1
|
Xuan Y, Gao X, Wang J, Li H, Zhou Z, Liao M, Wen Z, Wang DW. Hydroxychloroquine cures autoimmune myocarditis by inhibiting the innate immune system via the C-X-C motif chemokine ligand 16 and C-X-C motif receptor 6 axis between macrophages and T cells. Br J Pharmacol 2025. [PMID: 40222951 DOI: 10.1111/bph.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 12/31/2024] [Accepted: 03/02/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND AND PURPOSE Myocarditis is a life-threatening inflammatory disease, but lacks effective treatment options. Hydroxychloroquine (HCQ), an established antimalarial agent, is used widely to manage rheumatic disorders. This research aimed to evaluate the efficacy of HCQ in treating myocarditis. EXPERIMENTAL APPROACH A mouse model of experimental autoimmune myocarditis (EAM) was used to evaluate the therapeutic effects of HCQ on cardiac function, inflammation and fibrosis. Echocardiography, histology and cytokine assays were performed to assess cardiac function and inflammatory responses. Single-cell RNA sequencing was employed to analyse immune cell populations and chemotactic activity. C-X-C motif chemokine ligand 16 (CXCL16) levels were measured in cardiac tissue and serum, while YY1 expression was measured by western blotting in macrophages and cardiac tissue. Flow cytometry was used to evaluate immune cell infiltration and migration. KEY RESULTS HCQ improved cardiac function in acute and chronic myocarditis. HCQ treatment reduced inflammation, fibrosis and immune cell infiltration in myocarditis models. Single-cell RNA sequencing revealed that HCQ lowered inflammatory cell proportions and suppressed macrophage chemotaxis. HCQ reduced YY1 levels, leading to the down-regulation of CXCL16 expression in macrophages and inhibition of CXCL16-mediated chemotaxis to Th17 and natural killer T (NKT) cells. CXCL16 neutralizing antibodies improved cardiac function and reduced inflammation in myocarditis. CONCLUSION AND IMPLICATIONS HCQ improves cardiac function and reduces inflammation in myocarditis by inhibiting CXCL16 expression in macrophages, by suppressing its transcription factor YY1, which in turn reduced the chemotaxis of Th17 and NKT cells. HCQ is a promising therapeutic agent for myocarditis.
Collapse
Affiliation(s)
- Yunling Xuan
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Gao
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Li
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Zhou
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minyu Liao
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Doan KV, Luongo TS, Ts'olo TT, Lee WD, Frederick DW, Mukherjee S, Adzika GK, Perry CE, Gaspar RB, Walker N, Blair MC, Bye N, Davis JG, Holman CD, Chu Q, Wang L, Rabinowitz JD, Kelly DP, Cappola TP, Margulies KB, Baur JA. Cardiac NAD + depletion in mice promotes hypertrophic cardiomyopathy and arrhythmias prior to impaired bioenergetics. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1236-1248. [PMID: 39294272 DOI: 10.1038/s44161-024-00542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential co-factor in metabolic reactions and co-substrate for signaling enzymes. Failing human hearts display decreased expression of the major NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (Nampt) and lower NAD+ levels, and supplementation with NAD+ precursors is protective in preclinical models. Here we show that Nampt loss in adult cardiomyocytes caused depletion of NAD+ along with marked metabolic derangements, hypertrophic remodeling and sudden cardiac deaths, despite unchanged ejection fraction, endurance and mitochondrial respiratory capacity. These effects were directly attributable to NAD+ loss as all were ameliorated by restoring cardiac NAD+ levels with the NAD+ precursor nicotinamide riboside (NR). Electrocardiograms revealed that loss of myocardial Nampt caused a shortening of QT intervals with spontaneous lethal arrhythmias causing sudden cardiac death. Thus, changes in NAD+ concentration can have a profound influence on cardiac physiology even at levels sufficient to maintain energetics.
Collapse
MESH Headings
- Nicotinamide Phosphoribosyltransferase/metabolism
- Nicotinamide Phosphoribosyltransferase/genetics
- NAD/metabolism
- Animals
- Energy Metabolism
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Arrhythmias, Cardiac/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Disease Models, Animal
- Cytokines/metabolism
- Mice, Knockout
- Mice, Inbred C57BL
- Pyridinium Compounds
- Male
- Death, Sudden, Cardiac/etiology
- Death, Sudden, Cardiac/pathology
- Mice
- Niacinamide/analogs & derivatives
- Niacinamide/pharmacology
- Niacinamide/therapeutic use
- Niacinamide/metabolism
- Electrocardiography
Collapse
Grants
- S10 OD025098 NIH HHS
- T32AR53461 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- TL1TR001880 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL128349 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL141232 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- S10-OD025098 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01HL058493 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 DK098656 NIDDK NIH HHS
- F32HL145923 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- F32DK127843 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- DP1DK113643 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01 HL165792 NHLBI NIH HHS
- R01CA163591 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
Collapse
Affiliation(s)
- Khanh V Doan
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Luongo
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thato T Ts'olo
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Won Dong Lee
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - David W Frederick
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel K Adzika
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline E Perry
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan B Gaspar
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Walker
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan C Blair
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole Bye
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James G Davis
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corey D Holman
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingwei Chu
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Wang
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Daniel P Kelly
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas P Cappola
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Guo F, Wang L, Chen Y, Zhu H, Dai X, Zhang X. Nicotinamide Mononucleotide improves oocyte maturation of mice with type 1 diabetes. Nutr Diabetes 2024; 14:23. [PMID: 38653987 DOI: 10.1038/s41387-024-00280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.
Collapse
Affiliation(s)
- Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Haibo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
- Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Norambuena-Soto I, Deng Y, Brenner C, Lavandero S, Wang ZV. NAD in pathological cardiac remodeling: Metabolic regulation and beyond. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167038. [PMID: 38281710 PMCID: PMC10922927 DOI: 10.1016/j.bbadis.2024.167038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) coenzymes are carriers of high energy electrons in metabolism and also play critical roles in numerous signaling pathways. NAD metabolism is decreased in various cardiovascular diseases. Importantly, stimulation of NAD biosynthesis protects against heart disease under different pathological conditions. In this review, we describe pathways for both generation and catabolism of NAD coenzymes and the respective changes of these pathways in the heart under cardiac diseases, including pressure overload, myocardial infarction, cardiometabolic disease, cancer treatment cardiotoxicity, and heart failure. We next provide an update on the strategies and treatments to increase NAD levels, such as supplementation of NAD precursors, in the heart that prevent or reverse cardiomyopathy. We also introduce the approaches to manipulate NAD consumption enzymes to ameliorate cardiac disease. Finally, we discuss the mechanisms associated with improvements in cardiac function by NAD coenzymes, differentiating between mitochondria-dependent effects and those independent of mitochondrial metabolism.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago 8380494, Chile
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Charles Brenner
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago 8380494, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| | - Zhao V Wang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
5
|
Zhang Q, Li Z, Li Q, Trammell SA, Schmidt MS, Pires KM, Cai J, Zhang Y, Kenny H, Boudina S, Brenner C, Abel ED. Control of NAD + homeostasis by autophagic flux modulates mitochondrial and cardiac function. EMBO J 2024; 43:362-390. [PMID: 38212381 PMCID: PMC10897141 DOI: 10.1038/s44318-023-00009-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/13/2024] Open
Abstract
Impaired autophagy is known to cause mitochondrial dysfunction and heart failure, in part due to altered mitophagy and protein quality control. However, whether additional mechanisms are involved in the development of mitochondrial dysfunction and heart failure in the setting of deficient autophagic flux remains poorly explored. Here, we show that impaired autophagic flux reduces nicotinamide adenine dinucleotide (NAD+) availability in cardiomyocytes. NAD+ deficiency upon autophagic impairment is attributable to the induction of nicotinamide N-methyltransferase (NNMT), which methylates the NAD+ precursor nicotinamide (NAM) to generate N-methyl-nicotinamide (MeNAM). The administration of nicotinamide mononucleotide (NMN) or inhibition of NNMT activity in autophagy-deficient hearts and cardiomyocytes restores NAD+ levels and ameliorates cardiac and mitochondrial dysfunction. Mechanistically, autophagic inhibition causes the accumulation of SQSTM1, which activates NF-κB signaling and promotes NNMT transcription. In summary, we describe a novel mechanism illustrating how autophagic flux maintains mitochondrial and cardiac function by mediating SQSTM1-NF-κB-NNMT signaling and controlling the cellular levels of NAD+.
Collapse
Affiliation(s)
- Quanjiang Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhonggang Li
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Human Genetics, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Qiuxia Li
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Samuel Aj Trammell
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Karla Maria Pires
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jinjin Cai
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Yuan Zhang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Helena Kenny
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - E Dale Abel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, and Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
6
|
Tadros HJ, Turaga D, Zhao Y, Chang-Ru T, Adachi IA, Li X, Martin JF. Activated fibroblasts drive cellular interactions in end-stage pediatric hypertrophic cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577226. [PMID: 38352607 PMCID: PMC10862753 DOI: 10.1101/2024.01.25.577226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is a relatively rare but debilitating diagnosis in the pediatric population and patients with end-stage HCM require heart transplantation. In this study, we performed single-nucleus RNA sequencing on pediatric HCM and control myocardium. We identified distinct underling cellular processes in pediatric, end-stage HCM in cardiomyocytes, fibroblasts, endothelial cells, and myeloid cells, compared to controls. Pediatric HCM was enriched in cardiomyocytes exhibiting "stressed" myocardium gene signatures and underlying pathways associated with cardiac hypertrophy. Cardiac fibroblasts exhibited clear activation signatures and heightened downstream processes associated with fibrosis, more so than adult counterparts. There was notable depletion of tissue-resident macrophages, and increased vascular remodeling in endothelial cells. Our analysis provides the first single nuclei analysis focused on end-stage pediatric HCM.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Diwakar Turaga
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Division of Critical Care Medicine, Texas Children's Hospital, Houston TX, USA
| | - Yi Zhao
- The Texas Heart Institute, Houston, TX, USA
| | - Tsai Chang-Ru
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Iki A Adachi
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA
| | - Xiao Li
- The Texas Heart Institute, Houston, TX, USA
| | - James F Martin
- The Texas Heart Institute, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
7
|
Wu Y, Pei Z, Qu P. NAD +-A Hub of Energy Metabolism in Heart Failure. Int J Med Sci 2024; 21:369-375. [PMID: 38169534 PMCID: PMC10758143 DOI: 10.7150/ijms.89370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure is a condition where reduced levels of adenosine triphosphate (ATP) affect energy supply in myocardial cells. Nicotinamide adenine dinucleotide (NAD+) plays a crucial role as a coenzyme for electron transfer in energy metabolism. Decreased NAD+ levels in myocardial cells lead to inadequate ATP production and increased susceptibility to heart failure. Researchers are exploring ways to increase NAD+ levels to alleviate heart failure. Targets such as sirtuin2 (sirt2), sirtuin3 (sirt3), Poly (ADP-ribose) polymerase (PARP), and diastolic regulatory proteins are being investigated. NAD+ supplementation has shown promise, even in heart failure with preserved ejection fraction (HFpEF). By focusing on NAD+ as a central component of energy metabolism, it is possible to improve myocardial activity, heart function, and address energy deficiency in heart failure.
Collapse
Affiliation(s)
- Yaoxin Wu
- Faculty of Medicine, Dalian University of Technology, 116024, Dalian, China
| | - Zuowei Pei
- Faculty of Medicine, Dalian University of Technology, 116024, Dalian, China
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116033, China
| | - Peng Qu
- Faculty of Medicine, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
8
|
Wu PS, Liu HY, Wong TH, Lin JT, Hu FR, Lin MH. Comparative Proteomics Reveals Prolonged Corneal Preservation Impaired Ocular Surface Immunity Accompanied by Fibrosis in Human Stroma. J Proteome Res 2023; 22:3730-3741. [PMID: 37976471 DOI: 10.1021/acs.jproteome.3c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cornea transplantation is one of the most commonly performed allotransplantations worldwide. Prolonged storage of donor corneas leads to decreased endothelial cell viability, severe stromal edema, and opacification, significantly compromising the success rate of corneal transplantation. Corneal stroma, which constitutes the majority of the cornea, plays a crucial role in maintaining its shape and transparency. In this study, we conducted proteomic analysis of corneal stroma preserved in Optisol-GS medium at 4 °C for 7 or 14 days to investigate molecular changes during storage. Among 1923 identified proteins, 1634 were quantifiable and 387 were significantly regulated with longer preservation. Compared to stroma preserved for 7 days, proteins involved in ocular surface immunomodulation were largely downregulated while proteins associated with extracellular matrix reorganization and fibrosis were upregulated in those preserved for 14 days. The increase in extracellular matrix structural proteins together with upregulation of growth factor signaling implies the occurrence of stromal fibrosis, which may compromise tissue clarity and cause vision impairments. This study is the first to provide insights into how storage duration affects corneal stroma from a proteomic perspective. Our findings may contribute to future research efforts aimed at developing long-term preservation techniques and improving the quality of preserved corneas, thus maximizing their clinical application.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Hsin-Yu Liu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Tzu-Hsuan Wong
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Jui-Ti Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| |
Collapse
|
9
|
Battaglia DM, Sanchez-Pino MD, Nichols CD, Foster TP. Herpes Simplex Virus-1 Induced Serotonin-Associated Metabolic Pathways Correlate With Severity of Virus- and Inflammation-Associated Ocular Disease. Front Microbiol 2022; 13:859866. [PMID: 35391733 PMCID: PMC8982329 DOI: 10.3389/fmicb.2022.859866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus-associated diseases are a complex interaction between cytolytic viral replication and inflammation. Within the normally avascular and immunoprivileged cornea, HSV ocular infection can result in vision-threatening immune-mediated herpetic keratitis, the leading infectious cause of corneal blindness in the industrialized world. Viral replicative processes are entirely dependent upon numerous cellular biosynthetic and metabolic pathways. Consistent with this premise, HSV infection was shown to profoundly alter gene expression associated with cellular amino acid biosynthetic pathways, including key tryptophan metabolism genes. The essential amino acid tryptophan is crucial for pathogen replication, the generation of host immune responses, and the synthesis of neurotransmitters, such as serotonin. Intriguingly, Tryptophan hydroxylase 2 (TPH2), the neuronal specific rate-limiting enzyme for serotonin synthesis, was the most significantly upregulated gene by HSV in an amino acid metabolism PCR array. Despite the well-defined effects of serotonin in the nervous system, the association of peripheral serotonin in disease-promoting inflammation has only recently begun to be elucidated. Likewise, the impact of serotonin on viral replication and ocular disease is also largely unknown. We therefore examined the effect of HSV-induced serotonin-associated synthesis and transport pathways on HSV-1 replication, as well as the correlation between HSV-induced ocular serotonin levels and disease severity. HSV infection induced expression of the critical serotonin synthesis enzymes TPH-1, TPH-2, and DOPA decarboxylase (DDC), as well as the serotonin transporter, SERT. Concordantly, HSV-infected cells upregulated serotonin synthesis and its intracellular uptake. Increased serotonin synthesis and uptake was shown to influence HSV replication. Exogenous addition of serotonin increased HSV-1 yield, while both TPH-1/2 and SERT pharmacological inhibition reduced viral yield. Congruent with these in vitro findings, rabbits intraocularly infected with HSV-1 exhibited significantly higher aqueous humor serotonin concentrations that positively and strongly correlated with viral load and ocular disease severity. Collectively, our findings indicate that HSV-1 promotes serotonin synthesis and cellular uptake to facilitate viral replication and consequently, serotonin's proinflammatory effects may enhance the development of ocular disease.
Collapse
Affiliation(s)
- Diana Marie Battaglia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Maria D. Sanchez-Pino
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Charles D. Nichols
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Timothy P. Foster
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- The Louisiana Vaccine Center, New Orleans, LA, United States
| |
Collapse
|
10
|
Rotllan N, Camacho M, Tondo M, Diarte-Añazco EMG, Canyelles M, Méndez-Lara KA, Benitez S, Alonso N, Mauricio D, Escolà-Gil JC, Blanco-Vaca F, Julve J. Therapeutic Potential of Emerging NAD+-Increasing Strategies for Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:1939. [PMID: 34943043 PMCID: PMC8750485 DOI: 10.3390/antiox10121939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Aging and/or metabolic stress directly impact the cardiovascular system. Over the last few years, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism to aging and other pathological conditions closely related to cardiovascular diseases have been intensively investigated. NAD+ bioavailability decreases with age and cardiometabolic conditions in several mammalian tissues. Compelling data suggest that declining tissue NAD+ is commonly related to mitochondrial dysfunction and might be considered as a therapeutic target. Thus, NAD+ replenishment by either genetic or natural dietary NAD+-increasing strategies has been recently demonstrated to be effective for improving the pathophysiology of cardiac and vascular health in different experimental models, as well as human health, to a lesser extent. Here, we review and discuss recent experimental evidence illustrating that increasing NAD+ bioavailability, particularly by the use of natural NAD+ precursors, may offer hope for new therapeutic strategies to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Noemi Rotllan
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Mercedes Camacho
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain
| | - Mireia Tondo
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Elena M. G. Diarte-Añazco
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Marina Canyelles
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Karen Alejandra Méndez-Lara
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Sonia Benitez
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital Universitari Germans Trias i Pujol, 08916 Barcelona, Spain
| | - Didac Mauricio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| | - Francisco Blanco-Vaca
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain
| | - Josep Julve
- Institut de Recerca i d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain; (N.R.); (M.C.); (E.M.G.D.-A.); (M.C.); (K.A.M.-L.); (S.B.)
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain; (N.A.); (D.M.)
| |
Collapse
|
11
|
Jablonska P, Kutryb‐Zajac B, Mierzejewska P, Jasztal A, Bocian B, Lango R, Rogowski J, Chlopicki S, Smolenski RT, Slominska EM. The new insight into extracellular NAD + degradation-the contribution of CD38 and CD73 in calcific aortic valve disease. J Cell Mol Med 2021; 25:5884-5898. [PMID: 34142751 PMCID: PMC8256368 DOI: 10.1111/jcmm.15912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is crucial for cell energy metabolism and many signalling processes. Recently, we proved the role of ecto-enzymes in controlling adenine nucleotide-dependent pathways during calcific aortic valve disease (CAVD). This study aimed to investigate extracellular hydrolysis of NAD+ and mononucleotide nicotinamide (NMN) in aortic valves and aorta fragments of CAVD patients and on the inner aortic surface of ecto-5'-nucleotidase knockout mice (CD73-/-). Human non-stenotic valves (n = 10) actively converted NAD+ and NMN via both CD73 and NAD+ -glycohydrolase (CD38) according to our analysis with RP-HPLC and immunofluorescence. In stenotic valves (n = 50), due to reduced CD73 activity, NAD+ was degraded predominantly by CD38 and additionally by ALP and eNPP1. CAVD patients had significantly higher hydrolytic rates of NAD+ (0.81 ± 0.07 vs 0.56 ± 0.10) and NMN (1.12 ± 0.10 vs 0.71 ± 0.08 nmol/min/cm2 ) compared with controls. CD38 was also primarily engaged in human vascular NAD+ metabolism. Studies using specific ecto-enzyme inhibitors and CD73-/- mice confirmed that CD73 is not the only enzyme involved in NAD+ and NMN hydrolysis and that CD38 had a significant contribution to these pathways. Modifications of extracellular NAD+ and NMN metabolism in aortic valve cells may be particularly important in valve pathology and could be a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | - Agnieszka Jasztal
- Jagiellonian Center for Experimental TherapeuticsJagiellonian UniversityKrakowPoland
| | - Barbara Bocian
- Department of Cardiac & Vascular SurgeryMedical University of GdanskGdanskPoland
| | - Romuald Lango
- Department of Cardiac AnaesthesiologyMedical University of GdanskGdanskPoland
| | - Jan Rogowski
- Department of Cardiac & Vascular SurgeryMedical University of GdanskGdanskPoland
| | - Stefan Chlopicki
- Jagiellonian Center for Experimental TherapeuticsJagiellonian UniversityKrakowPoland
| | | | - Ewa M. Slominska
- Department of BiochemistryMedical University of GdanskGdanskPoland
| |
Collapse
|
12
|
Tannous C, Booz GW, Altara R, Muhieddine DH, Mericskay M, Refaat MM, Zouein FA. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol (Oxf) 2021; 231:e13551. [PMID: 32853469 DOI: 10.1111/apha.13551] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an abundant cofactor that plays crucial roles in several cellular processes. NAD can be synthesized de novo starting with tryptophan, or from salvage pathways starting with NAD precursors like nicotinic acid (NA), nicotinamide (NAM) or nicotinamide riboside (NR), referred to as niacin/B3 vitamins, arising from dietary supply or from cellular NAD catabolism. Given the interconversion between its oxidized (NAD+ ) and reduced form (NADH), NAD participates in a wide range of reactions: regulation of cellular redox status, energy metabolism and mitochondrial biogenesis. Plus, NAD acts as a signalling molecule, being a cosubstrate for several enzymes such as sirtuins, poly-ADP-ribose-polymerases (PARPs) and some ectoenzymes like CD38, regulating critical biological processes like gene expression, DNA repair, calcium signalling and circadian rhythms. Given the large number of mitochondria present in cardiac tissue, the heart has the highest NAD levels and is one of the most metabolically demanding organs. In several models of heart failure, myocardial NAD levels are depressed and this depression is caused by mitochondrial dysfunction, metabolic remodelling and inflammation. Emerging evidence suggests that regulating NAD homeostasis by NAD precursor supplementation has therapeutic efficiency in improving myocardial bioenergetics and function. This review provides an overview of the latest understanding of the different NAD biosynthesis pathways, as well as its role as a signalling molecule particularly in cardiac tissue. We highlight the significance of preserving NAD equilibrium in various models of heart diseases and shed light on the potential pharmacological interventions aiming to use NAD boosters as therapeutic agents.
Collapse
Affiliation(s)
- Cynthia Tannous
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - George W. Booz
- Department of Pharmacology and Toxicology University of Mississippi Medical Center Jackson MS USA
| | - Raffaele Altara
- Department of Pathology School of Medicine University of Mississippi Medical Center Jackson MS USA
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- KG Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Dina H. Muhieddine
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Mathias Mericskay
- INSERM Department of Signalling and Cardiovascular Pathophysiology UMR‐S 1180 Université Paris‐Saclay Châtenay‐Malabry France
| | - Marwan M. Refaat
- Department of Internal Medicine Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
- Department of Biochemistry and Molecular Genetics Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
13
|
Cardoso D, Muchir A. Need for NAD +: Focus on Striated Muscle Laminopathies. Cells 2020; 9:cells9102248. [PMID: 33036437 PMCID: PMC7599962 DOI: 10.3390/cells9102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
Laminopathies are a heterogeneous group of rare diseases caused by genetic mutations in the LMNA gene, encoding A-type lamins. A-type lamins are nuclear envelope proteins which associate with B-type lamins to form the nuclear lamina, a meshwork underlying the inner nuclear envelope of differentiated cells. The laminopathies include lipodystrophies, progeroid phenotypes and striated muscle diseases. Research on striated muscle laminopathies in the recent years has provided novel perspectives on the role of the nuclear lamina and has shed light on the pathological consequences of altered nuclear lamina. The role of altered nicotinamide adenine dinucleotide (NAD+) in the physiopathology of striated muscle laminopathies has been recently highlighted. Here, we have summarized these findings and reviewed the current knowledge about NAD+ alteration in striated muscle laminopathies, providing potential therapeutic approaches.
Collapse
|
14
|
Xu W, Li L, Zhang L. NAD + Metabolism as an Emerging Therapeutic Target for Cardiovascular Diseases Associated With Sudden Cardiac Death. Front Physiol 2020; 11:901. [PMID: 32903597 PMCID: PMC7438569 DOI: 10.3389/fphys.2020.00901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its central role in mediating oxidation reduction in fuel metabolism and bioenergetics, nicotinamide adenine dinucleotide (NAD+) has emerged as a vital co-substrate for a number of proteins involved in diverse cellular processes, including sirtuins, poly(ADP-ribose) polymerases and cyclic ADP-ribose synthetases. The connection with aging and age-associated diseases has led to a new wave of research in the cardiovascular field. Here, we review the basics of NAD+ homeostasis, the molecular physiology and new advances in ischemic-reperfusion injury, heart failure, and arrhythmias, all of which are associated with increased risks for sudden cardiac death. Finally, we summarize the progress of NAD+-boosting therapy in human cardiovascular diseases and the challenges for future studies.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Le Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD + homeostasis in health and disease. Nat Metab 2020; 2:9-31. [PMID: 32694684 DOI: 10.1038/s42255-019-0161-5] [Citation(s) in RCA: 384] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Nagi Bioscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dina Hofer
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Thermo Fisher Scientific, Zug, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
16
|
Yamamura S, Izumiya Y, Araki S, Nakamura T, Kimura Y, Hanatani S, Yamada T, Ishida T, Yamamoto M, Onoue Y, Arima Y, Yamamoto E, Sunagawa Y, Yoshizawa T, Nakagata N, Bober E, Braun T, Sakamoto K, Kaikita K, Morimoto T, Yamagata K, Tsujita K. Cardiomyocyte Sirt (Sirtuin) 7 Ameliorates Stress-Induced Cardiac Hypertrophy by Interacting With and Deacetylating GATA4. Hypertension 2019; 75:98-108. [PMID: 31735083 DOI: 10.1161/hypertensionaha.119.13357] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sirt (Sirtuin) 7, the most recently identified mammalian sirtuin, has been shown to contribute to appropriate wound healing processes after acute cardiovascular insult. However, its role in the development of cardiac remodeling after pressure overload is unclear. Cardiomyocyte-specific Sirt7-knockout and control mice were subjected to pressure overload induced by transverse aortic constriction. Cardiac hypertrophy and functions were then examined in these mice. Sirt7 protein expression was increased in myocardial tissue after pressure overload. Transverse aortic constriction-induced increases in heart weight/tibial length were significantly augmented in cardiomyocyte-specific Sirt7-knockout mice compared with those of control mice. Histological analysis showed that the cardiomyocyte cross-sectional area and fibrosis area were significantly larger in cardiomyocyte-specific Sirt7-deficient mice. Cardiac contractile functions were markedly decreased in cardiomyocyte-specific Sirt7-deficient mice. Mechanistically, we found that Sirt7 interacted directly with GATA4 and that the exacerbation of phenylephrine-induced cardiac hypertrophy by Sirt7 knockdown was decreased by GATA4 knockdown. Sirt7 deacetylated GATA4 in cardiomyocytes and regulated its transcriptional activity. Interestingly, we demonstrated that treatment with nicotinamide mononucleotide, a known key NAD+ intermediate, ameliorated agonist-induced cardiac hypertrophies in a Sirt7-dependent manner in vitro. Sirt7 deficiency in cardiomyocytes promotes cardiomyocyte hypertrophy in response to pressure overload. Sirt7 exerts its antihypertrophic effect by interacting with and promoting deacetylation of GATA4.
Collapse
Affiliation(s)
- Satoru Yamamura
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Japan (Y.I.)
| | - Satoshi Araki
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
- Medical Biochemistry (S.A., T. Yoshizawa, K.Y.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Taishi Nakamura
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yuichi Kimura
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Shinsuke Hanatani
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Toshihiro Yamada
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Toshifumi Ishida
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Masahiro Yamamoto
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yoshiro Onoue
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yuichiro Arima
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Eiichiro Yamamoto
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Japan (Y.S., T.M.)
| | - Tatsuya Yoshizawa
- Medical Biochemistry (S.A., T. Yoshizawa, K.Y.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (N.N.), Kumamoto University, Japan
| | - Eva Bober
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (E.B., T.B.)
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (E.B., T.B.)
| | - Kenji Sakamoto
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Koichi Kaikita
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Japan (Y.S., T.M.)
| | - Kazuya Yamagata
- Medical Biochemistry (S.A., T. Yoshizawa, K.Y.), Faculty of Life Sciences, Kumamoto University, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences (K.Y., K.T.), Kumamoto University, Japan
| | - Kenichi Tsujita
- From the Departments of Cardiovascular Medicine (S.Y., S.A., T.N., Y.K., S.H., T. Yamada, T.I., M.Y., Y.O., Y.A., E.Y., K.S., K.K., K.T.), Faculty of Life Sciences, Kumamoto University, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences (K.Y., K.T.), Kumamoto University, Japan
| |
Collapse
|
17
|
Byun J, Oka SI, Imai N, Huang CY, Ralda G, Zhai P, Ikeda Y, Ikeda S, Sadoshima J. Both gain and loss of Nampt function promote pressure overload-induced heart failure. Am J Physiol Heart Circ Physiol 2019; 317:H711-H725. [PMID: 31347918 PMCID: PMC6843022 DOI: 10.1152/ajpheart.00222.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/29/2022]
Abstract
The heart requires high-energy production, but metabolic ability declines in the failing heart. Nicotinamide phosphoribosyl-transferase (Nampt) is a rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD) synthesis. NAD is directly involved in various metabolic processes and may indirectly regulate metabolic gene expression through sirtuin 1 (Sirt1), an NAD-dependent protein deacetylase. However, how Nampt regulates cardiac function and metabolism in the failing heart is poorly understood. Here we show that pressure-overload (PO)-induced heart failure is exacerbated in both systemic Nampt heterozygous knockout (Nampt+/-) mice and mice with cardiac-specific Nampt overexpression (Tg-Nampt). The NAD level declined in Nampt+/- mice under PO (wild: 377 pmol/mg tissue; Nampt+/-: 119 pmol/mg tissue; P = 0.028). In cultured cardiomyocytes, Nampt knockdown diminished mitochondrial NAD content and ATP production (relative ATP production: wild: 1; Nampt knockdown: 0.56; P = 0.0068), suggesting that downregulation of Nampt induces mitochondrial dysfunction. On the other hand, the NAD level was increased in Tg-Nampt mice at baseline but not during PO, possibly due to increased consumption of NAD by Sirt1. The expression of Sirt1 was increased in Tg-Nampt mice, in association with reduced overall protein acetylation. PO-induced downregulation of metabolic genes was exacerbated in Tg-Nampt mice. In cultured cardiomyocytes, Nampt and Sirt1 cooperatively suppressed mitochondrial proteins and ATP production, thereby promoting mitochondrial dysfunction. In addition, Nampt overexpression upregulated inflammatory cytokines, including TNF-α and monocyte chemoattractant protein-1. Thus endogenous Nampt maintains cardiac function and metabolism in the failing heart, whereas Nampt overexpression is detrimental during PO, possibly due to excessive activation of Sirt1, suppression of mitochondrial function, and upregulation of proinflammatory mechanisms.NEW & NOTEWORTHY Nicotinamide phosphoribosyl-transferase (Nampt) is a rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide synthesis. We demonstrate that pressure overload-induced heart failure is exacerbated in both systemic Nampt heterozygous knockout mice and mice with cardiac-specific Nampt overexpression. Both loss- and gain-of-function models exhibited reduced protein acetylation, suppression of metabolic genes, and mitochondrial energetic dysfunction. Thus endogenous Nampt maintains cardiac function and metabolism in the failing heart, but cardiac-specific Nampt overexpression is detrimental rather than therapeutic.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/surgery
- Cells, Cultured
- Cytokines/deficiency
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Energy Metabolism
- Heart Failure/enzymology
- Heart Failure/etiology
- Heart Failure/genetics
- Heart Failure/physiopathology
- Inflammation Mediators/metabolism
- Ligation
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- NAD/metabolism
- Nicotinamide Phosphoribosyltransferase/deficiency
- Nicotinamide Phosphoribosyltransferase/genetics
- Nicotinamide Phosphoribosyltransferase/metabolism
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
Collapse
Affiliation(s)
- Jaemin Byun
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical Health Sciences, Newark, New Jersey
| | - Shin-Ichi Oka
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical Health Sciences, Newark, New Jersey
| | - Nobushige Imai
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical Health Sciences, Newark, New Jersey
| | - Chun-Yang Huang
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical Health Sciences, Newark, New Jersey
| | - Guersom Ralda
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical Health Sciences, Newark, New Jersey
| | - Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical Health Sciences, Newark, New Jersey
| | - Yoshiyuki Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical Health Sciences, Newark, New Jersey
| | - Shohei Ikeda
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical Health Sciences, Newark, New Jersey
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers Biomedical Health Sciences, Newark, New Jersey
| |
Collapse
|
18
|
Pei L, Wan T, Wang S, Ye M, Qiu Y, Jiang R, Pang N, Huang Y, Zhou Y, Jiang X, Ling W, Zhang Z, Yang L. Cyanidin-3-O-β-glucoside regulates the activation and the secretion of adipokines from brown adipose tissue and alleviates diet induced fatty liver. Biomed Pharmacother 2018; 105:625-632. [PMID: 29898429 DOI: 10.1016/j.biopha.2018.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023] Open
Abstract
AIM Cyanidin-3-O-β-glucoside (Cy-3-G) the most abundant monomer of anthocyanins has multiple protective effects on many diseases. To date, whether Cy-3-G could regulate the function of brown adipose tissue (BAT) is still unclear and whether this regulation could influence the secretion of adipokines from BAT to prevent non-alcoholic fatty liver disease (NAFLD) indirectly remains to be explored. In this study we investigated the effect of Cy-3-G on BAT and the potential role of Cy-3-G to prevent fatty liver through regulating the secretion of BAT. METHODS Male C57BL/6 J mice were fed with a high fat high cholesterol (HFC) diet with or without 200 mg/kg B.W Cy-3-G for 8 weeks. In in vitro experiments, the differentiated brown adipocytes (BAC) and C3H10T1/2 clone8 cells were treated with 0.2 mM palmitate with or without Cy-3-G for 72 or 96 h. Then the culture media of C3H10T1/2 clone8 cells were collected for measuring the adipokines secretion by immunoblot assay and were applied to culture HepG2 cells or LO2 cells for 24 h. Lipid accumulation in HepG2 cells or LO2 cells were evaluated by oil red O staining. RESULTS Here we found that Cy-3-G regulated the activation of BAT and the expression of adipokines in BAT which were disrupted by HFC diet and alleviated diet induced fatty liver in mice. In in vitro experiments, Cy-3-G inhibited the release of adipokines including extracellular nicotinamide phosphoribosyltransferase (eNAMPT) and fibroblast growth factor 21 (FGF21) from differentiated C3H10T1/2 clone8 cells induced by palmitate, which was accompanied by a reduction of lipid accumulation in HepG2 cells and LO2 cells cultured by the corresponding collected media of C3H10T1/2 clone8 cells. CONCLUSIONS These results indicate that Cy-3-G can regulate the thermogenic and secretory functions of BAT. Furthermore, our data suggest that the protective effect of Cy-3-G on hepatic lipid accumulation is probably via regulating the secretion of adipokines from BAT.
Collapse
Affiliation(s)
- Lei Pei
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Ting Wan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Sufan Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Mingtong Ye
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Yun Qiu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Rui Jiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Nengzhi Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Yuanling Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Yujia Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Xuye Jiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, PR China
| | - Lili Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China.
| |
Collapse
|
19
|
Yoshino J, Baur JA, Imai SI. NAD + Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab 2018; 27:513-528. [PMID: 29249689 PMCID: PMC5842119 DOI: 10.1016/j.cmet.2017.11.002] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/10/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Research on the biology of NAD+ has been gaining momentum, providing many critical insights into the pathogenesis of age-associated functional decline and diseases. In particular, two key NAD+ intermediates, nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), have been extensively studied over the past several years. Supplementing these NAD+ intermediates has shown preventive and therapeutic effects, ameliorating age-associated pathophysiologies and disease conditions. Although the pharmacokinetics and metabolic fates of NMN and NR are still under intensive investigation, these NAD+ intermediates can exhibit distinct behavior, and their fates appear to depend on the tissue distribution and expression levels of NAD+ biosynthetic enzymes, nucleotidases, and presumptive transporters for each. A comprehensive concept that connects NAD+ metabolism to the control of aging and longevity in mammals has been proposed, and the stage is now set to test whether these exciting preclinical results can be translated to improve human health.
Collapse
Affiliation(s)
- Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, 12-114 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104-5160, USA.
| | - Shin-Ichiro Imai
- Department of Developmental Biology, Department of Medicine (Joint), Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Japan Agency for Medical Research and Development, Project for Elucidating and Controlling Mechanisms of Aging and Longevity, Tokyo, Japan.
| |
Collapse
|
20
|
Hwang ES, Song SB. Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol Life Sci 2017; 74:3347-3362. [PMID: 28417163 PMCID: PMC11107671 DOI: 10.1007/s00018-017-2527-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/24/2017] [Accepted: 04/12/2017] [Indexed: 01/15/2023]
Abstract
Nicotinamide (NAM), a form of vitamin B3, plays essential roles in cell physiology through facilitating NAD+ redox homeostasis and providing NAD+ as a substrate to a class of enzymes that catalyze non-redox reactions. These non-redox enzymes include the sirtuin family proteins which deacetylate target proteins while cleaving NAD+ to yield NAM. Since the finding that NAM exerts feedback inhibition to the sirtuin reactions, NAM has been widely used as an inhibitor in the studies where SIRT1, a key member of sirtuins, may have a role in certain cell physiology. However, once administered to cells, NAM is rapidly converted to NAD+ and, therefore, the cellular concentration of NAM decreases rapidly while that of NAD+ increases. The result would be an inhibition of SIRT1 for a limited duration, followed by an increase in the activity. This possibility raises a concern on the validity of the interpretation of the results in the studies that use NAM as a SIRT1 inhibitor. To understand better the effects of cellular administration of NAM, we reviewed published literature in which treatment with NAM was used to inhibit SIRT1 and found that the expected inhibitory effect of NAM was either unreliable or muted in many cases. In addition, studies demonstrated NAM administration stimulates SIRT1 activity and improves the functions of cells and organs. To determine if NAM administration can generate conditions in cells and tissues that are stimulatory to SIRT1, the changes in the cellular levels of NAM and NAD+ reported in the literature were examined and the factors that are involved in the availability of NAD+ to SIRT1 were evaluated. We conclude that NAM treatment can hypothetically be stimulatory to SIRT1.
Collapse
Affiliation(s)
- Eun Seong Hwang
- Department of Life Science, University of Seoul, Dongdaemungu, 163 Seoulsiripdaero, Seoul, 02504, Republic of Korea.
| | - Seon Beom Song
- Department of Life Science, University of Seoul, Dongdaemungu, 163 Seoulsiripdaero, Seoul, 02504, Republic of Korea
| |
Collapse
|
21
|
Katsyuba E, Auwerx J. Modulating NAD + metabolism, from bench to bedside. EMBO J 2017; 36:2670-2683. [PMID: 28784597 DOI: 10.15252/embj.201797135] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022] Open
Abstract
Discovered in the beginning of the 20th century, nicotinamide adenine dinucleotide (NAD+) has evolved from a simple oxidoreductase cofactor to being an essential cosubstrate for a wide range of regulatory proteins that include the sirtuin family of NAD+-dependent protein deacylases, widely recognized regulators of metabolic function and longevity. Altered NAD+ metabolism is associated with aging and many pathological conditions, such as metabolic diseases and disorders of the muscular and neuronal systems. Conversely, increased NAD+ levels have shown to be beneficial in a broad spectrum of diseases. Here, we review the fundamental aspects of NAD+ biochemistry and metabolism and discuss how boosting NAD+ content can help ameliorate mitochondrial homeostasis and as such improve healthspan and lifespan.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Zhang J, Wang QZ, Zhao SH, Ji X, Qiu J, Wang J, Zhou Y, Cai Q, Zhang J, Gao HQ. Astaxanthin attenuated pressure overload-induced cardiac dysfunction and myocardial fibrosis: Partially by activating SIRT1. Biochim Biophys Acta Gen Subj 2017; 1861:1715-1728. [DOI: 10.1016/j.bbagen.2017.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 02/06/2023]
|
23
|
Leukocyte Overexpression of Intracellular NAMPT Attenuates Atherosclerosis by Regulating PPARγ-Dependent Monocyte Differentiation and Function. Arterioscler Thromb Vasc Biol 2017; 37:1157-1167. [DOI: 10.1161/atvbaha.116.308187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 03/28/2017] [Indexed: 11/16/2022]
Abstract
Objective—
Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) mediates inflammatory and potentially proatherogenic effects, whereas the role of intracellular NAMPT (iNAMPT), the rate limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD)
+
generation, in atherogenesis is largely unknown. Here we investigated the effects of iNAMPT overexpression in leukocytes on inflammation and atherosclerosis.
Approach and Results—
Low-density lipoprotein receptor–deficient mice with hematopoietic overexpression of human iNAMPT (iNAMPT
hi
), on a western type diet, showed attenuated plaque burden with features of lesion stabilization. This anti-atherogenic effect was caused by improved resistance of macrophages to apoptosis by attenuated chemokine (C–C motif) receptor 2-dependent monocyte chemotaxis and by skewing macrophage polarization toward an anti-inflammatory M2 phenotype. The iNAMPT
hi
phenotype was almost fully reversed by treatment with the NAMPT inhibitor FK866, indicating that iNAMPT catalytic activity is instrumental in the atheroprotection. Importantly, iNAMPT overexpression did not induce any increase in eNAMPT, and eNAMPT had no effect on chemokine (C–C motif) receptor 2 expression and promoted an inflammatory M1 phenotype in macrophages. The iNAMPT-mediated effects at least partly involved sirtuin 1–dependent molecular crosstalk of NAMPT and peroxisome proliferator–activated receptor γ. Finally, iNAMPT and peroxisome proliferator–activated receptor γ showed a strong correlation in human atherosclerotic, but not healthy arteries, hinting to a relevance of iNAMPT/peroxisome proliferator–activated receptor γ pathway also in human carotid atherosclerosis.
Conclusions—
This study highlights the functional dichotomy of intracellular versus extracellular NAMPT, and unveils a critical role for the iNAMPT–peroxisome proliferator–activated receptor γ axis in atherosclerosis.
Collapse
|
24
|
Iwasa T, Matsuzaki T, Matsui S, Tungalagsuvd A, Munkhzaya M, Takiguchi E, Kawakita T, Kuwahara A, Yasui T, Irahara M. The sensitivity of adipose tissue visfatin mRNA expression to lipopolysaccharide-induced endotoxemia is increased by ovariectomy in female rats. Int Immunopharmacol 2016; 35:243-247. [PMID: 27083000 DOI: 10.1016/j.intimp.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 11/15/2022]
Abstract
Visfatin plays an important role in inflammatory and metabolic conditions. In this study, the effects of septic stress on the serum, white-adipose-tissue (WAT), and liver visfatin levels of male and female rats were examined. Both gonadally intact (sham) and ovariectomized (OVX) female rats were used in order to evaluate the effects of the gonadal hormonal milieu on visfatin responses. Under the saline-injected conditions, the serum visfatin levels and the hepatic, subcutaneous, and visceral WAT visfatin mRNA levels of the OVX and sham rats did not differ. The serum visfatin levels and the subcutaneous, visceral WAT, and hepatic visfatin mRNA levels of both male and female rats were increased by the injection of a septic dose (5mg/kg) of LPS. At 6h after the injection of LPS, the WAT visfatin mRNA levels of the OVX rats were higher than those of the sham rats, whereas the serum visfatin levels and hepatic visfatin mRNA levels of the two groups did not differ. In the cultured visceral WAT, visfatin antagonist (FK-866) attenuated the LPS-induced up-regulations of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α). The pathophysiological roles of visfatin under septic conditions remain to be clarified. In addition, the precise mechanisms responsible for the increased WAT visfatin expression seen after ovariectomy and the effects of such changes should also be clarified.
Collapse
Affiliation(s)
- Takeshi Iwasa
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan.
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Sumika Matsui
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Altankhuu Tungalagsuvd
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Munkhsaikhan Munkhzaya
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Eri Takiguchi
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Takako Kawakita
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| | - Toshiyuki Yasui
- Department of Reproductive Technology, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, The University of Tokushima Graduate School, Institute of Health Biosciences, 3-18-15 Kuramoto-Cho, Tokushima 770-8503, Japan
| |
Collapse
|