1
|
Talukdar S, Modanwal R, Chaubey GK, Dhiman A, Dilawari R, Raje CI, Raje M. Mycobacterium tuberculosis exploits SIRT2 to trap iron for its intracellular survival. Free Radic Biol Med 2024; 225:794-804. [PMID: 39490773 DOI: 10.1016/j.freeradbiomed.2024.10.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Iron is a critical nutrient for all organisms ranging from bacteria to humans. Ensuring control of this strategic vital resource significantly influences the dynamics of the struggle between host and invading pathogen. Mycobacterium tuberculosis (Mtb), the causative agent of the pulmonary disease tuberculosis (TB), has been plaguing humans for millennia and has evolved to successfully persist and multiply within host cells evading the mammalian immune defences. Invading Mtb appropriates host iron for its survival while the host innate immune response attempts to prevent its stores of this strategic mineral from being appropriated. SIRT2 is a member of the Sirtuin family. These are evolutionary conserved NAD+-dependent deacetylases involved in various cellular processes including regulation of cellular iron homeostasis. Upon Mtb infection of macrophages, SIRT2 expression is enhanced and it translocates from cytosol to nucleus. This is accompanied with a breakdown of the host's iron restriction strategy that compromises host defence mechanisms. However, the underlying mechanism as to how invading Mtb exploits SIRT2 for commandeering host iron remains unknown. In the current study, we report that the decreased bacillary load in cells wherein SIRT2 had been chemically inhibited or knocked down is due to diminished availability of iron. Inhibition or knockdown of SIRT2 in infected cells displays differential modulation of iron import and export proteins suggesting an ongoing struggle by host to limit the bioavailability of iron to pathogen. Flow cytometry analysis of infected macrophages revealed that these cells utilize a non-canonical pathway for evacuation of intracellular iron. This involves the recruitment of a specific pleioform of the moonlighting protein glyceraldehyde-3 phosphate dehydrogenase (GAPDH) to cell surface for capture of iron transporter protein apo-transferrin. Collectively, our findings reveal the process of SIRT2-mediated iron regulation in Mtb pathogenesis and could provide leads for design of novel host-targeted therapeutics.
Collapse
Affiliation(s)
- Sharmila Talukdar
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Radheshyam Modanwal
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | | | - Asmita Dhiman
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Rahul Dilawari
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education & Research, Phase X, Sector 67, SAS Nagar, Punjab, India, 160062
| | - Manoj Raje
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
2
|
Kumar A, Kumar R, Boradia VM, Malhotra H, Kumar A, Seth S, Garg P, Karthikeyan S, Raje M, Iyengar Raje C. Stoichiometry of ligand binding and role of C-terminal lysines in Mycobacterium tuberculosis and human GAPDH multifunctionality. FEBS J 2024. [PMID: 39436721 DOI: 10.1111/febs.17298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Glyceraldehyde-3-phosphate-dehydrogenase (GAPDH; EC1.2.1.12) has several functions in Mycobacterium tuberculosis (Mtb) and the human host. Apart from its role in glycolysis, it serves both as a cell surface and a secreted receptor for plasmin(ogen) (Plg/Plm), transferrin (Tf), and lactoferrin (Lf). Plg sequestration by Mtb GAPDH facilitates bacterial adhesion and tissue invasion, while an equivalent interaction with host GAPDH regulates immune cell migration. In both, host and microbe, internalization of Tf/Lf-GAPDH complexes serves as a route for iron acquisition. To date, the structure of Mtb GAPDH or the residues involved in these moonlighting interactions have not been identified. This study provides the first known X-ray crystal structure of Mtb GAPDH. Through further mutagenesis and functional assays, we found that the C-terminal lysines of Mtb and human GAPDH affect enzyme activity and ligand binding. We also establish the stoichiometry of Plg, Tf and Lf interactions with the GAPDH tetramer. Lastly, molecular simulation studies reveal the interactions of the C-terminal lysine residues.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, Sweden
| | - Vishant Mahendra Boradia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | | | - Adarsh Kumar
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sriraj Seth
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Raje
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Chaaya Iyengar Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| |
Collapse
|
3
|
Kumar AA, T P, Ragunathan P, Ponnuraj K. Analyzing the interaction of Helicobacter pylori GAPDH with host molecules and hemin: Inhibition of hemin binding. Biophys Chem 2024; 307:107193. [PMID: 38320409 DOI: 10.1016/j.bpc.2024.107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a moonlighting enzyme. Apart from its primary role in the glycolytic pathway, in many bacterial species it is found in the extracellular milieu and also on the bacterial surface. Positioning on the bacterial surface allows the GAPDH molecule to interact with many host molecules such as plasminogen, fibrinogen, fibronectin, laminin and mucin etc. This facilitates the bacterial colonization of the host. Helicobacter pylori is a major human pathogen that causes a number of gastrointestinal infections and is the main cause of gastric cancer. The binding analysis of H. pylori GAPDH (HpGAPDH) with host molecules has not been carried out. Hence, we studied the interaction of HpGAPDH with holo-transferrin, lactoferrin, haemoglobin, fibrinogen, fibronectin, catalase, plasminogen and mucin using biolayer interferometry. Highest and lowest binding affinity was observed with lactoferrin (4.83 ± 0.70 × 10-9 M) and holo-transferrin (4.27 ± 2.39 × 10-5 M). Previous studies established GAPDH as a heme chaperone involved in intracellular heme trafficking and delivery to downstream target proteins. Therefore, to get insights into heme binding, the interaction between HpGAPDH and hemin was analyzed. Hemin binds to HpGAPDH with an affinity of 2.10 μM while the hemin bound HpGAPDH does not exhibit activity. This suggests that hemin most likely binds at the active site of HpGAPDH, prohibiting substrate binding. Blind docking of hemin with HpGAPDH also supports positioning of hemin at the active site. Metal ions were found to inhibit the activity of HpGAPDH, suggesting that it also possibly occupies the substrate binding site. Furthermore, with metal-bound HpGAPDH, hemin binding was not observed, suggesting metal ions act as an inhibitor of hemin binding. Since GAPDH has been identified as a heme chaperone, it will be interesting to analyse the biological consequences of inhibition of heme binding to GAPDH by metal ions.
Collapse
Affiliation(s)
- Ane Anil Kumar
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Priyadharshini T
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Preethi Ragunathan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
4
|
Dilawari R, Chaubey GK, Modanwal R, Dhiman A, Talukdar S, Kumar A, Raje CI, Raje M. Glyceraldehyde-3-Phosphate Dehydrogenase Binds with Spike Protein and Inhibits the Entry of SARS-CoV-2 into Host Cells. J Innate Immun 2024; 16:133-142. [PMID: 38325356 PMCID: PMC10911789 DOI: 10.1159/000535634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION Coronavirus disease 2019 caused by coronavirus-2 (SARS-CoV-2) has emerged as an aggressive viral pandemic. Health care providers confront a challenging task for rapid development of effective strategies to combat this and its long-term after effects. Virus entry into host cells involves interaction between receptor-binding domain (RBD) of spike (S) protein S1 subunit with angiotensin converting enzyme present on host cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a moonlighting enzyme involved in cellular glycolytic energy metabolism and micronutrient homeostasis. It is deployed in various cellular compartments and the extra cellular milieu. Though it is known to moonlight as a component of mammalian innate immune defense machinery, till date its role in viral restriction remains unknown. METHOD Recombinant S protein, the RBD, and human GAPDH protein were used for solid phase binding assays and biolayer interferometry. Pseudovirus particles expressing four different strain variants of S protein all harboring ZsGreen gene as marker of infection were used for flow cytometry-based infectivity assays. RESULTS Pseudovirus entry into target cells in culture was significantly inhibited by addition of human GAPDH into the extracellular medium. Binding assays demonstrated that human GAPDH binds to S protein and RBD of SARS-CoV-2 with nanomolar affinity. CONCLUSIONS Our investigations suggest that this interaction of GAPDH interferes in the viral docking with hACE2 receptors, thereby affecting viral ingress into mammalian cells.
Collapse
Affiliation(s)
- Rahul Dilawari
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | | | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | - Ajay Kumar
- National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, India
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Chandigarh, India
| |
Collapse
|
5
|
Lane JR, Tata M, Yasmin R, Im H, Briles DE, Orihuela CJ. PspA-mediated aggregation protects Streptococcus pneumoniae against desiccation on fomites. mBio 2023; 14:e0263423. [PMID: 37982608 PMCID: PMC10746202 DOI: 10.1128/mbio.02634-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Spn is a dangerous human pathogen capable of causing pneumonia and invasive disease. The virulence factor PspA has been studied for nearly four decades with well-established roles in pneumococcal evasion of C-reactive protein and neutralization of lactoferricin. Herein, we show that mammalian (m)GAPDH in mucosal secretions promotes aggregation of pneumococci in a PspA-dependent fashion, whereas lactoferrin counters this effect. PspA-mediated GAPDH-dependent bacterial aggregation protected Spn in nasal lavage elutes and grown in vitro from desiccation on fomites. Furthermore, surviving pneumococci within these aggregates retained their ability to colonize naïve hosts after desiccation. We report that Spn binds to and forms protein complexes on its surface composed of PspA, mGAPDH, and lactoferrin. Changes in the levels of these proteins therefore most likely have critical implications on Spn colonization, survival on fomites, and transmission.
Collapse
Affiliation(s)
- Jessica R. Lane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Muralidhar Tata
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rahena Yasmin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hansol Im
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J. Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
7
|
Lane JR, Tata M, Yasmin R, Im H, Briles DE, Orihuela CJ. PspA-mediated aggregation protects Streptococcus pneumoniae against desiccation on fomites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559802. [PMID: 37808718 PMCID: PMC10557681 DOI: 10.1101/2023.09.27.559802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Streptococcus pneumoniae (Spn) resides in the nasopharynx where it can disseminate to cause disease. One key Spn virulence factor is pneumococcal surface protein A (PspA), which promotes survival by blocking the antimicrobial peptide lactoferricin. PspA has also been shown to mediate attachment to dying epithelial cells in the lower airway due to its binding of cell surface-bound mammalian (m)GAPDH. Importantly, the role of PspA during colonization is not well understood. Wildtype Spn was present in nasal lavage elutes collected from asymptomatically colonized mice at levels ~10-fold higher that its isogenic PspA-deficient mutant (ΔpspA). Wildtype Spn also formed aggregates in mucosal secretions composed of sloughed epithelial cells and hundreds of pneumococci, whereas ΔpspA did not. Spn within the center of these aggregates better survived prolonged desiccation on fomites than individual pneumococci and were capable of infecting naïve mice, indicating PspA-mediated aggregation conferred a survival/transmission advantage. Incubation of Spn in saline containing mGAPDH also enhanced tolerance to desiccation, but only for wildtype Spn. mGAPDH was sufficient to cause low-level aggregation of wildtype Spn but not ΔpspA. In strain WU2, the subdomain of PspA responsible for binding GAPDH (aa230-281) is ensconced within the lactoferrin (LF)-binding domain (aa167-288). We observed that LF inhibited GAPDH-mediated aggregation and desiccation tolerance. Using surface plasmon resonance, we determined that Spn forms multimeric complexes of PspA-GAPDH-LF on its surface and that LF dislodges GAPDH. Our findings have important implications regarding pneumococcal colonization/transmission processes and ongoing PspA-focused immunization efforts for this deadly pathogen.
Collapse
Affiliation(s)
- Jessica R. Lane
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Muralidhar Tata
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Rahena Yasmin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Hansol Im
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| | - Carlos J. Orihuela
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35209, United States
| |
Collapse
|
8
|
Dhiman A, Talukdar S, Chaubey GK, Dilawari R, Modanwal R, Chaudhary S, Patidar A, Boradia VM, Kumbhar P, Raje CI, Raje M. Regulation of Macrophage Cell Surface GAPDH Alters LL-37 Internalization and Downstream Effects in the Cell. J Innate Immun 2023; 15:581-598. [PMID: 37080180 PMCID: PMC10315065 DOI: 10.1159/000530083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb), the major causative agent of tuberculosis, has evolved mechanisms to evade host defenses and persist within host cells. Host-directed therapies against infected cells are emerging as an effective option. Cationic host defense peptide LL-37 is known to internalize into cells and induce autophagy resulting in intracellular killing of M.tb. This peptide also regulates the immune system and interacts with the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inside macrophages. Our investigations revealed that GAPDH moonlights as a mononuclear cell surface receptor that internalizes LL-37. We confirmed that the surface levels of purinergic receptor 7, the receptor previously reported for this peptide, remained unaltered on M.tb infected macrophages. Upon infection or cellular activation with IFNγ, surface recruited GAPDH bound to and internalized LL-37 into endocytic compartments via a lipid raft-dependent process. We also discovered a role for GAPDH in LL-37-mediated autophagy induction and clearance of intracellular pathogens. In infected macrophages wherein GAPDH had been knocked down, we observed an inhibition of LL-37-mediated autophagy which was rescued by GAPDH overexpression. This process was dependent on intracellular calcium and p38 MAPK pathways. Our findings reveal a previously unknown process by which macrophages internalize an antimicrobial peptide via cell surface GAPDH and suggest a moonlighting role of GAPDH in regulating cellular phenotypic responses of LL-37 resulting in reduction of M.tb burden.
Collapse
Affiliation(s)
- Asmita Dhiman
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | | | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | | | - Anil Patidar
- Institute of Microbial Technology, CSIR, Chandigarh, India
| | | | - Pradeep Kumbhar
- National Institute of Pharmaceutical Education and Research, Punjab, India
| | | | - Manoj Raje
- Institute of Microbial Technology, CSIR, Chandigarh, India
| |
Collapse
|
9
|
Zhao W, Zhang B, Geng Z, Chang Y, Wei J, An S. The uncommon function and mechanism of the common enzyme glyceraldehyde-3-phosphate dehydrogenase in the metamorphosis of Helicoverpa armigera. Front Bioeng Biotechnol 2022; 10:1042867. [PMID: 36329701 PMCID: PMC9623274 DOI: 10.3389/fbioe.2022.1042867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 05/26/2025] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, is commonly used as an internal reference gene in humans, mice, and insects. However, the function of GAPDH in insect development, especially in metamorphosis, has not been reported. In the present study, Helicoverpa armigera and Spodoptera frugiperda ovarian cell lines (Sf9 cells) were used as materials to study the function and molecular mechanism of GAPDH in larval metamorphosis. The results showed that HaGAPDH was more closely related to GAPDH of S. frugiperda and Spodoptera litura. The transcript peaks of HaGAPDH in sixth instar larvae were 6L-3 (epidermal and midgut) and 6L-1 (fat body) days, and 20E and methoprene significantly upregulated the transcripts of HaGAPDH of larvae in qRT-PCR. HaGAPDH-GFP-His was specifically localized in mitochondria in Sf9 cells. Knockdown of HaGAPDH by RNA interference (RNAi) in sixth instar larvae resulted in weight loss, increased mortality, and decreases in the pupation rate and emergence rates. HaGAPDH is directly bound to soluble trehalase (HaTreh1) physically and under 20E treatment in yeast two-hybrid, coimmunoprecipitation, and colocalization experiments. In addition, knockdown of HaGAPDH increased the Treh1 activity, which in turn decreased the trehalose content but increased the glucose content in larvae. Therefore, these data demonstrated that GAPDH controlled the glucose content within the normal range to ensure glucose metabolism and metamorphosis by directly binding with HaTreh1.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
10
|
Li Xu L, Wei Zhang H, Lin H, Mei Zhang X, Qi Wen Y, Long Zhao J, Xing Li Z, Gasset M. SWATH-MS-based proteomics reveals functional biomarkers of Th1/Th2 responses of tropomyosin allergy in mouse models. Food Chem 2022; 383:132474. [PMID: 35189446 DOI: 10.1016/j.foodchem.2022.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 02/13/2022] [Indexed: 12/01/2022]
Abstract
Type-I food allergies are hypersensitive reactions compromising the immune organs and epithelial barriers. To investigate the organ-specific proteomic alterations of the allergy responses, the spleen and intestine of mice sensitized with high (shrimp and clam) and weak (fish) allergenic tropomyosins were analyzed using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS)-based proteomics. The results showed that Th1 and Th2 tropomyosin-induced responses in the spleen are characterized by the unique upregulation of innate (cochlin) and adaptive (Ig κ chain V-III region PC 7175) immune regulators, respectively. In the intestine, tropomyosin allergy concurred with the downregulation of 35 differentiating proteins featuring the overall impairment of metabolic pathways, absorption processes and ammonium ion responses. These data provide new functional biomarkers of tropomyosin-induced immune responses as well as candidate targets for intervention.
Collapse
Affiliation(s)
- Li Li Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China; Institute of Physical Chemistry Rocasolano, Spanish National Research Council, 28006 Madrid, Spain
| | - Hong Wei Zhang
- Technology Center of Qingdao Customs District, Qingdao 266002 Shandong, China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Xiao Mei Zhang
- Technology Center of Qingdao Customs District, Qingdao 266002 Shandong, China
| | - Yun Qi Wen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Jin Long Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China
| | - Zhen Xing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003 Shandong, China.
| | - María Gasset
- Institute of Physical Chemistry Rocasolano, Spanish National Research Council, 28006 Madrid, Spain.
| |
Collapse
|
11
|
Spanò DP, Bonelli S, Calligaris M, Carreca AP, Carcione C, Zito G, Nicosia A, Rizzo S, Scilabra SD. High-Resolution Secretome Analysis of Chemical Hypoxia Treated Cells Identifies Putative Biomarkers of Chondrosarcoma. Proteomes 2022; 10:proteomes10030025. [PMID: 35893766 PMCID: PMC9326515 DOI: 10.3390/proteomes10030025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chondrosarcoma is the second most common bone tumor, accounting for 20% of all cases. Little is known about the pathology and molecular mechanisms involved in the development and in the metastatic process of chondrosarcoma. As a consequence, there are no approved therapies for this tumor and surgical resection is the only treatment currently available. Moreover, there are no available biomarkers for this type of tumor, and chondrosarcoma classification relies on operator-dependent histopathological assessment. Reliable biomarkers of chondrosarcoma are urgently needed, as well as greater understanding of the molecular mechanisms of its development for translational purposes. Hypoxia is a central feature of chondrosarcoma progression. The hypoxic tumor microenvironment of chondrosarcoma triggers a number of cellular events, culminating in increased invasiveness and migratory capability. Herein, we analyzed the effects of chemically-induced hypoxia on the secretome of SW 1353, a human chondrosarcoma cell line, using high-resolution quantitative proteomics. We found that hypoxia induced unconventional protein secretion and the release of proteins associated to exosomes. Among these proteins, which may be used to monitor chondrosarcoma development, we validated the increased secretion in response to hypoxia of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme well-known for its different functional roles in a wide range of tumors. In conclusion, by analyzing the changes induced by hypoxia in the secretome of chondrosarcoma cells, we identified molecular mechanisms that can play a role in chondrosarcoma progression and pinpointed proteins, including GAPDH, that may be developed as potential biomarkers for the diagnosis and therapeutic management of chondrosarcoma.
Collapse
Affiliation(s)
- Donatella Pia Spanò
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
- STEBICEF (Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche), Università degli Studi di Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Matteo Calligaris
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Anna Paola Carreca
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
| | - Claudia Carcione
- Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy;
| | - Giovanni Zito
- Research Department, IRCSS ISMETT (Instituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Sergio Rizzo
- Medical Oncology Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Simone Dario Scilabra
- Proteomics Group of Fondazione Ri.MED, Department of Research IRCCS ISMETT, via Ernesto Tricomi 5, 90145 Palermo, Italy; (D.P.S.); (S.B.); (M.C.); (A.P.C.)
- Correspondence:
| |
Collapse
|
12
|
Lane JR, Tata M, Briles DE, Orihuela CJ. A Jack of All Trades: The Role of Pneumococcal Surface Protein A in the Pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2022; 12:826264. [PMID: 35186799 PMCID: PMC8847780 DOI: 10.3389/fcimb.2022.826264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae (Spn), or the pneumococcus, is a Gram-positive bacterium that colonizes the upper airway. Spn is an opportunistic pathogen capable of life-threatening disease should it become established in the lungs, gain access to the bloodstream, or disseminate to vital organs including the central nervous system. Spn is encapsulated, allowing it to avoid phagocytosis, and current preventative measures against infection include polyvalent vaccines composed of capsular polysaccharide corresponding to its most prevalent serotypes. The pneumococcus also has a plethora of surface components that allow the bacteria to adhere to host cells, facilitate the evasion of the immune system, and obtain vital nutrients; one family of these are the choline-binding proteins (CBPs). Pneumococcal surface protein A (PspA) is one of the most abundant CBPs and confers protection against the host by inhibiting recognition by C-reactive protein and neutralizing the antimicrobial peptide lactoferricin. Recently our group has identified two new roles for PspA: binding to dying host cells via host-cell bound glyceraldehyde 3-phosphate dehydrogenase and co-opting of host lactate dehydrogenase to enhance lactate availability. These properties have been shown to influence Spn localization and enhance virulence in the lower airway, respectively. Herein, we review the impact of CBPs, and in particular PspA, on pneumococcal pathogenesis. We discuss the potential and limitations of using PspA as a conserved vaccine antigen in a conjugate vaccine formulation. PspA is a vital component of the pneumococcal virulence arsenal - therefore, understanding the molecular aspects of this protein is essential in understanding pneumococcal pathogenesis and utilizing PspA as a target for treating or preventing pneumococcal pneumonia.
Collapse
Affiliation(s)
| | | | | | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Patidar A, Malhotra H, Chaudhary S, Kumar M, Dilawari R, Chaubey GK, Dhiman A, Modanwal R, Talukdar S, Raje CI, Raje M. Host glyceraldehyde-3-phosphate dehydrogenase-mediated iron acquisition is hijacked by intraphagosomal Mycobacterium tuberculosis. Cell Mol Life Sci 2022; 79:62. [PMID: 35001155 PMCID: PMC11072694 DOI: 10.1007/s00018-021-04110-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
Availability of iron is a key factor in the survival and multiplication of Mycobacterium tuberculosis (M.tb) within host macrophage phagosomes. Despite host cell iron regulatory machineries attempts to deny supply of this essential micronutrient, intraphagosomal M.tb continues to access extracellular iron. In the current study, we report that intracellular M.tb exploits mammalian secreted Glyceraldehyde 3-phosphate dehydrogenase (sGAPDH) for the delivery of host iron carrier proteins lactoferrin (Lf) and transferrin (Tf). Studying the trafficking of iron carriers in infected cells we observed that sGAPDH along with the iron carrier proteins are preferentially internalized into infected cells and trafficked to M.tb containing phagosomes where they are internalized by resident mycobacteria resulting in iron delivery. Collectively our findings provide a new mechanism of iron acquisition by M.tb involving the hijack of host sGAPDH. This may contribute to its successful pathogenesis and provide an option for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Anil Patidar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Himanshu Malhotra
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Surbhi Chaudhary
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Manoj Kumar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | | | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Radheshyam Modanwal
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Sharmila Talukdar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education and Research, Phase X, Sector 67, SAS Nagar, Punjab, 160062, India
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
14
|
Chaudhary S, Dhiman A, Dilawari R, Chaubey GK, Talukdar S, Modanwal R, Patidar A, Malhotra H, Raje CI, Raje M. Glyceraldehyde-3-Phosphate Dehydrogenase Facilitates Macroautophagic Degradation of Mutant Huntingtin Protein Aggregates. Mol Neurobiol 2021; 58:5790-5798. [PMID: 34406601 DOI: 10.1007/s12035-021-02532-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Protein aggregate accumulation is a pathological hallmark of several neurodegenerative disorders. Autophagy is critical for clearance of aggregate-prone proteins. In this study, we identify a novel role of the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in clearance of intracellular protein aggregates. Previously, it has been reported that though clearance of wild-type huntingtin protein is mediated by chaperone-mediated autophagy (CMA), however, degradation of mutant huntingtin (mHtt with numerous poly Q repeats) remains impaired by this route as mutant Htt binds with high affinity to Hsc70 and LAMP-2A. This delays delivery of misfolded protein to lysosomes and results in accumulation of intracellular aggregates which are degraded only by macroautophagy. Earlier investigations also suggest that mHtt causes inactivation of mTOR signaling, causing upregulation of autophagy. GAPDH had earlier been reported to interact with mHtt resulting in cellular toxicity. Utilizing a cell culture model of mHtt aggregates coupled with modulation of GAPDH expression, we analyzed the formation of intracellular aggregates and correlated this with autophagy induction. We observed that GAPDH knockdown cells transfected with N-terminal mutant huntingtin (103 poly Q residues) aggregate-prone protein exhibit diminished autophagy. GAPDH was found to regulate autophagy via the mTOR pathway. Significantly more and larger-sized huntingtin protein aggregates were observed in GAPDH knockdown cells compared to empty vector-transfected control cells. This correlated with the observed decrease in autophagy. Overexpression of GAPDH had a protective effect on cells resulting in a decreased load of aggregates. Our results demonstrate that GAPDH assists in the clearance of protein aggregates by autophagy induction. These findings provide a new insight in understanding the mechanism of mutant huntingtin aggregate clearance. By studying the molecular mechanism of protein aggregate clearance via GAPDH, we hope to provide a new approach in targeting and understanding several neurodegenerative disorders.
Collapse
Affiliation(s)
- Surbhi Chaudhary
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, India, 160036
| | - Asmita Dhiman
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, India, 160036
| | - Rahul Dilawari
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, India, 160036
| | | | - Sharmila Talukdar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, India, 160036
| | - Radheshyam Modanwal
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, India, 160036
| | - Anil Patidar
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, India, 160036
| | - Himanshu Malhotra
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, India, 160036
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education & Research, Phase X, Sector 67, SAS Nagar, Punjab, India, 160062
| | - Manoj Raje
- Institute of Microbial Technology, CSIR, Sector 39A, Chandigarh, India, 160036.
| |
Collapse
|
15
|
Park SS, Gonzalez-Juarbe N, Riegler AN, Im H, Hale Y, Platt MP, Croney C, Briles DE, Orihuela CJ. Streptococcus pneumoniae binds to host GAPDH on dying lung epithelial cells worsening secondary infection following influenza. Cell Rep 2021; 35:109267. [PMID: 34133917 PMCID: PMC8265312 DOI: 10.1016/j.celrep.2021.109267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae (Spn) alone and during co-infection with influenza A virus (IAV) can result in severe pneumonia with mortality. Pneumococcal surface protein A (PspA) is an established virulence factor required for Spn evasion of lactoferricin and C-reactive protein-activated complement-mediated killing. Herein, we show that PspA functions as an adhesin to dying host cells. We demonstrate that PspA binds to host-derived glyceraldehyde-3-phosphate dehydrogenase (GAPDH) bound to outward-flipped phosphatidylserine residues on dying host cells. PspA-mediated adhesion was to apoptotic, pyroptotic, and necroptotic cells, but not healthy lung cells. Using isogenic mutants of Spn, we show that PspA-GAPDH-mediated binding to lung cells increases pneumococcal localization in the lower airway, and this is enhanced as a result of pneumolysin exposure or co-infection with IAV. PspA-mediated binding to GAPDH requires amino acids 230-281 in its α-helical domain with intratracheal inoculation of this PspA fragment alongside the bacteria reducing disease severity in an IAV/Spn pneumonia model.
Collapse
Affiliation(s)
- Sang-Sang Park
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ashleigh N Riegler
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hansol Im
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yvette Hale
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Maryann P Platt
- Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Christina Croney
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David E Briles
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Balmer EA, Faso C. The Road Less Traveled? Unconventional Protein Secretion at Parasite-Host Interfaces. Front Cell Dev Biol 2021; 9:662711. [PMID: 34109175 PMCID: PMC8182054 DOI: 10.3389/fcell.2021.662711] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
Protein secretion in eukaryotic cells is a well-studied process, which has been known for decades and is dealt with by any standard cell biology textbook. However, over the past 20 years, several studies led to the realization that protein secretion as a process might not be as uniform among different cargos as once thought. While in classic canonical secretion proteins carry a signal sequence, the secretory or surface proteome of several organisms demonstrated a lack of such signals in several secreted proteins. Other proteins were found to indeed carry a leader sequence, but simply circumvent the Golgi apparatus, which in canonical secretion is generally responsible for the modification and sorting of secretory proteins after their passage through the endoplasmic reticulum (ER). These alternative mechanisms of protein translocation to, or across, the plasma membrane were collectively termed “unconventional protein secretion” (UPS). To date, many research groups have studied UPS in their respective model organism of choice, with surprising reports on the proportion of unconventionally secreted proteins and their crucial roles for the cell and survival of the organism. Involved in processes such as immune responses and cell proliferation, and including far more different cargo proteins in different organisms than anyone had expected, unconventional secretion does not seem so unconventional after all. Alongside mammalian cells, much work on this topic has been done on protist parasites, including genera Leishmania, Trypanosoma, Plasmodium, Trichomonas, Giardia, and Entamoeba. Studies on protein secretion have mainly focused on parasite-derived virulence factors as a main source of pathogenicity for hosts. Given their need to secrete a variety of substrates, which may not be compatible with canonical secretion pathways, the study of mechanisms for alternative secretion pathways is particularly interesting in protist parasites. In this review, we provide an overview on the current status of knowledge on UPS in parasitic protists preceded by a brief overview of UPS in the mammalian cell model with a focus on IL-1β and FGF-2 as paradigmatic UPS substrates.
Collapse
Affiliation(s)
- Erina A Balmer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Glyceraldehyde-3-phosphate Dehydrogenase is a Multifaceted Therapeutic Target. Pharmaceutics 2020; 12:pharmaceutics12050416. [PMID: 32370188 PMCID: PMC7285110 DOI: 10.3390/pharmaceutics12050416] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme whose role in cell metabolism and homeostasis is well defined, while its function in pathologic processes needs further elucidation. Depending on the cell context, GAPDH may bind a number of physiologically important proteins, control their function and correspondingly affect the cell’s fate. These interprotein interactions and post-translational modifications of GAPDH mediate its cytotoxic or cytoprotective functions in the manner of a Janus-like molecule. In this review, we discuss the functional features of the enzyme in cellular physiology and its possible involvement in human pathologies. In the last part of the article, we describe drugs that can be employed to modulate this enzyme’s function in some pathologic states.
Collapse
|
18
|
Butera G, Mullappilly N, Masetto F, Palmieri M, Scupoli MT, Pacchiana R, Donadelli M. Regulation of Autophagy by Nuclear GAPDH and Its Aggregates in Cancer and Neurodegenerative Disorders. Int J Mol Sci 2019; 20:ijms20092062. [PMID: 31027346 PMCID: PMC6539768 DOI: 10.3390/ijms20092062] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022] Open
Abstract
Several studies indicate that the cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has pleiotropic functions independent of its canonical role in glycolysis. The GAPDH functional diversity is mainly due to post-translational modifications in different amino acid residues or due to protein–protein interactions altering its localization from cytosol to nucleus, mitochondria or extracellular microenvironment. Non-glycolytic functions of GAPDH include the regulation of cell death, autophagy, DNA repair and RNA export, and they are observed in physiological and pathological conditions as cancer and neurodegenerative disorders. In disease, the knowledge of the mechanisms regarding GAPDH-mediated cell death is becoming fundamental for the identification of novel therapies. Here, we elucidate the correlation between autophagy and GAPDH in cancer, describing the molecular mechanisms involved and its impact in cancer development. Since autophagy is a degradative pathway associated with the regulation of cell death, we discuss recent evidence supporting GAPDH as a therapeutic target for autophagy regulation in cancer therapy. Furthermore, we summarize the molecular mechanisms and the cellular effects of GAPDH aggregates, which are correlated with mitochondrial malfunctions and can be considered a potential therapeutic target for various diseases, including cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Francesca Masetto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
- Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, 37134 Verona, Italy.
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
19
|
Chauhan AS, Kumar M, Chaudhary S, Dhiman A, Patidar A, Jakhar P, Jaswal P, Sharma K, Sheokand N, Malhotra H, Raje CI, Raje M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways. FASEB J 2019; 33:5626-5640. [PMID: 30640524 DOI: 10.1096/fj.201802102r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During physiologic stresses, like micronutrient starvation, infection, and cancer, the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is trafficked to the plasma membrane (PM) and extracellular milieu (ECM). Our work demonstrates that GAPDH mobilized to the PM, and the ECM does not utilize the classic endoplasmic reticulum-Golgi route of secretion; instead, it is first selectively translocated into early and late endosomes from the cytosol via microautophagy. GAPDH recruited to this common entry point is subsequently delivered into multivesicular bodies, leading to its membrane trafficking through secretion via exosomes and secretory lysosomes. We present evidence that both pathways of GAPDH membrane trafficking are up-regulated upon iron starvation, potentially by mobilization of intracellular calcium. These pathways also play a role in clearance of misfolded intracellular polypeptide aggregates. Our findings suggest that cells build in redundancy for vital cellular pathways to maintain micronutrient homeostasis and prevent buildup of toxic intracellular misfolded protein refuse.-Chauhan, A. S., Kumar, M., Chaudhary, S., Dhiman, A., Patidar, A., Jakhar, P., Jaswal, P., Sharma, K., Sheokand, N., Malhotra, H., Raje, C. I., Raje. M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways.
Collapse
Affiliation(s)
- Anoop Singh Chauhan
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Surbhi Chaudhary
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Asmita Dhiman
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Anil Patidar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Priyanka Jakhar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Pallavi Jaswal
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Kapil Sharma
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Navdeep Sheokand
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Himanshu Malhotra
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | | - Manoj Raje
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
20
|
Pfeifhofer-Obermair C, Tymoszuk P, Petzer V, Weiss G, Nairz M. Iron in the Tumor Microenvironment-Connecting the Dots. Front Oncol 2018; 8:549. [PMID: 30534534 PMCID: PMC6275298 DOI: 10.3389/fonc.2018.00549] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Iron metabolism and tumor biology are intimately linked. Iron facilitates the production of oxygen radicals, which may either result in iron-induced cell death, ferroptosis, or contribute to mutagenicity and malignant transformation. Once transformed, malignant cells require high amounts of iron for proliferation. In addition, iron has multiple regulatory effects on the immune system, thus affecting tumor surveillance by immune cells. For these reasons, inconsiderate iron supplementation in cancer patients has the potential of worsening disease course and outcome. On the other hand, chronic immune activation in the setting of malignancy alters systemic iron homeostasis and directs iron fluxes into myeloid cells. While this response aims at withdrawing iron from tumor cells, it may impair the effector functions of tumor-associated macrophages and will result in iron-restricted erythropoiesis and the development of anemia, subsequently. This review summarizes our current knowledge of the interconnections of iron homeostasis with cancer biology, discusses current clinical controversies in the treatment of anemia of cancer and focuses on the potential roles of iron in the solid tumor microenvironment, also speculating on yet unknown molecular mechanisms.
Collapse
Affiliation(s)
- Christa Pfeifhofer-Obermair
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Cha SJ, McLean KJ, Jacobs-Lorena M. Identification of Plasmodium GAPDH epitopes for generation of antibodies that inhibit malaria infection. Life Sci Alliance 2018; 1:e201800111. [PMID: 30456380 PMCID: PMC6238388 DOI: 10.26508/lsa.201800111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/24/2022] Open
Abstract
Plasmodium sporozoite liver infection is an essential step for parasite development in its mammalian host. Previously, we used a phage display library to identify mimotope peptides that bind to Kupffer cells and competitively inhibit sporozoite-Kupffer cell interaction. These peptides led to the identification of a Kupffer cell receptor-CD68-and a Plasmodium sporozoite ligand-GAPDH-that are required for sporozoite traversal of Kupffer cells and subsequent infection of hepatocytes. Here, we report that the C-terminal end of Plasmodium GAPDH interacts with the Kupffer CD68 receptor, and identify two epitopes within this region as candidate antigens for the development of antibodies that inhibit Plasmodium infection.
Collapse
Affiliation(s)
- Sung-Jae Cha
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kyle Jarrod McLean
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
22
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
23
|
Collins JF, Flores SR, Wang X, Anderson GJ. Mechanisms and Regulation of Intestinal Iron Transport. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018:1451-1483. [DOI: 10.1016/b978-0-12-809954-4.00060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Gardiner M, Bournazos AM, Maturana-Martinez C, Zhong L, Egan S. Exoproteome Analysis of the Seaweed Pathogen Nautella italica R11 Reveals Temperature-Dependent Regulation of RTX-Like Proteins. Front Microbiol 2017; 8:1203. [PMID: 28706511 PMCID: PMC5489592 DOI: 10.3389/fmicb.2017.01203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/13/2017] [Indexed: 12/29/2022] Open
Abstract
Climate fluctuations have been linked to an increased prevalence of disease in seaweeds, including the red alga Delisea pulchra, which is susceptible to a bleaching disease caused by the bacterium Nautella italica R11 under elevated seawater temperatures. To further investigate the role of temperature in the induction of disease by N. italica R11, we assessed the effect of temperature on the expression of the extracellular proteome (exoproteome) in this bacterium. Label-free quantitative mass spectrometry was used to identify 207 proteins secreted into supernatant fraction, which is equivalent to 5% of the protein coding genes in the N. italica R11 genome. Comparative analysis demonstrated that expression of over 30% of the N. italica R11 exoproteome is affected by temperature. The temperature-dependent proteins include traits that could facilitate the ATP-dependent transport of amino acid and carbohydrate, as well as several uncharacterized proteins. Further, potential virulence determinants, including two RTX-like proteins, exhibited significantly higher expression in the exoproteome at the disease inducing temperature of 24°C relative to non-inducing temperature (16°C). This is the first study to demonstrate that temperature has an influence exoproteome expression in a macroalgal pathogen. The results have revealed several temperature regulated candidate virulence factors that may have a role in macroalgal colonization and invasion at elevated sea-surface temperatures, including novel RTX-like proteins.
Collapse
Affiliation(s)
- Melissa Gardiner
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| | - Adam M Bournazos
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| | - Claudia Maturana-Martinez
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, The University of New South Wales, SydneyNSW, Australia
| | - Suhelen Egan
- School of Biological Earth and Environmental Sciences-Centre for Marine Bio-Innovation, The University of New South Wales, Sydney,NSW, Australia
| |
Collapse
|
25
|
Malhotra H, Patidar A, Boradia VM, Kumar R, Nimbalkar RD, Kumar A, Gani Z, Kaur R, Garg P, Raje M, Raje CI. Mycobacterium tuberculosis Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Functions as a Receptor for Human Lactoferrin. Front Cell Infect Microbiol 2017. [PMID: 28642848 PMCID: PMC5462994 DOI: 10.3389/fcimb.2017.00245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Iron is crucial for the survival of living cells, particularly the human pathogen Mycobacterium tuberculosis (M.tb) which uses multiple strategies to acquire and store iron. M.tb synthesizes high affinity iron chelators (siderophores), these extract iron from host iron carrier proteins such as transferrin (Tf) and lactoferrin (Lf). Recent studies have revealed that M.tb may also relocate several housekeeping proteins to the cell surface for capture and internalization of host iron carrier protein transferrin. One of the identified receptors is the glycolytic enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). This conserved multifunctional protein has been identified as a virulence factor in several other bacterial species. Considering the close structural and functional homology between the two major human iron carrier proteins (Tf and Lf) and the fact that Lf is abundantly present in lung fluid (unlike Tf which is present in plasma), we evaluated whether GAPDH also functions as a dual receptor for Lf. The current study demonstrates that human Lf is sequestered at the bacterial surface by GAPDH. The affinity of Lf-GAPDH (31.7 ± 1.68 nM) is higher as compared to Tf-GAPDH (160 ± 24 nM). Two GAPDH mutants were analyzed for their enzymatic activity and interaction with Lf. Lastly, the present computational studies offer the first significant insights for the 3D structure of monomers and assembled tetramer with the associated co-factor NAD+. Sequence analysis and structural modeling identified the surface exposed, evolutionarily conserved and functional residues and predicted the effect of mutagenesis on GAPDH.
Collapse
Affiliation(s)
- Himanshu Malhotra
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Anil Patidar
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Vishant M Boradia
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rajender Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rakesh D Nimbalkar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Ajay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Zahid Gani
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Rajbeer Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and ResearchPunjab, India
| | - Manoj Raje
- Cell Biology and Immunology, Council of Scientific and Industrial Research-Institute of Microbial TechnologyChandigarh, India
| | - Chaaya I Raje
- Department of Biotechnology, National Institute of Pharmaceutical Education and ResearchPunjab, India
| |
Collapse
|
26
|
Chauhan AS, Kumar M, Chaudhary S, Patidar A, Dhiman A, Sheokand N, Malhotra H, Iyengar Raje C, Raje M. Moonlighting glycolytic protein glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells. FASEB J 2017; 31:2638-2648. [DOI: 10.1096/fj.201600982r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/21/2017] [Indexed: 01/02/2023]
Affiliation(s)
| | - Manoj Kumar
- Institute of Microbial Technology Chandigarh India
| | | | - Anil Patidar
- Institute of Microbial Technology Chandigarh India
| | | | | | | | | | - Manoj Raje
- Institute of Microbial Technology Chandigarh India
- National Institute of Pharmaceutical Education and Research Sahibzada Ajit Singh Nagar Punjab India
| |
Collapse
|
27
|
Abstract
Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Collapse
|