1
|
Shameem M, Olson SL, Marron Fernandez de Velasco E, Kumar A, Singh BN. Cardiac Fibroblasts: Helping or Hurting. Genes (Basel) 2025; 16:381. [PMID: 40282342 PMCID: PMC12026832 DOI: 10.3390/genes16040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Cardiac fibroblasts (CFs) are the essential cell type for heart morphogenesis and homeostasis. In addition to maintaining the structural integrity of the heart tissue, muscle fibroblasts are involved in complex signaling cascades that regulate cardiomyocyte proliferation, migration, and maturation. While CFs serve as the primary source of extracellular matrix proteins (ECM), tissue repair, and paracrine signaling, they are also responsible for adverse pathological changes associated with cardiovascular disease. Following activation, fibroblasts produce excessive ECM components that ultimately lead to fibrosis and cardiac dysfunction. Decades of research have led to a much deeper understanding of the role of CFs in cardiogenesis. Recent studies using the single-cell genomic approach have focused on advancing the role of CFs in cellular interactions, and the mechanistic implications involved during cardiovascular development and disease. Arguably, the unique role of fibroblasts in development, tissue repair, and disease progression categorizes them into the friend or foe category. This brief review summarizes the current understanding of cardiac fibroblast biology and discusses the key findings in the context of development and pathophysiological conditions.
Collapse
Affiliation(s)
- Mohammad Shameem
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Shelby L. Olson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Akhilesh Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bhairab N. Singh
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Valizadeh A, Veenhuis RT, Bradley BA, Xu K. Transcriptomic Alterations Induced by Tetrahydrocannabinol in SIV/HIV Infection: A Systematic Review. Int J Mol Sci 2025; 26:2598. [PMID: 40141240 PMCID: PMC11942185 DOI: 10.3390/ijms26062598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Given the high prevalence of cannabis use among people with HIV (PWH) and its potential to modulate immune responses and reduce inflammation, this systematic review examines preclinical evidence on how tetrahydrocannabinol (THC), a key compound in cannabis, affects gene and micro-RNA expression in simian immunodeficiency virus (SIV)-infected macaques and HIV-infected human cells. Through a comprehensive search, 19 studies were identified, primarily involving SIV-infected macaques, with a pooled sample size of 176, though methodological quality varied across the studies. Pathway analysis of differentially expressed genes (DEGs) and miRNAs associated with THC revealed enrichment in pathways related to inflammation, epithelial cell proliferation, and adhesion. Notably, some DEGs were targets of the differentially expressed miRNAs, suggesting that epigenetic regulation may contribute to THC's effects on gene function. These findings indicate that THC may help mitigate chronic immune activation in HIV infection by altering gene and miRNA expression, suggesting its potential immunomodulatory role. However, the evidence is constrained by small sample sizes and inconsistencies across studies. Further research employing advanced methodologies and larger cohorts is essential to confirm THC's potential as a complementary therapy for PWH and fully elucidate the underlying mechanisms, which could inform targeted interventions to harness its immunomodulatory effects.
Collapse
Affiliation(s)
- Amir Valizadeh
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Rebecca T. Veenhuis
- Department of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Brooklyn A. Bradley
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; (A.V.); (B.A.B.)
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
3
|
Gobbo D, Kirchhoff F. Animal-based approaches to understanding neuroglia physiology in vitro and in vivo. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:229-263. [PMID: 40122627 DOI: 10.1016/b978-0-443-19104-6.00012-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter describes the pivotal role of animal models for unraveling the physiology of neuroglial cells in the central nervous system (CNS). The two rodent species Mus musculus (mice) and Rattus norvegicus (rats) have been indispensable in scientific research due to their remarkable resemblance to humans anatomically, physiologically, and genetically. Their ease of maintenance, short gestation times, and rapid development make them ideal candidates for studying the physiology of astrocytes, oligodendrocyte-lineage cells, and microglia. Moreover, their genetic similarity to humans facilitates the investigation of molecular mechanisms governing neural physiology. Mice are largely the predominant model of neuroglial research, owing to advanced genetic manipulation techniques, whereas rats remain invaluable for applications requiring larger CNS structures for surgical manipulations. Next to rodents, other animal models, namely, Danio rerio (zebrafish) and Drosophila melanogaster (fruit fly), will be discussed to emphasize their critical role in advancing our understanding of glial physiology. Each animal model provides distinct advantages and disadvantages. By combining the strengths of each of them, researchers can gain comprehensive insights into glial function across species, ultimately promoting the understanding of glial physiology in the human CNS and driving the development of novel therapeutic interventions for CNS disorders.
Collapse
Affiliation(s)
- Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany; Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, Homburg, Germany.
| |
Collapse
|
4
|
Xing X, Li Z, Xu J, Chen AZ, Archer M, Wang Y, Xu M, Wang Z, Zhu M, Qin Q, Thottappillil N, Zhou M, James AW. Requirement of Pdgfrα+ cells for calvarial bone repair. Stem Cells Transl Med 2024; 13:791-802. [PMID: 38986535 PMCID: PMC11328938 DOI: 10.1093/stcltm/szae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/19/2024] [Indexed: 07/12/2024] Open
Abstract
Platelet-derived growth factor receptor α (PDGFRα) is often considered as a general marker of mesenchymal cells and fibroblasts, but also shows expression in a portion of osteoprogenitor cells. Within the skeleton, Pdgfrα+ mesenchymal cells have been identified in bone marrow and periosteum of long bones, where they play a crucial role in participating in fracture repair. A similar examination of Pdgfrα+ cells in calvarial bone healing has not been examined. Here, we utilize Pdgfrα-CreERTM;mT/mG reporter animals to examine the contribution of Pdgfrα+ mesenchymal cells to calvarial bone repair through histology and single-cell RNA sequencing (scRNA-Seq). Results showed that Pdgfrα+ mesenchymal cells are present in several cell clusters by scRNA-Seq, and by histology a dramatic increase in Pdgfrα+ cells populated the defect site at early timepoints to give rise to healed bone tissue overtime. Notably, diphtheria toxin-mediated ablation of Pdgfrα reporter+ cells resulted in significantly impaired calvarial bone healing. Our findings suggest that Pdgfrα-expressing cells within the calvarial niche play a critical role in the process of calvarial bone repair.
Collapse
Affiliation(s)
- Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Austin Z Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Ziyi Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Neelima Thottappillil
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Myles Zhou
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
5
|
Guglielmo A, Zengarini C, Agostinelli C, Motta G, Sabattini E, Pileri A. The Role of Cytokines in Cutaneous T Cell Lymphoma: A Focus on the State of the Art and Possible Therapeutic Targets. Cells 2024; 13:584. [PMID: 38607023 PMCID: PMC11012008 DOI: 10.3390/cells13070584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cutaneous T cell lymphomas (CTCLs), encompassing mycosis fungoides (MF) and Sézary syndrome (SS), present a complex landscape influenced by cytokines and cellular responses. In this work, the intricate relationship between these inflammatory proteins and disease pathogenesis is examined, focusing on what is known at the clinical and therapeutic levels regarding the most well-known inflammatory mediators. An in-depth look is given to their possible alterations caused by novel immunomodulatory drugs and how they may alter disease progression. From this narrative review of the actual scientific landscape, Interferon-gamma (IFN-γ) emerges as a central player, demonstrating a dual role in both promoting and inhibiting cancer immunity, but the work navigates through all the major interleukins known in inflammatory environments. Immunotherapeutic perspectives are elucidated, highlighting the crucial role of the cutaneous microenvironment in shaping dysfunctional cell trafficking, antitumor immunity, and angiogenesis in MF, showcasing advancements in understanding and targeting the immune phenotype in CTCL. In summary, this manuscript aims to comprehensively explore the multifaceted aspects of CTCL, from the immunopathogenesis and cytokine dynamics centred around TNF-α and IFN-γ to evolving therapeutic modalities. Including all the major known and studied cytokines in this analysis broadens our understanding of the intricate interplay influencing CTCL, paving the way for improved management of this complex lymphoma.
Collapse
Affiliation(s)
- Alba Guglielmo
- Institute of Dermatology, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), 33100 Udine, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
| | - Corrado Zengarini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Claudio Agostinelli
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giovanna Motta
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Elena Sabattini
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Alessandro Pileri
- Dipartimento di Scienze Mediche e Chirurgiche, University of Bologna, 40138 Bologna, Italy
- Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
6
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023; 26:387-412. [PMID: 36969107 PMCID: PMC10030827 DOI: 10.1016/j.bioactmat.2023.02.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Postoperative adhesion (POA) widely occurs in soft tissues and usually leads to chronic pain, dysfunction of adjacent organs and some acute complications, seriously reducing patients' quality of life and even being life-threatening. Except for adhesiolysis, there are few effective methods to release existing adhesion. However, it requires a second operation and inpatient care and usually triggers recurrent adhesion in a great incidence. Hence, preventing POA formation has been regarded as the most effective clinical strategy. Biomaterials have attracted great attention in preventing POA because they can act as both barriers and drug carriers. Nevertheless, even though much reported research has been demonstrated their efficacy on POA inhibition to a certain extent, thoroughly preventing POA formation is still challenging. Meanwhile, most biomaterials for POA prevention were designed based on limited experiences, not a solid theoretical basis, showing blindness. Hence, we aimed to provide guidance for designing anti-adhesion materials applied in different soft tissues based on the mechanisms of POA occurrence and development. We first classified the postoperative adhesions into four categories according to the different components of diverse adhesion tissues, and named them as "membranous adhesion", "vascular adhesion", "adhesive adhesion" and "scarred adhesion", respectively. Then, the process of the occurrence and development of POA were analyzed, and the main influencing factors in different stages were clarified. Further, we proposed seven strategies for POA prevention by using biomaterials according to these influencing factors. Meanwhile, the relevant practices were summarized according to the corresponding strategies and the future perspectives were analyzed.
Collapse
Affiliation(s)
- Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
7
|
Takashima Y, Yamamoto S, Okuno N, Hamashima T, Dang ST, Tran ND, Okita N, Miwa F, Dang TC, Matsuo M, Takao K, Fujimori T, Mori H, Tobe K, Noguchi M, Sasahara M. PDGF receptor signal mediates the contribution of Nestin-positive cell lineage to subcutaneous fat development. Biochem Biophys Res Commun 2023; 658:27-35. [PMID: 37018886 DOI: 10.1016/j.bbrc.2023.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
The beiging of white adipose tissue (WAT) is expected to improve systemic metabolic conditions; however, the regulation and developmental origin of this process remain insufficiently understood. In the present study, the implication of platelet-derived growth factor receptor alpha (PDGFRα) was examined in the beiging of inguinal WAT (ingWAT) of neonatal mice. Using in vivo Nestin expressing cell (Nestin+) lineage tracing and deletion mouse models, we found that, in the mice with Pdgfra gene inactivation in Nestin+ lineage (N-PRα-KO mice), the growth of inguinal WAT (ingWAT) was suppressed during neonatal periods as compared with control wild-type mice. In the ingWAT of N-PRα-KO mice, the beige adipocytes appeared earlier that were accompanied by the increased expressions of both adipogenic and beiging markers compared to control wild-type mice. In the perivascular adipocyte progenitor cell (APC) niche of ingWAT, many PDGFRα+ cells of Nestin+ lineage were recruited in Pdgfra-preserving control mice, but were largely decreased in N-PRα-KO mice. This PDGFRα+ cell depletion was replenished by PDGFRα+ cells of non-Nestin+ lineage, unexpectedly resulting in an increase of total PDGFRα+ cell number in APC niche of N-PRα-KO mice over that of control mice. These represented a potent homeostatic control of PDGFRα+ cells between Nestin+ and non-Nestin+ lineages that was accompanied by the active adipogenesis and beiging as well as small WAT depot. This highly plastic nature of PDGFRα+ cells in APC niche may contribute to the WAT remodeling for the therapeutic purpose against metabolic diseases.
Collapse
|
8
|
Verma R, Chen X, Xin D, Luo Z, Ogurek S, Xin M, Rao R, Berry K, Lu QR. Olig1/2-Expressing Intermediate Lineage Progenitors Are Predisposed to PTEN/p53-Loss-Induced Gliomagenesis and Harbor Specific Therapeutic Vulnerabilities. Cancer Res 2023; 83:890-905. [PMID: 36634201 DOI: 10.1158/0008-5472.can-22-1577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Malignant gliomas such as glioblastoma are highly heterogeneous with distinct cells of origin and varied genetic alterations. It remains elusive whether the specific states of neural cell lineages are differentially susceptible to distinct genetic alterations during malignant transformation. Here, an analysis of The Cancer Genome Atlas databases revealed that comutations of PTEN and TP53 are most significantly enriched in human high-grade gliomas. Therefore, we selectively ablated Pten and Trp53 in different progenitors to determine which cell lineage states are susceptible to malignant transformation. Mice with PTEN/p53 ablation mediated by multilineage-expressing human GFAP (hGFAP) promoter-driven Cre developed glioma but with incomplete penetrance and long latency. Unexpectedly, ablation of Pten and Trp53 in Nestin+ neural stem cells (NSC) or Pdgfra+/NG2+ committed oligodendrocyte precursor cells (OPC), two major cells of origin in glioma, did not induce glioma formation in mice. Strikingly, mice lacking Pten and Trp53 in Olig1+/Olig2+ intermediate precursors (pri-OPC) prior to the committed OPCs developed high-grade gliomas with 100% penetrance and short latency. The resulting tumors exhibited distinct tumor phenotypes and drug sensitivities from NSC- or OPC-derived glioma subtypes. Integrated transcriptomic and epigenomic analyses revealed that PTEN/p53-loss induced activation of oncogenic pathways, including HIPPO-YAP and PI3K signaling, to promote malignant transformation. Targeting the core regulatory circuitries YAP and PI3K signaling effectively inhibited tumor cell growth. Thus, our multicell state in vivo mutagenesis analyses suggests that transit-amplifying states of Olig1/2 intermediate lineage precursors are predisposed to PTEN/p53-loss-induced transformation and gliomagenesis, pointing to subtype-specific treatment strategies for gliomas with distinct genetic alterations. SIGNIFICANCE Multiple progenitor-state mutagenesis reveal that Olig1/2-expressing intermediate precursors are highly susceptible to PTEN/p53-loss-mediated transformation and impart differential drug sensitivity, indicating tumor-initiating cell states and genetic drivers dictate glioma phenotypes and drug responses. See related commentary by Zamler and Hu, p. 807.
Collapse
Affiliation(s)
- Ravinder Verma
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiameng Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas
| | - Dazhuan Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kalen Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
9
|
Graham MK, Chikarmane R, Wang R, Vaghasia A, Gupta A, Zheng Q, Wodu B, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Wheelan S, Simons BW, Bieberich C, Nelson WG, DeWeese TL, De Marzo AM, Yegnasubramanian S. Single-cell atlas of epithelial and stromal cell heterogeneity by lobe and strain in the mouse prostate. Prostate 2023; 83:286-303. [PMID: 36373171 DOI: 10.1002/pros.24460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Evaluating the complex interplay of cell types in the tissue microenvironment is critical to understanding the origin and progression of diseases in the prostate and potential opportunities for intervention. Mouse models are an essential tool to investigate the molecular and cell-type-specific contributions of prostate disease at an organismal level. While there are well-documented differences in the extent, timing, and nature of disease development in various genetically engineered and exposure-based mouse models in different mouse strains and prostate lobes within each mouse strain, the underlying molecular phenotypic differences in cell types across mouse strains and prostate lobes are incompletely understood. METHODS In this study, we used single-cell RNA-sequencing (scRNA-seq) methods to assess the single-cell transcriptomes of 6-month-old mouse prostates from two commonly used mouse strains, friend virus B/NIH jackson (FVB/NJ) (N = 2) and C57BL/6J (N = 3). For each mouse, the lobes of the prostate were dissected (anterior, dorsal, lateral, and ventral), and individual scRNA-seq libraries were generated. In situ and pathological analyses were used to explore the spatial and anatomical distributions of novel cell types and molecular markers defining these cell types. RESULTS Data dimensionality reduction and clustering analysis of scRNA-seq data revealed that basal and luminal cells possessed strain-specific transcriptomic differences, with luminal cells also displaying marked lobe-specific differences. Gene set enrichment analysis comparing luminal cells by strain showed enrichment of proto-Oncogene targets in FVB/NJ mice. Additionally, three rare populations of epithelial cells clustered independently of strain and lobe: one population of luminal cells expressing Foxi1 and components of the vacuolar ATPase proton pump (Atp6v0d2 and Atp6v1g3), another population expressing Psca and other stem cell-associated genes (Ly6a/Sca-1, Tacstd2/Trop-2), and a neuroendocrine population expressing Chga, Chgb, and Syp. In contrast, stromal cell clusters, including fibroblasts, smooth muscle cells, endothelial cells, pericytes, and immune cell types, were conserved across strain and lobe, clustering largely by cell type and not by strain or lobe. One notable exception to this was the identification of two distinct fibroblast populations that we term subglandular fibroblasts and interstitial fibroblasts based on their strikingly distinct spatial distribution in the mouse prostate. CONCLUSIONS Altogether, these data provide a practical reference of the transcriptional profiles of mouse prostate from two commonly used mouse strains and across all four prostate lobes.
Collapse
Affiliation(s)
- Mindy K Graham
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roshan Chikarmane
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rulin Wang
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ajay Vaghasia
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anuj Gupta
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bulouere Wodu
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xin Pan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicole Castagna
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jianyong Liu
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer Meyers
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alyza Skaist
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Wheelan
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Charles Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, Maryland, USA
| | - William G Nelson
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Angelo M De Marzo
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Soliman SA, Abd-Elhafeez HH, Abou-Elhamd AS, Kamel BM, Abdellah N, Mustafa FEZA. Role of Uterine Telocytes During Pregnancy. MICROSCOPY AND MICROANALYSIS 2023; 29:283-302. [DOI: 10.1093/micmic/ozac001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Endometrial remolding and angiogenesis are critical events that occur during pregnancy in order to establish uteroplacental vascular communication. This study investigated the role of uterine telocytes (TCs) in pregnancy. We analyzed the distribution of TCs and morphological changes in the endometrium of the gravid rabbit uterus at different stages of pregnancy: after ovulation, pre-implantation (day 7), post-implantation (days 8 and 9), and mid-pregnancy (day 14) and late (days 21–28) pregnancy. TCs gradually increased with the progression of pregnancy. They had distinctive telopodes (TPs) and podoms, with intranucleolar chromatin. The TCs established contact with decidual cells, growing a glandular epithelium, blood vessels, and immune cells, such as lymphocytes, neutrophils, and macrophages. The TCs underwent morphological changes at the post-implantation phase. They acquired thick and voluminous TPs, formed an extensive three-dimensional (3D) labyrinth at mid-pregnancy, and exhibited irregular-shaped nuclei and a dilated rough endoplasmic reticulum at late pregnancy. They also acquired a convoluted contour-formed complex network. Scanning electron microscopy (SEM) showed an extensive 3D network in the endometrium, forming a condensed sheath at late pregnancy. Transmission electron microscopy and SEM detected fenestrated TPs, and TCs were identified by CD34 and vascular endothelial growth factor expression. TCs also expressed matrix metalloproteinase-9 and transforming growth factor beta-1. Results suggested that TCs might play an essential role in maternal placenta formation, especially decidualization, regulation of uterine gland development, and neovascularization of maternal uterine blood vessels.
Collapse
Affiliation(s)
- Soha A Soliman
- Department of Histology, Faculty of Veterinary Medicine, South Valley University , Qena , Egypt
| | - Hanan H Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University , Assiut 71526 , Egypt
| | - Alaa S Abou-Elhamd
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University , Assiut 71526 , Egypt
- Department of Respiratory Therapy, Faculty of Applied Medical Sciences, Jazan University , Jazan , Saudi Arabia
| | - Basma Mohamed Kamel
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Sadat City , Sadat City 32897 , Egypt
| | - Nada Abdellah
- Department of Histology, Faculty of Veterinary Medicine, Sohag University , Sohag 82524 , Egypt
| | - Fatma El-Zahraa A Mustafa
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University , Assiut 71526 , Egypt
| |
Collapse
|
11
|
Moitinho-Silva L, Degenhardt F, Rodriguez E, Emmert H, Juzenas S, Möbus L, Uellendahl-Werth F, Sander N, Baurecht H, Tittmann L, Lieb W, Gieger C, Peters A, Ellinghaus D, Bang C, Franke A, Weidinger S, Rühlemann MC. Host genetic factors related to innate immunity, environmental sensing and cellular functions are associated with human skin microbiota. Nat Commun 2022; 13:6204. [PMID: 36261456 PMCID: PMC9582029 DOI: 10.1038/s41467-022-33906-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the increasing knowledge about factors shaping the human microbiome, the host genetic factors that modulate the skin-microbiome interactions are still largely understudied. This contrasts with recent efforts to characterize host genes that influence the gut microbiota. Here, we investigated the effect of genetics on skin microbiota across three different skin microenvironments through meta-analyses of genome-wide association studies (GWAS) of two population-based German cohorts. We identified 23 genome-wide significant loci harboring 30 candidate genes involved in innate immune signaling, environmental sensing, cell differentiation, proliferation and fibroblast activity. However, no locus passed the strict threshold for study-wide significance (P < 6.3 × 10-10 for 80 features included in the analysis). Mendelian randomization (MR) analysis indicated the influence of staphylococci on eczema/dermatitis and suggested modulating effects of the microbiota on other skin diseases. Finally, transcriptional profiles of keratinocytes significantly changed after in vitro co-culturing with Staphylococcus epidermidis, chosen as a representative of skin commensals. Seven candidate genes from the GWAS were found overlapping with differential expression in the co-culturing experiments, warranting further research of the skin commensal and host genetic makeup interaction.
Collapse
Affiliation(s)
- Lucas Moitinho-Silva
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Elke Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hila Emmert
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Lena Möbus
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Nicole Sander
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hansjörg Baurecht
- Department for Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Lukas Tittmann
- Biobank PopGen and Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | |
Collapse
|
12
|
Yao L, Rathnakar BH, Kwon HR, Sakashita H, Kim JH, Rackley A, Tomasek JJ, Berry WL, Olson LE. Temporal control of PDGFRα regulates the fibroblast-to-myofibroblast transition in wound healing. Cell Rep 2022; 40:111192. [PMID: 35977484 PMCID: PMC9423027 DOI: 10.1016/j.celrep.2022.111192] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblasts differentiate into myofibroblasts by acquiring new contractile function. This is important for tissue repair, but it also contributes to organ fibrosis. Platelet-derived growth factor (PDGF) promotes tissue repair and fibrosis, but the relationship between PDGF and myofibroblasts is unclear. Using mice with lineage tracing linked to PDGF receptor α (PDGFRα) gene mutations, we examine cell fates during skin wound healing. Elevated PDGFRα signaling increases proliferation but unexpectedly delays the fibroblast-to-myofibroblast transition, suggesting that PDGFRα must be downregulated for myofibroblast differentiation. In contrast, deletion of PDGFRα decreases proliferation and myofibroblast differentiation by reducing serum response factor (SRF) nuclear localization. Consequences of SRF deletion resemble PDGFRα deletion, but deletion of two SRF coactivators, MRTFA and MRTFB, specifically eliminates myofibroblasts. Our findings suggest a scenario where PDGFRα signaling initially supports proliferation of fibroblast progenitors to expand their number during early wound healing but, later, PDGFRα downregulation facilitates fibroblast differentiation into myofibroblasts.
Collapse
Affiliation(s)
- Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Bharath H Rathnakar
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hae Ryong Kwon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hiromi Sakashita
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jang H Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex Rackley
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - James J Tomasek
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lorin E Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
13
|
Balahmar RM, Ranganathan B, Ebegboni V, Alamir J, Rajakumar A, Deepak V, Sivasubramaniam S. Analyses of selected tumour-associated factors expression in normotensive and preeclamptic placenta. Pregnancy Hypertens 2022; 29:36-45. [PMID: 35717832 DOI: 10.1016/j.preghy.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Human placenta is often considered a controlled-tumour because of shared properties such as invasion and angiogenesis. We assessed the status of a few selected tumour-associated factors (TAFs) in late onset pre-eclamptic (PE) and normotensive (NT) placentae, to understand their involvement in trophoblast invasion. These molecules include aldehyde dehydrogenase (ALDH3A1), aurora kinases (AURK-A/C), platelet derived growth factor receptor-α (PDGFRα), jagged-1 (JAG1) and twist related protein-1 (TWIST1). METHODS The expression of TAF was compared in 13 NT and 11 PE (late onset) placentae using immunoblotting/immunohistochemistry. We then used a novel spheroidal cell model developed from transformed human first trimester trophoblast cell lines HTR8/SVneo and TEV-1 to determine the expression and localization of these six factors during invasion. We also compared the expression of these TAFs during migration and invasion. RESULTS Our results suggest that expressions of ALDH3A1, AURK-A, PDGFRα, and TWIST1 are significantly upregulated in PE placentae (p < 0.05) when compared to NT placentae, whereas AURK-C and JAG1 are down-regulated (p < 0.05). The protein expression pattern of all the six factors were found to be similar in spheroids in comparison to their parental counterparts. The invasive potential of the spheroids was also enhanced when compared with the parental cells. DISCUSSION Collectively, data from our present study suggests that these TAFs are involved in placental invasion and their altered expressions may be regarded as a compensatory mechanism against reduced invasion.
Collapse
Affiliation(s)
- Reham M Balahmar
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Bhuvaneshwari Ranganathan
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Vernon Ebegboni
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Jumanah Alamir
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Augustine Rajakumar
- Department of Gynecology & Obstetrics(3), Emory University School of Medicine, Atlanta, GA 30033, USA
| | - Venkataraman Deepak
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| | - Shiva Sivasubramaniam
- School of Human Sciences, College of Life and Natural Sciences, University of Derby, Kedleston Road, Derby DE22 1GB, United Kingdom.
| |
Collapse
|
14
|
Malila Y, Sanpinit P, Thongda W, Jandamook A, Srimarut Y, Phasuk Y, Kunhareang S. Influences of Thermal Stress During Three Weeks Before Market Age on Histology and Expression of Genes Associated With Adipose Infiltration and Inflammation in Commercial Broilers, Native Chickens, and Crossbreeds. Front Physiol 2022; 13:858735. [PMID: 35492598 PMCID: PMC9039046 DOI: 10.3389/fphys.2022.858735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to examine the effects of cyclic thermal stress on histological characteristics of breast muscle and gene expression regarding adipose infiltration and inflammation in breast muscles collected from different breeds of chickens. The birds, from commercial broilers (CB, Ross 308, 3 weeks), native (NT, 100% Thai native Chee, 9 weeks), H75 (crossbred; 75% broiler and 25% NT, 5 weeks), and H50 (crossbred; 50% broiler and 50% NT, 7 weeks), were equally assigned into control or treatment groups. The control samples were reared under a constant temperature of 26 ± 1°C, while the treatment groups were exposed to 35 ± 1°C (6 h per day). After a 20-day thermal challenge, 12 male birds per treatment group were randomly collected for determination of live body weight, breast weight, numbers of growth-related myopathies, and breast meat chemical composition. Histological lesions were evaluated in the pectoralis major muscle immediately collected within 20 min postmortem based on hematoxylin and eosin staining. The results indicated that despite interaction between thermal stress and breed effects, thermal challenge significantly reduced feed intake, live body weight, and breast weight of the birds and increased moisture content in breast meat (p < 0.05). An interaction between the two main factors was found for protein content (p < 0.05) for which control CB showed less protein than the other groups. Heat stress decreased histological scores for adipose infiltration in CB (p < 0.05), but it did not significantly influence such scores in the other groups. CB received histological scores for adipose tissue at greater extent than those for the other groups. Differential absolute abundance of CD36, FABP4, LITAF, PDGFRA, PLIN1, PPARG, POSTN, SCD1, and TGFB1 in the muscle samples well-agreed with the trend of histological scores, suggesting potential involvement of dysregulated fibro-adipogenic progenitors together with imbalanced lipid storage and utilization in the breast muscle. The findings demonstrated that the cyclic thermal challenge restricted growth performance and breast mass of the birds, but such effects attenuated infiltration of adipose tissue and inflammatory cells in the CB breast muscle.
Collapse
Affiliation(s)
- Yuwares Malila
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
- *Correspondence: Yuwares Malila,
| | - Pornnicha Sanpinit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Wilawan Thongda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anuwat Jandamook
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Yanee Srimarut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani, Thailand
| | - Yupin Phasuk
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Sajee Kunhareang
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
15
|
Kour A, Niranjan SK, Malayaperumal M, Surati U, Pukhrambam M, Sivalingam J, Kumar A, Sarkar M. Genomic Diversity Profiling and Breed-Specific Evolutionary Signatures of Selection in Arunachali Yak. Genes (Basel) 2022; 13:254. [PMID: 35205299 PMCID: PMC8872319 DOI: 10.3390/genes13020254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Arunachali yak, the only registered yak breed of India, is crucial for the economic sustainability of pastoralist Monpa community. This study intended to determine the genomic diversity and to identify signatures of selection in the breed. Previously available double digest restriction-site associated DNA (ddRAD) sequencing data of Arunachali yak animals was processed and 99,919 SNPs were considered for further analysis. The genomic diversity profiled based on nucleotide diversity, π (π = 0.041 in 200 bp windows), effective population size, Ne (Ne = 83) and Runs of homozygosity (ROH) (predominance of shorter length ROHs) was found to be optimum. Subsequently, 207 regions were identified to be under selective sweeps through de-correlated composite of multiple signals (DCMS) statistic which combined three individual test statistics viz. π, Tajima's D and |iHS| in non-overlapping 100 kb windows. Mapping of these regions revealed 611 protein-coding genes including KIT, KITLG, CDH12, FGG, FGA, FGB, PDGFRA, PEAR1, STXBP3, olfactory receptor genes (OR5K3, OR5H6 and OR1E1) and taste receptor genes (TAS2R1, TAS2R3 and TAS2R4). Functional annotation highlighted that biological processes like platelet aggregation and sensory perception were the most overrepresented and the associated regions could be considered as breed-specific signatures of selection in Arunachali yak. These findings point towards evolutionary role of natural selection in environmental adaptation of Arunachali yak population and provide useful insights for pursuing genome-wide association studies in future.
Collapse
Affiliation(s)
- Aneet Kour
- ICAR-National Research Centre on Yak, Dirang 790101, Arunachal Pradesh, India; (M.P.); (M.S.)
| | - Saket Kumar Niranjan
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India; (S.K.N.); (A.K.)
| | - Mohan Malayaperumal
- ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India; (M.M.); (U.S.)
| | - Utsav Surati
- ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India; (M.M.); (U.S.)
| | - Martina Pukhrambam
- ICAR-National Research Centre on Yak, Dirang 790101, Arunachal Pradesh, India; (M.P.); (M.S.)
| | | | - Amod Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India; (S.K.N.); (A.K.)
| | - Mihir Sarkar
- ICAR-National Research Centre on Yak, Dirang 790101, Arunachal Pradesh, India; (M.P.); (M.S.)
| |
Collapse
|
16
|
Telocytes: Active Players in the Rainbow Trout ( Oncorhynchus mykiss) Intestinal Stem-Cell Niche. Animals (Basel) 2021; 12:ani12010074. [PMID: 35011180 PMCID: PMC8744786 DOI: 10.3390/ani12010074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
In order to improve the sustainability of trout farming, it is essential to develop alternatives to fish-based meals that prevent intestinal disorders and support growth performances. Therefore, an accurate knowledge of intestinal morphology and physiology is desirable. We previously described the epithelial component of the intestinal stem-cell (ISC) niche in rainbow trout (Oncorhynchus mykiss), which is one of the most successfully farmed species and a representative model of the salmonids family. This work aims to expand that knowledge by investigating the niche stromal components that contribute to intestinal homeostasis. We analyzed samples belonging to five individuals collected from a local commercial farm. Histological and ultrastructural studies revealed peculiar mesenchymal cells adjacent to the epithelium that generated an intricate mesh spanning from the folds' base to their apex. Their voluminous nuclei, limited cytoplasm and long cytoplasmic projections characterized them as telocytes (TCs). TEM analysis showed the secretion of extracellular vesicles, suggesting their functional implication in cell-to-cell communication. Furthermore, we evaluated the localization of well-defined mouse TC markers (pdgfrα and foxl1) and their relationship with the epithelial component of the niche. TCs establish a direct connection with ISCs and provide short-range signaling, which also indicates their key role as the mesenchymal component of the stem-cell niche in this species. Interestingly, the TC distribution and gene-expression pattern in rainbow trout closely overlapped with those observed in mice, indicating that they have the same functions in both species. These results substantially improve our understanding of the mechanisms regulating intestinal homeostasis and will enable a more detailed evaluation of innovative feed effects.
Collapse
|
17
|
Takamura N, Renaud L, da Silveira WA, Feghali-Bostwick C. PDGF Promotes Dermal Fibroblast Activation via a Novel Mechanism Mediated by Signaling Through MCHR1. Front Immunol 2021; 12:745308. [PMID: 34912333 PMCID: PMC8667318 DOI: 10.3389/fimmu.2021.745308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by vasculopathy and excessive fibrosis of the skin and internal organs. To this day, no effective treatments to prevent the progression of fibrosis exist, and SSc patients have disabilities and reduced life expectancy. The need to better understand pathways that drive SSc and to find therapeutic targets is urgent. RNA sequencing data from SSc dermal fibroblasts suggested that melanin-concentrating hormone receptor 1 (MCHR1), one of the G protein-coupled receptors regulating emotion and energy metabolism, is abnormally deregulated in SSc. Platelet-derived growth factor (PDGF)-BB stimulation upregulated MCHR1 mRNA and protein levels in normal human dermal fibroblasts (NHDF), and MCHR1 silencing prevented the PDGF-BB-induced expression of the profibrotic factors transforming growth factor beta 1 (TGFβ1) and connective tissue growth factor (CTGF). PDGF-BB bound MCHR1 in membrane fractions of NHDF, and the binding was confirmed using surface plasmon resonance (SPR). MCHR1 inhibition blocked PDGF-BB modulation of intracellular cyclic adenosine monophosphate (cAMP). MCHR1 silencing in NHDF reduced PDGF-BB signaling. In summary, MCHR1 promoted the fibrotic response in NHDF through modulation of TGFβ1 and CTGF production, intracellular cAMP levels, and PDGF-BB-induced signaling pathways, suggesting that MCHR1 plays an important role in mediating the response to PDGF-BB and in the pathogenesis of SSc. Inhibition of MCHR1 should be considered as a novel therapeutic strategy in SSc-associated fibrosis.
Collapse
Affiliation(s)
- Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Willian Abraham da Silveira
- Department of Biological Sciences, School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent, United Kingdom
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
18
|
Frech S, Forsthuber A, Korosec A, Lipp K, Kozumov V, Lichtenberger BM. Hedgehog-signalling in papillary fibroblasts is essential for hair follicle regeneration during wound healing. J Invest Dermatol 2021; 142:1737-1748.e5. [PMID: 34922948 DOI: 10.1016/j.jid.2021.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Patients suffering from large scars such as burn victims not only encounter aesthetical challenges but also ongoing itching or pain that substantially deteriorates their quality of life. Skin appendages such as hair follicles (HFs) rarely regenerate within the healing wound. As they are crucial for skin homeostasis and the lack thereof constitutes one of the main limitations to scarless wound healing, their regeneration represents a major objective for regenerative medicine. Fibroblasts, the main resident cell type of the skin dermis, mediate embryonic HF morphogenesis and are particularly involved in wound healing as they orchestrate extracellular matrix (ECM) remodeling and collagen deposition in the wound bed. Importantly, dermal fibroblasts originate from two distinct developmental lineages with unique functions that differently mediate the response to epidermal signals such as Hedgehog (Hh)-signalling. In the present study, we show that Hh-signalling in the reticular fibroblast lineage promotes the initial phase of wound repair, possibly by modulating angiogenesis and fibroblast proliferation, while Hh-signalling in papillary fibroblasts is essential to induce de novo HF formation within the healing wound.
Collapse
Affiliation(s)
- Sophie Frech
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Agnes Forsthuber
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Ana Korosec
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Katharina Lipp
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Viktor Kozumov
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Beate M Lichtenberger
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Bilal M, Nawaz A, Kado T, Aslam MR, Igarashi Y, Nishimura A, Watanabe Y, Kuwano T, Liu J, Miwa H, Era T, Ikuta K, Imura J, Yagi K, Nakagawa T, Fujisaka S, Tobe K. Fate of adipocyte progenitors during adipogenesis in mice fed a high-fat diet. Mol Metab 2021; 54:101328. [PMID: 34562641 PMCID: PMC8495176 DOI: 10.1016/j.molmet.2021.101328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Expansion of adipose tissue during obesity through the recruitment of newly generated adipocytes (hyperplasia) is metabolically healthy, whereas that through the enlargement of pre-existing adipocytes (hypertrophy) leads to metabolic complications. Accumulating evidence from genetic fate mapping studies suggests that in animal models receiving a high-fat diet (HFD), only adipocyte progenitors (APs) in gonadal white adipose tissue (gWAT) have proliferative potential. However, the proliferative potential and differentiating capacity of APs in the inguinal WAT (iWAT) of male mice remains controversial. The objective of this study was to investigate the proliferative and adipogenic potential of APs in the iWAT of HFD-fed male mice. METHODS We generated PDGFRα-GFP-Cre-ERT2/tdTomato (KI/td) mice and traced PDGFRα-positive APs in male mice fed HFD for 8 weeks. We performed a comprehensive phenotypic analysis, including the histology, immunohistochemistry, flow cytometry, and gene expression analysis, of KI/td mice fed HFD. RESULTS Contrary to the findings of others, we found an increased number of newly generated tdTomato+ adipocytes in the iWAT of male mice, which was smaller than that observed in the gWAT. We found that in male mice, the iWAT has more proliferating tdTomato+ APs than the gWAT. We also found that tdTomato+ APs showed a higher expression of Dpp4 and Pi16 than tdTomato- APs, and the expression of these genes was significantly higher in the iWAT than in the gWAT of mice fed HFD for 8 weeks. Collectively, our results reveal that HFD feeding induces the proliferation of tdTomato+ APs in the iWAT of male mice. CONCLUSION In male mice, compared with gWAT, iWAT undergoes hyperplasia in response to 8 weeks of HFD feeding through the recruitment of newly generated adipocytes due to an abundance of APs with a high potential for proliferation and differentiation.
Collapse
Affiliation(s)
- Muhammad Bilal
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Muhammad Rahil Aslam
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ayumi Nishimura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takahide Kuwano
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Jianhui Liu
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroyuki Miwa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Koichi Ikuta
- Department of Virus Research, Laboratory of Immune Regulation, Institute of Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kunimasa Yagi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
20
|
Rijal G. Understanding the Role of Fibroblasts following a 3D Tumoroid Implantation for Breast Tumor Formation. Bioengineering (Basel) 2021; 8:bioengineering8110163. [PMID: 34821729 PMCID: PMC8615023 DOI: 10.3390/bioengineering8110163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
An understanding of the participation and modulation of fibroblasts during tumor formation and growth is still unclear. Among many speculates, one might be the technical challenge to reveal the versatile function of fibroblasts in tissue complexity, and another is the dynamics in tissue physiology and cell activity. The histology of most solid tumors shows a predominant presence of fibroblasts, suggesting that tumor cells recruit fibroblasts for breast tumor growth. In this review paper, therefore, the migration, activation, differentiation, secretion, and signaling systems that are associated with fibroblasts and cancer-associated fibroblasts (CAFs) after implantation of a breast tumoroid, i.e., a lab-generated tumor tissue into an animal, are discussed.
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Medical Laboratory Sciences and Public Health, Tarleton State University, a Member of Texas A & M University System, Fort Worth, TX 76104, USA
| |
Collapse
|
21
|
Kalra K, Eberhard J, Farbehi N, Chong JJ, Xaymardan M. Role of PDGF-A/B Ligands in Cardiac Repair After Myocardial Infarction. Front Cell Dev Biol 2021; 9:669188. [PMID: 34513823 PMCID: PMC8424099 DOI: 10.3389/fcell.2021.669188] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/20/2021] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factors (PDGFs) are powerful inducers of cellular mitosis, migration, angiogenesis, and matrix modulation that play pivotal roles in the development, homeostasis, and healing of cardiac tissues. PDGFs are key signaling molecules and important drug targets in the treatment of cardiovascular disease as multiple researchers have shown that delivery of recombinant PDGF ligands during or after myocardial infarction can reduce mortality and improve cardiac function in both rodents and porcine models. The mechanism involved cannot be easily elucidated due to the complexity of PDGF regulatory activities, crosstalk with other protein tyrosine kinase activators, and diversity of the pathological milieu. This review outlines the possible roles of PDGF ligands A and B in the healing of cardiac tissues including reduced cell death, improved vascularization, and improved extracellular matrix remodeling to improve cardiac architecture and function after acute myocardial injury. This review may highlight the use of recombinant PDGF-A and PDGF-B as a potential therapeutic modality in the treatment of cardiac injury.
Collapse
Affiliation(s)
- Kunal Kalra
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Joerg Eberhard
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nona Farbehi
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - James J Chong
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Munira Xaymardan
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Györfi AH, Matei AE, Fuchs M, Liang C, Rigau AR, Hong X, Zhu H, Luber M, Bergmann C, Dees C, Ludolph I, Horch RE, Distler O, Wang J, Bengsch B, Schett G, Kunz M, Distler JH. Engrailed 1 coordinates cytoskeletal reorganization to induce myofibroblast differentiation. J Exp Med 2021; 218:e20201916. [PMID: 34259830 PMCID: PMC8288503 DOI: 10.1084/jem.20201916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/05/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a key mediator of fibroblast activation in fibrotic diseases, including systemic sclerosis. Here we show that Engrailed 1 (EN1) is reexpressed in multiple fibroblast subpopulations in the skin of SSc patients. We characterize EN1 as a molecular amplifier of TGFβ signaling in myofibroblast differentiation: TGFβ induces EN1 expression in a SMAD3-dependent manner, and in turn, EN1 mediates the profibrotic effects of TGFβ. RNA sequencing demonstrates that EN1 induces a profibrotic gene expression profile functionally related to cytoskeleton organization and ROCK activation. EN1 regulates gene expression by modulating the activity of SP1 and other SP transcription factors, as confirmed by ChIP-seq experiments for EN1 and SP1. Functional experiments confirm the coordinating role of EN1 on ROCK activity and the reorganization of cytoskeleton during myofibroblast differentiation, in both standard fibroblast culture systems and in vitro skin models. Consistently, mice with fibroblast-specific knockout of En1 demonstrate impaired fibroblast-to-myofibroblast transition and are partially protected from experimental skin fibrosis.
Collapse
Affiliation(s)
- Andrea-Hermina Györfi
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Maximilian Fuchs
- Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Chunguang Liang
- Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Aleix Rius Rigau
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Xuezhi Hong
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Markus Luber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital of Zurich, Zurich, Switzerland
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Human Phenome Institute, Fudan University, Shanghai, P.R. China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, P.R. China
| | - Bertram Bengsch
- Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, Freiburg, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Meik Kunz
- Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg H.W. Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
23
|
Enhancement of Rotator Cuff Healing with Farnesol-Impregnated Gellan Gum/Hyaluronic Acid Hydrogel Membranes in a Rabbit Model. Pharmaceutics 2021; 13:pharmaceutics13070944. [PMID: 34202556 PMCID: PMC8309098 DOI: 10.3390/pharmaceutics13070944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Most rotator cuff (RC) tears occur at the bone–tendon interface and cause disability and pain. Farnesol, a sesquiterpene compound, can exert antioxidative and anti-inflammatory effects and promote collagen synthesis. In this rabbit model, either commercial SurgiWrap membrane or hydrogel membranes containing various compositions of gellan gum, hyaluronic acid, and farnesol (hereafter GHF membranes) were applied to the tear site, and the repair of the cuff was examined 2 and 3 weeks afterward. The designed membranes swelled rapidly and adsorbed onto the tear site more readily and closely than the SurgiWrap membrane. The membranes degraded slowly and functioned as both a barrier and a vehicle of slow farnesol release during the repair period. Farnesol enhanced collagen production in myoblasts and tenocytes, and interleukin 6 and tumor necrosis factor α levels were modulated. Gross observations and histological examinations indicated that the GHF membranes impregnated with 4 mM farnesol resulted in superior RC repair. In sum, the slow release of farnesol from hydrogel membranes can be beneficial in the repair of RC injuries.
Collapse
|
24
|
Avolio E, Mangialardi G, Slater SC, Alvino VV, Gu Y, Cathery W, Beltrami AP, Katare R, Heesom K, Caputo M, Madeddu P. Secreted Protein Acidic and Cysteine Rich Matricellular Protein is Enriched in the Bioactive Fraction of the Human Vascular Pericyte Secretome. Antioxid Redox Signal 2021; 34:1151-1164. [PMID: 33226850 DOI: 10.1089/ars.2019.7969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aims: To ascertain if human pericytes produce SPARC (acronym for Secreted Protein Acidic and Cysteine Rich), a matricellular protein implicated in the regulation of cell proliferation, migration, and cell-matrix interactions; clarify if SPARC expression in cardiac pericytes is modulated by hypoxia; and determine the functional consequences of SPARC silencing. Results: Starting from the recognition that the conditioned media (CM) of human pericytes promote proliferation and migration of cardiac stromal cells, we screened candidate mediators by mass-spectrometry analysis. Of the 14 high-confidence proteins (<1% FDR) identified in the bioactive fractions of the pericyte CM, SPARC emerged as the top-scored matricellular protein. SPARC expression was validated using ELISA and found to be upregulated by hypoxia/starvation in pericytes that express platelet-derived growth factor receptor α (PDGFRα). This subfraction is acknowledged to play a key role in extracellular matrix remodeling. Studies in patients with acute myocardial infarction showed that peripheral blood SPARC correlates with the levels of creatine kinase Mb, a marker of cardiac damage. Immunohistochemistry analyses of infarcted hearts revealed that SPARC is expressed in vascular and interstitial cells. Silencing of SPARC reduced the pericyte ability to secrete collagen1a1, without inhibiting the effects of CM on cardiac and endothelial cells. These data indicate that SPARC is enriched in the bioactive fraction of the pericyte CM, is induced by hypoxia and ischemia, and is essential for pericyte ability to produce collagen. Innovation: This study newly indicates that pericytes are a source of the matricellular protein SPARC. Conclusion: Modulation of SPARC production by pericytes may have potential implications for postinfarct healing.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Giuseppe Mangialardi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sadie C Slater
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Valeria V Alvino
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Yue Gu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - William Cathery
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Antonio P Beltrami
- Dipartimento Area Medica, Istituto di Anatomia Patologica Universitaria, Università degli Studi di Udine, Udine, Italy
| | - Rajesh Katare
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kate Heesom
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
Dysregulation of Amphiregulin stimulates the pathogenesis of cystic lymphangioma. Proc Natl Acad Sci U S A 2021; 118:2019580118. [PMID: 33941693 DOI: 10.1073/pnas.2019580118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Along with blood vessels, lymphatic vessels play an important role in the circulation of body fluid and recruitment of immune cells. Postnatal lymphangiogenesis commonly occurs from preexisting lymphatic vessels by sprouting, which is induced by lymphangiogenic factors such as vascular endothelial growth factor C (VEGF-C). However, the key signals and cell types that stimulate pathological lymphangiogenesis, such as human cystic lymphangioma, are less well known. Here, we found that mouse dermal fibroblasts that infiltrate to sponges subcutaneously implanted express VEGF-D and sushi, Von Willebrand factor type A, EGF, and pentraxin domain containing 1 (SVEP1) in response to PDGFRβ signal. In vitro, Pdgfrb knockout (β-KO) fibroblasts had reduced expression of VEGF-D and SVEP1 and overproduced Amphiregulin. Dysregulation of these three factors was involved in the cyst-like and uneven distribution of lymphatic vessels observed in the β-KO mice. Similarly, in human cystic lymphangioma, which is one of the intractable diseases and mostly occurs in childhood, fibroblasts surrounding cystic lymphatics highly expressed Amphiregulin. Moreover, fibroblast-derived Amphiregulin could induce the expression of Amphiregulin in lymphatic endothelial cells. The dual source of Amphiregulin activated EGFR expressed on the lymphatic endothelial cells. This exacerbation cascade induced proliferation of lymphatic endothelial cells to form cystic lymphangioma. Ultimately, excessive Amphiregulin produced by fibroblasts surrounding lymphatics and by lymphatic endothelial cells per se results in pathogenesis of cystic lymphangioma and will be a fascinating therapeutic target of cystic lymphangioma.
Collapse
|
26
|
Hayashi T, Yamamoto S, Hamashima T, Mori H, Sasahara M, Kuroda S. Critical role of platelet-derived growth factor-α in angiogenesis after indirect bypass in a murine moyamoya disease model. J Neurosurg 2021; 134:1535-1543. [PMID: 32442967 DOI: 10.3171/2020.3.jns193273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to clarify the underlying mechanism of pathognomonic angiogenesis between the temporal muscle and neocortex after indirect bypass for moyamoya disease by shedding light on the role of platelet-derived growth factor receptor-α (PDGFRα) in angiogenesis. METHODS The gene for PDGFRα was systemically inactivated in adult mice (α-KO mice). The Pdgfra-preserving mice (Flox mice) and α-KO mice were exposed to bilateral common carotid artery stenosis (BCAS) by using microcoils. One week later the animals underwent encephalomyosynangiosis (EMS) on the right side. Cerebral blood flow (CBF) was serially measured using a laser Doppler flowmeter. Histological analysis was performed on the distribution of CD31-positive vessels and collagen deposit at 28 days after BCAS. Reverse transcription polymerase chain reaction (RT-PCR) was performed to assess the expression of collagen mRNA in the skin fibroblasts derived from Flox and α-KO mice. RESULTS BCAS significantly reduced CBF up to approximately 70% of the control level at 28 days after the onset. There was no significant difference in CBF between Flox and α-KO mice. EMS significantly enhanced the improvement of CBF on the ipsilateral side of Flox mice, but not α-KO mice. EMS significantly induced the development of CD31-positive vessels in both the neocortex and temporal muscle on the ipsilateral side of Flox mice, but not α-KO mice. Deposition of collagen was distinctly observed between them in Flox mice, but not α-KO mice. Expression of mRNA of collagen type 1 alpha 1 (Col1a1) and collagen type 3 alpha 1 (Col3a1) was significantly downregulated in the skin fibroblasts from α-KO mice. CONCLUSIONS This is the first study that denotes the role of a specific growth factor in angiogenesis after EMS for moyamoya disease by inactivating its gene in mice. The findings strongly suggest that PDGFRα signal may play an important role in developing spontaneous angiogenesis between the temporal muscle and neocortex after EMS in moyamoya disease.
Collapse
Affiliation(s)
| | | | | | - Hisashi Mori
- 3Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| | | | | |
Collapse
|
27
|
Kuwano T, Izumi H, Aslam MR, Igarashi Y, Bilal M, Nishimura A, Watanabe Y, Nawaz A, Kado T, Ikuta K, Yamamoto S, Sasahara M, Fujisaka S, Yagi K, Mori H, Tobe K. Generation and characterization of a Meflin-CreERT2 transgenic line for lineage tracing in white adipose tissue. PLoS One 2021; 16:e0248267. [PMID: 33760832 PMCID: PMC7990287 DOI: 10.1371/journal.pone.0248267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Meflin (Islr) expression has gained attention as a marker for mesenchymal stem cells, but its function remains largely unexplored. Here, we report the generation of Meflin-CreERT2 mice with CreERT2 inserted under the Meflin gene promoter to label Meflin-expressing cells genetically, thereby enabling their lineages to be traced. We found that in adult mice, Meflin-expressing lineage cells were present in adipose tissue stroma and had differentiated into mature adipocytes. These cells constituted Crown-like structures in the adipose tissue of mice after high-fat diet loading. Cold stimulation led to the differentiation of Meflin-expressing lineage cells into beige adipocytes. Thus, the Meflin-CreERT2 mouse line is a useful new tool for visualizing and tracking the lineage of Meflin-expressing cells.
Collapse
Affiliation(s)
- Takahide Kuwano
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, University of Toyama, Toyama-shi, Toyama, Japan
| | - Muhammad Rahil Aslam
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Yoshiko Igarashi
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Muhammad Bilal
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Ayumi Nishimura
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Allah Nawaz
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Tomonobu Kado
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Koichi Ikuta
- Department of Virus Research, Laboratory of Immune Regulation, Institute of Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Seiji Yamamoto
- Department of Pathology, University of Toyama, Toyama-shi, Toyama, Japan
| | - Masakiyo Sasahara
- Department of Pathology, University of Toyama, Toyama-shi, Toyama, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Kunimasa Yagi
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, University of Toyama, Toyama-shi, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama-shi, Toyama, Japan
| |
Collapse
|
28
|
Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, Gensemer C, Beck T, Morningstar J, Stairley R, Norris RA. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis 2021; 8:28. [PMID: 33805717 PMCID: PMC7999759 DOI: 10.3390/jcdd8030028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Mitral valve prolapse (MVP) is a common form of valve disease and can lead to serious secondary complications. The recent identification of MVP causal mutations in primary cilia-related genes has prompted the investigation of cilia-mediated mechanisms of disease inception. Here, we investigate the role of platelet-derived growth factor receptor-alpha (PDGFRα), a receptor known to be present on the primary cilium, during valve development using genetically modified mice, biochemical assays, and high-resolution microscopy. While PDGFRα is expressed throughout the ciliated valve interstitium early in development, its expression becomes restricted on the valve endocardium by birth and through adulthood. Conditional ablation of Pdgfra with Nfatc1-enhancer Cre led to significantly enlarged and hypercellular anterior leaflets with disrupted endothelial adhesions, activated ERK1/2, and a dysregulated extracellular matrix. In vitro culture experiments confirmed a role in suppressing ERK1/2 activation while promoting AKT phosphorylation. These data suggest that PDGFRα functions to suppress mesenchymal transformation and disease phenotypes by stabilizing the valve endocardium through an AKT/ERK pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Suite 601 Basic Science Building, 173 Ashley Avenue, Charleston, SC 29425, USA; (K.M.); (D.F.); (L.G.); (N.K.); (J.G.); (R.M.); (C.G.); (T.B.); (J.M.); (R.S.)
| |
Collapse
|
29
|
Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin-Contribution to Wound Healing and Scarring. Front Cell Dev Biol 2020; 8:578384. [PMID: 33282860 PMCID: PMC7691485 DOI: 10.3389/fcell.2020.578384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia (PC) are solitary, post-mitotic, microtubule-based, and membrane-covered protrusions that are found on almost every mammalian cell. PC are specialized cellular sensory organelles that transmit environmental information to the cell. Signaling through PC is involved in the regulation of a variety of cellular processes, including proliferation, differentiation, and migration. Conversely, defective, or abnormal PC signaling can contribute to the development of various pathological conditions. Our knowledge of the role of PC in organ development and function is largely based on ciliopathies, a family of genetic disorders with mutations affecting the structure and function of PC. In this review, we focus on the role of PC in their major signaling pathways active in skin cells, and their contribution to wound healing and scarring. To provide comprehensive insights into the current understanding of PC functions, we have collected data available in the literature, including evidence across cell types, tissues, and animal species. We conclude that PC are underappreciated subcellular organelles that significantly contribute to both physiological and pathological processes of the skin development and wound healing. Thus, PC assembly and disassembly and PC signaling may serve as attractive targets for antifibrotic and antiscarring therapies.
Collapse
Affiliation(s)
- Mayu Hosio
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
Urabe H, Akimoto R, Kamiya S, Hosoki K, Ichikawa H, Nishiyama T. Effects of pulsed electrical stimulation on growth factor gene expression and proliferation in human dermal fibroblasts. Mol Cell Biochem 2020; 476:361-368. [PMID: 32968926 DOI: 10.1007/s11010-020-03912-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/15/2020] [Indexed: 01/25/2023]
Abstract
Human dermal fibroblast proliferation plays an important role in skin wound healing, and electrical stimulation (ES) promotes skin wound healing. Although the use of ES for skin wound healing has been investigated, the mechanism underlying the effects of ES on cells is still unclear. This study examined the effects of pulsed electrical stimulation (PES) on human dermal fibroblasts. Normal adult human dermal fibroblasts were exposed to a frequency of 4800 Hz, voltage of 1-5 V, and PES exposure time of 15, 30, and 60 min. Dermal fibroblast proliferation and growth factor gene expression were investigated for 6-48 h post PES. Dermal fibroblast proliferation significantly increased from 24 to 48 h post PES at a voltage of 5 V and PES exposure time of 60 min. Under the same conditions, post PES, platelet-derived growth factor subunit A (PDGFA), fibroblast growth factor 2 (FGF2), and transforming growth factor beta 1 (TGF-β1) expression significantly increased from 6 to 24 h, 12 to 48 h, and 24 to 48 h, respectively. Imatinib, a specific inhibitor of platelet-derived growth factor receptor, significantly inhibited the proliferation of dermal fibroblasts promoted by PES, suggesting that PDGFA expression, an early response of PES, was involved in promoting the cell proliferation. Therefore, PES at 4800 Hz may initially promote PDGFA expression and subsequently stimulate the expression of two other growth factors, resulting in dermal fibroblast proliferation after 24 h or later. In conclusion, PES may activate the cell growth phase of wound healing.
Collapse
Affiliation(s)
- Hiroya Urabe
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan.
| | - Ryuji Akimoto
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan
| | - Shohei Kamiya
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan
| | - Katsu Hosoki
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan
| | - Hideyuki Ichikawa
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan
| | - Toshio Nishiyama
- Homer Ion Laboratory Co., Ltd., 17-2 Shinsen-cho, Shibuya-ku, Tokyo, 150-0045, Japan.,Scleroprotein Research Institute, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
31
|
Sanches BDA, Maldarine JDS, Tamarindo GH, Da Silva ADT, Lima MLD, Rahal P, Góes RM, Taboga SR, Carvalho HF. Explant culture: A relevant tool for the study of telocytes. Cell Biol Int 2020; 44:2395-2408. [PMID: 32813303 DOI: 10.1002/cbin.11446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022]
Abstract
Telocytes are cells present in the stroma of various tissues including the prostate. The detection of telocytes is still very much dependent on obtaining ultrastructural data that show the presence of telopodes, which are cytoplasmic projections that alternate between dilated regions, the podoms, and thin segments, the podomers. These structures are the distinctive characteristics of the telocytes. Thus, in vitro assays are important for the study of telocytes, which are more easily identified in culture, which also enables the experimental manipulation of these cells. The isolation of telocytes per se does not allow the analysis of the behavior of these cells in relation to other cell types in a given organ. In this sense, in the prostate, explants could be a useful tool for the study of telocytes. The present study obtained prostatic explants and evaluated the influence of recombinant proteins, scattering factor (SCF) and stromal-derived factor 1 (SDF-1), which could impact on the migration of CD34-positive cells. Telocytes migrate out of explants and SDF-1 stimulates the proliferation and formation of telocyte networks in vitro. Telocytes are not smooth muscle cell progenitors in the prostate; on the contrary, they are CD90- and CD44-negative cells and, hence, have limited progenitor capacity. The present study demonstrated that explants are useful tools to elucidate the nature of telocytes and their functions.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Juliana D S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Guilherme H Tamarindo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Alana D T Da Silva
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Maria L D Lima
- Department of Biology, Laboratory of Genome Studies, São Paulo State University (UNESP), São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, Laboratory of Genome Studies, São Paulo State University (UNESP), São Paulo, Brazil
| | - Rejane M Góes
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sebastião R Taboga
- Department of Biology, Laboratory of Microscopy and Microanalysis, São Paulo State University (UNESP), São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
32
|
Elucidating the fundamental fibrotic processes driving abdominal adhesion formation. Nat Commun 2020; 11:4061. [PMID: 32792541 PMCID: PMC7426428 DOI: 10.1038/s41467-020-17883-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/23/2020] [Indexed: 01/12/2023] Open
Abstract
Adhesions are fibrotic scars that form between abdominal organs following surgery or infection, and may cause bowel obstruction, chronic pain, or infertility. Our understanding of adhesion biology is limited, which explains the paucity of anti-adhesion treatments. Here we present a systematic analysis of mouse and human adhesion tissues. First, we show that adhesions derive primarily from the visceral peritoneum, consistent with our clinical experience that adhesions form primarily following laparotomy rather than laparoscopy. Second, adhesions are formed by poly-clonal proliferating tissue-resident fibroblasts. Third, using single cell RNA-sequencing, we identify heterogeneity among adhesion fibroblasts, which is more pronounced at early timepoints. Fourth, JUN promotes adhesion formation and results in upregulation of PDGFRA expression. With JUN suppression, adhesion formation is diminished. Our findings support JUN as a therapeutic target to prevent adhesions. An anti-JUN therapy that could be applied intra-operatively to prevent adhesion formation could dramatically improve the lives of surgical patients.
Collapse
|
33
|
Powerful Homeostatic Control of Oligodendroglial Lineage by PDGFRα in Adult Brain. Cell Rep 2020; 27:1073-1089.e5. [PMID: 31018125 DOI: 10.1016/j.celrep.2019.03.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/09/2018] [Accepted: 03/21/2019] [Indexed: 01/20/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are widely distributed cells of ramified morphology in adult brain that express PDGFRα and NG2. They retain mitotic activities in adulthood and contribute to oligodendrogenesis and myelin turnover; however, the regulatory mechanisms of their cell dynamics in adult brain largely remain unknown. Here, we found that global Pdgfra inactivation in adult mice rapidly led to elimination of OPCs due to synchronous maturation toward oligodendrocytes. Surprisingly, OPC densities were robustly reconstituted by the active expansion of Nestin+ immature cells activated in meninges and brain parenchyma, as well as a few OPCs that escaped from Pdgfra inactivation. The multipotent immature cells were induced in the meninges of Pdgfra-inactivated mice, but not of control mice. Our findings revealed powerful homeostatic control of adult OPCs, engaging dual cellular sources of adult OPC formation. These properties of the adult oligodendrocyte lineage and the alternative OPC source may be exploited in regenerative medicine.
Collapse
|
34
|
Chou CH, Modo M. Characterization of gene expression changes in human neural stem cells and endothelial cells modeling a neurovascular microenvironment. Brain Res Bull 2020; 158:9-19. [PMID: 32092433 PMCID: PMC7103513 DOI: 10.1016/j.brainresbull.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
Angiogenesis-mediated neovascularization correlates with recovery after intracerebral implantation of neural stem cells (NSCs) in stroke. To elucidate NSCs' mechanism of action, it is essential to understand how these interact with the brain's vasculature after implantation. Using an all-human endothelial cell (EC, D3 cell line) and NSC (STROC05 and CTXOE03) co-culture model, fluorescently activated cell sorting (FACS) was used to isolate each cell type for a comparison of gene expression between monocultures of undifferentiated proliferating and differentiated non-proliferating cells. Gene expression for angiogenic factors (vascular endothelial growth factor, platelet derived growth factor, angiopoietin), as well as cell survival (brain derived neurotrophic factor, fibroblast growth factor) and migration (stromal cell-derived factor-1a) were measured and contrasted with the corresponding receptors on each cell type. The cellular source of extracellular matrix defining the basement membrane (vitronectin, fibronectin, laminin, collagen I and IV) and neuropil (hyaluronic acid, aggrecan, neurocan, thrombospondin, nidogen and brain associated link protein-1) was evaluated for NSCs and ECs. Co-culturing dramatically changed the expression profiles of each cell type in comparison to undifferentiated, but also differentiated cells. These results indicate that monocultures provide a poor model to investigate the cellular signaling involved in a tissue repair response. Co-cultures of NSCs and ECs forming vasculature-like structures (VLS) provide a more complex model to investigate NSC-induced neovascularization. These in vitro studies are essential to tease out individual cell signaling in NSCs and ECs to develop a mechanistic understanding of the efficacy of NSCs as a therapeutic for stroke.
Collapse
Affiliation(s)
- Chung-Hsing Chou
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
35
|
Krämer M, Plum PS, Velazquez Camacho O, Folz-Donahue K, Thelen M, Garcia-Marquez I, Wölwer C, Büsker S, Wittig J, Franitza M, Altmüller J, Löser H, Schlößer H, Büttner R, Schröder W, Bruns CJ, Alakus H, Quaas A, Chon SH, Hillmer AM. Cell type-specific transcriptomics of esophageal adenocarcinoma as a scalable alternative for single cell transcriptomics. Mol Oncol 2020; 14:1170-1184. [PMID: 32255255 PMCID: PMC7266280 DOI: 10.1002/1878-0261.12680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/26/2022] Open
Abstract
Single‐cell transcriptomics have revolutionized our understanding of the cell composition of tumors and allowed us to identify new subtypes of cells. Despite rapid technological advancements, single‐cell analysis remains resource‐intense hampering the scalability that is required to profile a sufficient number of samples for clinical associations. Therefore, more scalable approaches are needed to understand the contribution of individual cell types to the development and treatment response of solid tumors such as esophageal adenocarcinoma where comprehensive genomic studies have only led to a small number of targeted therapies. Due to the limited treatment options and late diagnosis, esophageal adenocarcinoma has a poor prognosis. Understanding the interaction between and dysfunction of individual cell populations provides an opportunity for the development of new interventions. In an attempt to address the technological and clinical needs, we developed a protocol for the separation of esophageal carcinoma tissue into leukocytes (CD45+), epithelial cells (EpCAM+), and fibroblasts (two out of PDGFRα, CD90, anti‐fibroblast) by fluorescence‐activated cell sorting and subsequent RNA sequencing. We confirm successful separation of the three cell populations by mapping their transcriptomic profiles to reference cell lineage expression data. Gene‐level analysis further supports the isolation of individual cell populations with high expression of CD3, CD4, CD8, CD19, and CD20 for leukocytes, CDH1 and MUC1 for epithelial cells, and FAP, SMA, COL1A1, and COL3A1 for fibroblasts. As a proof of concept, we profiled tumor samples of nine patients and explored expression differences in the three cell populations between tumor and normal tissue. Interestingly, we found that angiogenesis‐related genes were upregulated in fibroblasts isolated from tumors compared with normal tissue. Overall, we suggest our protocol as a complementary and more scalable approach compared with single‐cell RNA sequencing to investigate associations between clinical parameters and transcriptomic alterations of specific cell populations in esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Max Krämer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Patrick S Plum
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Oscar Velazquez Camacho
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Kat Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin Thelen
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | | | - Christina Wölwer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Sören Büsker
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Jana Wittig
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Marek Franitza
- Cologne Center for Genomics, University of Cologne, Germany
| | | | - Heike Löser
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Hans Schlößer
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Wolfgang Schröder
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Alexander Quaas
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral and Cancer Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Germany.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| |
Collapse
|
36
|
Oligodendrogenesis and Myelin Formation in the Forebrain Require Platelet-derived Growth Factor Receptor-alpha. Neuroscience 2020; 436:11-26. [PMID: 32278722 DOI: 10.1016/j.neuroscience.2020.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 12/30/2022]
Abstract
The platelet-derived growth factor receptor-α (PDGFRα) principally mediates growth factor signals in oligodendroglial progenitors and is involved in oligodendrogenesis and myelinogenesis in the developing spinal cord. However, the role of PDGFRα in the developing forebrain remains relatively unknown. We established a conditional knockout mouse for the Pdgfra gene (N-PRα-KO) using a Nestin promoter/enhancer-driven Cre recombinase and examined forebrain development. The expression of PDGFRα was efficiently suppressed in the Olig2+ cells in N-PRα-KO mice. In these mice, Olig2+ cells were slightly decreased during embryonic periods. The decrease was particularly striking during the postnatal period. The commitment of Pdgfra-inactivated Olig2+ cells to Sox10+ oligodendroglial-lineage was largely suppressed. Surviving Olig2+ cells and Sox10+ cells were distributed widely in the N-PRα-KO mouse brain, similarly to those in control mice until the early neonatal period. After that, these cells were drastically depleted in the forebrain during the second postnatal week. The brains of N-PRα-KO mice were severely hypomyelinated, and these mice died on approximately P17 with motor disturbances. Disturbed axonal fibers and extensively aberrant vascular formations appeared in the postnatal N-PRα-KO mouse brains. After the defective PDGFRα signal in the forebrain, these phenotypes were clearly different from those in the spinal cord that showed defective populations expansion and migration of oligodendroglial lineage and premature myelination, as previously described. In contrast, areas of severe hypomyelination were common to both anatomical sites. PDGFRα was critically involved in the myelination of the forebrain and may differently regulate oligodendroglial lineage between the forebrain and spinal cord.
Collapse
|
37
|
McGowan SE, Lansakara TI, McCoy DM, Zhu L, Tivanski AV. Platelet-derived Growth Factor-α and Neuropilin-1 Mediate Lung Fibroblast Response to Rigid Collagen Fibers. Am J Respir Cell Mol Biol 2020; 62:454-465. [DOI: 10.1165/rcmb.2019-0173oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Stephen E. McGowan
- Department of Veterans Affairs Research Service, and
- Department of Internal Medicine, Carver College of Medicine, and
| | | | - Diann M. McCoy
- Department of Veterans Affairs Research Service, and
- Department of Internal Medicine, Carver College of Medicine, and
| | - Lien Zhu
- Department of Veterans Affairs Research Service, and
- Department of Internal Medicine, Carver College of Medicine, and
| | | |
Collapse
|
38
|
Jiang B, Yan L, Shamul JG, Hakun M, He X. Stem cell therapy of myocardial infarction: a promising opportunity in bioengineering. ADVANCED THERAPEUTICS 2020; 3:1900182. [PMID: 33665356 PMCID: PMC7928435 DOI: 10.1002/adtp.201900182] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a life-threatening disease resulting from irreversible death of cardiomyocytes (CMs) and weakening of the heart blood-pumping function. Stem cell-based therapies have been studied for MI treatment over the last two decades with promising outcome. In this review, we critically summarize the past work in this field to elucidate the advantages and disadvantages of treating MI using pluripotent stem cells (PSCs) including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), adult stem cells, and cardiac progenitor cells. The main advantage of the latter is their cytokine production capability to modulate immune responses and control the progression of healing. However, human adult stem cells have very limited (if not 'no') capacity to differentiate into functional CMs in vitro or in vivo. In contrast, PSCs can be differentiated into functional CMs although the protocols for the cardiac differentiation of PSCs are mainly for adherent cells under 2D culture. Derivation of PSC-CMs in 3D, allowing for large-scale production of CMs via modulation of the Wnt/β-catenin signal pathway with defined chemicals and medium, may be desired for clinical translation. Furthermore, the technology of purification and maturation of the PSC-CMs may need further improvements to eliminate teratoma formation after in vivo implantation of the PSC-CMs for treating MI. In addition, in vitro derived PSC-CMs may have mechanical and electrical mismatch with the patient's cardiac tissue, which causes arrhythmia. This supports the use of PSC-derived cells committed to cardiac lineage without beating for implantation to treat MI. In this case, the PSC derived cells may utilize the mechanical, electrical, and chemical cues in the heart to further differentiate into mature/functional CMs in situ. Another major challenge facing stem cell therapy of MI is the low retention/survival of stem cells or their derivatives (e.g., PSC-CMs) in the heart for MI treatment after injection in vivo. This may be resolved by using biomaterials to engineer stem cells for reduced immunogenicity, immobilization of the cells in the heart, and increased integration with the host cardiac tissue. Biomaterials have also been applied in the derivation of CMs in vitro to increase the efficiency and maturation of differentiation. Collectively, a lot has been learned from the past failure of simply injecting intact stem cells or their derivatives in vivo for treating MI, and bioengineering stem cells with biomaterials is expected to be a valuable strategy for advancing stem cell therapy towards its widespread application for treating MI in the clinic.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Li Yan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Maxwell Hakun
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
39
|
Beta-caryophyllene enhances wound healing through multiple routes. PLoS One 2019; 14:e0216104. [PMID: 31841509 PMCID: PMC6913986 DOI: 10.1371/journal.pone.0216104] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Beta-caryophyllene is an odoriferous bicyclic sesquiterpene found in various herbs and spices. Recently, it was found that beta-caryophyllene is a ligand of the cannabinoid receptor 2 (CB2). Activation of CB2 will decrease pain, a major signal for inflammatory responses. We hypothesized that beta-caryophyllene can affect wound healing by decreasing inflammation. Here we show that cutaneous wounds of mice treated with beta-caryophyllene had enhanced re-epithelialization. The treated tissue showed increased cell proliferation and cells treated with beta-caryophyllene showed enhanced cell migration, suggesting that the higher re-epithelialization is due to enhanced cell proliferation and cell migration. The treated tissues also had up-regulated gene expression for hair follicle bulge stem cells. Olfactory receptors were not involved in the enhanced wound healing. Transient Receptor Potential channel genes were up-regulated in the injured skin exposed to beta-caryophyllene. Interestingly, there were sex differences in the impact of beta- caryophyllene as only the injured skin of female mice had enhanced re-epithelialization after exposure to beta-caryophyllene. Our study suggests that chemical compounds included in essential oils have the capability to improve wound healing, an effect generated by synergetic impacts of multiple pathways.
Collapse
|
40
|
Yamaguchi M, Tomihara K, Heshiki W, Sakurai K, Sekido K, Tachinami H, Moniruzzaman R, Inoue S, Fujiwara K, Noguchi M. Astaxanthin ameliorates cisplatin‐induced damage in normal human fibroblasts. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/osi2.1031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Momoho Yamaguchi
- Department of Oral and Maxillofacial Surgery Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama Toyama city Toyama Japan
| | - Kei Tomihara
- Department of Oral and Maxillofacial Surgery Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama Toyama city Toyama Japan
| | - Wataru Heshiki
- Department of Oral and Maxillofacial Surgery Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama Toyama city Toyama Japan
| | - Kotaro Sakurai
- Department of Oral and Maxillofacial Surgery Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama Toyama city Toyama Japan
| | - Katsuhisa Sekido
- Department of Oral and Maxillofacial Surgery Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama Toyama city Toyama Japan
| | - Hidetake Tachinami
- Department of Oral and Maxillofacial Surgery Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama Toyama city Toyama Japan
| | - Rohan Moniruzzaman
- Department of Oral and Maxillofacial Surgery Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama Toyama city Toyama Japan
| | - Sayaka Inoue
- Department of Oral and Maxillofacial Surgery Saiseikai Toyama Hospital Toyama city Toyama Japan
| | - Kumiko Fujiwara
- Department of Oral and Maxillofacial Surgery Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama Toyama city Toyama Japan
| | - Makoto Noguchi
- Department of Oral and Maxillofacial Surgery Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama Toyama city Toyama Japan
| |
Collapse
|
41
|
Kozlowska U, Krawczenko A, Futoma K, Jurek T, Rorat M, Patrzalek D, Klimczak A. Similarities and differences between mesenchymal stem/progenitor cells derived from various human tissues. World J Stem Cells 2019; 11:347-374. [PMID: 31293717 PMCID: PMC6600850 DOI: 10.4252/wjsc.v11.i6.347] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) constitute a promising tool in regenerative medicine and can be isolated from different human tissues. However, their biological properties are still not fully characterized. Whereas MSCs from different tissue exhibit many common characteristics, their biological activity and some markers are different and depend on their tissue of origin. Understanding the factors that underlie MSC biology should constitute important points for consideration for researchers interested in clinical MSC application.
AIM To characterize the biological activity of MSCs during longterm culture isolated from: bone marrow (BM-MSCs), adipose tissue (AT-MSCs), skeletal muscles (SM-MSCs), and skin (SK-MSCs).
METHODS MSCs were isolated from the tissues, cultured for 10 passages, and assessed for: phenotype with immunofluorescence and flow cytometry, multipotency with differentiation capacity for osteo-, chondro-, and adipogenesis, stemness markers with qPCR for mRNA for Sox2 and Oct4, and genetic stability for p53 and c-Myc; 27 bioactive factors were screened using the multiplex ELISA array, and spontaneous fusion involving a co-culture of SM-MSCs with BM-MSCs or AT-MSCs stained with PKH26 (red) or PKH67 (green) was performed.
RESULTS All MSCs showed the basic MSC phenotype; however, their expression decreased during the follow-up period, as confirmed by fluorescence intensity. The examined MSCs express CD146 marker associated with proangiogenic properties; however their expression decreased in AT-MSCs and SM-MSCs, but was maintained in BM-MSCs. In contrast, in SK-MSCs CD146 expression increased in late passages. All MSCs, except BM-MSCs, expressed PW1, a marker associated with differentiation capacity and apoptosis. BM-MSCs and AT-MSCs expressed stemness markers Sox2 and Oct4 in long-term culture. All MSCs showed a stable p53 and c-Myc expression. BM-MSCs and AT-MSCs maintained their differentiation capacity during the follow-up period. In contrast, SK-MSCs and SM-MSCs had a limited ability to differentiate into adipocytes. BM-MSCs and AT-MSCs revealed similarities in phenotype maintenance, capacity for multilineage differentiation, and secretion of bioactive factors. Because AT-MSCs fused with SM-MSCs as effectively as BM-MSCs, AT-MSCs may constitute an alternative source for BM-MSCs.
CONCLUSION Long-term culture affects the biological activity of MSCs obtained from various tissues. The source of MSCs and number of passages are important considerations in regenerative medicine.
Collapse
Affiliation(s)
- Urszula Kozlowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Agnieszka Krawczenko
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Katarzyna Futoma
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Tomasz Jurek
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
| | - Marta Rorat
- Department of Forensic Medicine, Wroclaw Medical University, Wroclaw 50-345, Poland
| | - Dariusz Patrzalek
- Faculty of Health Science, Department of Physiotherapy, Wroclaw Medical University, Wroclaw 50-367, Poland
| | - Aleksandra Klimczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| |
Collapse
|
42
|
Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20:163-172. [PMID: 30643263 PMCID: PMC6340744 DOI: 10.1038/s41590-018-0276-y] [Citation(s) in RCA: 2661] [Impact Index Per Article: 443.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023]
Abstract
Tissue fibrosis is a major cause of mortality that results from the deposition of matrix proteins by an activated mesenchyme. Macrophages accumulate in fibrosis, but the role of specific subgroups in supporting fibrogenesis has not been investigated in vivo. Here we used single-cell RNA sequencing (scRNA-seq) to characterize the heterogeneity of macrophages in bleomycin-induced lung fibrosis in mice. A novel computational framework for the annotation of scRNA-seq by reference to bulk transcriptomes (SingleR) enabled the subclustering of macrophages and revealed a disease-associated subgroup with a transitional gene expression profile intermediate between monocyte-derived and alveolar macrophages. These CX3CR1+SiglecF+ transitional macrophages localized to the fibrotic niche and had a profibrotic effect in vivo. Human orthologues of genes expressed by the transitional macrophages were upregulated in samples from patients with idiopathic pulmonary fibrosis. Thus, we have identified a pathological subgroup of transitional macrophages that are required for the fibrotic response to injury.
Collapse
|
43
|
Contreras O, Cruz-Soca M, Theret M, Soliman H, Tung LW, Groppa E, Rossi FM, Brandan E. The cross-talk between TGF-β and PDGFRα signaling pathways regulates stromal fibro/adipogenic progenitors’ fate. J Cell Sci 2019; 132:jcs.232157. [DOI: 10.1242/jcs.232157] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
Fibro/adipogenic progenitors (FAPs) are tissue-resident mesenchymal stromal cells (MSCs) required for proper skeletal muscle development, regeneration, and maintenance. However, FAPs are also responsible for fibro-fatty scar deposition following chronic damage. We aimed to study a functional cross-talk between TGF-β and PDGFRα signaling pathways in FAPs’ fate. Here, we show that the number of FAPs correlates with TGF-β levels and with extracellular matrix deposition during regeneration and repair. Interestingly, the expression of PDGFRα changed dynamically in the stromal/fibroblast lineage after injury. Furthermore, PDGFRα-dependent immediate early gene expression changed during regeneration and repair. We also found that TGF-β signaling reduces PDGFRα expression in FAPs, mouse dermal fibroblasts, and in two related mesenchymal/fibroblast cell lines. Moreover, TGF-β promotes myofibroblast differentiation of FAPs but inhibits their adipogenicity. Accordingly, TGF-β impairs the expression of PDGFRα-dependent immediate early genes in a TGF-BR1-dependent manner. Finally, pharmacological inhibition of PDGFRα activity with AG1296 impaired TGF-β-induced extracellular matrix remodeling, Smad2 signaling, myofibroblast differentiation, and migration of MSCs. Thus, our work establishes a functional cross-talk between TGF-β and PDGFRα signaling pathways that is involved in regulating the biology of FAPs/MSCs.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Meilyn Cruz-Soca
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hesham Soliman
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Lin Wei Tung
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Elena Groppa
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. Rossi
- Biomedical Research Centre, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
44
|
Chang Q, Cai J, Wang Y, Yang R, Xing M, Lu F. Large adipose tissue generation in a mussel-inspired bioreactor of elastic-mimetic cryogel and platelets. J Tissue Eng 2018; 9:2041731418808633. [PMID: 30505425 PMCID: PMC6259050 DOI: 10.1177/2041731418808633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022] Open
Abstract
Soft tissue generation, especially in large tissue, is a major challenge in reconstructive surgery to treat congenital deformities, posttraumatic repair, and cancer rehabilitation. The concern is along with the donor site morbidity, donor tissue shortage, and flap necrosis. Here, we report a dissection-free adipose tissue chamber-based novel guided adipose tissue regeneration strategy in a bioreactor of elastic gelatin cryogel and polydopamine-assisted platelet immobilization intended to improve angiogenesis and generate large adipose tissue in situ. In order to have matched tissue mechanics, we used 5% gelatin cryogel as growth substrate of bioreactor. Platelets from the platelet-rich plasma were then immobilized onto the gelatin cryogel with the aid of polydopamine to form a biomimetic bioreactor (polydopamine/gelatin cryogel/platelet). Platelets on the substrate led to a sustained high release in both platelet-derived growth factor and vascular endothelial growth factor compared with non-polydopamine-assisted group. The formed bioreactor was then transferred to a tissue engineering chamber and then inserted above inguinal fat pad of rats without flap dissection. This integrate strategy significantly boomed the vessel density, stimulated cellular proliferation, and upregulated macrophage infiltration. There was a noticeable rise in the expression of dual-angiogenic growth factors (platelet-derived growth factor and vascular endothelial growth factor) in chamber fluid; host cell migration and host fibrous protein secretion coordinated with gelatin cryogel degradation. The regenerated adipose tissue volume gained threefold larger than control group (p < 0.05) with less fibrosis tissue. These results indicate that a big well-vascularized three-dimensional mature adipose tissue can be regenerated using elastic gel, polydopamine, platelets, and small fat tissue.
Collapse
Affiliation(s)
- Qiang Chang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Junrong Cai
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ruijia Yang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Malcolm Xing
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada.,State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Wu LW, Chen WL, Huang SM, Chan JYH. Platelet-derived growth factor-AA is a substantial factor in the ability of adipose-derived stem cells and endothelial progenitor cells to enhance wound healing. FASEB J 2018; 33:2388-2395. [PMID: 30265575 DOI: 10.1096/fj.201800658r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nonhealing wounds with various forms of complications have been a major challenge for patients with different diseases, and few data are available regarding the clinical significance of platelet-derived growth factor-AA (PDGF-AA) in the enhanced wound healing with stem cells, and the precise molecular mechanism remains unclear. The study aims to investigate the role of PDGF-AA in adipose-derived stem cells (ASCs) and endothelial progenitor cells (EPCs) enhancing wound healing. In this study, ASCs and EPCs were applied to treat wounds in an animal wound model with a wound-healing assay. We knocked down PDGF-AA expression in ASCs using the PDGF-AA short hairpin RNA technique and investigated the related molecular mechanism. The wound model and wound-healing assay of the study showed that transplantation of ASCs could enhance wound healing. The results showed that the PDGF-AA knockdown ASC group had much less improvement of wound healing than other groups treated with wild-type ASCs in wound tissues. The regulation of PDGF-AA in ASCs may contribute to improve wound healing through the PI3K/Akt/eNOS signaling pathway. The data indicated that PDGF-AA might play a vital role in ASCs and EPCs enhancing wound healing, possibly by its effects on angiogenesis. It would be a potential approach using PDGF-AA for clinical treatment of chronic wounds.-Wu, L.-W., Chen, W.-L., Huang, S.-M., Chan, J. Y.-H. Platelet-derived growth factor AA is a substantial factor in the ability of adipose-derived stem cells and endothelial progenitor cells to enhance wound healing.
Collapse
Affiliation(s)
- Li-Wei Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, China.,Division of Family Medicine, Tri-Service General Hospital Penghu Branch, National Defense Medical Center, Taipei, Taiwan, China.,Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,School of Medicine, National Defense Medical Center, Taipei, Taiwan, China
| | - Wei-Liang Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, China.,Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,School of Medicine, National Defense Medical Center, Taipei, Taiwan, China
| | - Shih-Ming Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, China.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, China.,Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan, China
| | - James Yi-Hsin Chan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, China.,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China.,Department of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, China
| |
Collapse
|
46
|
Batugedara HM, Li J, Chen G, Lu D, Patel JJ, Jang JC, Radecki KC, Burr AC, Lo DD, Dillman AR, Nair MG. Hematopoietic cell-derived RELMα regulates hookworm immunity through effects on macrophages. J Leukoc Biol 2018; 104:855-869. [PMID: 29992625 DOI: 10.1002/jlb.4a0917-369rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Resistin-like molecule α (RELMα) is a highly secreted protein in type 2 (Th2) cytokine-induced inflammation including helminth infection and allergy. In infection with Nippostrongylus brasiliensis (Nb), RELMα dampens Th2 inflammatory responses. RELMα is expressed by immune cells, and by epithelial cells (EC); however, the functional impact of immune versus EC-derived RELMα is unknown. We generated bone marrow (BM) chimeras that were RELMα deficient (RELMα-/ - ) in BM or non BM cells and infected them with Nb. Non BM RELMα-/- chimeras had comparable inflammatory responses and parasite burdens to RELMα+/+ mice. In contrast, both RELMα-/- and BM RELMα-/- mice exhibited increased Nb-induced lung and intestinal inflammation, correlated with elevated Th2 cytokines and Nb killing. CD11c+ lung macrophages were the dominant BM-derived source of RELMα and can mediate Nb killing. Therefore, we employed a macrophage-worm co-culture system to investigate whether RELMα regulates macrophage-mediated Nb killing. Compared to RELMα+ /+ macrophages, RELMα-/- macrophages exhibited increased binding to Nb and functionally impaired Nb development. Supplementation with recombinant RELMα partially reversed this phenotype. Gene expression analysis revealed that RELMα decreased cell adhesion and Fc receptor signaling pathways, which are associated with macrophage-mediated helminth killing. Collectively, these studies demonstrate that BM-derived RELMα is necessary and sufficient to dampen Nb immune responses, and identify that one mechanism of action of RELMα is through inhibiting macrophage recruitment and interaction with Nb. Our findings suggest that RELMα acts as an immune brake that provides mutually beneficial effects for the host and parasite by limiting tissue damage and delaying parasite expulsion.
Collapse
Affiliation(s)
- Hashini M Batugedara
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Gang Chen
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Dihong Lu
- Department of Nematology, University of California Riverside, Riverside, California, USA
| | - Jay J Patel
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Jessica C Jang
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Kelly C Radecki
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Abigail C Burr
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - David D Lo
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Adler R Dillman
- Department of Nematology, University of California Riverside, Riverside, California, USA
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA
| |
Collapse
|
47
|
The Novel Pathogenesis of Retinopathy Mediated by Multiple RTK Signals is Uncovered in Newly Developed Mouse Model. EBioMedicine 2018; 31:190-201. [PMID: 29724654 PMCID: PMC6013936 DOI: 10.1016/j.ebiom.2018.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
Pericyte desorption from retinal blood vessels and subsequent vascular abnormalities are the pathogenesis of diabetic retinopathy (DR). Although the involvement of abnormal signals including platelet-derived growth factor receptor-β (PDGFRβ) and vascular endothelial growth factor-A (VEGF-A) have been hypothesized in DR, the mechanisms that underlie this processes are largely unknown. Here, novel retinopathy mouse model (N-PRβ-KO) was developed with conditional Pdgfrb gene deletion by Nestin promoter-driven Cre recombinase (Nestin-Cre) that consistently reproduced through early non-proliferative to late proliferative DR pathologies. Depletion of Nestin-Cre-sensitive PDGFRβ+NG2+αSMA− pericytes suppressed pericyte-coverages and induced severe vascular lesion and hemorrhage. Nestin-Cre-insensitive PDGFRβ+NG2+αSMA+ pericytes detached from the vascular wall, and subsequently changed into myofibroblasts in proliferative membrane to cause retinal traction. PDGFRα+ astrogliosis was seen in degenerated retina. Expressions of placental growth factor (PlGF), VEGF-A and PDGF-BB were significantly increased in the retina of N-PRβ-KO. PDGF-BB may contribute to the pericyte-fibroblast transition and glial scar formation. Since VEGFR1 signal blockade significantly ameliorated the vascular phenotype in N-PRβ-KO mice, the augmented VEGFR1 signal by PlGF and VEGF-A was indicated to mediate vascular lesions. In addition to PDGF-BB, PlGF and VEGF-A with their intracellular signals may be the relevant therapeutic targets to protect eyes from DR. Novel retinopathy mouse model that exhibits proliferative membrane and pathological angiogenesis is successfully generated. Cell signalings mediated by PDGF-BB-PDGFRα/PDGFRβ axes are involved in retinal detachment. Cell signaling mediated by PlGF/VEGF-A-VEGFR1 axis is involved in pathological angiogenesis.
Diabetic retinopathy (DR) is a major cause of vision impairment worldwide. We newly developed retinopathy mouse model (N-PRβ-KO) with conditional Pdgfrb gene deletion by Nestin promoter-driven Cre recombinase consistently reproduced through early non-proliferative to late proliferative DR pathologies. Through the present study utilizing N-PRβ-KO mice, novel pathogenesis of retinopathy was uncovered, in which PDGFRα and PDGFRβ activated by increased PDGF-BB were indicated to be involved in astrogliosis and the formation of proliferative membrane, and VEGFR1 activated by increased PlGF and VEGF-A was indicated to be involved in pathological angiogenesis. These signals may be the relevant therapeutic targets for DR.
Collapse
|
48
|
Roswall P, Bocci M, Bartoschek M, Li H, Kristiansen G, Jansson S, Lehn S, Sjölund J, Reid S, Larsson C, Eriksson P, Anderberg C, Cortez E, Saal LH, Orsmark-Pietras C, Cordero E, Haller BK, Häkkinen J, Burvenich IJG, Lim E, Orimo A, Höglund M, Rydén L, Moch H, Scott AM, Eriksson U, Pietras K. Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nat Med 2018. [PMID: 29529015 PMCID: PMC5896729 DOI: 10.1038/nm.4494] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast tumors of the basal-like, hormone receptor-negative, subtype remain an unmet clinical challenge, as patients exhibit a high rate of recurrence and poor survival. Co-evolution of the malignant mammary epithelium and its underlying stroma instigates cancer-associated fibroblasts (CAFs) to endorse most, if not all, hallmarks of cancer progression. Here, we delineate a previously unappreciated role for CAFs as determinants of the molecular subtype of breast cancer. We identified a paracrine cross-talk between cancer cells expressing platelet-derived growth factor (PDGF)-CC and CAFs expressing the cognate receptors in human basal-like mammary carcinomas. Genetic or pharmacological intervention with PDGF-CC activity in mouse models of cancer resulted in conversion of basal-like breast cancers into a hormone receptor-positive state that conferred sensitivity to endocrine therapy in previously impervious tumors. We conclude that specification of the basal-like subtype of breast cancer is under microenvironmental control and therapeutically actionable in order to achieve sensitivity to endocrine therapy.
Collapse
Affiliation(s)
- Pernilla Roswall
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bocci
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Michael Bartoschek
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hong Li
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Sara Jansson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sophie Lehn
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Steven Reid
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Charlotte Anderberg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Eliane Cortez
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lao H Saal
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Eugenia Cordero
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bengt Kristian Haller
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jari Häkkinen
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid J G Burvenich
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lisa Rydén
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
49
|
The chemokines CXCL12 and CXCL14 differentially regulate connective tissue markers during limb development. Sci Rep 2017; 7:17279. [PMID: 29222527 PMCID: PMC5722906 DOI: 10.1038/s41598-017-17490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Connective tissues (CT) support and connect organs together. Understanding the formation of CT is important, as CT deregulation leads to fibrosis. The identification of CT specific markers has contributed to a better understanding of CT function during development. In developing limbs, Osr1 transcription factor is involved in the differentiation of irregular CT while the transcription factor Scx labels tendon. In this study, we show that the CXCL12 and CXCL14 chemokines display distinct expression pattern in limb CT during chick development. CXCL12 positively regulates the expression of OSR1 and COL3A1, a collagen subtype of irregular CT, while CXCL14 activates the expression of the tendon marker SCX. We provide evidence that the CXCL12 effect on irregular CT involves CXCR4 receptor and vessels. In addition, the expression of CXCL12, CXCL14 and OSR genes is suppressed by the anti-fibrotic BMP signal. Finally, mechanical forces, known to be involved in adult fibrosis, control the expression of chemokines, CT-associated transcription factors and collagens during limb development. Such unexpected roles of CXCL12 and CXCL14 chemokines during CT differentiation can contribute to a better understanding of the fibrosis mechanisms in adult pathological conditions.
Collapse
|
50
|
Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, Hayward SW, Li D, Webb DJ. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol 2017; 216:3799-3816. [PMID: 29021221 PMCID: PMC5674895 DOI: 10.1083/jcb.201704053] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration.
Collapse
Affiliation(s)
- Begum Erdogan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Mingfang Ao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Lauren M White
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Anna L Means
- Department of Surgery, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Bryson M Brewer
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - Lijie Yang
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - M Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Chanjuan Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Omar E Franco
- Department of Urologic Surgery, Vanderbilt University, Nashville, TN
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
| | - Simon W Hayward
- Department of Urologic Surgery, Vanderbilt University, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|