1
|
Yu T, Villalona P, Khan SH, Mikeasky N, Meinert E, Magafas J, Pulahinge T, Bader A, Okafor CD. Enhanced dynamic coupling in a nuclear receptor underlies ligand activity. J Biol Chem 2025; 301:108081. [PMID: 39675705 PMCID: PMC11783427 DOI: 10.1016/j.jbc.2024.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Bile acids are signaling molecules with critical roles in cholesterol and lipid metabolism, achieved by regulating the transcriptional activity of the farnesoid X receptor (FXR, NR1H4), otherwise known as the bile acid receptor. Modifications to the C6 position of the steroidal core yield bile acid derivatives with 100× improved potency over endogenous bile acids. Prevailing hypotheses suggested increased binding affinity for FXR as the driver for this activity enhancement. Our experimental results contradict this suggestion, motivating us to investigate the underlying mechanisms of enhanced ligand activity. We combined functional assays with over 200 μs of simulations, revealing an unexpected role for helix 5 in the allosteric signaling of obeticholic acid. We uncovered dynamic coupling between adjacent helices 5 and 7, which is uniquely enhanced by the bile acid modification. Ultimately, the enhanced potency of the bile acid analog can be traced to its effect on FXR dynamics. In addition to identifying a previously unknown mechanistic role for helix 5 to helix 7 coupling in FXR, these results emphasize the inextricable linkage between the activity of nuclear receptor ligands and their effects on receptor dynamics.
Collapse
Affiliation(s)
- Tracy Yu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Priscilla Villalona
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sabab Hasan Khan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Noriko Mikeasky
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Emily Meinert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jill Magafas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Thilini Pulahinge
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ameen Bader
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
2
|
Yang J, Zhao T, Fan J, Zou H, Lan G, Guo F, Shi Y, Ke H, Yu H, Yue Z, Wang X, Bai Y, Li S, Liu Y, Wang X, Chen Y, Li Y, Lei X. Structure-guided discovery of bile acid derivatives for treating liver diseases without causing itch. Cell 2024; 187:7164-7182.e18. [PMID: 39476841 DOI: 10.1016/j.cell.2024.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 10/02/2024] [Indexed: 12/15/2024]
Abstract
Chronic itch is a debilitating symptom profoundly impacting the quality of life in patients with liver diseases like cholestasis. Activation of the human G-protein coupled receptor, MRGPRX4 (hX4), by bile acids (BAs) is implicated in promoting cholestasis itch. However, the detailed underlying mechanisms remain elusive. Here, we identified 3-sulfated BAs that are elevated in cholestatic patients with itch symptoms. We solved the cryo-EM structure of hX4-Gq in a complex with 3-phosphated deoxycholic acid (DCA-3P), a mimic of the endogenous 3-sulfated deoxycholic acid (DCA-3S). This structure revealed an unprecedented ligand-binding pocket in MRGPR family proteins, highlighting the crucial role of the 3-hydroxyl (3-OH) group on BAs in activating hX4. Guided by this structural information, we designed and developed compound 7 (C7), a BA derivative lacking the 3-OH. Notably, C7 effectively alleviates hepatic injury and fibrosis in liver disease models while significantly mitigating the itch side effects.
Collapse
Affiliation(s)
- Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianjun Zhao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huaibin Zou
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guangyi Lan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yaocheng Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zongwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yingjie Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shuai Li
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yingjun Liu
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Xiaoming Wang
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| |
Collapse
|
3
|
Li S, Yang M, Zhang JY, Liu C, Wei BP, Wu Q, Tang WY, Zeng S. Simultaneous determination of Obeticholic acid and its two major metabolites in human plasma after administration of Obeticholic acid tablets using ultra-high performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1246:124296. [PMID: 39236427 DOI: 10.1016/j.jchromb.2024.124296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Obeticholic acid (OCA), a semisynthetic bile acid derivative, was approved for its therapeutic use in primary biliary cirrhosis. OCA has a enterohepatic circulation and host-gut microbiota metabolic interaction, which produce various metabolites. Such metabolites, especially structural isomers of OCA, together with the need to achieve idea lower limit of quantitation (LLOQ) with minimum matrix interference, bring about significant difficulties to the bioanalysis of OCA. Herein, by applying a combination of solid-phase extraction (SPE) and ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), we introduced an approach for the bioanalysis of OCA along with its two major metabolites-glyco-OCA (GOA) and tauro-OCA (TOA) in human plasma, the full validation results of which showed excellent performance. The quantitative range is 0.2506 ∼ 100.2 ng/mL for OCA, 0.2500 ∼ 100.0 ng/mL for GOA, as well as 0.1250 ∼ 50.00 ng/mL for TOA, respectively. This method was successfully applied to the pharmacokinetic studies in healthy subjects following administration of OCA tablets.
Collapse
Affiliation(s)
- Sha Li
- Bioanalytical Service Center of Sichuan Institute for Drug Control, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Chengdu, Sichuan, 611731, PR China
| | - Min Yang
- Bioanalytical Service Center of Sichuan Institute for Drug Control, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Chengdu, Sichuan, 611731, PR China
| | - Jing-Yao Zhang
- Bioanalytical Service Center of Sichuan Institute for Drug Control, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Chengdu, Sichuan, 611731, PR China
| | - Chang Liu
- Bioanalytical Service Center of Sichuan Institute for Drug Control, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Chengdu, Sichuan, 611731, PR China
| | - Bo-Ping Wei
- Bioanalytical Service Center of Sichuan Institute for Drug Control, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Chengdu, Sichuan, 611731, PR China
| | - Qiang Wu
- Bioanalytical Service Center of Sichuan Institute for Drug Control, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Chengdu, Sichuan, 611731, PR China
| | - Wei-Ying Tang
- Bioanalytical Service Center of Sichuan Institute for Drug Control, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Chengdu, Sichuan, 611731, PR China
| | - Shi Zeng
- Bioanalytical Service Center of Sichuan Institute for Drug Control, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, Chengdu, Sichuan, 611731, PR China.
| |
Collapse
|
4
|
Finamore C, De Marino S, Cassiano C, Napolitano G, Rapacciuolo P, Marchianò S, Biagioli M, Roselli R, Di Giorgio C, Festa C, Fiorucci S, Zampella A. BAR502/fibrate conjugates: synthesis, biological evaluation and metabolic profile. Front Chem 2024; 12:1425867. [PMID: 39086986 PMCID: PMC11289669 DOI: 10.3389/fchem.2024.1425867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays. Compound 1 resulted as the most promising of the series and was subjected to further pharmacological investigation, together with stability evaluation and cell permeation assessment. We have proved by LCMS analysis that compound 1 is hydrolyzed in mice releasing clofibric acid and BAR505, the oxidized metabolite of BAR502, endowed with retained dual FXR/GPBAR1 activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Carmen Festa
- Department of Pharmacy, University of Naples, Naples, Italy
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | |
Collapse
|
5
|
Lee SM, Ahn YM, Park SH, Shin S, Jung J. Reshaping the gut microbiome and bile acid composition by Gyejibongnyeong-hwan ameliorates western diet-induced dyslipidemia. Biomed Pharmacother 2023; 163:114826. [PMID: 37148862 DOI: 10.1016/j.biopha.2023.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023] Open
Abstract
Gyejibongnyeong-hwan (GBH), a traditional Chinese medicine, is used in clinical practice to treat blood stasis in metabolic diseases. Herein, we examined the effects of GBH on dyslipidemia and investigated the underlying mechanisms by focusing on modulation of the gut microbiota-bile acid axis by GBH. We utilized a Western diet-induced dyslipidemia mouse model and divided animals into the following four groups (n = 5 each): the normal chow diet, vehicle control (WD), simvastatin (Sim, 10 mg/kg/day simvastatin; positive control), and GBH (GBH, 300 mg/kg/day) groups. The drugs were administered for 10 weeks, and morphological changes in the liver and aorta were analyzed. The mRNA expression of genes related to cholesterol metabolism, gut microbiota, and bile acid profiles were also evaluated. The GBH group showed significantly lower levels of total cholesterol, accumulation of lipids, and inflammatory markers in the liver and aorta of Western diet-fed mice. Low-density lipoprotein cholesterol levels were significantly lower in the GBH group than in the WD group (P < 0.001). The expression of cholesterol excretion-associated genes such as liver X receptor alpha and ATP-binding cassette subfamily G member 8, as well as the bile acid synthesis gene cholesterol 7 alpha-hydroxylase, which lowers cholesterol in circulation, was increased. Furthermore, GBH inhibited the intestinal farnesoid X receptor (FXR)-fibroblast growth factor 15 signaling pathway through the interactions of gut microbiota with bile acids acting as FXR ligands, which included chenodeoxycholic acid and lithocholic acid. Overall, GBH improved dyslipidemia induced by a Western diet by modulating the gut microbiota-bile acid axis.
Collapse
Affiliation(s)
- So Min Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - You Mee Ahn
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Seong-Hwan Park
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Sarah Shin
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jeeyoun Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
6
|
Schnell A, Jüngert J, Klett D, Hober H, Kaiser N, Ruppel R, Geppert A, Tremel C, Sobel J, Plattner E, Schmitt-Grohé S, Zirlik S, Strobel D, Neurath MF, Knieling F, Rauh M, Woelfle J, Hoerning A, Regensburger AP. Increase of liver stiffness and altered bile acid metabolism after triple CFTR modulator initiation in children and young adults with cystic fibrosis. Liver Int 2023; 43:878-887. [PMID: 36797990 DOI: 10.1111/liv.15544] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Novel cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapies (elexacaftor/tezacaftor/ivacaftor-ETI) promise clinically significant and sustained improvements for patients with cystic fibrosis (CF). In this study, we investigated the impact of ETI therapy on liver stiffness and bile acid metabolism in a cohort of children and young adults with CF. METHODS A prospective observational study (NCT05576324) was conducted from September 2020 to November 2021 enrolling CF patients naive to ETI. Standard laboratory chemistry, sweat test, lung function, share wave velocity (SWV) derived by acoustic radiation force impulse imaging (ARFI) and serum bile acid profiles were assessed before and 6 months after induction of ETI therapy. RESULTS A total of 20 patients (10 aged <20 years) completed the study. While lung function and BMI improved after ETI therapy, ARFI SWV increased in CF patients <20 years of age (from 1.27 to 1.43 m/s, p = 0.023). Bile acid (BA) profiles revealed a decrease in unconjugated (5.75 vs 1.46, p = 0.007) and increase in glycine-conjugated derivatives (GCDCA) (4.79 vs 6.64 p = 0.016). There was a positive correlation between ARFI SWV values and GCDCA (r = 0.80, p < 0.0001). Glycine-conjugated BA provided high diagnostic accuracy to predict increased ARFI measurements (AUC 0.90) and clinical (Colombo) CFLD grading (AUC 0.97). CONCLUSIONS ARFI SWV and bile acid profiles provide evidence for early increase in liver stiffness and altered bile acid metabolism in young CF patients after initiation of ETI and may serve as synergistic measures for detection of hepatic complications during ETI therapy.
Collapse
Affiliation(s)
- Alexander Schnell
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel Klett
- Department of Medicine 1 and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Hannah Hober
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Natalie Kaiser
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Renate Ruppel
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Annika Geppert
- Department of Medicine 1 and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christina Tremel
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Sobel
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Erika Plattner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sabina Schmitt-Grohé
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Zirlik
- Department of Medicine 1 and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Deike Strobel
- Department of Medicine 1 and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1 and German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Translational Experimental and Molecular Imaging Laboratory (PETI_Lab), Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - André Hoerning
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Translational Experimental and Molecular Imaging Laboratory (PETI_Lab), Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut 2023; 72:180-191. [PMID: 36171079 PMCID: PMC9763197 DOI: 10.1136/gutjnl-2022-328166] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/10/2022] [Indexed: 02/04/2023]
Abstract
Accumulating evidence indicates that gut transit time is a key factor in shaping the gut microbiota composition and activity, which are linked to human health. Both population-wide and small-scale studies have identified transit time as a top covariate contributing to the large interindividual variation in the faecal microbiota composition. Despite this, transit time is still rarely being considered in the field of the human gut microbiome. Here, we review the latest research describing how and why whole gut and segmental transit times vary substantially between and within individuals, and how variations in gut transit time impact the gut microbiota composition, diversity and metabolism. Furthermore, we discuss the mechanisms by which the gut microbiota may causally affect gut motility. We argue that by taking into account the interindividual and intraindividual differences in gut transit time, we can advance our understanding of diet-microbiota interactions and disease-related microbiome signatures, since these may often be confounded by transient or persistent alterations in transit time. Altogether, a better understanding of the complex, bidirectional interactions between the gut microbiota and transit time is required to better understand gut microbiome variations in health and disease.
Collapse
Affiliation(s)
- Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Gwen Falony
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University, Kgs. Lyngby, Denmark
| | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- Center for Microbiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
8
|
Huang YH, Wu YH, Tang HY, Chen ST, Wang CC, Ho WJ, Lin YH, Liu GH, Lin PY, Lo CJ, Yeh YM, Cheng ML. Gut Microbiota and Bile Acids Mediate the Clinical Benefits of YH1 in Male Patients with Type 2 Diabetes Mellitus: A Pilot Observational Study. Pharmaceutics 2022; 14:pharmaceutics14091857. [PMID: 36145605 PMCID: PMC9505101 DOI: 10.3390/pharmaceutics14091857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Our previous clinical trial showed that a novel concentrated herbal extract formula, YH1 (Rhizoma coptidis and Shen-Ling-Bai-Zhu-San), improved blood glucose and lipid control. This pilot observational study investigated whether YH1 affects microbiota, plasma, and fecal bile acid (BA) compositions in ten untreated male patients with type 2 diabetes (T2D), hyperlipidemia, and a body mass index ≥ 23 kg/m2. Stool and plasma samples were collected for microbiome, BA, and biochemical analyses before and after 4 weeks of YH1 therapy. As previous studies found, the glycated albumin, 2-h postprandial glucose, triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels were significantly improved after YH1 treatment. Gut microbiota revealed an increased abundance of the short-chain fatty acid-producing bacteria Anaerostipes and Escherichia/Shigella. Furthermore, YH1 inhibited specific phylotypes of bile salt hydrolase-expressing bacteria, including Parabacteroides, Bifidobacterium, and Bacteroides caccae. Stool tauro-conjugated BA levels increased after YH1 treatment. Plasma total BAs and 7α-hydroxy-4-cholesten-3-one (C4), a BA synthesis indicator, were elevated. The reduced deconjugation of BAs and increased plasma conjugated BAs, especially tauro-conjugated BAs, led to a decreased glyco- to tauro-conjugated BA ratio and reduced unconjugated secondary BAs. These results suggest that YH1 ameliorates T2D and hyperlipidemia by modulating microbiota constituents that alter fecal and plasma BA compositions and promote liver cholesterol-to-BA conversion and glucose homeostasis.
Collapse
Affiliation(s)
- Yueh-Hsiang Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yi-Hong Wu
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Chih-Ching Wang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Wan-Jing Ho
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Yi-Hsuan Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Geng-Hao Liu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 333, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
| | - Pei-Yeh Lin
- Department of Medical Nutrition Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: (Y.-M.Y.); (M.-L.C.)
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (Y.-M.Y.); (M.-L.C.)
| |
Collapse
|
9
|
Tian SY, Chen SM, Pan CX, Li Y. FXR: structures, biology, and drug development for NASH and fibrosis diseases. Acta Pharmacol Sin 2022; 43:1120-1132. [PMID: 35217809 PMCID: PMC9061771 DOI: 10.1038/s41401-021-00849-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
The nuclear receptor farnesoid-X-receptor (FXR) plays an essential role in bile acid, glucose, and lipid homeostasis. In the last two decades, several diseases, such as obesity, type 2 diabetes, nonalcoholic fatty liver disease, cholestasis, and chronic inflammatory diseases of the liver and intestine, have been revealed to be associated with alterations in FXR functions. FXR has become a promising therapeutic drug target, particularly for enterohepatic diseases. Despite the large number of FXR modulators reported, only obeticholic acid (OCA) has been approved for primary biliary cholangitis (PBC) therapy as FXR modulator. In this review, we summarize the structure and function of FXR, the development of FXR modulators, and the structure-activity relationships of FXR modulators. Based on the structural analysis, we discuss potential strategies for developing future therapeutic FXR modulators to overcome current limitations, providing new perspectives for enterohepatic and metabolic diseases treatment.
Collapse
Affiliation(s)
- Si-yu Tian
- grid.12955.3a0000 0001 2264 7233The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Shu-ming Chen
- grid.12955.3a0000 0001 2264 7233The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Cheng-xi Pan
- grid.12955.3a0000 0001 2264 7233The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
10
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Marchianò S, Biagioli M, Roselli R, Zampella A, Di Giorgio C, Bordoni M, Bellini R, Morretta E, Monti MC, Distrutti E, Fiorucci S. Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling. FASEB J 2021; 36:e22060. [PMID: 34862975 DOI: 10.1096/fj.202101397r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Farnesoid-x-receptor (FXR) agonists, currently trialed in patients with non-alcoholic steatosis (NAFLD), worsen the pro-atherogenic lipid profile and might require a comedication with statin. Here we report that mice feed a high fat/high cholesterol diet (HFD) are protected from developing a pro-atherogenic lipid profile because their ability to dispose cholesterol through bile acids. This protective mechanism is mediated by suppression of FXR signaling in the liver by muricholic acids (MCAs) generated in mice from chenodeoxycholic acid (CDCA). In contrast to CDCA, MCAs are FXR antagonists and promote a CYP7A1-dependent increase of bile acids synthesis. In mice feed a HFD, the treatment with obeticholic acid, a clinical stage FXR agonist, failed to improve the liver histopathology while reduced Cyp7a1 and Cyp8b1 genes expression and bile acids synthesis and excretion. In contrast, treating mice with atorvastatin mitigated liver and vascular injury caused by the HFD while increased the bile acids synthesis and excretion. Atorvastatin increased the percentage of 7α-dehydroxylase expressing bacteria in the intestine promoting the formation of deoxycholic acid and litocholic acid, two GPBAR1 agonists, along with the expression of GPBAR1-regulated genes in the white adipose tissue and colon. In conclusion, present results highlight the central role of bile acids in regulating lipid and cholesterol metabolism in response to atorvastatin and provide explanations for limited efficacy of FXR agonists in the treatment of NAFLD.
Collapse
Affiliation(s)
- Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Martina Bordoni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Rachele Bellini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | | | | | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
12
|
Thompson RS, Gaffney M, Hopkins S, Kelley T, Gonzalez A, Bowers SJ, Vitaterna MH, Turek FW, Foxx CL, Lowry CA, Vargas F, Dorrestein PC, Wright KP, Knight R, Fleshner M. Ruminiclostridium 5, Parabacteroides distasonis, and bile acid profile are modulated by prebiotic diet and associate with facilitated sleep/clock realignment after chronic disruption of rhythms. Brain Behav Immun 2021; 97:150-166. [PMID: 34242738 DOI: 10.1016/j.bbi.2021.07.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic disruption of rhythms (CDR) impacts sleep and can result in circadian misalignment of physiological systems which, in turn, is associated with increased disease risk. Exposure to repeated or severe stressors also disturbs sleep and diurnal rhythms. Prebiotic nutrients produce favorable changes in gut microbial ecology, the gut metabolome, and reduce several negative impacts of acute severe stressor exposure, including disturbed sleep, core body temperature rhythmicity, and gut microbial dysbiosis. In light of previous compelling evidence that prebiotic diet broadly reduces negative impacts of acute, severe stressors, we hypothesize that prebiotic diet will also effectively mitigate the negative impacts of chronic disruption of circadian rhythms on physiology and sleep/wake behavior. Male, Sprague Dawley rats were fed diets enriched in prebiotic substrates or calorically matched control chow. After 5 weeks on diet, rats were exposed to CDR (12 h light/dark reversal, weekly for 8 weeks) or remained on undisturbed normal light/dark cycles (NLD). Sleep EEG, core body temperature, and locomotor activity were recorded via biotelemetry in freely moving rats. Fecal samples were collected on experimental days -33, 0 (day of onset of CDR), and 42. Taxonomic identification and relative abundances of gut microbes were measured in fecal samples using 16S rRNA gene sequencing and shotgun metagenomics. Fecal primary, bacterially modified secondary, and conjugated bile acids were measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Prebiotic diet produced rapid and stable increases in the relative abundances of Parabacteroides distasonis and Ruminiclostridium 5. Shotgun metagenomics analyses confirmed reliable increases in relative abundances of Parabacteroides distasonis and Clostridium leptum, a member of the Ruminiclostridium genus. Prebiotic diet also modified fecal bile acid profiles; and based on correlational and step-wise regression analyses, Parabacteroides distasonis and Ruminiclostridium 5 were positively associated with each other and negatively associated with secondary and conjugated bile acids. Prebiotic diet, but not CDR, impacted beta diversity. Measures of alpha diversity evenness were decreased by CDR and prebiotic diet prevented that effect. Rats exposed to CDR while eating prebiotic, compared to control diet, more quickly realigned NREM sleep and core body temperature (ClockLab) diurnal rhythms to the altered light/dark cycle. Finally, both cholic acid and Ruminiclostridium 5 prior to CDR were associated with time to realign CBT rhythms to the new light/dark cycle after CDR; whereas both Ruminiclostridium 5 and taurocholic acid prior to CDR were associated with NREM sleep recovery after CDR. These results support our hypothesis and suggest that ingestion of prebiotic substrates is an effective strategy to increase the relative abundance of health promoting microbes, alter the fecal bile acid profile, and facilitate the recovery and realignment of sleep and diurnal rhythms after circadian disruption.
Collapse
Affiliation(s)
- Robert S Thompson
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| | - Michelle Gaffney
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Shelby Hopkins
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Tel Kelley
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Antonio Gonzalez
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Samuel J Bowers
- Department of Neurobiology, Northwestern University, Center for Sleep and Circadian Biology, Evanston, IL, USA
| | - Martha Hotz Vitaterna
- Department of Neurobiology, Northwestern University, Center for Sleep and Circadian Biology, Evanston, IL, USA
| | - Fred W Turek
- Department of Neurobiology, Northwestern University, Center for Sleep and Circadian Biology, Evanston, IL, USA
| | - Christine L Foxx
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Fernando Vargas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, CA, USA
| | - Kenneth P Wright
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA; Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
13
|
Stefela A, Kaspar M, Drastik M, Kronenberger T, Micuda S, Dracinsky M, Klepetarova B, Kudova E, Pavek P. (E)-7-Ethylidene-lithocholic Acid (7-ELCA) Is a Potent Dual Farnesoid X Receptor (FXR) Antagonist and GPBAR1 Agonist Inhibiting FXR-Induced Gene Expression in Hepatocytes and Stimulating Glucagon-like Peptide-1 Secretion From Enteroendocrine Cells. Front Pharmacol 2021; 12:713149. [PMID: 34483922 PMCID: PMC8414367 DOI: 10.3389/fphar.2021.713149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are key signaling steroidal molecules that regulate glucose, lipid, and energy homeostasis via interactions with the farnesoid X receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1). Extensive medicinal chemistry modifications of the BA scaffold led to the discovery of potent selective or dual FXR and GPBAR1 agonists. Herein, we discovered 7-ethylidene-lithocholic acid (7-ELCA) as a novel combined FXR antagonist/GPBAR1 agonist (IC50 = 15 μM/EC50 = 26 nM) with no off-target activation in a library of 7-alkyl substituted derivatives of BAs. 7-ELCA significantly suppressed the effect of the FXR agonist obeticholic acid in BSEP and SHP regulation in human hepatocytes. Importantly, 7-ELCA significantly stimulated the production of glucagon-like peptide-1 (GLP-1), an incretin with insulinotropic effect in postprandial glucose utilization, in intestinal enteroendocrine cells. We can suggest that 7-ELCA may be a prospective approach to the treatment of type II diabetes as the dual modulation of GPBAR1 and FXR has been supposed to be effective in the synergistic regulation of glucose homeostasis in the intestine.
Collapse
Affiliation(s)
- Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Miroslav Kaspar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Sciences, Charles University, Prague, Czechia
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany.,School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, Finland
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martin Dracinsky
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Blanka Klepetarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
14
|
Loss of Thymine DNA Glycosylase Causes Dysregulation of Bile Acid Homeostasis and Hepatocellular Carcinoma. Cell Rep 2021; 31:107475. [PMID: 32268085 DOI: 10.1016/j.celrep.2020.03.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Thymine DNA glycosylase (TDG) is a nuclear receptor coactivator that plays an essential role in the maintenance of epigenetic stability in cells. Here, we demonstrate that the conditional deletion of TDG in adult mice results in a male-predominant onset of hepatocellular carcinoma (HCC). TDG loss leads to a prediabetic state, as well as bile acid (BA) accumulation in the liver and serum of male mice. Consistent with these data, TDG deletion led to dysregulation of the farnesoid X receptor (FXR) and small heterodimer partner (SHP) regulatory cascade in the liver. FXR and SHP are tumor suppressors of HCC and play an essential role in BA and glucose homeostasis. These results indicate that TDG functions as a tumor suppressor of HCC by regulating a transcriptional program that protects against the development of glucose intolerance and BA accumulation in the liver.
Collapse
|
15
|
Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021; 82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Bile acids are a large family of atypical steroids which exert their functions by binding to a family of ubiquitous cell membrane and nuclear receptors. There are two main bile acid activated receptors, FXR and GPBAR1, that are exclusively activated by bile acids, while other receptors CAR, LXRs, PXR, RORγT, S1PR2and VDR are activated by bile acids in addition to other more selective endogenous ligands. In the intestine, activation of FXR and GPBAR1 promotes the release of FGF15/19 and GLP1 which integrate their signaling with direct effects exerted by theother receptors in target tissues. This network is tuned in a time ordered manner by circadian rhythm and is critical for the regulation of metabolic process including autophagy, fast-to-feed transition, lipid and glucose metabolism, energy balance and immune responses. In the last decade FXR ligands have entered clinical trials but development of systemic FXR agonists has been proven challenging because their side effects including increased levels of cholesterol and Low Density Lipoproteins cholesterol (LDL-c) and reduced High-Density Lipoprotein cholesterol (HDL-c). In addition, pruritus has emerged as a common, dose related, side effect of FXR ligands. Intestinal-restricted FXR and GPBAR1 agonists and dual FXR/GPBAR1 agonists have been developed. Here we review the last decade in bile acids physiology and pharmacology.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli, Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
16
|
Miyazaki T, Shirakami Y, Mizutani T, Maruta A, Ideta T, Kubota M, Sakai H, Ibuka T, Genovese S, Fiorito S, Taddeo VA, Epifano F, Tanaka T, Shimizu M. Novel FXR agonist nelumal A suppresses colitis and inflammation-related colorectal carcinogenesis. Sci Rep 2021; 11:492. [PMID: 33436792 PMCID: PMC7804240 DOI: 10.1038/s41598-020-79916-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
FXR is a member of the nuclear receptor superfamily and bile acids are endogenous ligands of FXR. FXR activation has recently been reported to inhibit intestinal inflammation and tumour development. This study aimed to investigate whether the novel FXR agonist nelumal A, the active compound of the plant Ligularia nelumbifolia, can prevent colitis and colorectal carcinogenesis. In a mouse colitis model, dextran sodium sulfate-induced colonic mucosal ulcer and the inflammation grade in the colon significantly reduced in mice fed diets containing nelumal A. In an azoxymethane/dextran sodium sulfate-induced mouse inflammation-related colorectal carcinogenesis model, the mice showed decreased incidence of colonic mucosal ulcers and adenocarcinomas in nelumal A-treated group. Administration of nelumal A also induced tight junctions, antioxidant enzymes, and FXR target gene expression in the intestine, while it decreased the gene expression of bile acid synthesis in the liver. These findings suggest that nelumal A effectively attenuates colonic inflammation and suppresses colitis-related carcinogenesis, presumably through reduction of bile acid synthesis and oxidative damage. This agent may be potentially useful for treatment of inflammatory bowel diseases as well as their related colorectal cancer chemoprevention.
Collapse
Affiliation(s)
- Tsuneyuki Miyazaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Taku Mizutani
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akinori Maruta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masaya Kubota
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyasu Sakai
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takashi Ibuka
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Salvatore Genovese
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Serena Fiorito
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Vito Alessandro Taddeo
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Francesco Epifano
- Department of Pharmacy, D'Annunzio University of Chieti-Pescara, 66100, Chieti Scalo, Italy
| | - Takuji Tanaka
- Department of Pathological Diagnosis, Gifu Municipal Hospital, Gifu, 500-8513, Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
17
|
Shen H, Ding L, Baig M, Tian J, Wang Y, Huang W. Improving glucose and lipids metabolism: drug development based on bile acid related targets. Cell Stress 2021; 5:1-18. [PMID: 33447732 PMCID: PMC7784708 DOI: 10.15698/cst2021.01.239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bariatric surgery is one of the most effective treatment options for severe obesity and its comorbidities. However, it is a major surgery that poses several side effects and risks which impede its clinical use. Therefore, it is urgent to develop alternative safer pharmacological approaches to mimic bariatric surgery. Recent studies suggest that bile acids are key players in mediating the metabolic benefits of bariatric surgery. Bile acids can function as signaling molecules by targeting bile acid nuclear receptors and membrane receptors, like FXR and TGR5 respectively. In addition, the composition of bile acids is regulated by either the hepatic sterol enzymes such as CYP8B1 or the gut microbiome. These bile acid related targets all play important roles in regulating metabolism. Drug development based on these targets could provide new hope for patients without the risks of surgery and at a lower cost. In this review, we summarize the most updated progress on bile acid related targets and development of small molecules as drug candidates based on these targets.
Collapse
Affiliation(s)
- Hanchen Shen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescriptions and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Mehdi Baig
- Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jingyan Tian
- Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Institute of Diabetes and Metabolism Research Center, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Carino A, Marchianò S, Biagioli M, Scarpelli P, Bordoni M, Di Giorgio C, Roselli R, Fiorucci C, Monti MC, Distrutti E, Zampella A, Fiorucci S. The bile acid activated receptors GPBAR1 and FXR exert antagonistic effects on autophagy. FASEB J 2021; 35:e21271. [PMID: 33368684 DOI: 10.1096/fj.202001386r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 01/03/2025]
Abstract
Autophagy is a highly conserved catabolic process activated by fasting and caloric restriction. FXR, a receptor for primary bile acids, reverses the activity of cAMP-response element binding protein (CREB) on autophagy-related genes (Atg)s and terminates autophagy in the fed state. GPBAR1, a receptor for secondary bile acids, exerts its genomic effects via cAMP-CREB pathway. By genetic and pharmacological approaches, we have obtained evidence that GPBAR1 functions as a positive modulator of autophagy in liver and white adipose tissue (WAT) in fasting. Mechanistically, we found that Gpbar1-/- mice lack the expression of Cyp2c70 a gene essential for generation of muricholic acids which are FXR antagonists, and have an FXR-biased bile acid pool. Because FXR represses autophagy, Gpbar1-/- mice show a defective regulation of autophagy in fasting. BAR501, a selective GPBAR1 agonist, induces autophagy in fed mice. Defective regulation of autophagy in Gpbar1-/- could be reversed by FXR antagonism, while repression of autophagy by feeding was partially abrogated by FXR gene ablation, and FXR activation repressed Atgs in the fast state. BAR501 reversed the negative regulatory effects of feeding and FXR agonism on autophagy and promoted the recruitment of CREB to a CRE on the LC3 promoter. In mice exposed to chronic high caloric intake, GPBAR1 agonism ameliorated insulin sensitivity and induced Atgs expression in the liver and WAT. In summary, GPBAR1 is required for positive regulation of autophagy in fasting and its ligands reverse the repressive effects exerted on liver and WAT autophagy flow by FXR in fed.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Martina Bordoni
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Cristina Di Giorgio
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Chiara Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Kundi ZM, Lee JCY, Pihlajamäki J, Chan CB, Leung KS, So SSY, Nordlund E, Kolehmainen M, El-Nezami H. Dietary Fiber from Oat and Rye Brans Ameliorate Western Diet-Induced Body Weight Gain and Hepatic Inflammation by the Modulation of Short-Chain Fatty Acids, Bile Acids, and Tryptophan Metabolism. Mol Nutr Food Res 2021; 65:e1900580. [PMID: 32526796 DOI: 10.1002/mnfr.201900580] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/11/2020] [Indexed: 02/27/2024]
Abstract
SCOPE Dietary fiber (DF) induces changes in gut microbiota function and thus modulates the gut environment. How this modulation is associated with metabolic pathways related to the gut is largely unclear. This study aims to investigate differences in metabolites produced by the gut microbiota and their interactions with host metabolism in response to supplementation with two bran fibers. METHODS AND RESULTS Male C57BL/6N mice are fed a western diet (WD) for 17 weeks. Two groups of mice received a diet enriched with 10% w/w of either oat or rye bran, with each bran containing 50% DF. Microbial metabolites are assessed by measuring cecal short-chain fatty acids (SCFAs), ileal and fecal bile acids (BAs), and the expression of genes related to tryptophan (TRP) metabolism. Both brans lowered body weight gain and ameliorated WD-induced impaired glucose responses, hepatic inflammation, liver enzymes, and gut integrity markers associated with SCFA production, altered BA metabolism, and TRP diversion from the serotonin synthesis pathway to microbial indole production. CONCLUSIONS Both brans develop a favorable environment in the gut by altering the composition of microbes and modulating produced metabolites. Changes induced in the gut environment by a fiber-enriched diet may explain the amelioration of metabolic disturbances related to WD.
Collapse
Affiliation(s)
- Zuzanna Maria Kundi
- School of Biological Sciences Kadoorie Building, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Jetty Chung-Yung Lee
- School of Biological Sciences Kadoorie Building, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, University of East Finland, Kuopio, Finland
- Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | - Chi Bun Chan
- School of Biological Sciences Kadoorie Building, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Kin Sum Leung
- School of Biological Sciences Kadoorie Building, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Sik Yu So
- School of Biological Sciences Kadoorie Building, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| | - Emilia Nordlund
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of East Finland, Kuopio, Finland
| | - Hani El-Nezami
- School of Biological Sciences Kadoorie Building, Pokfulam, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Carino A, Moraca F, Fiorillo B, Marchianò S, Sepe V, Biagioli M, Finamore C, Bozza S, Francisci D, Distrutti E, Catalanotti B, Zampella A, Fiorucci S. Hijacking SARS-CoV-2/ACE2 Receptor Interaction by Natural and Semi-synthetic Steroidal Agents Acting on Functional Pockets on the Receptor Binding Domain. Front Chem 2020; 8:572885. [PMID: 33195060 PMCID: PMC7645072 DOI: 10.3389/fchem.2020.572885] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by the severe acute respiratory syndrome coronavirus (SARS)-CoV-2. In light of the urgent need to identify novel approaches to be used in the emergency phase, we have embarked on an exploratory campaign aimed at repurposing natural substances and clinically available drugs as potential anti-SARS-CoV2-2 agents by targeting viral proteins. Here we report on a strategy based on the virtual screening of druggable pockets located in the central β-sheet core of the SARS-CoV-2 Spike's protein receptor binding domain (RBD). By combining an in silico approach and molecular in vitro testing we have been able to identify several triterpenoid/steroidal agents that inhibit interaction of the Spike RBD with the carboxypeptidase domain of the Angiotensin Converting Enzyme (ACE2). In detail, we provide evidence that potential binding sites exist in the RBD of the SARS CoV-2 Spike protein and that occupancy of these pockets reduces the ability of the RBD to bind to the ACE2 consensus in vitro. Naturally occurring and clinically available triterpenoids such as glycyrrhetinic and oleanolic acids, as well as primary and secondary bile acids and their amidated derivatives such as glyco-ursodeoxycholic acid and semi-synthetic derivatives such as obeticholic acid reduces the RBD/ACE2 binding. In aggregate, these results might help to define novel approaches to COVID-19 based on SARS-CoV-2 entry inhibitors.
Collapse
Affiliation(s)
- Adriana Carino
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Federica Moraca
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Net4Science S.r.l., University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Catanzaro, Italy
| | - Bianca Fiorillo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Michele Biagioli
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Silvia Bozza
- Microbiology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Microbiology Section, Department of Medicine, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
21
|
Stefela A, Kaspar M, Drastik M, Holas O, Hroch M, Smutny T, Skoda J, Hutníková M, Pandey AV, Micuda S, Kudova E, Pavek P. 3β-Isoobeticholic acid efficiently activates the farnesoid X receptor (FXR) due to its epimerization to 3α-epimer by hepatic metabolism. J Steroid Biochem Mol Biol 2020; 202:105702. [PMID: 32505574 DOI: 10.1016/j.jsbmb.2020.105702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Bile acids (BAs) are important signaling molecules acting via the farnesoid X nuclear receptor (FXR) and the membrane G protein-coupled bile acid receptor 1 (GPBAR1). Besides deconjugation of BAs, the oxidoreductive enzymes of colonic bacteria and hepatocytes enable the conversion of BAs into their epimers or dehydrogenated forms. Obeticholic acid (OCA) is the first-in-class BA-derived FXR agonist approved for the treatment of primary biliary cholangitis. Herein, a library of OCA derivatives, including 7-keto, 6-ethylidene derivatives and 3β-epimers, was synthetized and investigated in terms of interactions with FXR and GPBAR1 in transaction assays and evaluated for FXR target genes expression in human hepatocytes and C57BL/6 mice. The derivatives were further subjected to cell-free analysis employing in silico molecular docking and a TR-FRET assay. The conversion of the 3βhydroxy epimer and its pharmacokinetics in mice were studied using LC-MS. We found that only the 3β-hydroxy epimer of OCA (3β-isoOCA) possesses significant activity to FXR in hepatic cells and mice. However, in a cell-free assay, 3β-isoOCA had about 9-times lower affinity to FXR than did OCA. We observed that 3β-isoOCA readily epimerizes to OCA in hepatocytes and murine liver. This conversion was significantly inhibited by the hydroxy-Δ5-steroid dehydrogenase inhibitor trilostane. In addition, we found that 3,7-dehydroobeticholic acid is a potent GPBAR1 agonist. We conclude that 3β-isoOCA significantly activates FXR due to its epimerization to the more active OCA by hepatic metabolism. Other modifications as well as epimerization on the C3/C7 positions and the introduction of 6-ethylidene in the CDCA scaffold abrogate FXR agonism and alleviate GPBAR1 activation.
Collapse
Affiliation(s)
- Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Miroslav Kaspar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, Prague 6 - Dejvice, 166 10, Czech Republic; Faculty of Sciences, Charles University in Prague, Albertov 6, Prague 2, 128 43, Czech Republic
| | - Martin Drastik
- Department of Physical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Ondrej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Milos Hroch
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870/13, Hradec Kralove, 500 03, Czech Republic
| | - Tomas Smutny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Miriama Hutníková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic
| | - Amit V Pandey
- Pediatric Endocrinology, University Children's Hospital, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870/13, Hradec Kralove, 500 03, Czech Republic
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nam. 2, Prague 6 - Dejvice, 166 10, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 05, Czech Republic.
| |
Collapse
|
22
|
Absil L, Journé F, Larsimont D, Body JJ, Tafforeau L, Nonclercq D. Farnesoid X receptor as marker of osteotropism of breast cancers through its role in the osteomimetism of tumor cells. BMC Cancer 2020; 20:640. [PMID: 32650752 PMCID: PMC7350202 DOI: 10.1186/s12885-020-07106-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background The skeleton is the first and most common distant metastatic site for breast cancer. Such metastases complicate cancer management, inducing considerable morbidities and decreasing patient survival. Osteomimetism is part of the complex process of osteotropism of breast cancer cells. Recent data indicate that Farnesoid X Receptor (FXR) is involved in the transformation and progression of breast cancer. Methods The expression of FXR, Runt-related transcription factor 2 (RUNX2) and bone proteins were evaluated on two tumor cell lines (MCF-7 and MDA-MB-231) by immunohistochemistry, immunofluorescence and western blotting and quantified. Results In a series of 81 breast cancer patients who developed distant metastases, we found a strong correlation between FXR expression in primary breast tumors and the development of bone metastases, especially in patients with histological grade 3 tumors. In in vitro studies, FXR activation by Chenodeoxycholic acid (CDCA) increased the expression of numerous bone proteins. FXR inhibition by lithocholic acid and z-guggulsterone decreased bone protein expression. Short Hairpin RNA (ShRNA) against FXR validated the involvement of FXR in the osteomimetism of breast cancer cells. Conclusion Our experimental results point to a relationship between the expression of FXR in breast cancer cells and the propensity of these tumor cells to develop bone metastases. FXR induces the expression of RUNX2 which itself causes the synthesis of bone proteins by tumor cells.
Collapse
Affiliation(s)
- L Absil
- Laboratory of Histology, University of Mons, 6, avenue du Champ de Mars, (Pentagone 1B), B-7000, Mons, Belgium.
| | - F Journé
- Laboratory of Human Anatomy and Experimental Oncology, University of Mons, Mons, Belgium.,Laboratory of Oncology and Experimental Surgery, Jules Bordet Institute, ULB, Bruxelles, Belgium
| | - D Larsimont
- Pathology Department, Jules Bordet Institute, ULB, Bruxelles, Belgium
| | - J J Body
- CHU-Brugmann, ULB, Bruxelles, Belgium
| | - L Tafforeau
- Laboratory of Cell Biology, University of Mons, Mons, Belgium
| | - D Nonclercq
- Laboratory of Histology, University of Mons, 6, avenue du Champ de Mars, (Pentagone 1B), B-7000, Mons, Belgium.
| |
Collapse
|
23
|
Carino A, Biagioli M, Marchianò S, Fiorucci C, Bordoni M, Roselli R, Di Giorgio C, Baldoni M, Ricci P, Monti MC, Morretta E, Zampella A, Distrutti E, Fiorucci S. Opposite effects of the FXR agonist obeticholic acid on Mafg and Nrf2 mediate the development of acute liver injury in rodent models of cholestasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158733. [PMID: 32371093 DOI: 10.1016/j.bbalip.2020.158733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022]
Abstract
The farnesoid-X-receptor (FXR) is validated target in the cholestatic disorders treatment. Obeticholic acid (OCA), the first in class of FXR agonist approved for clinical use, causes side effects including acute liver decompensation when administered to cirrhotic patients with primary biliary cholangitis at higher than recommended doses. The V-Maf avian-musculoaponeurotic-fibrosarcoma-oncogene-homolog-G (Mafg) and nuclear factor-erythroid-2-related-factor-2 (Nrf2) mediates some of the downstream effects of FXR. In the present study we have investigated the role of FXR/MafG/NRF2 pathway in the development of liver toxicity caused by OCA in rodent models of cholestasis. Cholestasis was induced by bile duct ligation (BDL) or administration of α-naphtyl-isothiocyanate (ANIT) to male Wistar rats and FXR-/- and FXR+/+ mice. Treating BDL and ANIT rats with OCA exacerbated the severity of cholestasis, hepatocytes injury and severely downregulated the expression of basolateral transporters. In mice, genetic ablation FXR or its pharmacological inhibition by 3-(naphthalen-2-yl)-5-(piperidin-4-yl)-1,2,4-oxadiazole rescued from negative regulation of MRP4 and protected against liver injury caused by ANIT. By RNAseq analysis we found that FXR antagonism effectively reversed the transcription of over 2100 genes modulated by OCA/ANIT treatment, including Mafg and Nrf2 and their target genes Cyp7a1, Cyp8b1, Mat1a, Mat2a, Gss. Genetic and pharmacological Mafg inhibition by liver delivery of siRNA antisense or S-adenosylmethionine effectively rescued from damage caused by ANIT/OCA. In contrast, Nrf2 induction by sulforaphane was protective. CONCLUSIONS: Liver injury caused by FXR agonism in cholestasis is FXR-dependent and is reversed by FXR and Mafg antagonism or Nrf2 induction.
Collapse
Affiliation(s)
- Adriana Carino
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Michele Biagioli
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Chiara Fiorucci
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Martina Bordoni
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Rosalinda Roselli
- Dipartimento di Farmacia, Università di Napoli ' Federico II', Napoli, Italy
| | - Cristina Di Giorgio
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | - Monia Baldoni
- Dipartimento di Medicina, Università di Perugia, Perugia, Italy
| | - Patrizia Ricci
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy
| | | | - Elva Morretta
- Dipartimento di Farmacia, Università di Salerno, Salerno, Italy
| | - Angela Zampella
- Dipartimento di Farmacia, Università di Napoli ' Federico II', Napoli, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Dipartimento di Scienze Biomediche e Chirurgiche, Università di Perugia, Perugia, Italy.
| |
Collapse
|
24
|
Lamers C, Merk D. Discovery, Structural Refinement and Therapeutic Potential of Farnesoid X Receptor Activators. ANTI-FIBROTIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781788015783-00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Farnesoid X receptor acts as bile acid sensing transcription factor and has been identified as valuable molecular drug target to treat severe liver disorders, such as non-alcoholic steatohepatitis (NASH). Preclinical and clinical data indicate anti-fibrotic effects obtained with FXR activation that also appear promising for other fibrotic diseases beyond NASH. Strong efforts in FXR ligand discovery have yielded potent steroidal and non-steroidal FXR activators, some of which have been studied in clinical trials. While the structure–activity relationship of some FXR agonist frameworks have been studied extensively, the structural diversity of potent FXR activator chemotypes is still limited to a handful of well-studied compound classes. Together with safety concerns related to full therapeutic activation of FXR, this indicates the need for novel innovative FXR ligands with selective modulatory properties. This chapter evaluates FXR's value as drug target with emphasis on fibrotic diseases, analyses FXR ligand recognition and requirements and focuses on the discovery and structural refinement of leading FXR activator chemotypes.
Collapse
Affiliation(s)
- Christina Lamers
- University Basel, Molecular Pharmacy Klingelberstr. 50 CH-4056 Basel Switzerland
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry Max-von-Laue-Str. 9 D-60438 Frankfurt Germany
- Swiss Federal Institute of Technology (ETH) Zurich, Institute of Pharmaceutical Sciences Vladimir-Prelog-Weg 4 CH-8093 Zurich Switzerland
| |
Collapse
|
25
|
Unsworth AJ, Flora GD, Gibbins JM. Non-genomic effects of nuclear receptors: insights from the anucleate platelet. Cardiovasc Res 2019; 114:645-655. [PMID: 29452349 PMCID: PMC5915957 DOI: 10.1093/cvr/cvy044] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) have the ability to elicit two different kinds of responses, genomic and non-genomic. Although genomic responses control gene expression by influencing the rate of transcription, non-genomic effects occur rapidly and independently of transcriptional regulation. Due to their anucleate nature and mechanistically well-characterized and rapid responses, platelets provide a model system for the study of any non-genomic effects of the NRs. Several NRs have been found to be present in human platelets, and multiple NR agonists have been shown to elicit anti-platelet effects by a variety of mechanisms. The non-genomic functions of NRs vary, including the regulation of kinase and phosphatase activity, ion channel function, intracellular calcium levels, and production of second messengers. Recently, the characterization of mechanisms and identification of novel binding partners of NRs have further strengthened the prospects of developing their ligands into potential therapeutics that offer cardio-protective properties in addition to their other defined genomic effects.
Collapse
Affiliation(s)
- Amanda J Unsworth
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Gagan D Flora
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| | - Jonathan M Gibbins
- School of Biological Sciences, Institute of Cardiovascular and Metabolic Research, Harborne Building, Whiteknights, Reading RG6 6AS, Berkshire, UK
| |
Collapse
|
26
|
Finamore C, Baronissi G, Marchianò S, Di Leva FS, Carino A, Monti MC, Limongelli V, Zampella A, Fiorucci S, Sepe V. Introduction of Nonacidic Side Chains on 6-Ethylcholane Scaffolds in the Identification of Potent Bile Acid Receptor Agonists with Improved Pharmacokinetic Properties. Molecules 2019; 24:E1043. [PMID: 30884797 PMCID: PMC6470523 DOI: 10.3390/molecules24061043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
As a cellular bile acid sensor, farnesoid X receptor (FXR) and the membrane G-coupled receptor (GPBAR1) participate in maintaining bile acid, lipid, and glucose homeostasis. To date, several selective and dual agonists have been developed as promising pharmacological approach to metabolic disorders, with most of them possessing an acidic conjugable function that might compromise their pharmacokinetic distribution. Here, guided by docking calculations, nonacidic 6-ethyl cholane derivatives have been prepared. In vitro pharmacological characterization resulted in the identification of bile acid receptor modulators with improved pharmacokinetic properties.
Collapse
Affiliation(s)
- Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| | - Giuliana Baronissi
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| | - Silvia Marchianò
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Piazza Lucio Severi, 1 - 06132 Perugia, Italy.
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Piazza Lucio Severi, 1 - 06132 Perugia, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology, Via G. Buffi 13, CH-6900 Lugano, Switzerland.
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Piazza Lucio Severi, 1 - 06132 Perugia, Italy.
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
27
|
Pate J, Gutierrez JA, Frenette CT, Goel A, Kumar S, Manch RA, Mena EA, Pockros PJ, Satapathy SK, Yimam KK, Gish RG. Practical strategies for pruritus management in the obeticholic acid-treated patient with PBC: proceedings from the 2018 expert panel. BMJ Open Gastroenterol 2019; 6:e000256. [PMID: 30815273 PMCID: PMC6361341 DOI: 10.1136/bmjgast-2018-000256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS This article provides expert guidance on the management of pruritus symptoms in patients receiving obeticholic acid (OCA) as treatment for primary biliary cholangitis (PBC). PBC is a chronic, autoimmune cholestatic liver disease that affects intrahepatic bile ducts. If not adequately treated, PBC can lead to cholestasis and end-stage liver disease, which may require transplant. Timely treatment is therefore vital to patient health. Pruritus is a common symptom in patients with PBC. Additionally, the use of OCA to treat PBC can contribute to increased pruritus severity in some patients, adding to patient discomfort, decreasing patient quality of life (QoL), and potentially affecting patient adherence to OCA treatment. METHODS In May 2018, a group of physician experts from the fields of gastroenterology, hepatology, and psychiatry met to discuss the management of pruritus in OCA-treated patients with PBC. Recognizing the importance of optimizing treatment for PBC, these experts developed recommendations for managing pruritus symptoms in the OCA-treated PBC patient based on their experience in clinical practice. RESULTS These recommendations include a comprehensive list of management strategies (including over-the-counter, prescription, and alternative therapies), guidance on titration of OCA to minimize pruritus severity, and an algorithm that outlines a practical approach to follow up with patients receiving OCA, to better assess and manage pruritus symptoms. CONCLUSIONS Pruritus associated with OCA therapy is dose dependent and often manageable, and with the proper education and tools, most pruritus cases can be effectively managed to minimize treatment discontinuation.
Collapse
Affiliation(s)
- Jennifer Pate
- Baylor St Luke’s Medical Center, Houston, Texas, USA
| | - Juilo A Gutierrez
- Transplant and Hepatopancreatobiliary Institute, Verity Medical Foundation, San Jose, California, USA
| | - Catherine T Frenette
- Division of Organ Transplantation, Scripps Clinic/Scripps Green Hospital, La Jolla, California, USA
| | - Aparna Goel
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Sonal Kumar
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York City, New York, USA
| | | | | | - Paul J Pockros
- Division of Gastroenterology and Hepatology, Scripps Clinic/Scripps Translational Science Institute, La Jolla, California, USA
| | - Sanjaya K Satapathy
- Division of Transplant Surgery, Methodist University Hospital Transplant Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kidist K Yimam
- Autoimmune Liver Disease Program, California Pacific Medical Center, San Francisco, California, USA
| | - Robert G Gish
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
28
|
De Marino S, Festa C, Sepe V, Zampella A. Chemistry and Pharmacology of GPBAR1 and FXR Selective Agonists, Dual Agonists, and Antagonists. Handb Exp Pharmacol 2019; 256:137-165. [PMID: 31201554 DOI: 10.1007/164_2019_237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the recent years, bile acid receptors FXR and GPBAR1 have attracted the interest of scientific community and companies, as they proved promising targets for the treatment of several diseases, ranging from liver cholestatic disorders to metabolic syndrome, inflammatory states, nonalcoholic steatohepatitis (NASH), and diabetes.Consequently, the development of dual FXR/GPBAR1 agonists, as well as selective targeting of one of these receptors, is considered a hopeful possibility in the treatment of these disorders. Because endogenous bile acids and steroidal ligands, which cover the same chemical space of bile acids, often target both receptor families, speculation on nonsteroidal ligands represents a promising and innovative strategy to selectively target GPBAR1 or FXR.In this review, we summarize the most recent acquisition on natural, semisynthetic, and synthetic steroidal and nonsteroidal ligands, able to interact with FXR and GPBAR1.
Collapse
Affiliation(s)
- Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
29
|
Di Leva FS, Di Marino D, Limongelli V. Structural Insight into the Binding Mode of FXR and GPBAR1 Modulators. Handb Exp Pharmacol 2019; 256:111-136. [PMID: 31161298 DOI: 10.1007/164_2019_234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter we provide an exhaustive overview of the binding modes of bile acid (BA) and non-BA ligands to the nuclear farnesoid X receptor (FXR) and the G-protein bile acid receptor 1 (GPBAR1). These two receptors play a key role in many diseases related to lipid and glucose disorders, thus representing promising pharmacological targets. We pay particular attention to the chemical and structural features of the ligand-receptor interaction, providing guidelines to achieve ligands endowed with selective or dual activity towards the receptor and paving the way to future drug design studies.
Collapse
Affiliation(s)
| | - Daniele Di Marino
- Faculty of Biomedical Sciences, Institute of Computational Science, Center for Computational Medicine in Cardiology, Università della Svizzera italiana (USI), Lugano, Switzerland.,Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy. .,Faculty of Biomedical Sciences, Institute of Computational Science, Center for Computational Medicine in Cardiology, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
30
|
Nuclear Receptor Metabolism of Bile Acids and Xenobiotics: A Coordinated Detoxification System with Impact on Health and Diseases. Int J Mol Sci 2018; 19:ijms19113630. [PMID: 30453651 PMCID: PMC6274770 DOI: 10.3390/ijms19113630] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023] Open
Abstract
Structural and functional studies have provided numerous insights over the past years on how members of the nuclear hormone receptor superfamily tightly regulate the expression of drug-metabolizing enzymes and transporters. Besides the role of the farnesoid X receptor (FXR) in the transcriptional control of bile acid transport and metabolism, this review provides an overview on how this metabolic sensor prevents the accumulation of toxic byproducts derived from endogenous metabolites, as well as of exogenous chemicals, in coordination with the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Decrypting this network should provide cues to better understand how these metabolic nuclear receptors participate in physiologic and pathologic processes with potential validation as therapeutic targets in human disabilities and cancers.
Collapse
|
31
|
Kim T, Nason S, Holleman C, Pepin M, Wilson L, Berryhill TF, Wende AR, Steele C, Young ME, Barnes S, Drucker DJ, Finan B, DiMarchi R, Perez-Tilve D, Tschöp M, Habegger KM. Glucagon Receptor Signaling Regulates Energy Metabolism via Hepatic Farnesoid X Receptor and Fibroblast Growth Factor 21. Diabetes 2018; 67:1773-1782. [PMID: 29925501 PMCID: PMC6110317 DOI: 10.2337/db17-1502] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
Glucagon, an essential regulator of glucose and lipid metabolism, also promotes weight loss, in part through potentiation of fibroblast growth factor 21 (FGF21) secretion. However, FGF21 is only a partial mediator of metabolic actions ensuing from glucagon receptor (GCGR) activation, prompting us to search for additional pathways. Intriguingly, chronic GCGR agonism increases plasma bile acid levels. We hypothesized that GCGR agonism regulates energy metabolism, at least in part, through farnesoid X receptor (FXR). To test this hypothesis, we studied whole-body and liver-specific FXR-knockout (Fxr∆liver) mice. Chronic GCGR agonist (IUB288) administration in diet-induced obese (DIO) Gcgr, Fgf21, and Fxr whole-body or liver-specific knockout (∆liver) mice failed to reduce body weight when compared with wild-type (WT) mice. IUB288 increased energy expenditure and respiration in DIO WT mice, but not Fxr∆liver mice. GCGR agonism increased [14C]palmitate oxidation in hepatocytes isolated from WT mice in a dose-dependent manner, an effect blunted in hepatocytes from Fxr∆liver mice. Our data clearly demonstrate that control of whole-body energy expenditure by GCGR agonism requires intact FXR signaling in the liver. This heretofore-unappreciated aspect of glucagon biology has implications for the use of GCGR agonism in the therapy of metabolic disorders.
Collapse
MESH Headings
- Adiposity/drug effects
- Animals
- Anti-Obesity Agents/therapeutic use
- Calorimetry, Indirect
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Energy Metabolism/drug effects
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation/drug effects
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/enzymology
- Mitochondria, Liver/metabolism
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Organ Specificity
- Oxidative Phosphorylation/drug effects
- Peptides/therapeutic use
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Glucagon/agonists
- Receptors, Glucagon/genetics
- Receptors, Glucagon/metabolism
- Signal Transduction/drug effects
- Weight Gain/drug effects
Collapse
Affiliation(s)
- Teayoun Kim
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Shelly Nason
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Cassie Holleman
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Mark Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, AL
| | - Landon Wilson
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL
| | - Taylor F Berryhill
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, AL
| | - Chad Steele
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Stephen Barnes
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN
| | - Richard DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN
- Department of Chemistry, Indiana University, Bloomington, IN
| | - Diego Perez-Tilve
- Division of Endocrinology, Diabetes and Metabolism, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Matthias Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - Kirk M Habegger
- Comprehensive Diabetes Center and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
32
|
Tran M, Liu Y, Huang W, Wang L. Nuclear receptors and liver disease: Summary of the 2017 basic research symposium. Hepatol Commun 2018; 2:765-777. [PMID: 30129636 PMCID: PMC6049066 DOI: 10.1002/hep4.1203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/03/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
The nuclear receptor superfamily contains important transcriptional regulators that play pleiotropic roles in cell differentiation, development, proliferation, and metabolic processes to govern liver physiology and pathology. Many nuclear receptors are ligand-activated transcription factors that regulate the expression of their target genes by modulating transcriptional activities and epigenetic changes. Additionally, the protein complex associated with nuclear receptors consists of a multitude of coregulators, corepressors, and noncoding RNAs. Therefore, acquiring new information on nuclear receptors may provide invaluable insight into novel therapies and shed light on new interventions to reduce the burden and incidence of liver diseases. (Hepatology Communications 2018;2:765-777).
Collapse
Affiliation(s)
- Melanie Tran
- Department of Physiology and Neurobiology and Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Yanjun Liu
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope National Medical Center Duarte CA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute City of Hope National Medical Center Duarte CA
| | - Li Wang
- Department of Physiology and Neurobiology and Institute for Systems Genomics, University of Connecticut, Storrs, CT.,Veterans Affairs Connecticut Healthcare System West Haven CT.,Department of Internal Medicine, Section of Digestive Diseases Yale University New Haven CT
| |
Collapse
|
33
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
34
|
Bile acids and their respective conjugates elicit different responses in neonatal cardiomyocytes: role of Gi protein, muscarinic receptors and TGR5. Sci Rep 2018; 8:7110. [PMID: 29740092 PMCID: PMC5940781 DOI: 10.1038/s41598-018-25569-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Bile acids are recognised as bioactive signalling molecules. While they are known to influence arrhythmia susceptibility in cholestasis, there is limited knowledge about the underlying mechanisms. To delineate mechanisms underlying fetal heart rhythm disturbances in cholestatic pregnancy, we used FRET microscopy to monitor cAMP release and contraction measurements in isolated rodent neonatal cardiomyocytes. The unconjugated bile acids CDCA, DCA and UDCA and, to a lesser extent, CA were found to be relatively potent agonists for the GPBAR1 (TGR5) receptor and elicit cAMP release, whereas all glyco- and tauro- conjugated bile acids are weak agonists. The bile acid-induced cAMP production does not lead to an increase in contraction rate, and seems to be mediated by the RI isoform of adenylate cyclase, unlike adrenaline-dependent release which is mediated by the RII isoform. In contrast, bile acids elicited slowing of neonatal cardiomyocyte contraction indicating that other signalling pathways are involved. The conjugated bile acids were found to be partial agonists of the muscarinic M2, but not sphingosin-1-phosphate-2, receptors, and act partially through the Gi pathway. Furthermore, the contraction slowing effect of unconjugated bile acids may also relate to cytotoxicity at higher concentrations.
Collapse
|
35
|
Sepe V, Distrutti E, Fiorucci S, Zampella A. Farnesoid X receptor modulators 2014-present: a patent review. Expert Opin Ther Pat 2018; 28:351-364. [DOI: 10.1080/13543776.2018.1459569] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Valentina Sepe
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | | | - Stefano Fiorucci
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
36
|
Systematic integrative analysis of gene expression identifies HNF4A as the central gene in pathogenesis of non-alcoholic steatohepatitis. PLoS One 2017; 12:e0189223. [PMID: 29216278 PMCID: PMC5720788 DOI: 10.1371/journal.pone.0189223] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/21/2017] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, and encompasses a spectrum from simple steatosis to steatohepatitis (NASH). There is currently no approved pharmacologic therapy against NASH, partly due to an incomplete understanding of its molecular basis. The goal of this study was to determine the key differentially expressed genes (DEGs), as well as those genes and pathways central to its pathogenesis. We performed an integrative computational analysis of publicly available gene expression data in NASH from GEO (GSE17470, GSE24807, GSE37031, GSE89632). The DEGs were identified using GEOquery, and only the genes present in at least three of the studies, to a total of 190 DEGs, were considered for further analyses. The pathways, networks, molecular interactions, functional analyses were generated through the use of Ingenuity Pathway Analysis (IPA). For selected networks, we computed the centrality using igraph package in R. Among the statistically significant predicted networks (p-val < 0.05), three were of most biological interest: the first is involved in antimicrobial response, inflammatory response and immunological disease, the second in cancer, organismal injury and development and the third in metabolic diseases. We discovered that HNF4A is the central gene in the network of NASH connected to metabolic diseases and that it regulates HNF1A, an additional transcription regulator also involved in lipid metabolism. Therefore, we show, for the first time to our knowledge, that HNF4A is central to the pathogenesis of NASH. This adds to previous literature demonstrating that HNF4A regulates the transcription of genes involved in the progression of NAFLD, and that HNF4A genetic variants play a potential role in NASH progression.
Collapse
|
37
|
Flesch D, Cheung SY, Schmidt J, Gabler M, Heitel P, Kramer J, Kaiser A, Hartmann M, Lindner M, Lüddens-Dämgen K, Heering J, Lamers C, Lüddens H, Wurglics M, Proschak E, Schubert-Zsilavecz M, Merk D. Nonacidic Farnesoid X Receptor Modulators. J Med Chem 2017; 60:7199-7205. [PMID: 28749691 DOI: 10.1021/acs.jmedchem.7b00903] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a cellular bile acid sensor, farnesoid X receptor (FXR) participates in regulation of bile acid, lipid and glucose homeostasis, and liver protection. Clinical results have validated FXR as therapeutic target in hepatic and metabolic diseases. To date, potent FXR agonists share a negatively ionizable function that might compromise their pharmacokinetic distribution and behavior. Here we report the development and characterization of a high-affinity FXR modulator not comprising an acidic residue.
Collapse
Affiliation(s)
- Daniel Flesch
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Sun-Yee Cheung
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Jurema Schmidt
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Matthias Gabler
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Jan Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Markus Hartmann
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Mara Lindner
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
| | - Kerstin Lüddens-Dämgen
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz , D-55131 Mainz, Germany
| | - Jan Heering
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME , Theodor-Stern-Kai 7, D-60596 Frankfurt am Main, Germany
| | - Christina Lamers
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Hartmut Lüddens
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz , D-55131 Mainz, Germany
| | - Mario Wurglics
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
38
|
Festa C, De Marino S, Carino A, Sepe V, Marchianò S, Cipriani S, Di Leva FS, Limongelli V, Monti MC, Capolupo A, Distrutti E, Fiorucci S, Zampella A. Targeting Bile Acid Receptors: Discovery of a Potent and Selective Farnesoid X Receptor Agonist as a New Lead in the Pharmacological Approach to Liver Diseases. Front Pharmacol 2017; 8:162. [PMID: 28424617 PMCID: PMC5371667 DOI: 10.3389/fphar.2017.00162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Bile acid (BA) receptors represent well-defined targets for the development of novel therapeutic approaches to metabolic and inflammatory diseases. In the present study, we report the generation of novel C-3 modified 6-ethylcholane derivatives. The pharmacological characterization and molecular docking studies for the structure-activity rationalization, allowed the identification of 3β-azido-6α-ethyl-7α-hydroxy-5β-cholan-24-oic acid (compound 2), a potent and selective FXR agonist with a nanomolar potency in transactivation assay and high efficacy in the recruitment of SRC-1 co-activator peptide in Alfa Screen assay. In vitro, compound 2 was completely inactive towards common off-targets such as the nuclear receptors PPARα, PPARγ, LXRα, and LXRβ and the membrane G-coupled BA receptor, GPBAR1. This compound when administered in vivo exerts a robust FXR agonistic activity increasing the liver expression of FXR-target genes including SHP, BSEP, OSTα, and FGF21, while represses the expression of CYP7A1 gene that is negatively regulated by FXR. Collectively these effects result in a significant reshaping of BA pool in mouse. In summary, compound 2 represents a promising candidate for drug development in liver and metabolic disorders.
Collapse
Affiliation(s)
- Carmen Festa
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy
| | - Simona De Marino
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di MedicinaPerugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy
| | - Silvia Marchianò
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di MedicinaPerugia, Italy
| | - Sabrina Cipriani
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di MedicinaPerugia, Italy
| | | | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy.,Institute of Computational Science - Center for Computational Medicine in Cardiology, Faculty of Informatics, Università della Svizzera ItalianaLugano, Switzerland
| | - Maria C Monti
- Department of Pharmacy, University of SalernoFisciano, Italy
| | - Angela Capolupo
- Department of Pharmacy, University of SalernoFisciano, Italy
| | - Eleonora Distrutti
- Ospedale S. Maria della Misericordia, Azienda Ospedaliera di PerugiaPerugia, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di MedicinaPerugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II"Naples, Italy
| |
Collapse
|
39
|
Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 2017; 65:350-362. [PMID: 27358174 PMCID: PMC5191969 DOI: 10.1002/hep.28709] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/09/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide and an important risk factor for both hepatic and cardiometabolic mortality. The rapidly increasing prevalence of this disease and of its aggressive form nonalcoholic steatohepatitis (NASH) will require novel therapeutic approaches to prevent disease progression to advanced fibrosis or cirrhosis and cancer. In recent years, bile acids have emerged as relevant signaling molecules that act at both hepatic and extrahepatic tissues to regulate lipid and carbohydrate metabolic pathways as well as energy homeostasis. Activation or modulation of bile acid receptors, such as the farnesoid X receptor and TGR5, and transporters, such as the ileal apical sodium-dependent bile acid transporter, appear to affect both insulin sensitivity and NAFLD/NASH pathogenesis at multiple levels, and these approaches hold promise as novel therapies. In the present review, we summarize current available data on the relationships of bile acids to NAFLD and the potential for therapeutically targeting bile-acid-related pathways to address this growing world-wide disease. (Hepatology 2017;65:350-362).
Collapse
Affiliation(s)
- Juan P. Arab
- Department of Gastroenterology, School of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of PediatricsEmory University School of MedicineAtlantaGAUSA
| | - Paul A. Dawson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of PediatricsEmory University School of MedicineAtlantaGAUSA
| | - Marco Arrese
- Department of Gastroenterology, School of MedicinePontificia Universidad Católica de ChileSantiagoChile
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
40
|
Conformational modulation of the farnesoid X receptor by prenylflavonoids: Insights from hydrogen deuterium exchange mass spectrometry (HDX-MS), fluorescence titration and molecular docking studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1667-1677. [PMID: 27596062 DOI: 10.1016/j.bbapap.2016.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022]
Abstract
We report on the molecular interactions of the farnesoid X receptor (FXR) with prenylflavonoids, an emerging class of FXR modulators. FXR is an attractive therapeutic target for mitigating metabolic syndromes (MetS) because FXR activates the inhibitory nuclear receptor, small heterodimer partner (SHP), thereby inhibiting both gluconeogenesis and de novo lipogenesis. We and others have shown that xanthohumol (XN), the principal prenylflavonoid of the hop plant (Humulus lupulus L.), is a FXR agonist based on its ability to affect lipid and glucose metabolism in vivo and to induces FXR target genes in biliary carcinoma cells and HEK293 cells. However, studies are currently lacking to rationalize the molecular mechanisms of FXR modulation by prenylflavonoids. We addressed this deficiency and report the first systematic study of FXR prenylflavonoid interactions. We combined hydrogen deuterium exchange mass spectrometry (HDX-MS) with computational studies for dissecting molecular recognition and conformational impact of prenylflavonoid interactions on the ligand binding domain (LBD) of human FXR. Four prenylflavonoids were tested: xanthohumol, a prenylated chalcone, two prenylated flavonones, namely isoxanthohumol (IX) and 8-prenylnaringenin (8PN), and a semisynthetic prenylflavonoid derivative, tetrahydroxanthohumol (TX). Enhancement of the HDX protection profile data by in silico predicted models of FXR prenylflavonoid complexes resulted in mapping of the prenylflavonoid interactions within the canonical ligand binding pocket. Our findings provide a foundation for the exploration of the chemical scaffolds of prenylated chalcones and flavanones as leads for future structure activity studies of this important nuclear receptor with potential relevance for ameliorating lipid metabolic disorders associated with obesity and MetS.
Collapse
|
41
|
Finamore C, Festa C, Renga B, Sepe V, Carino A, Masullo D, Biagioli M, Marchianò S, Capolupo A, Monti MC, Fiorucci S, Zampella A. Navigation in bile acid chemical space: discovery of novel FXR and GPBAR1 ligands. Sci Rep 2016; 6:29320. [PMID: 27381677 PMCID: PMC4933954 DOI: 10.1038/srep29320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
Bile acids are signaling molecules interacting with nuclear receptors and membrane G-protein-coupled receptors. Among these receptors, the farnesoid X receptor (FXR) and the membrane G-coupled receptor (GPBAR1) have gained increasing consideration as druggable receptors and their exogenous dual regulation represents an attractive strategy in the treatment of enterohepatic and metabolic disorders. However, the therapeutic use of dual modulators could be associated to severe side effects and therefore the discovery of selective GPBAR1 and FXR agonists is an essential step in the medicinal chemistry optimization of bile acid scaffold. In this study, a new series of 6-ethylcholane derivatives modified on the tetracyclic core and on the side chain has been designed and synthesized and their in vitro activities on FXR and GPBAR1 were assayed. This speculation resulted in the identification of compound 7 as a potent and selective GPBAR1 agonist and of several derivatives showing potent dual agonistic activity.
Collapse
Affiliation(s)
- Claudia Finamore
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Barbara Renga
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Dario Masullo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| | - Michele Biagioli
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Silvia Marchianò
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Angela Capolupo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132 Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy
| |
Collapse
|