOI: 10.1186/s13287-019-1197-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 12/28/2022] Open
Abstract
Background Vascular injury is one of the most common detrimental effects of cancer radiotherapy on healthy tissues. Since the efficacy of current preventive and therapeutic strategies remains limited, the exploration of new approaches to treat radiation-induced vascular injury (RIV) is on high demands. The use of mesenchymal stem cells (MSCs) to treat RIV holds great promise thanks to their well-documented function of mediating tissue regeneration after injury. Recently, we genetically modified MSCs with high mobility group box 1 (HMGB1) and demonstrated the high efficacy of these cells in treating graft atherosclerosis. The current study was to investigate the protective effect of HMGB1-modified MSCs (MSC-H) on RIV by using a rat model. Methods Female F344 rats received an intravenous injection of male F344 MSC-H cells or vehicle control at four doses of 2 × 106 cells with a 15-day interval starting from 30 days after irradiation to the abdominal aorta. The aortas were procured for histological and biomedical analysis at 90 days after irradiation. Cell migration to irradiated aortas was traced by green fluorescent protein and sex determination region on the Y chromosome. In vitro cell migration and endothelial differentiation of MSC-H cells were analyzed by stromal-derived factor 1-induced transwell assay and RNA microarray, respectively. The contribution of extracellular HMGB1 to the bioactivity of MSC-H cells was investigated by inhibition experiments with HMGB1 antibody. Result MSC-H cell infusion alleviated neointimal formation, vascular inflammation, and fibrosis in irradiated aortas, which was associated with local migration and endothelial differentiation of MSC-H cells. The MSC-H cells showed high motility and potential of endothelial differentiation in vitro. Microarray analysis suggested multiple pathways like MAPK and p53 signaling were activated during endothelial differentiation. MSC-H cells highly expressed CXC chemokine receptor 4 and migrated progressively after stromal-derived factor 1 stimulation, which was blocked by the antagonist of CXC chemokine receptor 4. Finally, the migration and endothelial differentiation of MSC-H cells were inhibited by HMGB1 antibody. Conclusion MSC-H cell infusion significantly attenuated RIV, which was associated with their high motility and endothelial differentiation potential. Multiple pathways that possibly contributed to the efficacy of MSC-H cells were suggested and deserved further investigation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuan Tao
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingyang Sun
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Chen
- Department of Gastroenterology, Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Su
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Zhang
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Xie
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wei
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Department of Gastroenterological Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China.
| | - Xiaohu Meng
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Kim K, Lee J, Jang H, Park S, Na J, Myung JK, Kim MJ, Jang WS, Lee SJ, Kim H, Myung H, Kang J, Shim S. Photobiomodulation Enhances the Angiogenic Effect of Mesenchymal Stem Cells to Mitigate Radiation-Induced Enteropathy. Int J Mol Sci 2019; 20:ijms20051131. [PMID: 30841658 PMCID: PMC6429482 DOI: 10.3390/ijms20051131] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation-induced enteropathy remains a major complication after accidental or therapeutic exposure to ionizing radiation. Recent evidence suggests that intestinal microvascular damage significantly affects the development of radiation enteropathy. Mesenchymal stem cell (MSC) therapy is a promising tool to regenerate various tissues, including skin and intestine. Further, photobiomodulation (PBM), or low-level light therapy, can accelerate wound healing, especially by stimulating angiogenesis, and stem cells are particularly susceptible to PBM. Here, we explored the effect of PBM on the therapeutic potential of MSCs for the management of radiation enteropathy. In vitro, using human umbilical cord blood-derived MSCs, PBM increased proliferation and self-renewal. Intriguingly, the conditioned medium from MSCs treated with PBM attenuated irradiation-induced apoptosis and impaired tube formation in vascular endothelial cells, and these protective effects were associated with the upregulation of several angiogenic factors. In a mouse model of radiation-induced enteropathy, treatment with PBM-preconditioned MSCs alleviated mucosal destruction, improved crypt cell proliferation and epithelial barrier functions, and significantly attenuated the loss of microvascular endothelial cells in the irradiated intestinal mucosa. This treatment also significantly increased angiogenesis in the lamina propria. Together, we suggest that PBM enhances the angiogenic potential of MSCs, leading to improved therapeutic efficacy for the treatment of radiation-induced enteropathy.
Collapse
Affiliation(s)
- Kyuchang Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Janet Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Jiyoung Na
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Min-Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Hyunwook Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - JiHoon Kang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea.
| |
Collapse
|
29
|
Lavigne J, Suissa A, Verger N, Dos Santos M, Benadjaoud M, Mille-Hamard L, Momken I, Soysouvanh F, Buard V, Guipaud O, Paget V, Tarlet G, Milliat F, François A. Lung Stereotactic Arc Therapy in Mice: Development of Radiation Pneumopathy and Influence of HIF-1α Endothelial Deletion. Int J Radiat Oncol Biol Phys 2019; 104:279-290. [PMID: 30703512 DOI: 10.1016/j.ijrobp.2019.01.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE Stereotactic body radiation therapy offers good lung local tumor control by the administration of a high dose per fraction in small volumes. Stereotactic body radiation therapy preclinical modeling is now possible, and our aim was to develop a model of focal irradiation of the mouse lung and to investigate the impact of conditional hypoxia-inducible factor 1α (HIF-1α) deletion in the endothelium on radiation-induced tissue damage. METHODS AND MATERIALS The Small Animal Radiation Research Platform was used to create a mouse model of focal irradiation of the lung using arc therapy. HIF-1α conditional deletion was obtained by crossing mice expressing Cre recombinase under the endothelial promoter VE-cadherin (VECad-Cre+/+ mice) with HIF-1α floxed mice. RESULTS Lung stereotactic arc therapy allows thoracic wall sparing and long-term studies. However, isodose curves showed that neighboring organs received significant doses of radiation, as revealed by ipsilateral lung acute red hepatization and major gene expression level modifications. Conditional HIF-1α deletion reduced acute lung edema and tended to diminish neutrophil infiltrate, but it had no impact on long-term global tissue damage. CONCLUSIONS Arc therapy for focal high-dose irradiation of mouse lung is an efficient model for long-term studies. However, irradiation may have a strong impact on the structure and function of neighboring organs, which must be considered. HIF-1α conditional deletion has no beneficial impact on lung damage in this irradiation schedule.
Collapse
Affiliation(s)
- Jérémy Lavigne
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Alexandra Suissa
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Nicolas Verger
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Accidentelles, Fontenay-aux-Roses, France
| | - Mohamedamine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Fontenay-aux-Roses, France
| | - Laurence Mille-Hamard
- Unité de Biologie Intégrative des Adaptations à l'Exercice, Université Évry-Val-d'Essonne, Université Paris-Saclay, Evry, France
| | - Iman Momken
- Unité de Biologie Intégrative des Adaptations à l'Exercice, Université Évry-Val-d'Essonne, Université Paris-Saclay, Evry, France
| | - Frédéric Soysouvanh
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France; Sorbonne Université, Collège Doctoral, Paris, France
| | - Valérie Buard
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Olivier Guipaud
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Vincent Paget
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Agnès François
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France.
| |
Collapse
|
30
|
Wiesemann A, Ketteler J, Slama A, Wirsdörfer F, Hager T, Röck K, Engel DR, Fischer JW, Aigner C, Jendrossek V, Klein D. Inhibition of Radiation-Induced Ccl2 Signaling Protects Lungs from Vascular Dysfunction and Endothelial Cell Loss. Antioxid Redox Signal 2019; 30:213-231. [PMID: 29463096 DOI: 10.1089/ars.2017.7458] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims: Radiation-induced normal tissue toxicity often precludes the application of curative radiation doses. Here we investigated the therapeutic potential of chemokine C-C motif ligand 2 (Ccl2) signaling inhibition to protect normal lung tissue from radiotherapy (RT)-induced injury. Results: RT-induced vascular dysfunction and associated adverse effects can be efficiently antagonized by inhibition of Ccl2 signaling using either the selective Ccl2 inhibitor bindarit (BIN) or mice deficient for the main Ccl2 receptor CCR2 (KO). BIN-treatment efficiently counteracted the RT-induced expression of Ccl2, normalized endothelial cell (EC) morphology and vascular function, and limited lung inflammation and metastasis early after irradiation (acute effects). A similar protection of the vascular compartment was detected by loss of Ccl2 signaling in lungs of CCR2-KO mice. Long-term Ccl2 signaling inhibition also significantly limited EC loss and accompanied fibrosis progression as adverse late effect. With respect to the human situation, we further confirmed that Ccl2 secreted by RT-induced senescent epithelial cells resulted in the activation of normally quiescent but DNA-damaged EC finally leading to EC loss in ex vivo cultured human normal lung tissue. Innovation: Abrogation of certain aspects of the secretome of irradiated resident lung cells, in particular signaling inhibition of the senescence-associated secretory phenotype-factor Ccl2 secreted predominantly by RT-induced senescent epithelial cells, resulted in protection of the endothelial compartment. Conclusions: Radioprotection of the normal tissue via Ccl2 signaling inhibition without simultaneous protection or preferable radiosensitization of tumor tissue might improve local tumor control and survival, because higher doses of radiation could be used.
Collapse
Affiliation(s)
- Alina Wiesemann
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Julia Ketteler
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Alexis Slama
- 2 Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen , Essen, Germany
| | - Florian Wirsdörfer
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Thomas Hager
- 3 Institute of Pathology, University Clinic Essen, University of Duisburg-Essen , Essen, Germany
| | - Katharina Röck
- 4 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Daniel R Engel
- 5 Department Immunodynamics, Institute of Experimental Immunology and Imaging, University Duisburg-Essen, University Hospital Essen , Essen, Germany
| | - Jens W Fischer
- 4 Institute for Pharmacology, University Hospital, Heinrich-Heine-University , Düsseldorf, Germany
| | - Clemens Aigner
- 2 Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen , Essen, Germany
| | - Verena Jendrossek
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| | - Diana Klein
- 1 Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital , Essen, Germany
| |
Collapse
|
31
|
Lung endothelial cell-targeted peptide-guided bFGF promotes the regeneration after radiation induced lung injury. Biomaterials 2018; 184:10-19. [DOI: 10.1016/j.biomaterials.2018.08.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
|
32
|
Heinonen M, Milliat F, Benadjaoud MA, François A, Buard V, Tarlet G, d’Alché-Buc F, Guipaud O. Temporal clustering analysis of endothelial cell gene expression following exposure to a conventional radiotherapy dose fraction using Gaussian process clustering. PLoS One 2018; 13:e0204960. [PMID: 30281653 PMCID: PMC6169916 DOI: 10.1371/journal.pone.0204960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/15/2018] [Indexed: 12/31/2022] Open
Abstract
The vascular endothelium is considered as a key cell compartment for the response to ionizing radiation of normal tissues and tumors, and as a promising target to improve the differential effect of radiotherapy in the future. Following radiation exposure, the global endothelial cell response covers a wide range of gene, miRNA, protein and metabolite expression modifications. Changes occur at the transcriptional, translational and post-translational levels and impact cell phenotype as well as the microenvironment by the production and secretion of soluble factors such as reactive oxygen species, chemokines, cytokines and growth factors. These radiation-induced dynamic modifications of molecular networks may control the endothelial cell phenotype and govern recruitment of immune cells, stressing the importance of clearly understanding the mechanisms which underlie these temporal processes. A wide variety of time series data is commonly used in bioinformatics studies, including gene expression, protein concentrations and metabolomics data. The use of clustering of these data is still an unclear problem. Here, we introduce kernels between Gaussian processes modeling time series, and subsequently introduce a spectral clustering algorithm. We apply the methods to the study of human primary endothelial cells (HUVECs) exposed to a radiotherapy dose fraction (2 Gy). Time windows of differential expressions of 301 genes involved in key cellular processes such as angiogenesis, inflammation, apoptosis, immune response and protein kinase were determined from 12 hours to 3 weeks post-irradiation. Then, 43 temporal clusters corresponding to profiles of similar expressions, including 49 genes out of 301 initially measured, were generated according to the proposed method. Forty-seven transcription factors (TFs) responsible for the expression of clusters of genes were predicted from sequence regulatory elements using the MotifMap system. Their temporal profiles of occurrences were established and clustered. Dynamic network interactions and molecular pathways of TFs and differential genes were finally explored, revealing key node genes and putative important cellular processes involved in tissue infiltration by immune cells following exposure to a radiotherapy dose fraction.
Collapse
Affiliation(s)
- Markus Heinonen
- Department of Information and Computer Science, Aalto University, Aalto, Finland
| | - Fabien Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Mohamed Amine Benadjaoud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE, SERAMED, Fontenay-aux-Roses, France
| | - Agnès François
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
| | | | - Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE, SERAMED, LRMed, Fontenay-aux-Roses, France
- * E-mail:
| |
Collapse
|
33
|
Klein D. The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy. Front Oncol 2018; 8:367. [PMID: 30250827 PMCID: PMC6139307 DOI: 10.3389/fonc.2018.00367] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic and pathophysiologic criteria prearrange the uncontrolled growth of neoplastic cells that in turn initiates new vessel formation, which is prerequisite for further tumor growth and progression. This first endothelial lining is patchy, disordered in structure and thus, angiogenic tumor vessels were proven to be functionally inferior. As a result, tumors were characterized by areas with an apparent oversupply in addition to areas with an undersupply of vessels, which complicates an efficient administration of intravenous drugs in cancer therapy and might even lower the response e.g. of radiotherapy (RT) because of the inefficient oxygen supply. In addition to the vascular dysfunction, tumor blood vessels contribute to the tumor escape from immunity by the lack of response to inflammatory activation (endothelial anergy) and by repression of leukocyte adhesion molecule expression. However, tumor vessels can remodel by the association with and integration of pericytes and smooth muscle cells which stabilize these immature vessels resulting in normalization of the vascular structures. This normalization of the tumor vascular bed could improve the efficiency of previously established therapeutic approaches, such as chemo- or radiotherapy by a more homogenous drug and oxygen distribution, and/or by overcoming endothelial anergy. This review highlights the current investigations that take advantage of a proper vascular function for improving cancer therapy with a special focus on the endothelial-immune system interplay.
Collapse
Affiliation(s)
- Diana Klein
- Institute of Cell Biology (Cancer Research), University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
Guipaud O, Jaillet C, Clément-Colmou K, François A, Supiot S, Milliat F. The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy. Br J Radiol 2018; 91:20170762. [PMID: 29630386 DOI: 10.1259/bjr.20170762] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Altered by ionising radiation, the vascular network is considered as a prime target to limit normal tissue damage and improve tumour control in radiotherapy (RT). Irradiation damages and/or activates endothelial cells, which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Radiation-induced lesions are associated with infiltration of immune-inflammatory cells from the blood and/or the lymph circulation. Damaged cells from the tissues and immune-inflammatory resident cells release factors that attract cells from the circulation, leading to the restoration of tissue balance by fighting against infection, elimination of damaged cells and healing of the injured area. In normal tissues that surround the tumours, the development of an immune-inflammatory reaction in response to radiation-induced tissue injury can turn out to be chronic and deleterious for the organ concerned, potentially leading to fibrosis and/or necrosis of the irradiated area. Similarly, tumours can elicit an immune-inflammation reaction, which can be initialised and amplified by cancer therapy such as radiotherapy, although immune checkpoints often allow many cancers to be protected by inhibiting the T-cell signal. Herein, we have explored the involvement of vascular endothelium in the fate of healthy tissues and tumours undergoing radiotherapy. This review also covers current investigations that take advantage of the radiation-induced response of the vasculature to spare healthy tissue and/or target tumours better.
Collapse
Affiliation(s)
- Olivier Guipaud
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Cyprien Jaillet
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Karen Clément-Colmou
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Agnès François
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| | - Stéphane Supiot
- 2 Département de Radiothérapie, Institut de Cancérologie de l'Ouest , Nantes St-Herblain , France.,3 Oncology and New Concept in Oncology Department, Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCiNA), Unité U1232, Institut de Recherche en Santé de l'Université de Nantes , Nantes , France
| | - Fabien Milliat
- 1 Human Health Department, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE, SERAMED, LRMed , Fontenay-aux-Roses , France
| |
Collapse
|
35
|
Tanita K, Fujimura T, Kambayashi Y, Tsukada A, Sato Y, Hashimoto A, Aiba S. Intensity-Modulated Radiotherapy Triggers Onset of Bullous Pemphigoid in a Patient with Advanced Melanoma Treated with Nivolumab. Case Rep Oncol 2018; 11:114-118. [PMID: 29606949 PMCID: PMC5869583 DOI: 10.1159/000487127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 01/02/2023] Open
Abstract
Since the efficacy of ipilimumab on nivolumab-resistant advanced melanoma is extremely low, additional supportive therapy for anti-PD-1 antibody therapy-resistant advanced melanoma is needed. Although several supportive therapies that enhance the antitumor immune response of anti-PD-1 antibodies have already been reported, unexpected immune-related adverse events were detected at the same time. In this report, we describe a patient with advanced melanoma treated with nivolumab followed by intensity-modulated radiotherapy, which might have triggered bullous pemphigoid (BP). Although several cases of BP developing in anti-PD-1 antibody-treated patients have already been reported, in this report, we shed light on the possible pathogenesis of BP developing in a patient treated with nivolumab through M2 macrophages.
Collapse
Affiliation(s)
- Kayo Tanita
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yumi Kambayashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Tsukada
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yota Sato
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Hashimoto
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
36
|
Modeling radiation injury-induced cell death and countermeasure drug responses in a human Gut-on-a-Chip. Cell Death Dis 2018; 9:223. [PMID: 29445080 PMCID: PMC5833800 DOI: 10.1038/s41419-018-0304-8] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/13/2017] [Accepted: 01/12/2018] [Indexed: 12/24/2022]
Abstract
Studies on human intestinal injury induced by acute exposure to γ-radiation commonly rely on use of animal models because culture systems do not faithfully mimic human intestinal physiology. Here we used a human Gut-on-a-Chip (Gut Chip) microfluidic device lined by human intestinal epithelial cells and vascular endothelial cells to model radiation injury and assess the efficacy of radiation countermeasure drugs in vitro. Exposure of the Gut Chip to γ-radiation resulted in increased generation of reactive oxygen species, cytotoxicity, apoptosis, and DNA fragmentation, as well as villus blunting, disruption of tight junctions, and compromise of intestinal barrier integrity. In contrast, pre-treatment with a potential prophylactic radiation countermeasure drug, dimethyloxaloylglycine (DMOG), significantly suppressed all of these injury responses. Thus, the human Gut Chip may serve as an in vitro platform for studying radiation-induced cell death and associate gastrointestinal acute syndrome, in addition to screening of novel radio-protective medical countermeasure drugs.
Collapse
|
37
|
Khan AA, Paget JT, McLaughlin M, Kyula JN, Wilkinson MJ, Pencavel T, Mansfield D, Roulstone V, Seth R, Halle M, Somaiah N, Boult JKR, Robinson SP, Pandha HS, Vile RG, Melcher AA, Harris PA, Harrington KJ. Genetically modified lentiviruses that preserve microvascular function protect against late radiation damage in normal tissues. Sci Transl Med 2018; 10:eaar2041. [PMID: 29367346 PMCID: PMC6020074 DOI: 10.1126/scitranslmed.aar2041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/15/2017] [Accepted: 11/08/2017] [Indexed: 12/25/2022]
Abstract
Improvements in cancer survival mean that long-term toxicities, which contribute to the morbidity of cancer survivorship, are being increasingly recognized. Late adverse effects (LAEs) in normal tissues after radiotherapy (RT) are characterized by vascular dysfunction and fibrosis causing volume loss and tissue contracture, for example, in the free flaps used for immediate breast reconstruction after mastectomy. We evaluated the efficacy of lentivirally delivered superoxide dismutase 2 (SOD2) overexpression and connective tissue growth factor (CTGF) knockdown by short hairpin RNA in reducing the severity of LAEs in an animal model of free flap LAEs. Vectors were delivered by intra-arterial injection, ex vivo, to target the vascular compartment. LVSOD2 and LVshCTGF monotherapy before irradiation resulted in preservation of flap volume or reduction in skin contracture, respectively. Flaps transduced with combination therapy experienced improvements in both volume loss and skin contracture. Both therapies reduced the fibrotic burden after irradiation. LAEs were associated with impaired vascular perfusion, loss of endothelial permeability, and stromal hypoxia, which were all reversed in the treatment model. Using a tumor recurrence model, we showed that SOD2 overexpression in normal tissues did not compromise the efficacy of RT against tumor cells but appeared to enhance it. LVSOD2 and LVshCTGF combination therapy by targeted, intravascular delivery reduced LAE severities in normal tissues without compromising the efficacy of RT and warrants translational evaluation as a free flap-targeted gene therapy.
Collapse
Affiliation(s)
- Aadil A Khan
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
- Department of Plastic Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - James T Paget
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
- Department of Plastic Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Martin McLaughlin
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Joan N Kyula
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Michelle J Wilkinson
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Timothy Pencavel
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - David Mansfield
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Victoria Roulstone
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Rohit Seth
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Martin Halle
- Department of Molecular Medicine and Surgery, Section of Plastic Surgery, Karolinska Institute, Stockholm 17176, Sweden
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm 17176, Sweden
| | - Navita Somaiah
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jessica K R Boult
- Magnetic Resonance Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Simon P Robinson
- Magnetic Resonance Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Hardev S Pandha
- Postgraduate Medical School, University of Surrey, Guildford GU2 7XH, UK
| | - Richard G Vile
- Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Alan A Melcher
- Translational Immunotherapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Paul A Harris
- Department of Plastic Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Kevin J Harrington
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK.
| |
Collapse
|
38
|
Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering. Cell Transplant 2018; 25:1723-1746. [PMID: 27197023 DOI: 10.3727/096368916x691664] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.
Collapse
Affiliation(s)
- Lara Moussa
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Benoît Usunier
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
39
|
Lavigne J, Soysouvanh F, Buard V, Tarlet G, Guipaud O, Paget V, Milliat F, François A. Conditional Plasminogen Activator Inhibitor Type 1 Deletion in the Endothelial Compartment Has No Beneficial Effect on Radiation-Induced Whole-Lung Damage in Mice. Int J Radiat Oncol Biol Phys 2017; 99:972-982. [DOI: 10.1016/j.ijrobp.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/21/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022]
|
40
|
Geranylgeranylacetone Ameliorates Intestinal Radiation Toxicity by Preventing Endothelial Cell Dysfunction. Int J Mol Sci 2017; 18:ijms18102103. [PMID: 28991157 PMCID: PMC5666785 DOI: 10.3390/ijms18102103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/14/2023] Open
Abstract
Radiation-induced intestinal toxicity is common among cancer patients after radiotherapy. Endothelial cell dysfunction is believed to be a critical contributor to radiation tissue injury in the intestine. Geranylgeranylacetone (GGA) has been used to treat peptic ulcers and gastritis. However, the protective capacity of GGA against radiation-induced intestinal injury has not been addressed. Therefore, we investigated whether GGA affects intestinal damage in mice and vascular endothelial cell damage in vitro. GGA treatment significantly ameliorated intestinal injury, as evident by intestinal crypt survival, villi length and the subsequently prolonged survival time of irradiated mice. In addition, intestinal microvessels were also significantly preserved in GGA-treated mice. To clarify the effect of GGA on endothelial cell survival, we examined endothelial function by evaluating cell proliferation, tube formation, wound healing, invasion and migration in the presence or absence of GGA after irradiation. Our findings showed that GGA plays a role in maintaining vascular cell function; however, it does not protect against radiation-induced vascular cell death. GGA promoted endothelial function during radiation injury by preventing the loss of VEGF/VEGFR1/eNOS signaling and by down-regulating TNFα expression in endothelial cells. This finding indicates the potential impact of GGA as a therapeutic agent in mitigating radiation-induced intestinal damage.
Collapse
|
41
|
Toullec A, Buard V, Rannou E, Tarlet G, Guipaud O, Robine S, Iruela-Arispe ML, François A, Milliat F. HIF-1α Deletion in the Endothelium, but Not in the Epithelium, Protects From Radiation-Induced Enteritis. Cell Mol Gastroenterol Hepatol 2017; 5:15-30. [PMID: 29276749 PMCID: PMC5738457 DOI: 10.1016/j.jcmgh.2017.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Radiation therapy in the pelvic area is associated with side effects that impact the quality of life of cancer survivors. Interestingly, the gastrointestinal tract is able to adapt to significant changes in oxygen availability, suggesting that mechanisms related to hypoxia sensing help preserve tissue integrity in this organ. However, hypoxia-inducible factor (HIF)-dependent responses to radiation-induced gut toxicity are unknown. Radiation-induced intestinal toxicity is a complex process involving multiple cellular compartments. Here, we investigated whether epithelial or endothelial tissue-specific HIF-1α deletion could affect acute intestinal response to radiation. METHODS Using constitutive and inducible epithelial or endothelial tissue-specific HIF-1α deletion, we evaluated the consequences of epithelial or endothelial HIF-1α deletion on radiation-induced enteritis after localized irradiation. Survival, radiation-induced tissue injury, molecular inflammatory profile, tissue hypoxia, and vascular injury were monitored. RESULTS Surprisingly, epithelium-specific HIF-1α deletion does not alter radiation-induced intestinal injury. However, irradiated VECad-Cre+/-HIF-1αFL/FL mice present with lower radiation-induced damage, showed a preserved vasculature, reduced hypoxia, and reduced proinflammatory response compared with irradiated HIF-1αFL/FL mice. CONCLUSIONS We demonstrate in vivo that HIF-1α impacts radiation-induced enteritis and that this role differs according to the targeted cell type. Our work provides a new role for HIF-1α and endothelium-dependent mechanisms driving inflammatory processes in gut mucosae. Results presented show that effects on normal tissues have to be taken into account in approaches aiming to modulate hypoxia or hypoxia-related molecular mechanisms.
Collapse
Key Words
- EndoMT, endothelial-to-mesenchymal transition
- Endothelium
- HIF, hypoxia-inducible factor
- HIF-1α
- HIF-1αFl/FL, HIF-1α floxed mice
- HIMEC, human intestinal microvascular endothelial cells
- HUVEC, human umbilical vein endothelial cells
- IL, interleukin
- PAI-1, plasminogen activator inhibitor type-1
- PCR, polymerase chain reaction
- ROSA, ROSA26R LacZ reporter mice
- Radiation
- Sham-IR, sham-irradiation
- TBI, total body irradiation
- VECad-Cre, VE-cadherin-Cre mice
Collapse
Affiliation(s)
- Aurore Toullec
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Valérie Buard
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Emilie Rannou
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California
| | - Georges Tarlet
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Olivier Guipaud
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | | | - M. Luisa Iruela-Arispe
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California
| | - Agnès François
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
- Correspondence Address correspondence to: Fabien Milliat, PhD, Research Laboratory of Radiobiology and Radiopathology, Institute for Radiological Protection and Nuclear Safety, 92265 Fontenay-aux-Roses, France.Research Laboratory of Radiobiology and RadiopathologyInstitute for Radiological Protection and Nuclear Safety92265 Fontenay-aux-RosesFrance
| |
Collapse
|
42
|
Jaillet C, Morelle W, Slomianny MC, Paget V, Tarlet G, Buard V, Selbonne S, Caffin F, Rannou E, Martinez P, François A, Foulquier F, Allain F, Milliat F, Guipaud O. Radiation-induced changes in the glycome of endothelial cells with functional consequences. Sci Rep 2017; 7:5290. [PMID: 28706280 PMCID: PMC5509684 DOI: 10.1038/s41598-017-05563-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
As it is altered by ionizing radiation, the vascular network is considered as a prime target in limiting normal tissue damage and improving tumor control in radiation therapy. Irradiation activates endothelial cells which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Since protein glycosylation is an important determinant of cell adhesion, we hypothesized that radiation could alter the glycosylation pattern of endothelial cells and thereby impact adhesion of circulating cells. Herein, we show that ionizing radiation increases high mannose-type N-glycans and decreases glycosaminoglycans. These changes stimulate interactions measured under flow conditions between irradiated endothelial cells and monocytes. Targeted transcriptomic approaches in vitro in endothelial cells and in vivo in a radiation enteropathy mouse model confirm that genes involved in N- and O-glycosylation are modulated by radiation, and in silico analyses give insight into the mechanism by which radiation modifies glycosylation. The endothelium glycome may therefore be considered as a key therapeutic target for modulating the chronic inflammatory response observed in healthy tissues or for participating in tumor control by radiation therapy.
Collapse
Affiliation(s)
- Cyprien Jaillet
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Willy Morelle
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marie-Christine Slomianny
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Sonia Selbonne
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Fanny Caffin
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Emilie Rannou
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France.,Department of Molecular, Cell and Developmental Biology, UCLA, CA 90095-7239, Los Angeles, USA
| | - Pierre Martinez
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.,GSK - GlaxoSmithKline, 1300, Wavre, Belgium
| | - Agnès François
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - François Foulquier
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Fabrice Allain
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Fabien Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France.
| |
Collapse
|
43
|
Staffas A, Burgos da Silva M, van den Brink MRM. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood 2017; 129:927-933. [PMID: 27940475 PMCID: PMC5324712 DOI: 10.1182/blood-2016-09-691394] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic cell transplantation (HCT) is a critical treatment of patients with high-risk hematopoietic malignancies, hematological deficiencies, and other immune diseases. In allogeneic HCT (allo-HCT), donor-derived T cells recognize host tissues as foreign, causing graft-versus-host disease (GVHD) which is a main contributor to morbidity and mortality. The intestine is one of the organs most severely affected by GVHD and research has recently highlighted the importance of bacteria, particularly the gut microbiota, in HCT outcome and in GVHD development. Loss of intestinal bacterial diversity is common during the course of HCT and is associated with GVHD development and treatment with broad-spectrum antibiotics. Loss of intestinal diversity and outgrowth of opportunistic pathogens belonging to the phylum Proteobacteria and Enterococcus genus have also been linked to increased treatment-related mortality including GVHD, infections, and organ failure after allo-HCT. Experimental studies in allo-HCT animal models have shown some promising results for prebiotic and probiotic strategies as prophylaxis or treatment of GVHD. Continuous research will be important to define the relation of cause and effect for these associations between microbiota features and HCT outcomes. Importantly, studies focused on geographic and cultural differences in intestinal microbiota are necessary to define applicability of new strategies targeting the intestinal microbiota.
Collapse
Affiliation(s)
- Anna Staffas
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marina Burgos da Silva
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marcel R M van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine and
- Department of Immunology, Weill Medical College of Cornell University, New York, NY; and
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
44
|
Pathak R, Wang J, Garg S, Aykin-Burns N, Petersen KU, Hauer-Jensen M. Recombinant Thrombomodulin (Solulin) Ameliorates Early Intestinal Radiation Toxicity in a Preclinical Rat Model. Radiat Res 2016; 186:112-20. [PMID: 27459702 DOI: 10.1667/rr14408.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal radiation toxicity occurs during and after abdominopelvic radiotherapy. Endothelial cells play a significant role in modulating radiation-induced intestinal damage. We demonstrated that the endothelial cell surface receptor thrombomodulin (TM), a protein with anticoagulant, anti-inflammatory and antioxidant properties, mitigates radiation-induced lethality in mice. The goal of this study was to determine whether recombinant TM (Solulin) can protect the intestine from toxicity in a clinically relevant rat model. A 4 cm loop of rat small bowel was exposed to fractionated 5 Gy X radiation for 9 consecutive days. The animals were randomly assigned to receive daily subcutaneous injections of vehicle or Solulin (3 mg/kg/day or 10 mg/kg/day) for 27 days starting 4 days before irradiation. Early intestinal injury was assessed two weeks after irradiation by quantitative histology, morphometry, immunohistochemistry and luminol bioluminescence imaging. Solulin treatment significantly ameliorated intestinal radiation injury, made evident by a decrease in myeloperoxidase (MPO) activity, transforming growth factor beta (TGF-β) immunoreactivity, collagen-I deposition, radiation injury score (RIS) and intestinal serosal thickening. These findings indicate the need for further development of Solulin as a prophylactic and/or therapeutic agent to mitigate radiation-induced intestinal damage.
Collapse
Affiliation(s)
- Rupak Pathak
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Junru Wang
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarita Garg
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nukhet Aykin-Burns
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Martin Hauer-Jensen
- a Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas;,c Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|