1
|
Sarmah P, Ghanashyam C, Khanna R, Bankapur A. Unraveling biochemical differences in the membrane of functional RBCs and elliptocytes using vortex beam-based micro-Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125911. [PMID: 39999581 DOI: 10.1016/j.saa.2025.125911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Understanding the complexity of membrane biochemical changes in in-vitro-induced elliptocytosis can be interesting as it may mimic those in hereditary elliptocytosis. Studying the membrane biochemical changes in metabolically active elliptocytes can be crucial, but most modern methods, such as ektacytometry and EMA binding tests, fail to do so. This study employs single-cell Raman spectroscopy, a proven technique to study biochemical changes in individual functional cells to investigate biochemical modifications in the membrane and cytoskeleton of elliptocytes. This was possible by applying a vortex beam, which can probe the RBC membrane with a reduced contribution from hemoglobin, which otherwise dominates the cell spectrum. Raman spectral variations in elliptocytes indicated changes in proteins, lipids, and lipid-protein interactions. The study also presented an incidental observation of diversity in membrane components and membrane-hemoglobin interaction among tested individuals.
Collapse
Affiliation(s)
- Panchanil Sarmah
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Cheviri Ghanashyam
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Ruchee Khanna
- Department of Pathology, Kasturba Medical College, Manipal. Manipal Academy of Higher Education, Manipal 576104, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
2
|
Kao CY, Chen YW, Liu YC, Wei JH, Wang TSA. Versatile Stimuli-Responsive Controlled Release of Pinanediol-Caged Boronic Esters for Spatiotemporal and Nitroreductase-Selective Glucose Bioimaging. ACS Sens 2025; 10:470-479. [PMID: 39750141 PMCID: PMC11773560 DOI: 10.1021/acssensors.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Boronic acids have been widely applied in various biological fields, particularly achieving significant practical progress in boronic acid-based glucose sensing. However, boronic acids exhibit nonspecific binding to other nucleophiles, and the inherent lability of boronic esters in biological systems limits their further applications. Herein, we developed a stimuli-responsive controllable caging strategy to achieve photoresponsive spatiotemporally and nitroreductase-responsive cancer cell-selective glucose sensing. We introduced o-/p-nitroaryl-containing self-immolative linkers onto δ-pinanediol derivatives, effectively caging boronic acids and blocking glucose recognition. Upon triggering by specific stimuli, the caged boronic esters decompose, releasing boronic acids and thereby restoring glucose recognition of the diboronic acid-based sensor. The proof of concept was confirmed through intracellular glucose bioimaging in living cells. Upon regional UV irradiation, we could monitor intracellular glucose with excellent spatiotemporal selectivity. Furthermore, we used the cancer biomarker nitroreductases as the internal stimuli and utilized the caged glucose sensor to selectively label hypoxic cancer cells in a cocultured living cell sample. We believe that our stimuli-responsive caging strategies will hold promising potential for the controlled release of other boronic acids in various biological contexts.
Collapse
Affiliation(s)
- Chih-Yao Kao
- Department
of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Ying-Wei Chen
- Department
of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Yu-Cheng Liu
- Institute
of Molecular Biology, Academia Sinica, Nankang, Taipei 115201, Taiwan (R.O.C.)
| | - Jen-Hsuan Wei
- Institute
of Molecular Biology, Academia Sinica, Nankang, Taipei 115201, Taiwan (R.O.C.)
| | - Tsung-Shing Andrew Wang
- Department
of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| |
Collapse
|
3
|
Xu Y, Xu T, Huang C, Liu L, Kwame AW, Zhu Y, Ren J. Preventive intervention with Agaricus blazei murill polysaccharide exerts anti-tumor immune effect on intraperitoneal metastasis colorectal cancer. Int J Biol Macromol 2024; 282:136810. [PMID: 39471924 DOI: 10.1016/j.ijbiomac.2024.136810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Agaricus blazei murill (ABM) mainly exerts its antitumor effect via modulation of the immune system. However, the immunomodulatory role of the ABM polysaccharide (ABMP) in mice with subcutaneously and intraperitoneally implanted MC38 tumor remains to be explored. This study aimed to define the progression effect of inhibiting tumor of ABMP in subcutaneous and intraperitoneal models and its effect on tumor microenvironment (TME) metabolism. In vitro experiments showed that ABMP could significantly promote the activity of CD8+ T immune cells in the co-culture system and promoted their colorectal cancer killing function (p < 0.05). In vivo animal exploration further showed that ABMP could inhibit the growth of intraperitoneal but not subcutaneous tumors. MCR-ALS analysis revealed a significant reduction in the signal of lipid-related spectral components in the TME of peritoneal tumors after ABMP intervention. In addition, preventive intervention with ABMP increased ω-3 polyunsaturated fatty acids content in intraperitoneal TME, revealing that ABMP shifted the metabolic landscape of the TME to promote T cell function and achieved immune regulation. These results suggest that the inhibitory effect of ABMP on colon cancer may be tumor stage-dependent, and that remodeling of fatty acid composition may be an important determinant of its action at any given stage.
Collapse
Affiliation(s)
- Yongzhao Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tianxiong Xu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chujun Huang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lun Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Amakye William Kwame
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ying Zhu
- Infinitus (China) Ltd., Guangzhou 510665, Guangdong, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
4
|
Ou H, Zhang P, Wang X, Lin M, Li Y, Wang G. Gaining insights into the responses of individual yeast cells to ethanol fermentation using Raman tweezers and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 319:124584. [PMID: 38838600 DOI: 10.1016/j.saa.2024.124584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Saccharomyces cerevisiae is the most common microbe used for the industrial production of bioethanol, and it encounters various stresses that inhibit cell growth and metabolism during fermentation. However, little is currently known about the physiological changes that occur in individual yeast cells during ethanol fermentation. Therefore, in this work, Raman spectroscopy and chemometric techniques were employed to monitor the metabolic changes of individual yeast cells at distinct stages during high gravity ethanol fermentation. Raman tweezers was used to acquire the Raman spectra of individual yeast cells. Multivariate curve resolution-alternating least squares (MCR-ALS) and principal component analysis were employed to analyze the Raman spectra dataset. MCR-ALS extracted the spectra of proteins, phospholipids, and triacylglycerols and their relative contents in individual cells. Changes in intracellular biomolecules showed that yeast cells undergo three distinct physiological stages during fermentation. In addition, heterogeneity among yeast cells significantly increased in the late fermentation period, and different yeast cells may respond to ethanol stress via different mechanisms. Our findings suggest that the combination of Raman tweezers and chemometrics approaches allows for characterizing the dynamics of molecular components within individual cells. This approach can serve as a valuable tool in investigating the resistance mechanism and metabolic heterogeneity of yeast cells during ethanol fermentation.
Collapse
Affiliation(s)
- Haisheng Ou
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China; College of Physics Science and Technology, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China
| | - Pengfei Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaochun Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China
| | - Manman Lin
- School of Electronic and Information Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yuanpeng Li
- College of Physics Science and Technology, Guangxi Normal University, 15 Yucai Road, Guilin, Guangxi 541004, China
| | - Guiwen Wang
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, China.
| |
Collapse
|
5
|
Kim KH, Kwak J, Seo SE, Ha S, Kim GJ, Lee S, Sim SJ, Lee YK, Tran NL, Oh SJ, Kim WK, Song HS, Kwon OS. TRPA1 nanovesicle-conjugated receptonics for rapid biocide screening. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135282. [PMID: 39088952 DOI: 10.1016/j.jhazmat.2024.135282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/07/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
Although biocides are important materials in modern society and help protect human health and the environment, increasing exposure to combined biocides can cause severe side effects in the human body, such as lung fibrosis. In this study, we developed a receptonics system to screen for biocides in combined household chemical products based on biocides. The system contains transient receptor potential ankyrin 1 (TRPA1) nanovesicles (NVs) to sense biocides based on pain receptors and a side-gated field-effect transistor (SGFET) using a single-layer graphene (SLG) micropattern channel. The binding affinities between the TRPA1 receptor and the various biocides were estimated by performing biosimulation and using a calcium ion (Ca2+) assay, and the sensitivity of the system was compared with that of TRPA1 NV receptonics systems. Based on the results of the TRPA1 NV receptonics system, the antagonistic and potentiation effects of combined biocides and household chemical products depended on the concentration. Finally, the TRPA1 NV receptonics system was applied to screen for biocides in real products, and its performance was successful. Based on these results, the TRPA1 NV receptonics system can be utilized to perform risk evaluations and identify biocides in a simple and rapid manner.
Collapse
Affiliation(s)
- Kyung Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisung Kwak
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sung Eun Seo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Siyoung Ha
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Gyeong-Ji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yeon Kyung Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Na Ly Tran
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Seung Ja Oh
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Stepanenko T, Sofińska K, Wilkosz N, Dybas J, Wiercigroch E, Bulat K, Szczesny-Malysiak E, Skirlińska-Nosek K, Seweryn S, Chwiej J, Lipiec E, Marzec KM. Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) in label-free characterization of erythrocyte membranes and extracellular vesicles at the nano-scale and molecular level. Analyst 2024; 149:778-788. [PMID: 38109075 DOI: 10.1039/d3an01658g] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The manuscript presents the potential of surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) for label-free characterization of extracellular microvesicles (EVs) and their isolated membranes derived from red blood cells (RBCs) at the nanoscale and at the single-molecule level, providing detection of a few individual amino acids, protein and lipid membrane compartments. The study shows future directions for research, such as investigating the use of the mentioned techniques for the detection and diagnosis of diseases. We demonstrate that SERS and TERS are powerful techniques for identifying the biochemical composition of EVs and their membranes, allowing the detection of small molecules, lipids, and proteins. Furthermore, extracellular vesicles released from red blood cells (REVs) can be broadly classified into exosomes, microvesicles, and apoptotic bodies, based on their size and biogenesis pathways. Our study specifically focuses on microvesicles that range from 100 to 1000 nanometres in diameter, as presented in AFM images. Using SERS and TERS spectra obtained for REVs and their membranes, we were able to characterize the chemical and structural properties of microvesicle membranes with high sensitivity and specificity. This information may help better distinguish and categorize different types of EVs, leading to a better understanding of their functions and potential biomedical applications.
Collapse
Affiliation(s)
- Tetiana Stepanenko
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, National Synchrotron Radiation Centre SOLARIS, Czerwone Maki 98 Str., 30-392 Krakow, Poland
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Kamila Sofińska
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Natalia Wilkosz
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Ewelina Wiercigroch
- Jagiellonian Center of Innovation, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Katarzyna Bulat
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Sara Seweryn
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Joanna Chwiej
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Ewelina Lipiec
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Katarzyna M Marzec
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
- Łukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland.
| |
Collapse
|
7
|
Karnachoriti M, Stathopoulos I, Kouri M, Spyratou E, Orfanoudakis S, Lykidis D, Lambropoulou Μ, Danias N, Arkadopoulos N, Efstathopoulos EP, Raptis YS, Seimenis I, Kontos AG. Biochemical differentiation between cancerous and normal human colorectal tissues by micro-Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122852. [PMID: 37216817 DOI: 10.1016/j.saa.2023.122852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Human colorectal tissues obtained by ten cancer patients have been examined by multiple micro-Raman spectroscopic measurements in the 500-3200 cm-1 range under 785 nm excitation. Distinct spectral profiles are recorded from different spots on the samples: a predominant 'typical' profile of colorectal tissue, as well as those from tissue topologies with high lipid, blood or collagen content. Principal component analysis identified several Raman bands of amino acids, proteins and lipids which allow the efficient discrimination of normal from cancer tissues, the first presenting plurality of Raman spectral profiles while the last showing off quite uniform spectroscopic characteristics. Tree-based machine learning experiment was further applied on all data as well as on filtered data keeping only those spectra which characterize the largely inseparable data clusters of 'typical' and 'collagen-rich' spectra. This purposive sampling evidences statistically the most significant spectroscopic features regarding the correct identification of cancer tissues and allows matching spectroscopic results with the biochemical changes induced in the malignant tissues.
Collapse
Affiliation(s)
- M Karnachoriti
- School of Applied Mathematical and Physical Sciences, National Technical University Athens, 15780 Zografou, Athens, Greece; Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - I Stathopoulos
- 2(nd) Department of Radiology, Medical School, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - M Kouri
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; 2(nd) Department of Radiology, Medical School, National & Kapodistrian University of Athens, 15772 Athens, Greece; Medical Physics Program, University of Massachusetts Lowell, MA 01854, United States
| | - E Spyratou
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; 2(nd) Department of Radiology, Medical School, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - S Orfanoudakis
- School of Applied Mathematical and Physical Sciences, National Technical University Athens, 15780 Zografou, Athens, Greece; Alpha Information Technology S.A., Software & System Development, 68131 Alexandroupolis, Greece
| | - D Lykidis
- Laboratory of Histology-Embryology, Medical Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - Μ Lambropoulou
- Laboratory of Histology-Embryology, Medical Department, Democritus University of Thrace, Alexandroupolis, Greece
| | - N Danias
- 4(th) Department of Surgery, School of Medicine, Attikon University Hospital, Univ. of Athens, 12462 Athens, Greece
| | - N Arkadopoulos
- 4(th) Department of Surgery, School of Medicine, Attikon University Hospital, Univ. of Athens, 12462 Athens, Greece
| | - E P Efstathopoulos
- 2(nd) Department of Radiology, Medical School, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Y S Raptis
- School of Applied Mathematical and Physical Sciences, National Technical University Athens, 15780 Zografou, Athens, Greece
| | - I Seimenis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - A G Kontos
- School of Applied Mathematical and Physical Sciences, National Technical University Athens, 15780 Zografou, Athens, Greece.
| |
Collapse
|
8
|
Perumal AB, Nambiar RB, Luo X, Su Z, Li X, He Y. Exploring dynamic changes of fungal cellular components during nanoemulsion treatment by multivariate microRaman imaging. Talanta 2023; 261:124666. [PMID: 37210918 DOI: 10.1016/j.talanta.2023.124666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Recently, essential oils (EO) have gained a lot of interest for use as antifungal agent in food and agricultural industry and extensive research is ongoing to understand their mode of action. However, the exact mechanism is not yet elucidated. Here, we integrated spectral unmixing and Raman microspectroscopy imaging to unveil the antifungal mechanism of green tea EO based nanoemulsion (NE) against Magnaporthe oryzae. The dramatic change in protein, lipid, adenine, and guanine bands indicate that NE has a significant impact on the protein, lipid and metabolic processes of purine. The results also demonstrated that the NE treatment caused damage to fungal hyphae by inducing a physical injury leading to cell wall damage and loss of integrity. Our study shows that MCR-ALS (Multivariate Curve Resolution-Alternating Least Squares) and N-FINDR (N-finder algorithm) Raman imaging could serve as a suitable complementary package to the traditional methods, for revealing the antifungal mechanism of action of EO/NE.
Collapse
Affiliation(s)
- Anand Babu Perumal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Reshma B Nambiar
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| | - Xuelun Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenzhu Su
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaoli Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Sasaki R, Toda S, Sakamoto T, Sakuradani E, Shigeto S. Simultaneous Imaging and Characterization of Polyunsaturated Fatty Acids, Carotenoids, and Microcrystalline Guanine in Single Aurantiochytrium limacinum Cells with Linear and Nonlinear Raman Microspectroscopy. J Phys Chem B 2023; 127:2708-2718. [PMID: 36920390 PMCID: PMC10068736 DOI: 10.1021/acs.jpcb.3c00302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Thraustochytrids are heterotrophic marine protists known for their high production capacity of various compounds with health benefits, such as polyunsaturated fatty acids and carotenoids. Although much effort has been focused on developing optimal cultivation methods for efficient microbial production, these high-value compounds and their interrelationships are not well understood at the single-cell level. Here we used spontaneous (linear) Raman and multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy to visualize and characterize lipids (e.g., docosahexaenoic acid) and carotenoids (e.g., astaxanthin) accumulated in single living Aurantiochytrium limacinum cells. Spontaneous Raman imaging with the help of multivariate curve resolution-alternating least-squares enabled us to make unambiguous assignments of the molecular components we detected and derive their intracellular distributions separately. Near-IR excited CARS imaging yielded the Raman images at least an order of magnitude faster than spontaneous Raman imaging, with suppressed contributions of carotenoids. As the culture time increased from 2 to 5 days, the lipid amount increased by a factor of ∼7, whereas the carotenoid amount did not change significantly. Furthermore, we observed a highly localized component in A. limacinum cells. This component was found to be mixed crystals of guanine and other purine derivatives. The present study demonstrates the potential of the linear-nonlinear Raman hybrid approach that allows for accurate molecular identification and fast imaging in a label-free manner to link information derived from single cells with strategies for mass culture of useful thraustochytrids.
Collapse
Affiliation(s)
- Risa Sasaki
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Shogo Toda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Takaiku Sakamoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Eiji Sakuradani
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan
| | - Shinsuke Shigeto
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
10
|
Machine learning-assisted single-cell Raman fingerprinting for in situ and nondestructive classification of prokaryotes. iScience 2021; 24:102975. [PMID: 34485857 PMCID: PMC8397914 DOI: 10.1016/j.isci.2021.102975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Accessing enormous uncultivated microorganisms (microbial dark matter) in various Earth environments requires accurate, nondestructive classification, and molecular understanding of the microorganisms in in situ and at the single-cell level. Here we demonstrate a combined approach of random forest (RF) machine learning and single-cell Raman microspectroscopy for accurate classification of phylogenetically diverse prokaryotes (three bacterial and three archaeal species from different phyla). Our RF classifier achieved a 98.8 ± 1.9% classification accuracy among the six species in pure populations and 98.4% for three species in an artificially mixed population. Feature importance scores against each wavenumber reveal that the presence of carotenoids and structure of membrane lipids play key roles in distinguishing the prokaryotic species. We also find unique Raman markers for an ammonia-oxidizing archaeon. Our approach with moderate data pretreatment and intuitive visualization of feature importance is easy to use for non-spectroscopists, and thus offers microbiologists a new single-cell tool for shedding light on microbial dark matter. Random forest models classify prokaryotic species with high accuracy of >98% Both bacteria and archaea are classified using minimally preprocessed Raman data Feature importance reveals what biomolecules contribute to species classification Raman marker bands for some archaeal species are discovered
Collapse
|
11
|
Shibata D, Kajimoto S, Nakabayashi T. Label-free tracking of intracellular molecular crowding with cell-cycle progression using Raman microscopy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Murakami K, Kajimoto S, Shibata D, Kuroi K, Fujii F, Nakabayashi T. Observation of liquid-liquid phase separation of ataxin-3 and quantitative evaluation of its concentration in a single droplet using Raman microscopy. Chem Sci 2021; 12:7411-7418. [PMID: 34163831 PMCID: PMC8171347 DOI: 10.1039/d0sc06095j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) plays an important role in a variety of biological processes and is also associated with protein aggregation in neurodegenerative diseases. Quantification of LLPS is necessary to elucidate the mechanism of LLPS and the subsequent aggregation process. In this study, we showed that ataxin-3, which is associated with Machado-Joseph disease, exhibits LLPS in an intracellular crowding environment mimicked by biopolymers, and proposed that a single droplet formed in LLPS can be quantified using Raman microscopy in a label-free manner. We succeeded in evaluating the protein concentration and identifying the components present inside and outside a droplet using the O-H stretching band of water as an internal intensity standard. Only water and protein were detected to be present inside droplets with crowding agents remaining outside. The protein concentration in a droplet was dependent on the crowding environment, indicating that the protein concentration and intracellular environment should be considered when investigating LLPS. Raman microscopy has the potential to become a powerful technique for clarifying the chemical nature of LLPS and its relationship with protein aggregation.
Collapse
Affiliation(s)
- Kazuki Murakami
- Graduate School of Pharmaceutical Sciences, Tohoku University Aoba-ku Sendai 980-8578 Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University Aoba-ku Sendai 980-8578 Japan
| | - Daiki Shibata
- Graduate School of Pharmaceutical Sciences, Tohoku University Aoba-ku Sendai 980-8578 Japan
| | - Kunisato Kuroi
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University 1-1-3 Minatojima, Chuo-ku Kobe 650-8586 Japan
| | - Fumihiko Fujii
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University 1-1-3 Minatojima, Chuo-ku Kobe 650-8586 Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
13
|
Deuterium-labeled Raman tracking of glucose accumulation and protein metabolic dynamics in Aspergillus nidulans hyphal tips. Sci Rep 2021; 11:1279. [PMID: 33446770 PMCID: PMC7809412 DOI: 10.1038/s41598-020-80270-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Filamentous fungi grow exclusively at their tips, where many growth-related fungal processes, such as enzyme secretion and invasion into host cells, take place. Hyphal tips are also a site of active metabolism. Understanding metabolic dynamics within the tip region is therefore important for biotechnology and medicine as well as for microbiology and ecology. However, methods that can track metabolic dynamics with sufficient spatial resolution and in a nondestructive manner are highly limited. Here we present time-lapse Raman imaging using a deuterium (D) tracer to study spatiotemporally varying metabolic activity within the hyphal tip of Aspergillus nidulans. By analyzing the carbon-deuterium (C-D) stretching Raman band with spectral deconvolution, we visualize glucose accumulation along the inner edge of the hyphal tip and synthesis of new proteins from the taken-up D-labeled glucose specifically at the central part of the apical region. Our results show that deuterium-labeled Raman imaging offers a broadly applicable platform for the study of metabolic dynamics in filamentous fungi and other relevant microorganisms in vivo.
Collapse
|
14
|
Kusaka R, Kumagai Y, Yomogida T, Takano M, Watanabe M, Sasaki T, Akiyama D, Sato N, Kirishima A. Distribution of studtite and metastudtite generated on the surface of U3O8: application of Raman imaging technique to uranium compound. J NUCL SCI TECHNOL 2020. [DOI: 10.1080/00223131.2020.1854881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ryoji Kusaka
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, Japan
| | - Yuta Kumagai
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, Japan
| | - Takumi Yomogida
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, Japan
| | - Masahide Takano
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, Japan
| | - Masayuki Watanabe
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki, Japan
| | - Takayuki Sasaki
- Department of Nuclear Engineering, Kyoto University, Kyoto, Japan
| | - Daisuke Akiyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Nobuaki Sato
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Akira Kirishima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
15
|
Bik E, Mateuszuk L, Stojak M, Chlopicki S, Baranska M, Majzner K. Menadione-induced endothelial inflammation detected by Raman spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118911. [PMID: 33227312 DOI: 10.1016/j.bbamcr.2020.118911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022]
Abstract
In this work, the effect of an early oxidative stress on human endothelial cells induced by menadione was studied using a combined methodology of label-free Raman imaging and fluorescence staining. Menadione-induced ROS-dependent endothelial inflammation in human aorta endothelial cells (HAEC) was studied with focus on changes in cytochrome, proteins, nucleic acids and lipids content and their distribution in cells. Fluorescence staining (ICAM-1, VCAM-1, vWF, LipidTox, MitoRos and DCF) was used to confirm endothelial inflammation and ROS generation. The results showed that short time, exposure to menadione did not cause their apoptosis or necrosis (Annexin V Apoptosis Detection Kit) within the 3 h timescale of measurement. On the other hand, 3 h of incubation, did result in endothelial inflammation (ICAM-1, VCAM-1, vWF) that was associated with an increased ROS formation (MitoRos and DCF) suggesting the oxidative stress-mediated inflammation. Chemometric analysis of spectral data enabled the determination of spectroscopic markers of menadione-induced oxidative stress-mediated endothelial inflammation including a decrease of the bands intensity of cytochrome (604, 750, 1128, 1315 and 1585 cm-1), nucleic acids bands (785 cm-1), proteins (1005 cm-1) and increased intensity of lipid bands (722, 1085, 1265, 1303, 1445 and 1660 cm-1), without changes in the spectroscopic signature of the cell nucleus. In conclusion, oxidative stress resulting in endothelial inflammation was featured by significant alterations in the number of biochemical changes in mitochondria and other cellular compartments detected by Raman spectroscopy. Most of these, coexisted with results from fluorescence imaging, and most importantly occurred earlier than the detection of increased ROS or markers of endothelial inflammation.
Collapse
Affiliation(s)
- Ewelina Bik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University, Medical College 16 Grzegorzecka Str., 31-531 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Katarzyna Majzner
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
16
|
Zhang W, Rhodes JS, Moon KR, Knudsen BS, Nokolova L, Zhou A. Imaging of PD-L1 in single cancer cells by SERS-based hyperspectral analysis. BIOMEDICAL OPTICS EXPRESS 2020; 11:6197-6210. [PMID: 33282484 PMCID: PMC7687932 DOI: 10.1364/boe.401142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/12/2023]
Abstract
We developed a hyperspectral imaging tool based on surface-enhanced Raman spectroscopy (SERS) probes to determine the expression level and visualize the distribution of PD-L1 in individual cells. Electron-microscopic analysis of PD-L1 antibody - gold nanorod conjugates demonstrated binding the cell surface and internalization into endosomal vesicles. Stimulation of cells with IFN-γ or metformin was used to confirm the ability of SERS probes to report treatment-induced changes. The multivariate curve resolution-alternating least squares (MCR-ALS) analysis of spectra provided a greater signal-noise ratio than single peak mapping. However, single peak mapping allowed a systematic subtraction of background and the removal of non-specific binding and endocytic SERS signals. The mean or maximum peak height in the cell or the mean peak height in the area of specific PD-L1 positive pixels was used to estimate the PD-L1 expression levels in single cells. The PD-L1 levels were significantly up-regulated by IFN-γ and inhibited by metformin in human lung cancer cells from the A549 cell line. In conclusion, the method of analyzing hyperspectral SERS imaging data together with systematic and comprehensive removal of non-specific signals allows SERS imaging to be a quantitative tool in the detection of the cancer biomarker, PD-L1.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | - Jake S. Rhodes
- Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA
| | - Kevin R. Moon
- Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA
| | | | - Linda Nokolova
- Electron Microscopy Core Laboratory, University of Utah, Salt Lake City, UT 84112, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
17
|
Takahashi H, Yanamisawa A, Kajimoto S, Nakabayashi T. Observation of the changes in the chemical composition of lipid droplets using Raman microscopy. Phys Chem Chem Phys 2020; 22:21646-21650. [PMID: 32985622 DOI: 10.1039/d0cp03805a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the dynamics of lipid droplet formation induced by introducing cis- and/or trans-fatty acids into cells. Raman imaging allows the chemical analysis of each droplet, showing that exogenous fatty acids initially enter original endogenous droplets, then induce additional droplets containing endogenous lipids, and finally form their droplets.
Collapse
Affiliation(s)
- Hiroaki Takahashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Aya Yanamisawa
- Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan. and Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan. and Faculty of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Hiraoka T, Shigeto S. Interactions of water confined in a metal-organic framework as studied by a combined approach of Raman, FTIR, and IR electroabsorption spectroscopies and multivariate curve resolution analysis. Phys Chem Chem Phys 2020; 22:17798-17806. [PMID: 32609125 DOI: 10.1039/d0cp02958k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water in nanoconfinement shows distinct properties that are markedly different from those of bulk water. These unique properties stem not only from the water-water interaction but also from the interactions between water and the surrounding confining environment. Here we used a combined approach of vibrational spectroscopies (Raman, FTIR, and IR electroabsorption) and a multivariate curve resolution technique to study the interactions of water in a heterogeneous confining environment within a prototype of pillared layer-type metal-organic frameworks (MOFs), CPL-1 ([Cu2(pzdc)2(pyz)]n, where pzdc = 2,3-pyrazinedicarboxylate, pyz = pyrazine). The OH stretching Raman spectrum of hydrated CPL-1 microcrystals revealed that the adsorbed water molecules resemble the subpopulation of bulk water whose hydrogen bond is weak. Multivariate curve resolution analysis of FTIR spectra monitoring water desorption from CPL-1 allowed for accurate assignments of the framework's carboxylate vibrational modes associated with water-filled and empty nanopores of the MOF, and for quantitative determination of the number fraction of these pores. Furthermore, building on the assignments so made, IR electroabsorption measurements showed that the hydrogen-bonding interaction with water adsorbed in CPL-1 has little impact on the response to electric fields of the framework vibrational modes. The present findings altogether provide a solid basis of elucidating water confined in CPL-1 and demonstrate the potential of the combined vibrational spectroscopic method for interrogating the interactions within MOFs.
Collapse
Affiliation(s)
- Takayuki Hiraoka
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan.
| | - Shinsuke Shigeto
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337, Japan.
| |
Collapse
|
19
|
Raman spectroscopic signatures of carotenoids and polyenes enable label-free visualization of microbial distributions within pink biofilms. Sci Rep 2020; 10:7704. [PMID: 32382042 PMCID: PMC7206103 DOI: 10.1038/s41598-020-64737-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Pink biofilms are multispecies microbial communities that are commonly found in moist household environments. The development of this pink stain is problematic from an aesthetic point of view, but more importantly, it raises hygienic concerns because they may serve as a potential reservoir of opportunistic pathogens. Although there have been several studies of pink biofilms using molecular analysis and confocal laser scanning microscopy, little is known about the spatial distributions of constituent microorganisms within pink biofilms, a crucial factor associated with the characteristics of pink biofilms. Here we show that Raman spectroscopic signatures of intracellular carotenoids and polyenes enable us to visualize pigmented microorganisms within pink biofilms in a label-free manner. We measured space-resolved Raman spectra of a pink biofilm collected from a bathroom, which clearly show resonance Raman bands of carotenoids. Multivariate analysis of the Raman hyperspectral imaging data revealed the presence of typical carotenoids and structurally similar but different polyenes, whose spatial distributions within the pink biofilm were found to be mutually exclusive. Raman measurements on individual microbial cells isolated from the pink biofilm confirmed that these distributions probed by carotenoid/polyene Raman signatures are attributable to different pigmented microorganisms. The present results suggest that Raman microspectroscopy with a focus on microbial pigments such as carotenoids is a powerful nondestructive method for studying multispecies biofilms in various environments.
Collapse
|
20
|
Aguilar-Hernández I, Cárdenas-Chavez DL, López-Luke T, García-García A, Herrera-Domínguez M, Pisano E, Ornelas-Soto N. Discrimination of radiosensitive and radioresistant murine lymphoma cells by Raman spectroscopy and SERS. BIOMEDICAL OPTICS EXPRESS 2020; 11:388-405. [PMID: 32010523 PMCID: PMC6968773 DOI: 10.1364/boe.11.000388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 05/10/2023]
Abstract
Intrinsic radiosensitivity is a biological parameter known to influence the response to radiation therapy in cancer treatment. In this study, Raman spectroscopy and surface enhanced Raman spectroscopy (SERS) were successfully used in conjunction with principal component analysis (PCA) to discriminate between radioresistant (LY-R) and radiosensitive (LY-S) murine lymphoma sublines (L5178Y). PCA results for normal Raman analysis showed a differentiation between the radioresistant and radiosensitive cell lines based on their specific spectral fingerprint. In the case of SERS with gold nanoparticles (AuNPs), greater spectral enhancements were observed in the radioresistant subline in comparison to its radiosensitive counterpart, suggesting that each subline displays different interaction with AuNPs. Our results indicate that spectroscopic and chemometric techniques could be used as complementary tools for the prediction of intrinsic radiosensitivity of lymphoma samples.
Collapse
Affiliation(s)
- Iris Aguilar-Hernández
- Laboratorio de Nanotecnología Ambiental, Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Diana L. Cárdenas-Chavez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Atlixcáyotl 5718, Puebla, Pue., México, 72453, Mexico
| | - Tzarara López-Luke
- Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio U, Ciudad Universitaria, 58030 Morelia, Mich., Mexico
| | - Alejandra García-García
- Laboratorio de síntesis y Modificación de Nanoestructuras y Materiales Bidimensionales. Centro de Investigación en Materiales Avanzados S.C. Parque PIIT. C.P. 66628, Apodaca N.L., Mexico
| | - Marcela Herrera-Domínguez
- Laboratorio de Nanotecnología Ambiental, Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Eduardo Pisano
- Catedras CONACyT – Centro de Investigaciones en Óptica A.C., Alianza Centro 504, PIIT, Apodaca, N.L. 66629, Mexico
| | - Nancy Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| |
Collapse
|
21
|
Campbell JM, Habibalahi A, Mahbub S, Gosnell M, Anwer AG, Paton S, Gronthos S, Goldys E. Non-destructive, label free identification of cell cycle phase in cancer cells by multispectral microscopy of autofluorescence. BMC Cancer 2019; 19:1242. [PMID: 31864316 PMCID: PMC6925881 DOI: 10.1186/s12885-019-6463-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023] Open
Abstract
Background Cell cycle analysis is important for cancer research. However, available methodologies have drawbacks including limited categorisation and reliance on fixation, staining or transformation. Multispectral analysis of endogenous cell autofluorescence has been shown to be sensitive to changes in cell status and could be applied to the discrimination of cell cycle without these steps. Methods Cells from the MIA-PaCa-2, PANC-1, and HeLa cell lines were plated on gridded dishes and imaged using a multispectral fluorescence microscope. They were then stained for proliferating cell nuclear antigen (PCNA) and DNA intensity as a reference standard for their cell cycle position (G1, S, G2, M). The multispectral data was split into training and testing datasets and models were generated to discriminate between G1, S, and G2 + M phase cells. A standard decision tree classification approach was taken, and a two-step system was generated for each line. Results Across cancer cell lines accuracy ranged from 68.3% (MIA-PaCa-2) to 73.3% (HeLa) for distinguishing G1 from S and G2 + M, and 69.0% (MIA-PaCa-2) to 78.0% (PANC1) for distinguishing S from G2 + M. Unmixing the multispectral data showed that the autofluorophores NADH, FAD, and PPIX had significant differences between phases. Similarly, the redox ratio and the ratio of protein bound to free NADH were significantly affected. Conclusions These results demonstrate that multispectral microscopy could be used for the non-destructive, label free discrimination of cell cycle phase in cancer cells. They provide novel information on the mechanisms of cell-cycle progression and control, and have practical implications for oncology research.
Collapse
Affiliation(s)
- Jared M Campbell
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia. .,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia. .,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia. .,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.
| | - Abbas Habibalahi
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,School of Engineering, Faculty of Science and Engineering, Macquarie University, 2109, North Ryde, NSW, 2109, Australia
| | - Saabah Mahbub
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Martin Gosnell
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,Quantitative Pty Ltd, Mt Victoria, New South Wales, 2786, Australia
| | - Ayad G Anwer
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Ewa Goldys
- Department of Physics and Astronomy, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, North Ryde, New South Wales, 2109, Australia.,ARC Centre of Excellence in Nanoscale Biophotonics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
22
|
Abstract
Abstract
A potential role of optical technologies in medicine including micro-Raman spectroscopy is diagnosis of bacteria, cells and tissues which is covered in this chapter. The main advantage of Raman-based methods to complement and augment diagnostic tools is that unsurpassed molecular specificity is achieved without labels and in a nondestructive way. Principles and applications of micro-Raman spectroscopy in the context of medicine will be described. First, Raman spectra of biomolecules representing proteins, nucleic acids, lipids and carbohydrates are introduced. Second, microbial applications are summarized with the focus on typing on species and strain level, detection of infections, antibiotic resistance and biofilms. Third, cytological applications are presented to classify single cells and study cell metabolism and drug–cell interaction. Fourth, applications to tissue characterization start with discussion of lateral resolution for Raman imaging followed by Raman-based detection of pathologies and combination with other modalities. Finally, an outlook is given to translate micro-Raman spectroscopy as a clinical tool to solve unmet needs in point-of-care applications and personalized treatment of diseases.
Collapse
|
23
|
Yasuda M, Takeshita N, Shigeto S. Inhomogeneous Molecular Distributions and Cytochrome Types and Redox States in Fungal Cells Revealed by Raman Hyperspectral Imaging Using Multivariate Curve Resolution–Alternating Least Squares. Anal Chem 2019; 91:12501-12508. [DOI: 10.1021/acs.analchem.9b03261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mitsuru Yasuda
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Shinsuke Shigeto
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
24
|
Blat A, Dybas J, Kaczmarska M, Chrabaszcz K, Bulat K, Kostogrys RB, Cernescu A, Malek K, Marzec KM. An Analysis of Isolated and Intact RBC Membranes-A Comparison of a Semiquantitative Approach by Means of FTIR, Nano-FTIR, and Raman Spectroscopies. Anal Chem 2019; 91:9867-9874. [PMID: 31241915 DOI: 10.1021/acs.analchem.9b01536] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This work presents the potential of vibrational spectroscopy, Vis and NIR Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) in reflection and transmission modes, and nano-FTIR microscopy to study the biochemical alterations in membranes of isolated and intact red blood cells (RBCs). The main goal was to propose the best spectroscopic method which enabled following biochemical alterations in the RBC membranes and then to translate this spectroscopic signature of degradation to in situ analysis of RBCs. Two models corresponding to two distinct cases of RBC membrane conditions were employed, and they were derived from healthy and young mice and mature mice with advanced atherosclerosis. It was shown that each technique provided essential information about biochemical alterations of the isolated membranes as well as membranes in the intact RBCs, which can be used in the development of a rapid and in situ analytical technology. Finally, we proposed that the combination of macro- and nanoprobing implemented in IR spectroscopy provided a wide chemical characterization of the RBC membranes, including alterations in lipid and protein fractions. This study also examined the effect of the sample preparation to determine destructive factors influencing a spectroscopic analysis of isolated membranes and intact RBCs derived from healthy and disease-affected mice.
Collapse
Affiliation(s)
- Aneta Blat
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland.,Faculty of Chemistry , Jagiellonian University , 2 Gronostajowa Str. , 30-387 Krakow , Poland
| | - Jakub Dybas
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland
| | - Magdalena Kaczmarska
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland
| | - Karolina Chrabaszcz
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland.,Faculty of Chemistry , Jagiellonian University , 2 Gronostajowa Str. , 30-387 Krakow , Poland.,Center for Medical Genomics (OMICRON) , Jagiellonian University Medical College , 7c Kopernika Str. , 31-034 Krakow , Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland
| | - Renata B Kostogrys
- Faculty of Food Technology , University of Agriculture in Krakow , 122 Balicka Str. , 30-149 Krakow , Poland
| | | | - Kamilla Malek
- Faculty of Chemistry , Jagiellonian University , 2 Gronostajowa Str. , 30-387 Krakow , Poland
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics , Jagiellonian University , 14 Bobrzynskiego Str. , 30-348 Krakow , Poland.,Center for Medical Genomics (OMICRON) , Jagiellonian University Medical College , 7c Kopernika Str. , 31-034 Krakow , Poland
| |
Collapse
|
25
|
Dybas J, Grosicki M, Baranska M, Marzec KM. Raman imaging of heme metabolism in situ in macrophages and Kupffer cells. Analyst 2019; 143:3489-3498. [PMID: 29951676 DOI: 10.1039/c8an00282g] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we provide the Raman imaging results for different stages of erythrophagocytosis of senescent red blood cells executed by isolated murine primary Kupffer cells and a murine macrophage cell line (RAW 264.7). Images were recorded with the use of 488 and 532 nm excitation lines. The use of Resonance Raman spectroscopy allowed the visualization of the heme metabolism and tracking of the systemic iron recycling process inside isolated murine Kupffer cells and RAW.264 cells. Because of the application of the different experimental assays, the erythrophagocytosis in two types of cells was presented and associated with the presence of different forms of oxidized and degradative derivatives of hemoglobin species. Moreover, we observed an increase of lipid level and later formation of lipid droplets during the erythrophagocytosis process inside RAW 264.7 macrophages and murine Kupffer cells.
Collapse
Affiliation(s)
- J Dybas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzyńskiego Str., 30-348 Krakow, Poland.
| | | | | | | |
Collapse
|
26
|
Zhang Y, Jin L, Xu J, Yu Y, Shen L, Gao J, Ye A. Dynamic characterization of drug resistance and heterogeneity of the gastric cancer cell BGC823 using single-cell Raman spectroscopy. Analyst 2018; 143:164-174. [PMID: 29165440 DOI: 10.1039/c7an01287j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Drug resistance and heterogeneous characteristics of human gastric carcinoma cells (BGC823) under the treatment of paclitaxel (PTX) were investigated using single-cell Raman spectroscopy (RS). RS of normal and drug-resistant BGC823 cells (DR-BGC823) were collected and analyzed using arithmetic, statistic and individual spectrum analysis. The dynamic effects of paclitaxel (PTX) in normal and DR-BGC823 cells were evaluated dynamically. The RS intensity changed with PTX over time and produced distinct different results for the two types of cells. The average RS intensities of the normal BGC823 cells initially decreased and then increased under PTX treatment after 24 hours. In contrast, upon exposure to PTX, the average intensity of the DR-BGC823 cells initially increased within 12 hours and then gradually decreased and approached a steady state. The temporal variation of the typical component in the cells was analyzed by comparing the ratios between Raman bands. More importantly, the heterogeneous characteristics of the BGC823 cells under PTX treatment were quantified and clustered using hierarchical trees combined with RS intensity changes. The 'outlier' cells related to drug resistance were discriminated. The heterogeneity of the normal BGC823 cells under drug treatment gradually appeared over time, and was evaluated with the eigenvalues of principal component analysis (PCA). Our study indicates that single-cell RS may be useful in systematically and dynamically characterizing the drug response of cancer cells at the single-cell level.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics Engineering and Computer Science, Peking University, No. 5 Yiheyuan Road, Beijing, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT, Saranya G, Arya JS, Vijayan VM, Maiti KK. Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications. Biomaterials 2018; 181:140-181. [PMID: 30081304 DOI: 10.1016/j.biomaterials.2018.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Excellent multiplexing capability, molecular specificity, high sensitivity and the potential of resolving complex molecular level biological compositions augmented the diagnostic modality of surface-enhanced Raman scattering (SERS) in biology and medicine. While maintaining all the merits of classical Raman spectroscopy, SERS provides a more sensitive and selective detection and quantification platform. Non-invasive, chemically specific and spatially resolved analysis facilitates the exploration of SERS-based nano probes in diagnostic and theranostic applications with improved clinical outcomes compared to the currently available so called state-of-art technologies. Adequate knowledge on the mechanism and properties of SERS based nano probes are inevitable in utilizing the full potential of this modality for biomedical applications. The safety and efficiency of metal nanoparticles and Raman reporters have to be critically evaluated for the successful translation of SERS in to clinics. In this context, the present review attempts to give a comprehensive overview about the selected medical, biomedical and allied applications of SERS while highlighting recent and relevant outcomes ranging from simple detection platforms to complicated clinical applications.
Collapse
Affiliation(s)
- Manu M Joseph
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Nisha Narayanan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jyothi B Nair
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Varsha Karunakaran
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Adukkadan N Ramya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Palasseri T Sujai
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jayadev S Arya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Vineeth M Vijayan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India.
| |
Collapse
|
28
|
Noothalapati H, Iwasaki K, Yamamoto T. Biological and Medical Applications of Multivariate Curve Resolution Assisted Raman Spectroscopy. ANAL SCI 2018; 33:15-22. [PMID: 28070069 DOI: 10.2116/analsci.33.15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Biological specimens such as cells, tissues and biofluids (urine, blood) contain mixtures of many different biomolecules, all of which contribute to a Raman spectrum at any given point. The separation and identification of pure biochemical components remains one of the biggest challenges in Raman spectroscopy. Multivariate curve resolution, a matrix factorization method, is a powerful, yet flexible, method that can be used with constraints, such as non-negativity, to decompose a complex spectroscopic data matrix into a small number of physically meaningful pure spectral components along with their relative abundances. This paper reviews recent applications of multivariate curve resolution by alternating least squares analysis to Raman spectroscopic and imaging data obtained either in vivo or in vitro from biological and medical samples.
Collapse
|
29
|
Marro M, Nieva C, de Juan A, Sierra A. Unravelling the Metabolic Progression of Breast Cancer Cells to Bone Metastasis by Coupling Raman Spectroscopy and a Novel Use of Mcr-Als Algorithm. Anal Chem 2018; 90:5594-5602. [PMID: 29589914 DOI: 10.1021/acs.analchem.7b04527] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Raman spectroscopy (RS) has shown promise as a tool to reveal biochemical changes that occur in cancer processes at the cellular level. However, when analyzing clinical samples, RS requires improvements to be able to resolve biological components from the spectra. We compared the strengths of Multivariate Curve Resolution (MCR) versus Principal Component Analysis (PCA) to deconvolve meaningful biological components formed by distinct mixtures of biological molecules from a set of mixed spectra. We exploited the flexibility of the MCR algorithm to easily accommodate different initial estimates and constraints. We demonstrate the ability of MCR to resolve undesired background signals from the RS that can be subtracted to obtain clearer cancer cell spectra. We used two triple negative breast cancer cell lines, MDA-MB 231 and MDA-MB 435, to illustrate the insights obtained by RS that infer the metabolic changes required for metastasis progression. Our results show that increased levels of amino acids and lower levels of mitochondrial signals are attributes of bone metastatic cells, whereas lung metastasis tropism is characterized by high lipid and mitochondria levels. Therefore, we propose a method based on the MCR algorithm to achieve unique biochemical insights into the molecular progression of cancer cells using RS.
Collapse
Affiliation(s)
- Monica Marro
- ICFO- Institut de Ciencies Fotoniques , The Barcelona Institute of Science and Technology , 08860 Castelldefels (Barcelona) , Spain
| | - Claudia Nieva
- IDIBELL-Institut d'Investigació Biomèdica de Bellvitge , Av. Castelldefels, Km 2.7 , 08907 L'Hospitalet de Llobregat, Barcelona , Spain
| | - Anna de Juan
- Department of Chemical Engineering and Analytical Chemistry , Universitat de Barcelona , Diagonal 645 , 08028 Barcelona , Spain
| | - Angels Sierra
- Molecular and Translational Oncology Laboratory, Biomedical Research Center CELLEX-CRBC, Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS , Centre de Recerca Biomèdica CELLEX , 08036 Barcelona , Spain.,Faculty of Sciences , Universitat de VIC-Universitat Central de Catalunya , 08500 Vic, Barcelona , Spain
| |
Collapse
|
30
|
Takeuchi M, Kajimoto S, Nakabayashi T. Experimental Evaluation of the Density of Water in a Cell by Raman Microscopy. J Phys Chem Lett 2017; 8:5241-5245. [PMID: 29022721 DOI: 10.1021/acs.jpclett.7b02154] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report direct observation of a spatial distribution of water molecules inside of a living cell using Raman images of the O-H stretching band of water. The O-H Raman intensity of the nucleus was higher than that of the cytoplasm, indicating that the water density is higher in the nucleus than that in the cytoplasm. The shape of the O-H stretching band of the nucleus differed from that of the cytoplasm but was similar to that of the balanced salt solution surrounding cells, indicating less crowded environments in the nucleus. The concentration of biomolecules having C-H bonds was also estimated to be lower in the nucleus than that in the cytoplasm. These results indicate that the nucleus is less crowded with biomolecules than the cytoplasm.
Collapse
Affiliation(s)
- Mizuki Takeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University , Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
31
|
Furse S, Shearman GC. Do lipids shape the eukaryotic cell cycle? Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:9-19. [PMID: 28964796 DOI: 10.1016/j.bbalip.2017.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/07/2017] [Accepted: 09/24/2017] [Indexed: 10/18/2022]
Abstract
Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised.
Collapse
Affiliation(s)
- Samuel Furse
- NucReg Research Programme, Molekylærbiologisk institutt, Unversitetet i Bergen, Thormøhlens gate 55, 5008, Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Department of Biochemistry, University of Cambridge, c/o Level 4, Pathology Building, Addenbrookes Hospital, Cambridge, CB2 0QQ, United Kingdom..
| | - Gemma C Shearman
- Faculty of Science, Engineering and Computing, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, United Kingdom
| |
Collapse
|
32
|
Darrigues E, Nima ZA, Majeed W, Vang-Dings KB, Dantuluri V, Biris AR, Zharov VP, Griffin RJ, Biris AS. Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance.Part 1: Diagnosis. Drug Metab Rev 2017; 49:212-252. [DOI: 10.1080/03602532.2017.1302465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Emilie Darrigues
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Zeid A. Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Waqar Majeed
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Kieng Bao Vang-Dings
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Vijayalakshmi Dantuluri
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Alexandru R. Biris
- National Institute for Research and Development of Isotopic and Molecular Technologies
| | - Vladimir P. Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Robert J. Griffin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Radiation Oncology, Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR, USA
| |
Collapse
|
33
|
Toda S, Shigeto S. Hydrogen Bonded Structures of Confined Water Molecules and Electric Field Induced Shift of Their Equilibrium Revealed by IR Electroabsorption Spectroscopy. J Phys Chem B 2017; 121:5573-5581. [DOI: 10.1021/acs.jpcb.7b02171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shogo Toda
- Department of Chemistry,
School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Shinsuke Shigeto
- Department of Chemistry,
School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| |
Collapse
|
34
|
Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J. Markerfreie molekulare Bildgebung biologischer Zellen und Gewebe durch lineare und nichtlineare Raman-spektroskopische Ansätze. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christoph Krafft
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Michael Schmitt
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Iwan W. Schie
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
| | - Dana Cialla-May
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Thomas Bocklitz
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien; Albert-Einstein-Straße 9 07745 Jena Deutschland
- Institut für Physikalische Chemie und Abbe Center of Photonics; Friedrich-Schiller-Universität Jena; Helmholtzweg 4 07743 Jena Deutschland
| |
Collapse
|
35
|
Krafft C, Schmitt M, Schie IW, Cialla-May D, Matthäus C, Bocklitz T, Popp J. Label-Free Molecular Imaging of Biological Cells and Tissues by Linear and Nonlinear Raman Spectroscopic Approaches. Angew Chem Int Ed Engl 2017; 56:4392-4430. [PMID: 27862751 DOI: 10.1002/anie.201607604] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/04/2016] [Indexed: 12/20/2022]
Abstract
Raman spectroscopy is an emerging technique in bioanalysis and imaging of biomaterials owing to its unique capability of generating spectroscopic fingerprints. Imaging cells and tissues by Raman microspectroscopy represents a nondestructive and label-free approach. All components of cells or tissues contribute to the Raman signals, giving rise to complex spectral signatures. Resonance Raman scattering and surface-enhanced Raman scattering can be used to enhance the signals and reduce the spectral complexity. Raman-active labels can be introduced to increase specificity and multimodality. In addition, nonlinear coherent Raman scattering methods offer higher sensitivities, which enable the rapid imaging of larger sampling areas. Finally, fiber-based imaging techniques pave the way towards in vivo applications of Raman spectroscopy. This Review summarizes the basic principles behind medical Raman imaging and its progress since 2012.
Collapse
Affiliation(s)
- Christoph Krafft
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Iwan W Schie
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Christian Matthäus
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Thomas Bocklitz
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz-Institut für Photonische Technologien, Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Institut für Physikalische Chemie und Abbe Center für Photonics, Friedrich Schiller Universität Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
36
|
Shigeto S, Chang CF, Hiramatsu H. Directly Probing Intermolecular Structural Change of a Core Fragment of β 2-Microglobulin Amyloid Fibrils with Low-Frequency Raman Spectroscopy. J Phys Chem B 2017; 121:490-496. [PMID: 28042925 DOI: 10.1021/acs.jpcb.6b10779] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid fibrils, which are ordered aggregates of proteins or peptides, have attracted keen interest because their deposition causes serious human diseases. Despite many studies utilizing X-ray crystallography, solid-state NMR, and other methods, intermolecular interactions governing the fibril formation remain largely unclear. Here, we used low-frequency Raman (LFR) spectroscopy to investigate the intermolecular β-sheet structure of a core fragment of β2-microglobulin amyloid fibrils, β2m21-29, in aqueous buffer solutions. The LFR spectra (approximately 10-200 cm-1) of β2m21-29 amyloid fibrils measured at different pH values (ranging from 6.8 to 8.0) revealed a broad-spectral pattern with a maximum at ∼80 cm-1 below pH 7.2 and at ∼110 cm-1 above pH 7.4. This observation is attributed to a pH-dependent structural change from an antiparallel to a parallel intermolecular β-sheet structure. Multivariate curve resolution-alternating least-squares (MCR-ALS) analysis enabled us to decompose the apparently monotonous LFR spectra into three distinctly different contributions: intermolecular vibrations of the parallel and antiparallel β-sheets and intramolecular vibrations of the peptide backbone. Peak positions of the obtained LFR bands not only exhibit a much more pronounced difference between the two β-sheets than the conventional amide I band, but they also suggest stronger intermolecular interaction, due presumably to the hydrophobic effect, in the parallel β-sheet than in the antiparallel β-sheet. The present results show that LFR spectroscopy in combination with the MCR-ALS analysis holds promise for real-time tracking of the intermolecular dynamics of amyloid fibril formation under physiological conditions.
Collapse
Affiliation(s)
- Shinsuke Shigeto
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Chun-Fu Chang
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 30010, Taiwan
| | - Hirotsugu Hiramatsu
- Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai 980-8578, Japan
| |
Collapse
|
37
|
Pezzotti G, McEntire BJ, Bock R, Zhu W, Boschetto F, Rondinella A, Marin E, Marunaka Y, Adachi T, Yamamoto T, Kanamura N, Bal BS. In Situ Spectroscopic Screening of Osteosarcoma Living Cells on Stoichiometry-Modulated Silicon Nitride Bioceramic Surfaces. ACS Biomater Sci Eng 2016; 2:1121-1134. [DOI: 10.1021/acsbiomaterials.6b00126] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
| | - Bryan J. McEntire
- Amedica Corporation, 1885 West
2100 South, Salt Lake City, Utah 84119, United States
| | - Ryan Bock
- Amedica Corporation, 1885 West
2100 South, Salt Lake City, Utah 84119, United States
| | - Wenliang Zhu
- Department
of Medical Engineering for Treatment of Bone and Joint Disorders, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan
| | - Francesco Boschetto
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
| | - Alfredo Rondinella
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
| | - Elia Marin
- Ceramic
Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8126 Kyoto, Japan
| | | | | | | | | | - B. Sonny Bal
- Amedica Corporation, 1885 West
2100 South, Salt Lake City, Utah 84119, United States
- Department
of Orthopaedic Surgery, University of Missouri, Columbia, Missouri 65212, United States
| |
Collapse
|