1
|
Nakase T, Guerra GA, Ostrom QT, Ge T, Melin BS, Wrensch M, Wiencke JK, Jenkins RB, Eckel-Passow JE, Glioma International Case-Control Study (GICC), Bondy ML, Francis SS, Kachuri L. Genome-wide polygenic risk scores predict risk of glioma and molecular subtypes. Neuro Oncol 2024; 26:1933-1944. [PMID: 38916140 PMCID: PMC11448969 DOI: 10.1093/neuonc/noae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Polygenic risk scores (PRS) aggregate the contribution of many risk variants to provide a personalized genetic susceptibility profile. Since sample sizes of glioma genome-wide association studies (GWAS) remain modest, there is a need to efficiently capture genetic risk using available data. METHODS We applied a method based on continuous shrinkage priors (PRS-CS) to model the joint effects of over 1 million common variants on disease risk and compared this to an approach (PRS-CT) that only selects a limited set of independent variants that reach genome-wide significance (P < 5 × 10-8). PRS models were trained using GWAS stratified by histological (10 346 cases and 14 687 controls) and molecular subtype (2632 cases and 2445 controls), and validated in 2 independent cohorts. RESULTS PRS-CS was generally more predictive than PRS-CT with a median increase in explained variance (R2) of 24% (interquartile range = 11-30%) across glioma subtypes. Improvements were pronounced for glioblastoma (GBM), with PRS-CS yielding larger odds ratios (OR) per standard deviation (SD) (OR = 1.93, P = 2.0 × 10-54 vs. OR = 1.83, P = 9.4 × 10-50) and higher explained variance (R2 = 2.82% vs. R2 = 2.56%). Individuals in the 80th percentile of the PRS-CS distribution had a significantly higher risk of GBM (0.107%) at age 60 compared to those with average PRS (0.046%, P = 2.4 × 10-12). Lifetime absolute risk reached 1.18% for glioma and 0.76% for IDH wildtype tumors for individuals in the 95th PRS percentile. PRS-CS augmented the classification of IDH mutation status in cases when added to demographic factors (AUC = 0.839 vs. AUC = 0.895, PΔAUC = 6.8 × 10-9). CONCLUSIONS Genome-wide PRS has the potential to enhance the detection of high-risk individuals and help distinguish between prognostic glioma subtypes.
Collapse
Affiliation(s)
- Taishi Nakase
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - Geno A Guerra
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Quinn T Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Center for Precision Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Beatrice S Melin
- Department of Diagnostics and Intervention, Oncology Umeå University, Umeå, Sweden
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Melissa L Bondy
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen S Francis
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Nakase T, Guerra G, Ostrom QT, Ge T, Melin B, Wrensch M, Wiencke JK, Jenkins RB, Eckel-Passow JE, Glioma International Case-Control Study (GICC), Bondy ML, Francis SS, Kachuri L. Genome-wide Polygenic Risk Scores Predict Risk of Glioma and Molecular Subtypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.10.24301112. [PMID: 38260701 PMCID: PMC10802631 DOI: 10.1101/2024.01.10.24301112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Polygenic risk scores (PRS) aggregate the contribution of many risk variants to provide a personalized genetic susceptibility profile. Since sample sizes of glioma genome-wide association studies (GWAS) remain modest, there is a need to find efficient ways of capturing genetic risk factors using available germline data. Methods We developed a novel PRS (PRS-CS) that uses continuous shrinkage priors to model the joint effects of over 1 million polymorphisms on disease risk and compared it to an approach (PRS-CT) that selects a limited set of independent variants that reach genome-wide significance (P<5×10-8). PRS models were trained using GWAS results stratified by histological (10,346 cases, 14,687 controls) and molecular subtype (2,632 cases, 2,445 controls), and validated in two independent cohorts. Results PRS-CS was consistently more predictive than PRS-CT across glioma subtypes with an average increase in explained variance (R2) of 21%. Improvements were particularly pronounced for glioblastoma tumors, with PRS-CS yielding larger effect sizes (odds ratio (OR)=1.93, P=2.0×10-54 vs. OR=1.83, P=9.4×10-50) and higher explained variance (R2=2.82% vs. R2=2.56%). Individuals in the 95th percentile of the PRS-CS distribution had a 3-fold higher lifetime absolute risk of IDH mutant (0.63%) and IDH wildtype (0.76%) glioma relative to individuals with average PRS. PRS-CS also showed high classification accuracy for IDH mutation status among cases (AUC=0.895). Conclusions Our novel genome-wide PRS may improve the identification of high-risk individuals and help distinguish between prognostic glioma subtypes, increasing the potential clinical utility of germline genetics in glioma patient management.
Collapse
Affiliation(s)
- Taishi Nakase
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Geno Guerra
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Quinn T. Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology Umeå University, Umeå, Sweden
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - John K. Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Melissa L. Bondy
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen S. Francis
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Linda Kachuri
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Tettamanti G, Kuja-Halkola R, Lavebratt C, Talbäck M, Viktorin A, Scheurer ME, Feychting M, Adel Fahmideh M. Heritability of nervous system tumors: a sibling-based design. Front Oncol 2024; 13:928008. [PMID: 38298439 PMCID: PMC10828969 DOI: 10.3389/fonc.2023.928008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/06/2023] [Indexed: 02/02/2024] Open
Abstract
Background The contribution of genetic and environmental factors to susceptibility to nervous system tumors remains unclear. We performed a quantitative genetic study using a sibling design to estimate the heritability of nervous system tumors, as well as the proportion of the risk of these tumors, which is attributable to environmental factors. Methods We conducted a population-based cohort study using Swedish National Register data. All individuals born in Sweden during 1950-2010 with available information on both biological parents were included. A Multi-Generation Register was used to identify family clusters, including both full- and half-siblings. Initially, one index person was randomly selected from each cluster containing only full siblings and one sibling was randomly assigned to this index person. Subsequently, within each of the remaining clusters of full- and half-siblings, an index person was randomly selected, and a half-sibling was randomly assigned to this index person. Among the randomly selected siblings, cases of nervous system tumors were identified using the cancer registry. Quantitative genetic models were used to estimate the proportion of the variance in nervous system tumors attributable to additive genetic factors, shared environment, and individual-specific environment. Results The heritability of nervous system tumors was estimated to be 29% (95% confidence interval (CI) = 19%-39%), while the contribution of the non-shared environment to the variance of nervous system tumors was estimated to be 71% (95% CI = 61%-81%). The shared environmental parameter was estimated as zero in the full model. Conclusion The variation in susceptibility to nervous system tumors is predominantly attributable to non-shared environmental factors, followed by genetic factors.
Collapse
Affiliation(s)
- Giorgio Tettamanti
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Talbäck
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Viktorin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Michael E. Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Center for Epidemiology and Population Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Maria Feychting
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maral Adel Fahmideh
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Epidemiology and Population Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
4
|
Foss-Skiftesvik J, Li S, Rosenbaum A, Hagen CM, Stoltze UK, Ljungqvist S, Hjalmars U, Schmiegelow K, Morimoto L, de Smith AJ, Mathiasen R, Metayer C, Hougaard D, Melin B, Walsh KM, Bybjerg-Grauholm J, Dahlin AM, Wiemels JL. Multi-ancestry genome-wide association study of 4069 children with glioma identifies 9p21.3 risk locus. Neuro Oncol 2023; 25:1709-1720. [PMID: 36810956 PMCID: PMC10484172 DOI: 10.1093/neuonc/noad042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Although recent sequencing studies have revealed that 10% of childhood gliomas are caused by rare germline mutations, the role of common variants is undetermined and no genome-wide significant risk loci for pediatric central nervous system tumors have been identified to date. METHODS Meta-analysis of 3 population-based genome-wide association studies comprising 4069 children with glioma and 8778 controls of multiple genetic ancestries. Replication was performed in a separate case-control cohort. Quantitative trait loci analyses and a transcriptome-wide association study were conducted to assess possible links with brain tissue expression across 18 628 genes. RESULTS Common variants in CDKN2B-AS1 at 9p21.3 were significantly associated with astrocytoma, the most common subtype of glioma in children (rs573687, P-value of 6.974e-10, OR 1.273, 95% CI 1.179-1.374). The association was driven by low-grade astrocytoma (P-value of 3.815e-9) and exhibited unidirectional effects across all 6 genetic ancestries. For glioma overall, the association approached genome-wide significance (rs3731239, P-value of 5.411e-8), while no significant association was observed for high-grade tumors. Predicted decreased brain tissue expression of CDKN2B was significantly associated with astrocytoma (P-value of 8.090e-8). CONCLUSIONS In this population-based genome-wide association study meta-analysis, we identify and replicate 9p21.3 (CDKN2B-AS1) as a risk locus for childhood astrocytoma, thereby establishing the first genome-wide significant evidence of common variant predisposition in pediatric neuro-oncology. We furthermore provide a functional basis for the association by showing a possible link to decreased brain tissue CDKN2B expression and substantiate that genetic susceptibility differs between low- and high-grade astrocytoma.
Collapse
Affiliation(s)
- Jon Foss-Skiftesvik
- Department of Neurosurgery, Rigshospitalet University Hospital, Copenhagen, Denmark
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
- Section for Neonatal Genetics, Statens Serum Institute, Copenhagen, Denmark
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Adam Rosenbaum
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | | - Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Sally Ljungqvist
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ulf Hjalmars
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Libby Morimoto
- Center for Personalized Medicine, Children’s Hospital of Los Angeles, Los Angeles, California, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - David Hougaard
- Section for Neonatal Genetics, Statens Serum Institute, Copenhagen, Denmark
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Kyle M Walsh
- Division of Neuro-Epidemiology, Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | | | - Anna M Dahlin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
5
|
Bauchet L, Sanson M. Deciphering gliomagenesis from genome-wide association studies. Neuro Oncol 2023; 25:1366-1367. [PMID: 36915962 PMCID: PMC10326471 DOI: 10.1093/neuonc/noad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 03/16/2023] Open
Affiliation(s)
- Luc Bauchet
- Department of Neurosurgery, CHU Montpellier, Montpellier, France
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- French Brain Tumor DataBase, Registre des Tumeurs de l’Hérault, ICM, Montpellier, France
| | - Marc Sanson
- AP-HP, Hôpital de la Pitié-Salpêtrière, Service de Neurologie 2, Paris, France
- Sorbonne Université, INSERM Unité 1127, CNRS UMR 7225, Paris Brain Institute, Paris, France
| |
Collapse
|
6
|
Norris JN, Waack AL, Becker KN, Keener M, Hoyt A, Reinard K. Glioblastoma in pregnant patient with pathologic and exogenous sex hormone exposure and family history of high-grade glioma: A case report and review of the literature. Surg Neurol Int 2023; 14:169. [PMID: 37292394 PMCID: PMC10246315 DOI: 10.25259/sni_58_2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Background Glioblastoma (GBM) incidence is higher in males, suggesting sex hormones may influence GBM tumorigenesis. Patients with GBM and altered sex hormone states could offer insight into a relationship between the two. Most GBMs arise sporadically and heritable genetic influence on GBM development is poorly understood, but reports describing familial GBM suggest genetic predispositions exist. However, no existing reports examine GBM development in context of both supraphysiologic sex hormone states and familial predisposition for GBM. We present a case of isocitrate dehydrogenase (IDH)-wild type GBM in a young pregnant female with polycystic ovary syndrome (PCOS), history of in vitro fertilization (IVF), and significant family history of GBM and further discuss how unique sex hormone states and genetics may affect GBM development or progression. Case Description A 35-year-old pregnant female with PCOS and recent history of IVF treatment and frozen embryo transfer presented with seizure and headache. Imaging revealed a right frontal brain mass. Molecular and histopathological analysis of the resected tumor supported a diagnosis of IDH-wild type GBM. The patient's family medical history was significant for GBM. Current literature indicates testosterone promotes GBM cell proliferation, while estrogen and progesterone effects vary with receptor subtype and hormone concentration, respectively. Conclusion Sex hormones and genetics likely exert influence on GBM development and progression that may compound with concurrence. Here, we describe a unique case of GBM in a young pregnant patient with a family history of glioma and atypical sex hormone exposure due to endocrine disorder and pregnancy assisted by exogenous IVF hormone administration.
Collapse
Affiliation(s)
- Jordan N. Norris
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Andrew L. Waack
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Kathryn N. Becker
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Myles Keener
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Alastair Hoyt
- Department of Surgery, Division of Neurosurgery, University of Toledo, Ohio, United States
| | - Kevin Reinard
- Department of Neurosurgery, Promedica, Toledo, Ohio, United States
| |
Collapse
|
7
|
Rosenbaum A, Dahlin AM, Andersson U, Björkblom B, Wu WYY, Hedman H, Wibom C, Melin B. Low-grade glioma risk SNP rs11706832 is associated with type I interferon response pathway genes in cell lines. Sci Rep 2023; 13:6777. [PMID: 37185361 PMCID: PMC10130147 DOI: 10.1038/s41598-023-33923-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Genome-wide association studies (GWAS) have contributed to our understanding of glioma susceptibility. To date, 25 risk loci for development of any of the glioma subtypes are known. However, GWAS studies reveal little about the molecular processes that lead to increased risk, especially for non-coding single nucleotide polymorphisms (SNP). A particular SNP in intron 2 of LRIG1, rs11706832, has been shown to increase the susceptibility for IDH1 mutated low-grade gliomas (LGG). Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) is important in cancer development as it negatively regulates the epidermal growth factor receptor (EGFR); however, the mechanism responsible for this particular risk SNP and its potential effect on LRIG1 are not known. Using CRISPR-CAS9, we edited rs11706832 in HEK293T cells. Four HEK293T clones with the risk allele were compared to four clones with the non-risk allele for LRIG1 and SLC25A26 gene expression using RT-qPCR, for global gene expression using RNA-seq, and for metabolites using gas chromatography-mass spectrometry (GC-MS). The experiment did not reveal any significant effect of the SNP on the expression levels or splicing patterns of LRIG1 or SLC25A26. The global gene expression analysis revealed that the risk allele C was associated with upregulation of several mitochondrial genes. Gene enrichment analysis of 74 differentially expressed genes in the genome revealed a significant enrichment of type I interferon response genes, where many genes were downregulated for the risk allele C. Gene expression data of IDH1 mutated LGGs from the cancer genome atlas (TCGA) revealed a similar under expression of type I interferon genes associated with the risk allele. This study found the expression levels and splicing patterns of LRIG1 and SLC25A26 were not affected by the SNP in HEK293T cells. However, the risk allele was associated with a downregulation of genes involved in the innate immune response both in the HEK293T cells and in the LGG data from TCGA.
Collapse
Affiliation(s)
- Adam Rosenbaum
- Department of Radiation Sciences, Oncology Umeå University, Umeå, Sweden.
| | - Anna M Dahlin
- Department of Radiation Sciences, Oncology Umeå University, Umeå, Sweden
| | - Ulrika Andersson
- Department of Radiation Sciences, Oncology Umeå University, Umeå, Sweden
| | | | - Wendy Yi-Ying Wu
- Department of Radiation Sciences, Oncology Umeå University, Umeå, Sweden
| | - Håkan Hedman
- Department of Radiation Sciences, Oncology Umeå University, Umeå, Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Oncology Umeå University, Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Abstract
Importance Malignant primary brain tumors cause more than 15 000 deaths per year in the United States. The annual incidence of primary malignant brain tumors is approximately 7 per 100 000 individuals and increases with age. Five-year survival is approximately 36%. Observations Approximately 49% of malignant brain tumors are glioblastomas, and 30% are diffusely infiltrating lower-grade gliomas. Other malignant brain tumors include primary central nervous system (CNS) lymphoma (7%) and malignant forms of ependymomas (3%) and meningiomas (2%). Symptoms of malignant brain tumors include headache (50%), seizures (20%-50%), neurocognitive impairment (30%-40%), and focal neurologic deficits (10%-40%). Magnetic resonance imaging before and after a gadolinium-based contrast agent is the preferred imaging modality for evaluating brain tumors. Diagnosis requires tumor biopsy with consideration of histopathological and molecular characteristics. Treatment varies by tumor type and often includes a combination of surgery, chemotherapy, and radiation. For patients with glioblastoma, the combination of temozolomide with radiotherapy improved survival when compared with radiotherapy alone (2-year survival, 27.2% vs 10.9%; 5-year survival, 9.8% vs 1.9%; hazard ratio [HR], 0.6 [95% CI, 0.5-0.7]; P < .001). In patients with anaplastic oligodendroglial tumors with 1p/19q codeletion, probable 20-year overall survival following radiotherapy without vs with the combination of procarbazine, lomustine, and vincristine was 13.6% vs 37.1% (80 patients; HR, 0.60 [95% CI, 0.35-1.03]; P = .06) in the EORTC 26951 trial and 14.9% vs 37% in the RTOG 9402 trial (125 patients; HR, 0.61 [95% CI, 0.40-0.94]; P = .02). Treatment of primary CNS lymphoma includes high-dose methotrexate-containing regimens, followed by consolidation therapy with myeloablative chemotherapy and autologous stem cell rescue, nonmyeloablative chemotherapy regimens, or whole brain radiation. Conclusions and Relevance The incidence of primary malignant brain tumors is approximately 7 per 100 000 individuals, and approximately 49% of primary malignant brain tumors are glioblastomas. Most patients die from progressive disease. First-line therapy for glioblastoma is surgery followed by radiation and the alkylating chemotherapeutic agent temozolomide.
Collapse
Affiliation(s)
- Lauren R Schaff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurology, Weill Cornell Medicine, New York, New York
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Neurology, Weill Cornell Medicine, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| |
Collapse
|
9
|
Genome-Wide Association Study Identifies Multiple Susceptibility Loci for Malignant Neoplasms of the Brain in Taiwan. J Pers Med 2022; 12:jpm12071161. [PMID: 35887658 PMCID: PMC9323978 DOI: 10.3390/jpm12071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Primary brain malignancy is a rare tumor with a global incidence of less than 10 per 100,000 people. Hence, there is limited power for identifying risk loci in individual studies, especially for Han Chinese. We performed a genome-wide association study (GWAS) in Taiwan, including 195 cases and 195 controls. We identified five new genes for malignant neoplasms of the brain: EDARADD (rs645507, 1p31.3, p = 7.71 × 10−5, odds ratio (OR) = 1.893), RBFOX1 (rs8044700, p = 2.35 × 10−5, OR = 2.36), LMF1 (rs3751667, p = 7.24 × 10−7, OR = 2.17), DPP6 (rs67433368, p = 8.32 × 10−5, OR = 3.94), and NDUFB9 (rs7827791, p = 9.73 × 10−6, OR = 4.42). These data support that genetic susceptibility toward GBM or non-GBM tumors is highly distinct, likely reflecting different etiologies. Combined with signaling analysis, we found that RNA modification may be related to major risk factors in primary malignant neoplasms of the brain.
Collapse
|
10
|
Trapp NT, Martyna MR, Siddiqi SH, Bajestan SN. The Neuropsychiatric Approach to the Assessment of Patients in Neurology. Semin Neurol 2022; 42:88-106. [PMID: 35477181 PMCID: PMC9177704 DOI: 10.1055/s-0042-1745741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuropsychiatry is a clinical neuroscience specialty focused on the evaluation and treatment of patients who present with symptoms at the intersection of neurology and psychiatry. Neuropsychiatrists assess and manage the cognitive, affective, behavioral, and perceptual manifestations of disorders of the central nervous system. Although fellowship training in behavioral neurology-neuropsychiatry exists in the United States and several other countries internationally, the need for neuropsychiatric expertise greatly outweighs the number of specialists in practice or training. This article serves as a primer for both neurologists and psychiatrists seeking to improve or refresh their knowledge of the neuropsychiatric assessment, including detailing aspects of the history-taking, physical exam, psychometric testing, and associated diagnostic work-up. In doing so, we urge the next generation of neurologists and psychiatrists to take on both the opportunity and challenge to work at the intersection of both clinical neuroscience specialties using an integrated neuropsychiatric perspective.
Collapse
Affiliation(s)
- Nicholas T. Trapp
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
- University of Iowa Department of Psychiatry, Iowa City, IA, USA
| | - Michael R. Martyna
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
- University of Alberta Department of Psychiatry, Edmonton, AB, CAN
| | - Shan H. Siddiqi
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sepideh N. Bajestan
- Stanford University Department of Psychiatry and Behavioral Sciences, Stanford, CA, USA
| |
Collapse
|
11
|
Pellerino A, Caccese M, Padovan M, Cerretti G, Lombardi G. Epidemiology, risk factors, and prognostic factors of gliomas. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00489-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Saunders CN, Kinnersley B, Culliford R, Cornish AJ, Law PJ, Houlston RS. Relationship between genetically determined telomere length and glioma risk. Neuro Oncol 2021; 24:171-181. [PMID: 34477880 PMCID: PMC8804896 DOI: 10.1093/neuonc/noab208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Telomere maintenance is increasingly recognized as being fundamental to glioma oncogenesis with longer leukocyte telomere length (LTL) reported to increase risk of glioma. To gain further insight into the relationship between telomere genetics and risk of glioma, we conducted several complementary analyses, using genome-wide association studies data on LTL (78 592 individuals) and glioma (12 488 cases and 18 169 controls). Methods We performed both classical and summary Mendelian randomization (SMR), coupled with heterogeneity in dependent instruments tests, at genome-wide significant LTL loci to examine if an association was mediated by the same causal variant in glioma. To prioritize genes underscoring glioma-LTL associations, we analyzed gene expression and DNA methylation data. Results Genetically increased LTL was significantly associated with increased glioma risk, random-effects inverse variance weighted ORs per 1 SD unit increase in the putative risk factor (odds ratio [OR]SD) 4.79 (95% confidence interval: 2.11-10.85; P = 1.76 × 10−4). SMR confirmed the previously reported LTL associations at 3q26.2 (TERC; PSMR = 1.33 × 10−5), 5p15.33 (TERT; PSMR = 9.80 × 10−27), 10q24.33 (STN1 alias OBFC1; PSMR = 4.31 × 10−5), and 20q13.3 (STMN3/RTEL1; PSMR = 2.47 × 10−4) glioma risk loci. Our analysis implicates variation at 1q42.12 (PSMR = 1.55 × 10−2), 6p21.3 (PSMR = 9.76 × 10−3), 6p22.2 (PSMR = 5.45 × 10−3), 7q31.33 (PSMR = 6.52 × 10−3), and 11q22.3 (PSMR = 8.89 × 10−4) as risk factors for glioma risk. While complicated by patterns of linkage disequilibrium, genetic variation involving PARP1, PRRC2A, CARMIL1, POT1, and ATM-NPAT1 was implicated in the etiology of glioma. Conclusions These observations extend the role of telomere-related genes in the development of glioma.
Collapse
Affiliation(s)
- Charlie N Saunders
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Richard Culliford
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Alex J Cornish
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| |
Collapse
|
13
|
Ostrom QT, Edelson J, Byun J, Han Y, Kinnersley B, Melin B, Houlston RS, Monje M, Walsh KM, Amos CI, Bondy ML. Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro Oncol 2021; 23:1304-1314. [PMID: 33743008 PMCID: PMC8328033 DOI: 10.1093/neuonc/noab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological studies of adult glioma have identified genetic syndromes and 25 heritable risk loci that modify individual risk for glioma, as well increased risk in association with exposure to ionizing radiation and decreased risk in association with allergies. In this analysis, we assess whether there is a shared genome-wide genetic architecture between glioma and atopic/autoimmune diseases. METHODS Using summary statistics from a glioma genome-wide association studies (GWAS) meta-analysis, we identified significant enrichment for risk variants associated with gene expression changes in immune cell populations. We also estimated genetic correlations between glioma and autoimmune, atopic, and hematologic traits using linkage disequilibrium score regression (LDSC), which leverages genome-wide single-nucleotide polymorphism (SNP) associations and patterns of linkage disequilibrium. RESULTS Nominally significant negative correlations were observed for glioblastoma (GB) and primary biliary cirrhosis (rg = -0.26, P = .0228), and for non-GB gliomas and celiac disease (rg = -0.32, P = .0109). Our analyses implicate dendritic cells (GB pHM = 0.0306 and non-GB pHM = 0.0186) in mediating both GB and non-GB genetic predisposition, with GB-specific associations identified in natural killer (NK) cells (pHM = 0.0201) and stem cells (pHM = 0.0265). CONCLUSIONS This analysis identifies putative new associations between glioma and autoimmune conditions with genomic architecture that is inversely correlated with that of glioma and that T cells, NK cells, and myeloid cells are involved in mediating glioma predisposition. This provides further evidence that increased activation of the acquired immune system may modify individual susceptibility to glioma.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob Edelson
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Biomedical Informatics Research, Stanford University School of Medicine, Stanford, California, USA
| | - Jinyoung Byun
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Younghun Han
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, London, UK
| | - Beatrice Melin
- Department of Radiation Sciences - Oncology, Umea University, Umea, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, London, UK
| | - Michelle Monje
- Department of Neurology, Neurosurgery, Pediatrics and Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Kyle M Walsh
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher I Amos
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
14
|
Carlos-Escalante JA, Gómez-Flores-Ramos L, Bian X, Perdomo-Pantoja A, de Andrade KC, Mejía-Pérez SI, Cacho-Díaz B, González-Barrios R, Reynoso-Noverón N, Soto-Reyes E, Sánchez-Correa TE, Guerra-Calderas L, Yan C, Chen Q, Castro-Hernández C, Vidal-Millán S, Taja-Chayeb L, Gutiérrez O, Álvarez-Gómez RM, Gómez-Amador JL, Ostrosky-Wegman P, Mohar-Betancourt A, Herrera-Montalvo LA, Corona T, Meerzaman D, Wegman-Ostrosky T. Landscape of Germline Genetic Variants in AGT, MGMT, and TP53 in Mexican Adult Patients with Astrocytoma. Cell Mol Neurobiol 2021; 41:1285-1297. [PMID: 32535722 PMCID: PMC11448676 DOI: 10.1007/s10571-020-00901-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
Abstract
Astrocytoma is the most common type of primary brain tumor. The risk factors for astrocytoma are poorly understood; however, germline genetic variants account for 25% of the risk of developing gliomas. In this study, we assessed the risk of astrocytoma associated with variants in AGT, known by its role in angiogenesis, TP53, a well-known tumor suppressor and the DNA repair gene MGMT in a Mexican population. A case-control study was performed in 49 adult Mexican patients with grade II-IV astrocytoma. Sequencing of exons and untranslated regions of AGT, MGMT, and TP53 from was carried in an Ion Torrent platform. Individuals with Mexican Ancestry from the 1000 Genomes Project were used as controls. Variants found in our cohort were then assessed in a The Cancer Genome Atlas astrocytoma pan-ethnic validation cohort. Variants rs1926723 located in AGT (OR 2.74, 1.40-5.36 95% CI), rs7896488 in MGMT (OR 3.43, 1.17-10.10 95% CI), and rs4968187 in TP53 (OR 2.48, 1.26-4.88 95% CI) were significantly associated with the risk of astrocytoma after multiple-testing correction. This is the first study where the AGT rs1926723 variant, TP53 rs4968187, and MGMT rs7896488 were found to be associated with the risk of developing an astrocytoma.
Collapse
Affiliation(s)
| | | | - Xiaopeng Bian
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | | | - Kelvin César de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Sonia Iliana Mejía-Pérez
- Departamento de Enseñanza, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", 13269, Mexico City, Mexico
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - Bernardo Cacho-Díaz
- Unidad de Neurociencia, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | | | - Nancy Reynoso-Noverón
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, 05370, Mexico City, Mexico
| | - Thalía Estefanía Sánchez-Correa
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - Lissania Guerra-Calderas
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, 05370, Mexico City, Mexico
| | - Chunhua Yan
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Clementina Castro-Hernández
- Unidad de Epidemiología E Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, 14080, Mexico City, Mexico
| | - Silvia Vidal-Millán
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Lucía Taja-Chayeb
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | - Olga Gutiérrez
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico
| | | | - Juan Luis Gómez-Amador
- Departamento de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", 14269, Mexico City, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alejandro Mohar-Betancourt
- Unidad de Epidemiología E Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, 14080, Mexico City, Mexico
| | - Luis Alonso Herrera-Montalvo
- Unidad de Epidemiología E Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM-INCAN, 14080, Mexico City, Mexico
- Dirección General, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez", 14269, Mexico City, Mexico
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Group, Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Talia Wegman-Ostrosky
- Dirección de Investigación, Instituto Nacional de Cancerología, 14080, Mexico City, Mexico.
| |
Collapse
|
15
|
A genetic risk score for glioblastoma multiforme based on copy number variations. Cancer Treat Res Commun 2021; 27:100352. [PMID: 33756171 DOI: 10.1016/j.ctarc.2021.100352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 12/27/2022]
Abstract
Glioblastoma multiforme is the most common form of brain cancer. Several lines of evidence suggest that glioblastoma multiforme has a genetic basis. A genetic test that could identify people who are at high risk of developing glioblastoma multiforme could improve our understanding of this form of brain cancer. Using the Cancer Genome Atlas (TCGA) dataset, we found common germ line DNA copy number variations in the TCGA population. We tested whether different sets of these germ line DNA copy number variations could effectively distinguish patients with glioblastoma multiforme from others in the TCGA dataset. We used a gradient boosting machine, a machine learning classification algorithm, to classify TCGA patients solely based on a set of germline DNA copy number variations. We found that this machine learning algorithm could classify TCGA glioblastoma multiforme patients from the other TCGA patients with an area under the curve (AUC) of the receiver operating characteristic curve (AUC=0.875). Grouped into quintiles, the highest ranked quintile by the machine learning algorithm had an odds ratio of 3.78 (95% CI 3.25-4.40) higher than the average odds ratio and about 40 (95% CI 20-70) times higher than the lowest quintile. The identification of an effective germ line genetic test to stratify risk of developing glioblastoma multiforme should lead to a better understanding of how this cancer forms. This result might ultimately lead to better treatments of glioblastoma multiforme.
Collapse
|
16
|
Shaddox LM, Morford LA, Nibali L. Periodontal health and disease: The contribution of genetics. Periodontol 2000 2020; 85:161-181. [PMID: 33226705 DOI: 10.1111/prd.12357] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Periodontitis is an infectious, inflammatory disease that is associated with a complex interplay between specific bacteria, host response, and environmental factors. Because of its high degree of familial aggregation, specifically for the more aggressive forms of the disease, genetics factors have been implicated in disease pathogenesis for several decades. This review provides an overview of what we currently know regarding the genetic and epigenetic contributions to periodontal disease and discusses future opportunities in the field.
Collapse
Affiliation(s)
- Luciana Macchion Shaddox
- Division of Periodontology, Department of Oral Health Practice, University of Kentucky College of Dentistry, Lexington, Kentucky, USA
| | - Lorri Ann Morford
- Division of Orthodontics, Department of Oral Health Sciences, University of Kentucky College of Dentistry, Lexington, Kentucky, USA
| | - Luigi Nibali
- Faculty of Dentistry, Oral & Craniofacial Sciences, Kings College London, Guy's Hospital, London, UK
| |
Collapse
|
17
|
Adel Fahmideh M, Lavebratt C, Tettamanti G, Schüz J, Röösli M, Kjaerheim K, Grotzer MA, Johansen C, Kuehni CE, Lannering B, Schmidt LS, Darabi H, Feychting M. A Weighted Genetic Risk Score of Adult Glioma Susceptibility Loci Associated with Pediatric Brain Tumor Risk. Sci Rep 2019; 9:18142. [PMID: 31792337 PMCID: PMC6889151 DOI: 10.1038/s41598-019-54701-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Genetic risk score (GRS) is used to demonstrate the genetic variants contributing to the polygenic architecture of complex diseases. By using a GRS, we have investigated the additive impact of the known adult glioma susceptibility loci on the pediatric brain tumor (PBT) risk and assessed the proportion of PBT heritability attributable to these susceptibility loci. A GRS was generated for PBTs based on the alleles and associated effect sizes derived from a previously published genome-wide association study on adult glioma. The GRS was calculated in CEFALO, a population-based case-control study of brain tumors in children and adolescents including saliva DNA of 245 cases and 489 controls. The unconditional logistic regression model was used to investigate the association between standardized GRS and risk of PBTs. To measure the variance explained by the effect of GRS, Nagelkerke pseudo-R2 was calculated. The GRS for adult brain tumors was associated with an increased risk of PBTs (OR 1.25 [95% CI 1.06-1.49], p = 0.009) and 0.3% of the variance in PBTs could be explained by the effect of GRS on the liability scale. This study provides evidence that heritable risks of PBTs are in-part attributable to some common genetic variants associated with adult glioma.
Collapse
Affiliation(s)
- Maral Adel Fahmideh
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-171 77, Stockholm, Sweden.
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Center for Molecular Medicine, Karolinska University Hospital, L8:00, SE-171 76, Stockholm, Sweden
| | - Giorgio Tettamanti
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-171 77, Stockholm, Sweden
| | - Joachim Schüz
- Section of Environment and Radiation, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69372 Lyon CEDEX 08, Lyon, France
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland
- University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Kristina Kjaerheim
- The Cancer Registry of Norway, Ullernchausseen 64, NO-0379, Oslo, Norway
| | - Michael A Grotzer
- Department of Oncology, University Children's Hospital of Zurich, Steinwiesstrasse 75, 8032, Zurich, Switzerland
| | - Christoffer Johansen
- Unit of Survivorship, The Danish Cancer Society Research Centre, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
- Oncology Department, Finsen Centre, 5073 Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Claudia E Kuehni
- Swiss Childhood Cancer Registry, Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, 3012, Bern, Switzerland
- Children's University Hospital of Bern, University of Bern, Freiburgstrasse 31, 3010, Bern, Switzerland
| | - Birgitta Lannering
- Department of Pediatrics, University of Gothenburg, Smörslottsgatan 1, SE-416 85, Gothenburg, Sweden
| | - Lisbeth S Schmidt
- Department of Pediatrics, University Hospital Herlev, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Hatef Darabi
- Quantify, Hantverkargatan 8, SE-112 21, Stockholm, Sweden
| | - Maria Feychting
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, SE-171 77, Stockholm, Sweden
| |
Collapse
|
18
|
Ostrom QT, Fahmideh MA, Cote DJ, Muskens IS, Schraw JM, Scheurer ME, Bondy ML. Risk factors for childhood and adult primary brain tumors. Neuro Oncol 2019; 21:1357-1375. [PMID: 31301133 PMCID: PMC6827837 DOI: 10.1093/neuonc/noz123] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Primary brain tumors account for ~1% of new cancer cases and ~2% of cancer deaths in the United States; however, they are the most commonly occurring solid tumors in children. These tumors are very heterogeneous and can be broadly classified into malignant and benign (or non-malignant), and specific histologies vary in frequency by age, sex, and race/ethnicity. Epidemiological studies have explored numerous potential risk factors, and thus far the only validated associations for brain tumors are ionizing radiation (which increases risk in both adults and children) and history of allergies (which decreases risk in adults). Studies of genetic risk factors have identified 32 germline variants associated with increased risk for these tumors in adults (25 in glioma, 2 in meningioma, 3 in pituitary adenoma, and 2 in primary CNS lymphoma), and further studies are currently under way for other histologic subtypes, as well as for various childhood brain tumors. While identifying risk factors for these tumors is difficult due to their rarity, many existing datasets can be leveraged for future discoveries in multi-institutional collaborations. Many institutions are continuing to develop large clinical databases including pre-diagnostic risk factor data, and developments in molecular characterization of tumor subtypes continue to allow for investigation of more refined phenotypes. Key Point 1. Brain tumors are a heterogeneous group of tumors that vary significantly in incidence by age, sex, and race/ethnicity.2. The only well-validated risk factors for brain tumors are ionizing radiation (which increases risk in adults and children) and history of allergies (which decreases risk).3. Genome-wide association studies have identified 32 histology-specific inherited genetic variants associated with increased risk of these tumors.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Maral Adel Fahmideh
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Karolinska Institutet, and Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - David J Cote
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Computational Neuroscience Outcomes Center, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ivo S Muskens
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeremy M Schraw
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Michael E Scheurer
- Department of Pediatrics, Section of Hematology-Oncology, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
19
|
Yoon SJ, Park J, Jang DS, Kim HJ, Lee JH, Jo E, Choi RJ, Shim JK, Moon JH, Kim EH, Chang JH, Lee JH, Kang SG. Glioblastoma Cellular Origin and the Firework Pattern of Cancer Genesis from the Subventricular Zone. J Korean Neurosurg Soc 2019; 63:26-33. [PMID: 31592000 PMCID: PMC6952738 DOI: 10.3340/jkns.2019.0129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a disease without any definite cure. Numerous approaches have been tested in efforts to conquer this brain disease, but patients invariably experience recurrence or develop resistance to treatment. New surgical tools, carefully chosen samples, and experimental methods are enabling discoveries at single-cell resolution. The present article reviews the cell-of-origin of isocitrate dehydrogenase (IDH)-wildtype GBM, beginning with the historical background for focusing on cellular origin and introducing the cancer genesis patterned on firework. The authors also review mutations associated with the senescence process in cells of the subventricular zone (SVZ), and biological validation of somatic mutations in a mouse SVZ model. Understanding GBM would facilitate research on the origin of other cancers and may catalyze the development of new management approaches or treatments against IDH-wildtype GBM.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-Su Jang
- Medical Research Support Services, Yonsei University College of Medicine, Seoul, Korea.,Department of Sculpture, Hongik University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Euna Jo
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Kyung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Liu W, Long H, Zhang M, Wang Y, Lu Q, Yuan H, Qu Q, Qu J. Glutathione S-transferase genes variants and glioma risk: A case-control and meta-analysis study. J Cancer 2019; 10:4679-4688. [PMID: 31528233 PMCID: PMC6746118 DOI: 10.7150/jca.29398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 06/23/2019] [Indexed: 01/17/2023] Open
Abstract
Background: The glutathione S-transferase (GST) genes encode enzymes that metabolize carcinogenic compounds, and their variants, GSTP1 (Ile105Val and Ala114Val), GSTT1 (null/present), and GSTM1 (null/present), reduce enzyme activity that may affect the risk of developing cerebral glioma. This study undertook a case-control study and a meta-analysis to evaluate associations between these GST gene variants and the risk of glioma. Methods: The study enrolled 384 glioma patients (194 men and 190 women; mean age, 48.3 ± 9.2 years) and 340 healthy controls (174 men and 166 women; mean age, 46.5 ± 9.8 years). The amplification refractory mutation system assay was performed to identify GST gene variants of all 724 subjects. A meta-analysis enrolled 15 studies (including our case-control results) was performed. Results: Our case-control study found that the frequency of GSTP1 Ile105Val Val/Val genotype was significantly higher in the glioma group than that in the healthy controls (11.7% vs. 6.4%) (OR=1.50; 95% CI=1.05-2.04; P=0.01); the frequency of the Val/Ile + Ile/Ile genotypes was different from glioma patients and controls (88.3% vs. 93.6%) (OR=1.47(1.04-2.10); P=0.015); there were no associations between GSTP1 Ala114Val, GSTT1 (null/present) and GSTM1 (null/present) variants and glioma risk. Our meta-analysis confirmed that the GSTP1 Ile105Val variant was associated with an overall increased glioma risk. Moreover, our meta-analysis also confirmed the GSTP1 Ala114Val and GSTT1 null/present variants were associated with an increased glioma risk in the Caucasian population, rather than the Asian population. Conclusions: This study showed that GST gene variants were associated with an increased risk of glioma with ethnic differences. Future large-scale, multi center, controlled, prospective studies are required to support these findings and to determine how these GST gene variants may affect the pathogenesis of glioma.
Collapse
Affiliation(s)
- Weiping Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Yanjing Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Qiong Lu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, People's Republic of China
| | - Haiyan Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410078, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, People's Republic of China
| |
Collapse
|
21
|
Nibali L, Bayliss-Chapman J, Almofareh S, Zhou Y, Divaris K, Vieira A. What Is the Heritability of Periodontitis? A Systematic Review. J Dent Res 2019; 98:632-641. [PMID: 31107142 PMCID: PMC6535921 DOI: 10.1177/0022034519842510] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to systematically appraise the existing literature on the yet-unclear heritability of gingivitis and periodontitis. This review was conducted following the PRISMA guidelines. A search was conducted through the electronic databases Medline, Embase, LILACS, Cochrane Library, Open Grey, Google Scholar, and Research Gate, as complemented by a hand search, for human studies reporting measures of heritability of gingivitis and periodontitis. A total of 9,037 papers were initially identified from combined databases and 10,810 on Google Scholar. After full-text reading, 28 articles met the inclusion criteria and were carried forward to data abstraction. The reviewed data included information from >50,000 human subjects. Meta-analyses were performed by grouping studies based on design and outcome. Heritability ( H2) of periodontitis was estimated at 0.38 (95% CI, 0.34 to 0.43; I2 = 12.9%) in twin studies, 0.15 (95% CI, 0.06 to 0.24; I2 = 0%) in other family studies, and 0.29 (95% CI, 0.21 to 0.38; I2 = 61.2%) when twin and other family studies were combined. Genome-wide association studies detected a lower heritability estimate of 0.07 (95% CI, -0.02 to 0.15) for combined definitions of periodontitis, increasing with disease severity and when the interaction with smoking was included. Furthermore, heritability tended to be lower among older age groups. Heritability for the self-reported gingivitis trait was estimated at 0.29 (95% CI, 0.22 to 0.36; I2 = 37.6%), while it was not statistically significant for clinically measured gingivitis. This systematic review brings forward summary evidence to confirm that up to a third of the periodontitis variance in the population is due to genetic factors. This seems consistent across the different studied populations and increases with disease severity. In summary, up to a third of the variance of periodontitis in the population is due to genetic factors, with higher heritability for more severe disease.
Collapse
Affiliation(s)
- L. Nibali
- Centre for Oral Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University London, London, UK
| | - J. Bayliss-Chapman
- Centre for Oral Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University London, London, UK
| | - S.A. Almofareh
- Centre for Oral Immunobiology and Regenerative Medicine, Centre for Oral Clinical Research, Institute of Dentistry, Queen Mary University London, London, UK
| | - Y. Zhou
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - K. Divaris
- Department of Pediatric Dentistry, School of Dentistry, University of North Carolina–Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina–Chapel Hill, Chapel Hill, NC, USA
| | - A.R. Vieira
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Ostrom QT, Egan KM, Nabors LB, Gerke T, Thompson RC, Olson JJ, LaRocca R, Chowdhary S, Eckel-Passow JE, Armstrong G, Wiencke JK, Bernstein JL, Claus EB, Il'yasova D, Johansen C, Lachance DH, Lai RK, Merrell RT, Olson SH, Sadetzki S, Schildkraut JM, Shete S, Houlston RS, Jenkins RB, Wrensch MR, Melin B, Amos CI, Huse JT, Barnholtz-Sloan JS, Bondy ML. Glioma risk associated with extent of estimated European genetic ancestry in African Americans and Hispanics. Int J Cancer 2019; 146:739-748. [PMID: 30963577 DOI: 10.1002/ijc.32318] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
Glioma incidence is highest in non-Hispanic Whites, and to date, glioma genome-wide association studies (GWAS) to date have only included European ancestry (EA) populations. African Americans and Hispanics in the US have varying proportions of EA, African (AA) and Native American ancestries (NAA). It is unknown if identified GWAS loci or increased EA is associated with increased glioma risk. We assessed whether EA was associated with glioma in African Americans and Hispanics. Data were obtained for 832 cases and 675 controls from the Glioma International Case-Control Study and GliomaSE Case-Control Study previously estimated to have <80% EA, or self-identify as non-White. We estimated global and local ancestry using fastStructure and RFMix, respectively, using 1,000 genomes project reference populations. Within groups with ≥40% AA (AFR≥0.4 ), and ≥15% NAA (AMR≥0.15 ), genome-wide association between local EA and glioma was evaluated using logistic regression conditioned on global EA for all gliomas. We identified two regions (7q21.11, p = 6.36 × 10-4 ; 11p11.12, p = 7.0 × 10-4 ) associated with increased EA, and one associated with decreased EA (20p12.13, p = 0.0026) in AFR≥0.4 . In addition, we identified a peak at rs1620291 (p = 4.36 × 10-6 ) in 7q21.3. Among AMR≥0.15 , we found an association between increased EA in one region (12q24.21, p = 8.38 × 10-4 ), and decreased EA in two regions (8q24.21, p = 0. 0010; 20q13.33, p = 6.36 × 10-4 ). No other significant associations were identified. This analysis identified an association between glioma and two regions previously identified in EA populations (8q24.21, 20q13.33) and four novel regions (7q21.11, 11p11.12, 12q24.21 and 20p12.13). The identifications of novel association with EA suggest regions to target for future genetic association studies.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Kathleen M Egan
- Division of Population Sciences, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - L Burt Nabors
- Neuro-Oncology Program, University of Alabama at Birmingham, Birmingham, AL
| | - Travis Gerke
- Division of Population Sciences, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA
| | - Renato LaRocca
- Department of Hematology-Oncology, Norton Cancer Institute, Louisville, KY
| | | | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN
| | - Georgina Armstrong
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - John K Wiencke
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, NY, New York
| | - Elizabeth B Claus
- School of Public Health, Yale University, New Haven, CT.,Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA
| | - Dora Il'yasova
- Department of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, GA.,Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Christoffer Johansen
- Oncology Clinic, Finsen Center, Rigshospitalet and Survivorship Research Unit, The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniel H Lachance
- Department of Neurology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN
| | - Rose K Lai
- Department of Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, CA, Los Angeles
| | - Ryan T Merrell
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, NY, New York
| | - Siegal Sadetzki
- Cancer and Radiation Epidemiology Unit, Gertner Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel.,Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Sanjay Shete
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research in Sutton, Surrey, United Kingdom
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN
| | - Margaret R Wrensch
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, CA
| | - Beatrice Melin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
23
|
Ostrom QT, Coleman W, Huang W, Rubin JB, Lathia JD, Berens ME, Speyer G, Liao P, Wrensch MR, Eckel-Passow JE, Armstrong G, Rice T, Wiencke JK, McCoy LS, Hansen HM, Amos CI, Bernstein JL, Claus EB, Houlston RS, Il’yasova D, Jenkins RB, Johansen C, Lachance DH, Lai RK, Merrell RT, Olson SH, Sadetzki S, Schildkraut JM, Shete S, Andersson U, Rajaraman P, Chanock SJ, Linet MS, Wang Z, Yeager M, Melin B, Bondy ML, Barnholtz-Sloan JS. Sex-specific gene and pathway modeling of inherited glioma risk. Neuro Oncol 2019; 21:71-82. [PMID: 30124908 PMCID: PMC6303471 DOI: 10.1093/neuonc/noy135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background To date, genome-wide association studies (GWAS) have identified 25 risk variants for glioma, explaining 30% of heritable risk. Most histologies occur with significantly higher incidence in males, and this difference is not explained by currently known risk factors. A previous GWAS identified sex-specific glioma risk variants, and this analysis aims to further elucidate risk variation by sex using gene- and pathway-based approaches. Methods Results from the Glioma International Case-Control Study were used as a testing set, and results from 3 GWAS were combined via meta-analysis and used as a validation set. Using summary statistics for nominally significant autosomal SNPs (P < 0.01 in a previous meta-analysis) and nominally significant X-chromosome SNPs (P < 0.01), 3 algorithms (Pascal, BimBam, and GATES) were used to generate gene scores, and Pascal was used to generate pathway scores. Results were considered statistically significant in the discovery set when P < 3.3 × 10-6 and in the validation set when P < 0.001 in 2 of 3 algorithms. Results Twenty-five genes within 5 regions and 19 genes within 6 regions reached statistical significance in at least 2 of 3 algorithms in males and females, respectively. EGFR was significantly associated with all glioma and glioblastoma in males only and a female-specific association in TERT, all of which remained nominally significant after conditioning on known risk loci. There were nominal associations with the BioCarta telomeres pathway in both males and females. Conclusions These results provide additional evidence that there may be differences by sex in genetic risk for glioma. Additional analyses may further elucidate the biological processes through which this risk is conferred.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - William Huang
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Justin D Lathia
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Gil Speyer
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Peter Liao
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Margaret R Wrensch
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Georgina Armstrong
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Terri Rice
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - John K Wiencke
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Lucie S McCoy
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Helen M Hansen
- Department of Neurological Surgery, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth B Claus
- School of Public Health, Yale University, New Haven, Connecticut, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Dora Il’yasova
- Department of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, Georgia, USA
- Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Christoffer Johansen
- Oncology Clinic, Finsen Center, Rigshospitalet and Survivorship Research Unit, The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniel H Lachance
- Department of Neurology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Rose K Lai
- Departments of Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ryan T Merrell
- Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Siegal Sadetzki
- Cancer and Radiation Epidemiology Unit, Gertner Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Ulrika Andersson
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Preetha Rajaraman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland, USA
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland, USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland, USA
| | - Beatrice Melin
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Ostrom QT, Kinnersley B, Armstrong G, Rice T, Chen Y, Wiencke JK, McCoy LS, Hansen HM, Amos CI, Bernstein JL, Claus EB, Eckel-Passow JE, Il'yasova D, Johansen C, Lachance DH, Lai RK, Merrell RT, Olson SH, Sadetzki S, Schildkraut JM, Shete S, Rubin JB, Andersson U, Rajaraman P, Chanock SJ, Linet MS, Wang Z, Yeager M, Houlston RS, Jenkins RB, Wrensch MR, Melin B, Bondy ML, Barnholtz-Sloan JS. Age-specific genome-wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'-like features associated with younger age. Int J Cancer 2018; 143:2359-2366. [PMID: 30152087 PMCID: PMC6205887 DOI: 10.1002/ijc.31759] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 01/07/2023]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in the United States. Incidence of GBM increases with age, and younger age-at-diagnosis is significantly associated with improved prognosis. While the relationship between candidate GBM risk SNPs and age-at-diagnosis has been explored, genome-wide association studies (GWAS) have not previously been stratified by age. Potential age-specific genetic effects were assessed in autosomal SNPs for GBM patients using data from four previous GWAS. Using age distribution tertiles (18-53, 54-64, 65+) datasets were analyzed using age-stratified logistic regression to generate p values, odds ratios (OR), and 95% confidence intervals (95%CI), and then combined using meta-analysis. There were 4,512 total GBM cases, and 10,582 controls used for analysis. Significant associations were detected at two previously identified SNPs in 7p11.2 (rs723527 [p54-63 = 1.50x10-9 , OR54-63 = 1.28, 95%CI54-63 = 1.18-1.39; p64+ = 2.14x10-11 , OR64+ = 1.32, 95%CI64+ = 1.21-1.43] and rs11979158 [p54-63 = 6.13x10-8 , OR54-63 = 1.35, 95%CI54-63 = 1.21-1.50; p64+ = 2.18x10-10 , OR64+ = 1.42, 95%CI64+ = 1.27-1.58]) but only in persons >54. There was also a significant association at the previously identified lower grade glioma (LGG) risk locus at 8q24.21 (rs55705857) in persons ages 18-53 (p18-53 = 9.30 × 10-11 , OR18-53 = 1.76, 95%CI18-53 = 1.49-2.10). Within The Cancer Genome Atlas (TCGA) there was higher prevalence of 'LGG'-like tumor characteristics in GBM samples in those 18-53, with IDH1/2 mutation frequency of 15%, as compared to 2.1% [54-63] and 0.8% [64+] (p = 0.0005). Age-specific differences in cancer susceptibility can provide important clues to etiology. The association of a SNP known to confer risk for IDH1/2 mutant glioma and higher prevalence of IDH1/2 mutation within younger individuals 18-53 suggests that more younger individuals may present initially with 'secondary glioblastoma.'
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Georgina Armstrong
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Terri Rice
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Yanwen Chen
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - John K Wiencke
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Lucie S McCoy
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Helen M Hansen
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Christopher I Amos
- Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, Texas
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth B Claus
- School of Public Health, Yale University, New Haven, Connecticut
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Dora Il'yasova
- Department of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, Georgia
- Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Christoffer Johansen
- Oncology clinic, Finsen Center, Rigshospitalet and Survivorship Research Unit, The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniel H Lachance
- Department of Neurology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota
| | - Rose K Lai
- Departments of Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, California, Los Angeles
| | - Ryan T Merrell
- Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Siegal Sadetzki
- Cancer and Radiation Epidemiology Unit, Gertner Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sanjay Shete
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joshua B Rubin
- Departments of Pediatrics and Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Ulrika Andersson
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Preetha Rajaraman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota
| | - Margaret R Wrensch
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Beatrice Melin
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
25
|
Du X, Liu B, Ding Q, He D, Zhang R, Yang F, Fan H, Teng L, Xin T. CD300A inhibits tumor cell growth by downregulating AKT phosphorylation in human glioblastoma multiforme. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3471-3478. [PMID: 31949725 PMCID: PMC6962892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/17/2018] [Indexed: 06/10/2023]
Abstract
Glioblastoma multiforme (GBM) is a primary malignant tumor of the central nervous system with the highest incidence and dismal prognosis. As a member of the CD300 glycoprotein family, CD300A plays a role in cell proliferation, apoptosis, differentiation, and immune response, but its role in solid tumors remains unknown. In this study, CD300A was observed to be overexpressed in human GBM samples using real-time PCR and western blotting. To investigate the role of CD300A in GBM, CCK8, transwell and flow cytometry analysis were performed to examine the proliferation, migration and apoptosis in GBM cell lines, respectively. From our results, knockdown of CD300A blocks cell proliferation and migration, and induces cell apoptosis in human GBM cells U251MG and U87MG. Further, we assessed AKT expression level in CD300A knockdown and negative control cells. The phosphorylation level of AKT was significantly suppressed in CD300A knockdown cells in comparison to negative control cells, suggesting that CD300A promoted tumor cell growth through the AKT pathway. In conclusion, our findings expand the knowledge of CD300A as an oncogene in solid tumor, and provide experimental and theoretical basis for further clinical application.
Collapse
Affiliation(s)
- Xinrui Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, China
- Department of Neurosurgery, Zibo Central HospitalZibo, China
| | - Bin Liu
- Department of Neurosurgery, Kyoto University Graduate School of MedicineKyoto, Japan
| | - Qian Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, China
| | - Haitao Fan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, China
| | - Liangzhu Teng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong UniversityJinan, China
- Department of Neurosurgery, Jiangxi Provincial People’s HospitalNanchang, China
| |
Collapse
|
26
|
Abstract
Incidence, prevalence, and survival for brain tumors varies by histologic type, age at diagnosis, sex, and race/ethnicity. Significant progress has been made in identifying potential risk factors for brain tumors, although more research is warranted. The strongest risk factors that have been identified thus far include allergies/atopic disease, ionizing radiation, and heritable genetic factors. Further analysis of large, multicenter, epidemiologic studies, as well as well annotated omic datasets (including genomic, epigenomic, transcriptomic, proteomic, or metabolomics data) can potentially lead to further understanding of the relationship between gene and environment in the process of brain tumor development.
Collapse
|
27
|
Ostrom QT, Kinnersley B, Wrensch MR, Eckel-Passow JE, Armstrong G, Rice T, Chen Y, Wiencke JK, McCoy LS, Hansen HM, Amos CI, Bernstein JL, Claus EB, Il'yasova D, Johansen C, Lachance DH, Lai RK, Merrell RT, Olson SH, Sadetzki S, Schildkraut JM, Shete S, Rubin JB, Lathia JD, Berens ME, Andersson U, Rajaraman P, Chanock SJ, Linet MS, Wang Z, Yeager M, Houlston RS, Jenkins RB, Melin B, Bondy ML, Barnholtz-Sloan JS. Sex-specific glioma genome-wide association study identifies new risk locus at 3p21.31 in females, and finds sex-differences in risk at 8q24.21. Sci Rep 2018; 8:7352. [PMID: 29743610 PMCID: PMC5943590 DOI: 10.1038/s41598-018-24580-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/06/2018] [Indexed: 01/07/2023] Open
Abstract
Incidence of glioma is approximately 50% higher in males. Previous analyses have examined exposures related to sex hormones in women as potential protective factors for these tumors, with inconsistent results. Previous glioma genome-wide association studies (GWAS) have not stratified by sex. Potential sex-specific genetic effects were assessed in autosomal SNPs and sex chromosome variants for all glioma, GBM and non-GBM patients using data from four previous glioma GWAS. Datasets were analyzed using sex-stratified logistic regression models and combined using meta-analysis. There were 4,831 male cases, 5,216 male controls, 3,206 female cases and 5,470 female controls. A significant association was detected at rs11979158 (7p11.2) in males only. Association at rs55705857 (8q24.21) was stronger in females than in males. A large region on 3p21.31 was identified with significant association in females only. The identified differences in effect of risk variants do not fully explain the observed incidence difference in glioma by sex.
Collapse
Affiliation(s)
- Quinn T Ostrom
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Population and Quantitative Heath Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Margaret R Wrensch
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Georgina Armstrong
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Terri Rice
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Yanwen Chen
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - John K Wiencke
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Lucie S McCoy
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Helen M Hansen
- Department of Neurological Surgery and Institute of Human Genetics, School of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Elizabeth B Claus
- School of Public Health, Yale University, New Haven, Connecticut, United States of America
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Dora Il'yasova
- Department of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, Georgia, United States of America
- Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Christoffer Johansen
- Oncology clinic, Finsen Center, Rigshospitalet, Copenhagen, Denmark
- Survivorship Research Unit, The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniel H Lachance
- Department of Neurology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rose K Lai
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ryan T Merrell
- Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois, United States of America
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Siegal Sadetzki
- Cancer and Radiation Epidemiology Unit, Gertner Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Joellen M Schildkraut
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Sanjay Shete
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Justin D Lathia
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Ulrika Andersson
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Preetha Rajaraman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland, United States of America
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland, United States of America
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
- Core Genotyping Facility, National Cancer Institute, SAIC-Frederick, Inc, Gaithersburg, Maryland, United States of America
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Beatrice Melin
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Melissa L Bondy
- Department of Medicine, Section of Epidemiology and Population Sciences, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America.
| |
Collapse
|
28
|
Kinnersley B, Houlston RS, Bondy ML. Genome-Wide Association Studies in Glioma. Cancer Epidemiol Biomarkers Prev 2018; 27:418-428. [PMID: 29382702 DOI: 10.1158/1055-9965.epi-17-1080] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 01/23/2023] Open
Abstract
Since the first reports in 2009, genome-wide association studies (GWAS) have been successful in identifying germline variants associated with glioma susceptibility. In this review, we describe a chronological history of glioma GWAS, culminating in the most recent study comprising 12,496 cases and 18,190 controls. We additionally summarize associations at the 27 glioma-risk SNPs that have been reported so far. Future efforts are likely to be principally focused on assessing association of germline-risk SNPs with particular molecular subgroups of glioma, as well as investigating the functional basis of the risk loci in tumor formation. These ongoing studies will be important to maximize the impact of research into glioma susceptibility, both in terms of insight into tumor etiology as well as opportunities for clinical translation. Cancer Epidemiol Biomarkers Prev; 27(4); 418-28. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Ben Kinnersley
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Melissa L Bondy
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
29
|
Chen ZG, Zheng CY, Cai WQ, Li DW, Ye FY, Zhou J, Wu R, Yang K. miR-26b Mimic Inhibits Glioma Proliferation In Vitro and In Vivo Suppressing COX-2 Expression. Oncol Res 2017; 27:147-155. [PMID: 28800785 PMCID: PMC7848412 DOI: 10.3727/096504017x15021536183517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common malignant tumor of the nervous system. Studies have shown the microRNA-26b (miR-26b)/cyclooxygenase-2 (COX-2) axis in the development and progression in many tumor cells. Our study aims to investigate the effect and mechanism of the miR-26b/COX-2 axis in glioma. Decreased expression of miR-26b with increased levels of COX-2 was found in glioma tissues compared with matched normal tissues. A strong negative correlation was observed between the level of miR-26b and COX-2 in 30 glioma tissues. The miR-26b was then overexpressed by transfecting a miR-26b mimic into U-373 cells. The invasive cell number and wound closing rate were reduced in U-373 cells transfected with miR-26b mimic. In addition, COX-2 siRNA enhanced the effect of miR-26b mimic in suppressing the expression of p-ERK1 and p-JNK. Finally, the in vivo experiment revealed that miR-26b mimic transfection strongly reduced the tumor growth, tumor volume, and expression of matrix metalloproteinase-2 (MMP-2) and MMP-9. Taken together, our research indicated a miR-26b/COX-2/ERK/JNK axis in regulating the motility of glioma in vitro and in vivo, providing a new sight for the treatment of glioma.
Collapse
Affiliation(s)
- Zheng-Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Chuan-Yi Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Wang-Qing Cai
- Department of Neurosurgery, The Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China
| | - Da-Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Fu-Yue Ye
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Jian Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Ran Wu
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| | - Kun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, P.R. China
| |
Collapse
|
30
|
Zhao Y, Lin L, Zhang Y, Geng D. SHP-2 Activating Mutation Promotes Malignant Biological Behaviors of Glioma Cells. Med Sci Monit 2017; 23:2931-2938. [PMID: 28620155 PMCID: PMC5484608 DOI: 10.12659/msm.904381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background This study investigated the mechanism underlying the activating mutation of SHP-2 in promoting malignant biological behaviors of glioma cells. Material/Methods The SHP-2 empty plasmid pcDNA3.1 and SHP-2 activating mutation plasmid pcDNA3.1 SHP-2 D61G mutant eukaryotic expression vectors were designed; stable SHP-2-expressing cells transfected with pcDNA3.1 SHP-2 D61G mutant were set as the mutation group; cells transfected with pcDNA3.1 were set as the empty vector group; and cells without transfection were set as the control group. The cell reproductive capacity in each group was measured by MTT method. The invasion ability of cells in vitro was detected by Transwell chamber assay, the cell apoptosis in each group was detected by Annexin-V/PE dual-staining method, and the clone formation ability of cells in vitro was detected by Tablet clone-forming assay. The activation of ERK1/2, ARK, and p38MAPK signal pathways in each group was determined by Western blot. Results After transfection, the expression of SHP-2 protein in the mutant group was significantly higher than that in the control group and empty vector group. The proliferation ability of transfected cells, the apoptosis rate, the invasion ability, and the expression levels of phosphorylated ERK1/2, AKT, and p38 in the mutation group was significantly higher than in the empty vector group and the control group (P<0.05). Moreover, the cell clone formation ability of the mutation group was obviously enhanced (P<0.05). Conclusions The activating mutation of SHP-2 can lead to malignant changes in biological behaviors of glioma cells, and the specific mechanism may be related to the activation of ERK1/2, AKT, and p38 signal pathway. SHP-2 protein may become a new target for anti-malignant transformation of glioma.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Lin Lin
- Fourth Affiliated Hospital , Xinjiang Medical University, Urumqi, Xinjiang, Uganda
| | - Yonghui Zhang
- Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Dangmurenjiafu Geng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
31
|
Melin BS, Barnholtz-Sloan JS, Wrensch MR, Johansen C, Il'yasova D, Kinnersley B, Ostrom QT, Labreche K, Chen Y, Armstrong G, Liu Y, Eckel-Passow JE, Decker PA, Labussière M, Idbaih A, Hoang-Xuan K, Di Stefano AL, Mokhtari K, Delattre JY, Broderick P, Galan P, Gousias K, Schramm J, Schoemaker MJ, Fleming SJ, Herms S, Heilmann S, Nöthen MM, Wichmann HE, Schreiber S, Swerdlow A, Lathrop M, Simon M, Sanson M, Andersson U, Rajaraman P, Chanock S, Linet M, Wang Z, Yeager M, Wiencke JK, Hansen H, McCoy L, Rice T, Kosel ML, Sicotte H, Amos CI, Bernstein JL, Davis F, Lachance D, Lau C, Merrell RT, Shildkraut J, Ali-Osman F, Sadetzki S, Scheurer M, Shete S, Lai RK, Claus EB, Olson SH, Jenkins RB, Houlston RS, Bondy ML. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet 2017; 49:789-794. [PMID: 28346443 PMCID: PMC5558246 DOI: 10.1038/ng.3823] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 03/01/2017] [Indexed: 01/07/2023]
Abstract
Genome-wide association studies (GWAS) have transformed our understanding of glioma susceptibility, but individual studies have had limited power to identify risk loci. We performed a meta-analysis of existing GWAS and two new GWAS, which totaled 12,496 cases and 18,190 controls. We identified five new loci for glioblastoma (GBM) at 1p31.3 (rs12752552; P = 2.04 × 10-9, odds ratio (OR) = 1.22), 11q14.1 (rs11233250; P = 9.95 × 10-10, OR = 1.24), 16p13.3 (rs2562152; P = 1.93 × 10-8, OR = 1.21), 16q12.1 (rs10852606; P = 1.29 × 10-11, OR = 1.18) and 22q13.1 (rs2235573; P = 1.76 × 10-10, OR = 1.15), as well as eight loci for non-GBM tumors at 1q32.1 (rs4252707; P = 3.34 × 10-9, OR = 1.19), 1q44 (rs12076373; P = 2.63 × 10-10, OR = 1.23), 2q33.3 (rs7572263; P = 2.18 × 10-10, OR = 1.20), 3p14.1 (rs11706832; P = 7.66 × 10-9, OR = 1.15), 10q24.33 (rs11598018; P = 3.39 × 10-8, OR = 1.14), 11q21 (rs7107785; P = 3.87 × 10-10, OR = 1.16), 14q12 (rs10131032; P = 5.07 × 10-11, OR = 1.33) and 16p13.3 (rs3751667; P = 2.61 × 10-9, OR = 1.18). These data substantiate that genetic susceptibility to GBM and non-GBM tumors are highly distinct, which likely reflects different etiology.
Collapse
Affiliation(s)
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Margaret R Wrensch
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Institute of Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Christoffer Johansen
- Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark and Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dora Il'yasova
- Department of Epidemiology and Biostatistics, School of Public Health, Georgia State University, Atlanta, Georgia, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
- Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Quinn T Ostrom
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Karim Labreche
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
| | - Yanwen Chen
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Georgina Armstrong
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yanhong Liu
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jeanette E Eckel-Passow
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Paul A Decker
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Marianne Labussière
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
| | - Ahmed Idbaih
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de neurologie 2-Mazarin, Paris, France
| | - Khe Hoang-Xuan
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de neurologie 2-Mazarin, Paris, France
| | - Anna-Luisa Di Stefano
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de neurologie 2-Mazarin, Paris, France
| | - Karima Mokhtari
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de neurologie 2-Mazarin, Paris, France
| | - Jean-Yves Delattre
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de neurologie 2-Mazarin, Paris, France
| | - Peter Broderick
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Pilar Galan
- Université Paris 13 Sorbonne Paris Cité, INSERM U557, INRA U1125, CNAM, Paris, France
| | | | - Johannes Schramm
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Sarah J Fleming
- Centre for Epidemiology and Biostatistics, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Stefan Herms
- Centre for Epidemiology and Biostatistics, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | | | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Heinz-Erich Wichmann
- Helmholtz Center Munich, Institute of Epidemiology I, Munich, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | - Stefan Schreiber
- 1st Medical Department, University Clinic Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, Institute of Cancer Research, London, UK
| | - Mark Lathrop
- Génome Québec, Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Matthias Simon
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Marc Sanson
- Sorbonne Universités UPMC Univ Paris 06, INSERM CNRS, U1127, UMR 7225, ICM, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de neurologie 2-Mazarin, Paris, France
| | | | - Preetha Rajaraman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Martha Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - John K Wiencke
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, California, USA
- Institute of Human Genetics, University of California, San Francisco, San Francisco, California, USA
| | - Helen Hansen
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Lucie McCoy
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Terri Rice
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Matthew L Kosel
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Hugues Sicotte
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jonine L Bernstein
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Faith Davis
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Dan Lachance
- Department of Neurology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Ching Lau
- Department of Pediatrics, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ryan T Merrell
- Department of Neurology, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Joellen Shildkraut
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
- Cancer Control and Prevention Program, Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Francis Ali-Osman
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Siegal Sadetzki
- Cancer and Radiation Epidemiology Unit, Gertner Institute, Chaim Sheba Medical Center, Tel Hashomer, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michael Scheurer
- Department of Pediatrics, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Sanjay Shete
- Department of Biostatistics, University of Texas Maryland Anderson Cancer Center, Houston, Texas, USA
| | - Rose K Lai
- Departments of Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elizabeth B Claus
- School of Public Health, Yale University, New Haven, Connecticut, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sara H Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Melissa L Bondy
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
32
|
Wang L, Li G, Liu N, Wang Z, Xu X, Qi J, Ren D, Zhang P, Zhang Y, Tu Y. Genetic variants of SOX9 contribute to susceptibility of gliomas among Chinese population. Oncotarget 2016; 7:65916-65922. [PMID: 27589569 PMCID: PMC5323202 DOI: 10.18632/oncotarget.11679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/15/2016] [Indexed: 01/08/2023] Open
Abstract
Gliomas make up about 80% of all malignant brain tumors, and cause serious public health problem. Genetic factors and environmental factors jointly caused the development of gliomas, and understanding of the genetic basis is a key component of preventive oncology. However, most genetic factors underlying carcinogenesis of gliomas remain largely unclear. In current study, we systematically evaluated whether genetic variants of SOX9 gene, a transcription factor that plays a central role in the development and differentiation of tumors, contribute to susceptibility of gliomas among Chinese population using a two-stage, case-control study. Results showed that SOX9 rs1042667 was significant associated with increased gliomas risk after adjusted by age, gender, family history of cancer, smoking status and alcohol status (Allele C vs A: OR=1.25; 95% CI=1.11-1.40; P=1.2×10-4). Compared with the carriers of genotype AA, both those of genotype AC (OR=1.37; 95% CI=1.13-1.66) and CC (OR=1.53; 95% CI=1.22-1.91) had significantly increased gliomas risk. This should be the first genetic association study which aims to evaluated the association between genetic variants of SOX9 and susceptibility of gliomas. Additional functional and association studies with different ethnic groups included are needed to further confirm our results.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Nan Liu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Zhen Wang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xiaoshan Xu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jing Qi
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Dongni Ren
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Pengxing Zhang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yongsheng Zhang
- Department of Administrative, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yanyang Tu
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|