1
|
Tsamesidis I, Papadimitriou-Tsantarliotou A, Christodoulou A, Amanatidou D, Avgeros C, Stalika E, Bousnaki M, Michailidou G, Beketova A, Eleftheriou P, Bikiaris DN, Vizirianakis IS, Kontonasaki E. Investigating the Cytotoxic Effects of Artemisia absinthium Extract on Oral Carcinoma Cell Line. Biomedicines 2024; 12:2674. [PMID: 39767582 PMCID: PMC11726897 DOI: 10.3390/biomedicines12122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
Background:Artemisia absinthium (A. absinthium), commonly known as absinthe, is a perennial plant with distinctive broad ovate pointed leaves of a silvery-gray color, reaching a height of 1.5 m. The utilization of this herb as a source of natural compounds and as the primary ingredient in the alcoholic beverage absinthe has recently seen a resurgence following a period of prohibition. This study investigates the biological effects of A. absinthium extract on healthy human periodontal ligament stem cells (hPDLSCs) and the human tongue squamous carcinoma cell line (HSC-3). Methods:A. absinthium element characterization was performed using High-Performance Liquid Chromatography (HPLC) and the Folin method. Alizarin assays evaluated the osteogenic capacity of human periodontal ligament cells (hPDLSCs) while CCK-8 and MTT determined the cytotoxicity of the extract against HSC-3 and hPDLSCs. Results: High artemisinin levels were detected, revealing a concentration of 89 μM (25 μg/mL). The total phenolic concentration of the extract was 1.07 mM +/- 0.11. The in vitro cytotoxicity assays revealed the biocompatible profile of the Artemisia extract in hPDLSCs without exhibiting any osteogenic potential. After 24 h of incubation with HSC-3, Artemisia extract (10 µM) decreased cancer cell viability by 99% and artemisinin by 64%, and increased the expression of Caspase 3 and 9 almost six and two times, respectively. Conclusions: In summary, our preliminary findings suggest that A. absinthium extract exhibits a toxic effect against carcinoma cell lines without affecting healthy human periodontal ligament stem cells.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| | - Aliki Papadimitriou-Tsantarliotou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.P.-T.); (C.A.); (I.S.V.)
| | - Athanasios Christodoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| | - Dionysia Amanatidou
- Department of Biomedical Sciences, International Hellenic University, GR-57400 Thessaloniki, Greece; (D.A.); (P.E.)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.P.-T.); (C.A.); (I.S.V.)
| | - Evangelia Stalika
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| | - Maria Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| | - Georgia Michailidou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (D.N.B.)
| | - Anastasia Beketova
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Pulka 3, LV-1007 Riga, Latvia
| | - Phaedra Eleftheriou
- Department of Biomedical Sciences, International Hellenic University, GR-57400 Thessaloniki, Greece; (D.A.); (P.E.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (D.N.B.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.P.-T.); (C.A.); (I.S.V.)
- Department of Health Sciences, School of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (A.C.); (E.S.); (M.B.); (A.B.); (E.K.)
| |
Collapse
|
2
|
Zhang X, Miao J, Song Y, Zhang J, Miao M. Review on effects and mechanisms of plant-derived natural products against breast cancer bone metastasis. Heliyon 2024; 10:e37894. [PMID: 39318810 PMCID: PMC11420494 DOI: 10.1016/j.heliyon.2024.e37894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bone metastasis is the prevalent form of metastasis in breast cancer, resulting in severe pain, pathological fractures, nerve compression, hypercalcemia, and other complications that significantly impair patients' quality of life. The infiltration and colonization of breast cancer (BC) cells in bone tissue disrupt the delicate balance between osteoblasts and osteoclasts within the bone microenvironment, initiating a vicious cycle of bone metastasis. Once bone metastasis occurs, conventional medical therapy with bone-modifying agents is commonly used to alleviate bone-related complications and improve patients' quality of life. However, the utilization of bone-modifying agents may cause severe drug-related adverse effects. Plant-derived natural products such as terpenoids, alkaloids, coumarins, and phenols have anti-tumor, anti-inflammatory, and anti-angiogenic pharmacological properties with minimal side effects. Certain natural products that exhibit both anti-breast cancer and anti-bone metastasis effects are potential therapeutic agents for breast cancer bone metastasis (BCBM). This article reviewed the effects of plant-derived natural products against BCBM and their mechanisms to provide a reference for the research and development of drugs related to BCBM.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxin Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yagang Song
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jiawen Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
3
|
Chen Y, Zheng J, Mo L, Chen F, Li R, Wang Y, Liang Q, Chen Z, Dai W, Chen L, Yan P, Zhou H, Li X. Oroxylin A suppresses breast cancer-induced osteoclastogenesis and osteolysis as a natural RON inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155688. [PMID: 38728920 DOI: 10.1016/j.phymed.2024.155688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Malignant breast cancer cells trigger the over-activation of osteoclast precursor cells, leading to bone loss and severe pain. Targeted inhibition of osteoclast differentiation has emerged as an important strategy for treating bone syndromes induced by breast cancer. PURPOSE The objective is to discover natural osteoclast inhibitor to treat osteoclastogenesis and bone destruction induced by breast cancer, and clarify the specific mechanisms. METHODS Recepteur d'origine Nantais (RON) protein was employed to search the natural osteoclast inhibitor for breast cancer-induced osteoclastogenesis by molecular docking, molecular dynamics simulation and cellular thermal shift assay (CETSA). In the in vitro experiment, breast cancer MDA-MB-231 cell-conditioned medium (MDA-MB-231 CM) was used to induce osteoclastogenesis in murine bone marrow-derived macrophages (BMMs), aiming to elucidate the effects and mechanisms of the natural osteoclast inhibitor. In the in vivo model, MDA-MB-231 cells was injected into the mouse tibia to evaluate the therapeutic effect of drug on breast cancer-induced bone destruction. RESULTS We discovered a significant increase in the expression of RON during MDA-MB-231 CM-induced osteoclast differentiation in vitro. Molecular docking analysis found that oroxylin A (OA), a flavonoid derived from the Chinese medicine Scutellaria baicalensis Georgi, showed binding ability with RON, while its impact and mechanism on breast cancer-induced osteoclastogenesis and osteolysis remains unclear. Molecular dynamics simulation and CETSA further revealed that OA bound directly to the RON protein, and it also decreased RON expression in breast cancer CM-induced osteoclastogenesis. Correspondingly, OA suppressed the MDA-MB-231 CM-induced osteoclastogenesis and bone resorption in vitro. The downstream signals of RON including Src and NFATc1, as well as the osteoclast-specific genes, were downregulated by OA. Of interesting, the suppressive effect of OA on osteoclastogenesis induced by MDA-MB-231 CM was abolished after RON was knocked down by the specific RON-siRNA, this further confirmed that OA showed inhibitory effects on osteoclasts through targeting RON. In addition, we found that OA attenuated MDA-MB-231 cell-induced osteolysis and reduced the number of osteoclasts in vivo. CONCLUSION Our results indicate that OA acts as a natural RON inhibitor to suppress breast cancer-induced osteoclastogenesis and osteolysis. This provides new strategy for treating breast cancer-induced bone destruction and related syndromes.
Collapse
Affiliation(s)
- Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lixia Mo
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fengsheng Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruopeng Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yiyuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghe Liang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ziye Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenqi Dai
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lishan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peiyu Yan
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
4
|
Cheng X, Tian W, Yang J, Wang J, Zhang Y. Engineering approaches to manipulate osteoclast behavior for bone regeneration. Mater Today Bio 2024; 26:101043. [PMID: 38600918 PMCID: PMC11004223 DOI: 10.1016/j.mtbio.2024.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Extensive research has delved into the multifaceted roles of osteoclasts beyond their traditional function in bone resorption in recent years, uncovering their significant influence on bone formation. This shift in understanding has spurred investigations into engineering strategies aimed at leveraging osteoclasts to not only inhibit bone resorption but also facilitate bone regeneration. This review seeks to comprehensively examine the mechanisms by which osteoclasts impact bone metabolism. Additionally, it explores various engineering methodologies, including the modification of bioactive material properties, localized drug delivery, and the introduction of exogenous cells, assessing their potential and mechanisms in aiding bone repair by targeting osteoclasts. Finally, the review proposes current limitations and future routes for manipulating osteoclasts through biological and material cues to facilitate bone repair.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, 1098 Xueyuan Road, Shenzhen 518055, Guangdong Province, China
| | - Wenzhi Tian
- Jilin University, Jilin Province Key Lab Tooth Dev & Bone Remodeling, School and Hospital of Stomatology, Department of Oral Pathology, Changchun 130041, Jilin Province, China
| | - Jianhua Yang
- Longgang District People's Hospital of Shenzhen & the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong province, China
| | - Jiamian Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen 518000, Guangdong Province, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, 1088 Xueyuan Road, Shenzhen 518055, Guangdong Province, China
- School of Biomedical Engineering, Shenzhen University Medical School, 1088 Xueyuan Road, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
5
|
Luan Z, Liu J, Li M, Wang Y, Wang Y. Exosomes derived from umbilical cord-mesenchymal stem cells inhibit the NF-κB/MAPK signaling pathway and reduce the inflammatory response to promote recovery from spinal cord injury. J Orthop Surg Res 2024; 19:184. [PMID: 38491537 PMCID: PMC10943766 DOI: 10.1186/s13018-024-04651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Spinal cord injury (SCI) is a serious traumatic disease of the central nervous system and leads to incomplete or complete loss of the body's autonomous motor and sensory functions, seriously endangering human health. Recently, exosomes have been proposed as important substances in cell-to-cell interactions. Mesenchymal stem cell (MSC)-derived exosomes exert good therapeutic effects and play a crucial role in neurological damage repair. However, the detailed mechanisms underlying their effects remain unknown. Herein, we found that compared to SCI rats, those subjected to umbilical cord MSC (UC-MSC)-derived exosomes injection showed an improved motor ability. Nevertheless, the transcriptome of BV2 microglia in different treatment groups indicated that the action pathway of exosomes might be the NF-κB/MAPK pathway. Additionally, exosomes from UC-MSCs could inhibit P38, JNK, ERK, and P65 phosphorylation in BV2 microglia and SCI rat tissues. Moreover, exosomes could inhibit apoptosis and inflammatory reaction and reactive oxygen species (ROS) production of BV2 microglia in vitro and in vivo. In conclusion, UC-MSCs-derived exosomes might protect SCI in rats by inhibiting inflammatory response via the NF-κB/MAPK signaling pathway, representing novel treatment targets or approaches for SCI.
Collapse
Affiliation(s)
- Zhiwei Luan
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jingsong Liu
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mi Li
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangyang Wang
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopedic surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Yang Y, Jiang Y, Qian D, Wang Z, Xiao L. Prevention and treatment of osteoporosis with natural products: Regulatory mechanism based on cell ferroptosis. J Orthop Surg Res 2023; 18:951. [PMID: 38082321 PMCID: PMC10712195 DOI: 10.1186/s13018-023-04448-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
CONTEXT With the development of society, the number of patients with osteoporosis is increasing. The prevention and control of osteoporosis has become a serious and urgent issue. With the continuous progress of biomedical research, ferroptosis has attracted increased attention. However, the pathophysiology and mechanisms of ferroptosis and osteoporosis still need further study. Natural products are widely used in East Asian countries for osteoporosis prevention and treatment. OBJECTIVE In this paper, we will discuss the basic mechanisms of ferroptosis, the relationship between ferroptosis and osteoclasts and osteoblasts, and in vitro and in vivo studies of natural products to prevent osteoporosis by interfering with ferroptosis. METHODS This article takes ferroptosis, natural products, osteoporosis, osteoblasts and osteoclast as key words. Retrieve literature from 2012 to 2023 indexed in databases such as PubMed Central, PubMed, Web of Science, Scopus and ISI. RESULTS Ferroptosis has many regulatory mechanisms, including the system XC -/GSH/GPX4, p62/Keap1/Nrf2, FSP1/NAD (P) H/CoQ10, P53/SAT1/ALOX15 axes etc. Interestingly, we found that natural products, such as Artemisinin, Biochanin A and Quercetin, can play a role in treating osteoporosis by promoting ferroptosis of osteoclast and inhibiting ferroptosis of osteoblasts. CONCLUSIONS Natural products have great potential to regulate OBs and OCs by mediating ferroptosis to prevent and treat osteoporosis, and it is worthwhile to explore and discover more natural products that can prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Yunshang Yang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China
- Department of Orthopedics, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China
| | - Yifan Jiang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China
| | - Daoyi Qian
- Department of Orthopedics, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China
| | - Zhirong Wang
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China.
- Department of Orthopedics, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China.
| | - Long Xiao
- Translational Medical Innovation Center, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China.
- Department of Orthopedics, The Affiliated Zhangjiagang TCM Hospital of Yangzhou University, Zhangjiagang, 215600, Jiangsu, China.
| |
Collapse
|
7
|
Liu D, Li X, Zhang L, Hu B, Hu S, Zhang X, Hu J. Small molecule inhibitors of osteoarthritis: Current development and future perspective. Front Physiol 2023; 14:1156913. [PMID: 37089415 PMCID: PMC10119395 DOI: 10.3389/fphys.2023.1156913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Osteoarthritis (OA) is one of the common degenerative joint diseases in clinic. It mainly damages articular cartilage, causing pain, swelling and stiffness around joints, and is the main cause of disability of the elderly. Due to the unclear pathogenesis of osteoarthritis and the poor self-healing ability of articular cartilage, the treatment options for this disease are limited. At present, NSAIDs, Glucocorticoid and Duloxetine are the most commonly used treatment choice for osteoarthritis. Although it is somewhat effective, the adverse reactions are frequent and serious. The development of safer and more effective anti-osteoarthritis drugs is essential and urgent. This review summarizes recent advances in the pharmacological treatment of OA, focusing on small molecule inhibitors targeting cartilage remodeling in osteoarthritis as well as the research idea of reducing adverse effects by optimizing the dosage form of traditional drugs for the treatment of osteoarthritis. It should provide a reference for exploration of new potential treatment options.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xingxing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Bin Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Sang Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Zhang
- Institute of Pathology, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
- Chongqing Institute of Advanced Pathology, Jinfeng Laboratory, Chongqing, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
8
|
Tsamesidis I, Theocharidou A, Beketova A, Bousnaki M, Chatzimentor I, Pouroutzidou GK, Gkiliopoulos D, Kontonasaki E. Artemisinin Loaded Cerium-Doped Nanopowders Improved In Vitro the Biomineralization in Human Periodontal Ligament Cells. Pharmaceutics 2023; 15:pharmaceutics15020655. [PMID: 36839977 PMCID: PMC9962187 DOI: 10.3390/pharmaceutics15020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A promising strategy to enhance bone regeneration is the use of bioactive materials doped with metallic ions with therapeutic effects and their combination with active substances and/or drugs. The aim of the present study was to investigate the osteogenic capacity of human periodontal ligament cells (hPDLCs) in culture with artemisinin (ART)-loaded Ce-doped calcium silicate nanopowders (NPs); Methods: Mesoporous silica, calcium-doped and calcium/cerium-doped silicate NPs were synthesized via a surfactant-assisted cooperative self-assembly process. Human periodontal ligament cells (hPDLCs) were isolated and tested for their osteogenic differentiation in the presence of ART-loaded and unloaded NPs through alkaline phosphatase (ALP) activity and Alizarine red S staining, while their antioxidant capacity was also evaluated; Results: ART promoted further the osteogenic differentiation of hPDLCs in the presence of Ce-doped NPs. Higher amounts of Ce in the ART-loaded NPs inversely affected the mineral deposition process by the hPDLCs. ART and Ce in the NPs have a synergistic role controlling the redox status and reducing ROS production from the hPDLCs; Conclusions: By monitoring the Ce amount and ART concentration, mesoporous NPs with optimum properties can be developed towards bone tissue regeneration demonstrating also potential application in periodontal tissue regeneration strategies.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: or
| | - Anna Theocharidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Beketova
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Iason Chatzimentor
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia K. Pouroutzidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Advanced Materials and Devices (AMDeLab), School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Li Y, Li F. Mechanism and Prospect of Gastrodin in Osteoporosis, Bone Regeneration, and Osseointegration. Pharmaceuticals (Basel) 2022; 15:1432. [PMID: 36422561 PMCID: PMC9698149 DOI: 10.3390/ph15111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/14/2023] Open
Abstract
Gastrodin, a traditional Chinese medicine ingredient, is widely used to treat vascular and neurological diseases. However, recently, an increasing number of studies have shown that gastrodin has anti-osteoporosis effects, and its mechanisms of action include its antioxidant effect, anti-inflammatory effect, and anti-apoptotic effect. In addition, gastrodin has many unique advantages in promoting bone healing in tissue engineering, such as inducing high hydrophilicity in the material surface, its anti-inflammatory effect, and pro-vascular regeneration. Therefore, this paper summarized the effects and mechanisms of gastrodin on osteoporosis and bone regeneration in the current research. Here we propose an assumption that the use of gastrodin in the surface loading of oral implants may greatly promote the osseointegration of implants and increase the success rate of implants. In addition, we speculated on the potential mechanisms of gastrodin against osteoporosis, by affecting actin filament polymerization, renin-angiotensin system (RAS) and ferroptosis, and proposed that the potential combination of gastrodin with Mg2+, angiotensin type 2 receptor blockers or artemisinin may greatly inhibit osteoporosis. The purpose of this review is to provide a reference for more in-depth research and application of gastrodin in the treatment of osteoporosis and implant osseointegration in the future.
Collapse
Affiliation(s)
| | - Fenglan Li
- Department of Prosthodontics, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
10
|
LC-MS/TOF Characterization and Stability Study of Artesunate in Different Solvent Systems. SEPARATIONS 2022. [DOI: 10.3390/separations9080218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Artemisinin (ART) is a sesquiterpene lactone and a popular malaria drug used in many parts of the world. Artesunate (ARTS) is a semi-synthetic derivative of ART with improved pharmacokinetic properties. However, the half-life of ARTS is less than an hour in vivo. The analysis of this drug in vitro in different solvent systems using LC-MS/TOF showed a solvent-driven breakdown. ARTS breakdown formed several derivatives, including dihydroartemisinin (DHA), artemether (ARTM) and DHA-dimer among others, at different rates in different solvent composition systems. The change in temperature from room temperature to physiological temperature (37 °C) was found to enhance the rate of the ARTS breakdown. In methanol, ARTS mainly formed ARTM with a chromatographic peak decrease of about 3.13%, while methanol and water (90:10) v/v mainly gave rise to DHA and ARTM with about an 80% chromatographic peak decrease. On the other hand, ARTS in methanol and ammonium acetate (85:15) v/v formed DHA, ARTM, DHA-dimer and other reaction peaks with about a 97% peak decrease and the formation of an orange solution pointing to a molecular re-arrangement reaction. These results have an important bearing on research on the analysis of artemisinin drugs conducted on these common solvents.
Collapse
|
11
|
Li X, Lu Y, Li J, Zhou S, Wang Y, Li L, Zhao F. Photoluminescent carbon dots (PCDs) from sour apple: a biocompatible nanomaterial for preventing UHMWPE wear-particle induced osteolysis via modulating Chemerin/ChemR23 and SIRT1 signaling pathway and its bioimaging application. J Nanobiotechnology 2022; 20:301. [PMID: 35761350 PMCID: PMC9235131 DOI: 10.1186/s12951-022-01498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
Photoluminescent nanomaterials have been widely employed in several biological applications both in vitro and in vivo. For the first time, we report a novel application of sour apple-derived photoluminescent carbon dots (PCDs) for reducing ultra-high molecular weight polyethylene (UHMWPE) wear particle-induced osteolysis using mouse calvarial model. Generally, aseptic prosthetic loosening seems to be a significant postoperative problem for artificial joints replacement, which is mainly contributed by UHMWPE-induced osteolysis. Hence, inhibiting osteoclastic bone-resorption could minimize UHMWPE-induced osteolysis for implant loosening. Prior to osteolysis studies, the prepared sour apple-derived PCDs were employed for bioimaging application. As expected, the prepared PCDs effectively inhibited the UHMWPE particle-induced osteoclastogenesis in vitro. The PCDs treatment effectively inhibited the UHMWPE-induced osteoclast differentiation, F-actin ring pattern, and bone resorption in vitro. Also, the PCDs reduced the UHMWPE-induced ROS stress as well as the expression level of pro-inflammatory cytokines, including TNF-α, IL-1, IL-6, and IL-8. Further, the qPCR and western blot results hypothesized that PCDs inhibited the UHMWPE wear particle-induced osteolysis through suppressing chemerin/ChemR23 signaling and NFATc1 pathway, along with upregulation of SIRT1 expression. Overall, these findings suggest that the synthesized PCDs could be a potential therapeutic material for minimizing UHMWPE particle-induced periprosthetic osteolysis to avoid postoperative complications.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yang Lu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Jiarui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Shengji Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Yuxin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Liangping Li
- Department of Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, People's Republic of China
| | - Fengchao Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
12
|
Ding D, Yan J, Feng G, Zhou Y, Ma L, Jin Q. Dihydroartemisinin attenuates osteoclast formation and bone resorption via inhibiting the NF‑κB, MAPK and NFATc1 signaling pathways and alleviates osteoarthritis. Int J Mol Med 2022; 49:4. [PMID: 34738623 PMCID: PMC8589459 DOI: 10.3892/ijmm.2021.5059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive and degenerative disease, and its incidence is increasing on a yearly basis. However, the pathological mechanism of OA at each stage is still unclear. The present study aimed to explore the underlying mechanism of dihydroartemisinin (DHA) in terms of its ability to inhibit osteoclast activation, and to determine its effects on OA in rats. Bone marrow‑derived macrophages were isolated as osteoclast precursors. In the presence or absence of DHA, osteoclast formation was assessed by tartrate‑resistant acid phosphatase (TRAP) staining, cell viability was assessed by Cell Counting Kit‑8 assay, the presence of F‑actin rings was assessed by immunofluorescence, bone resorption was determined by bone slices, luciferase activities of NF‑κB and nuclear factor of activated T cell cytoplasmic 1 (NFATc1) were determined using luciferase assay kits, the protein levels of biomolecules associated with the NF‑κB, MAPK and NFATc1 signaling pathways were determined using western blotting, and the expression of genes involved in osteoclastogenesis were measured using reverse transcription‑quantitative PCR. A knee OA rat model was designed by destabilizing the medial meniscus (DMM). A total of 36 rats were assigned to three groups, namely the sham‑operated, DMM + vehicle and DMM + DHA groups, and the rats were administered DHA or DMSO. At 4 and 8 weeks postoperatively, the microarchitecture of the subchondral bone was analyzed using micro‑CT, the thickness of the cartilage layers was calculated using H&E staining, the extent of cartilage degeneration was scored using Safranin O‑Fast Green staining, TRAP‑stained osteoclasts were counted, and the levels of receptor activator of NF‑κB ligand (RANKL), C‑X‑C‑motif chemokine ligand 12 (CXCL12) and NFATc1 were measured using immunohistochemistry. DHA was found to inhibit osteoclast formation without cytotoxicity, and furthermore, it did not affect bone formation. In addition, DHA suppressed the expression levels of NF‑κB, MAPK, NFATc1 and genes involved in osteoclastogenesis. Progressive cartilage loss was observed at 8 weeks postoperatively. Subchondral bone remodeling was found to be dominated by bone resorption accompanied by increases in the levels of RANKL, CXCL12 and NFATc1 during the first 4 weeks. DHA was found to delay OA progression by inhibiting osteoclast formation and bone resorption during the early phase of OA. Taken together, the results of the present study demonstrated that the mechanism through which DHA could inhibit osteoclast activation may be associated with the NF‑κB, MAPK and NFATc1 signaling pathways, thereby indicating a potential novel strategy for OA treatment.
Collapse
Affiliation(s)
- Dong Ding
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jiangbo Yan
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Gangning Feng
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yong Zhou
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
13
|
Guo H, Ding D, Wang L, Yan J, Ma L, Jin Q. Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-κB/ERK signaling pathway. PLoS One 2021; 16:e0261127. [PMID: 34914744 PMCID: PMC8675877 DOI: 10.1371/journal.pone.0261127] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/28/2021] [Indexed: 11/18/2022] Open
Abstract
This study explored the mechanism by which metformin (Met) inhibits osteoclast activation and determined its effects on osteoarthritis (OA) mice. Bone marrow-derived macrophages were isolated. Osteoclastogenesis was detected using tartrate-resistant acid phosphatase (TRAP) staining. Cell proliferation was evaluated using CCK-8, F-actin rings were detected by immunofluorescence staining, and bone resorption was detected using bone slices. Nuclear factor kappa-B (NF-κB) and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) were detected using luciferase assays, and the adenosine monophosphate-activated protein kinase (AMPK), NF-κB, and mitogen-activated protein kinase (MAPK) signaling pathways were detected using western blotting. Finally, expression of genes involved in osteoclastogenesis was measured using quantitative polymerase chain reaction. A knee OA mouse model was established by destabilization of the medial meniscus (DMM). Male C57BL/6J mice were assigned to sham-operated, DMM+vehicle, and DMM+Met groups. Met (100 mg/kg/d) or vehicle was administered from the first day postoperative until sacrifice. At 4- and 8-week post OA induction, micro-computed tomography was performed to analyze microstructural changes in the subchondral bone, hematoxylin and eosin staining and Safranin-O/Fast Green staining were performed to evaluate the degenerated cartilage, TRAP-stained osteoclasts were enumerated, and receptor activator of nuclear factor κB ligand (RANKL), AMPK, and NF-κB were detected using immunohistochemistry. BMM proliferation was not affected by Met treatment below 2 mM. Met inhibited osteoclast formation and bone resorption in a dose-dependent manner in vitro. Met suppressed RANKL-induced activation of p-AMPK, NF-κB, phosphorylated extracellular regulated protein kinases (p-ERK) and up-regulation of genes involved in osteoclastogenesis. Met reversed decreases in BV/TV, Tb.Th, Tb.N, and CD, and an increase in Tb.Sp at 4 weeks postoperatively. The number of osteoclasts and OARSI score were decreased by Met without effect on body weight or blood glucose levels. Met inhibited RANKL, p-AMPK, and NF-κB expression in early OA. The mechanism by which Met inhibits osteoclast activation may be associated with AMPK/NF-κB/ERK signaling pathway, indicating a novel strategy for OA treatment.
Collapse
Affiliation(s)
- Haohui Guo
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Dong Ding
- Clinical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Limei Wang
- Clinical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
- Medical College, Qingdao Binhai University, West Coast New District, Qingdao, Shandong, P.R. China
| | - Jiangbo Yan
- Clinical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
- * E-mail: (QJ); (LM)
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
- Clinical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, P.R. China
- * E-mail: (QJ); (LM)
| |
Collapse
|
14
|
Farhan M, Silva M, Xingan X, Zhou Z, Zheng W. Artemisinin Inhibits the Migration and Invasion in Uveal Melanoma via Inhibition of the PI3K/AKT/mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9911537. [PMID: 34931134 PMCID: PMC8684509 DOI: 10.1155/2021/9911537] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/18/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022]
Abstract
Uveal melanoma is the most common primary ocular neoplasm in adults, with many patients ending up developing liver metastasis and facing a significant reduction of their life expectancy due to the lack of efficient treatments. Artemisinin is an antimalarial drug that has been widely used in the clinic and whose anticancer properties have also been described. Its reported safety, affordability, and ability to reach the ocular tissues point that it has a potential therapeutic agent against uveal melanoma. In the present study, we found that a subantimalaria dosage of artemisinin significantly attenuated the migration and invasion potential of uveal melanoma cells, in a concentration-dependent manner. Assessment of the mechanisms underlying artemisinin anticancer action revealed that its use dramatically reduced the phosphorylation of PI3K, AKT, and mTOR in UM cells. Further inhibition of PI3K signaling, using LY294002, or of mTOR, by rapamycin, blocked the migration and invasion of UM cells similarly to artemisinin. In contrast, AKT or mTOR activator (Sc79 and MHY1485, respectively) attenuated the inhibitory effect of artemisinin on the migration and invasion abilities of UM cells, further validating that artemisinin's anticancer effect is likely to be mediated via inhibition of the PI3K/AKT/mTOR pathway. Artemisinin also induced mitochondrial membrane potential loss and apoptosis of UM cells, having no significant toxic effect on normal retinal neuronal cells RGC-5 and epithelial cells D407. These findings and the reported safety of artemisinin's clinical dosage strongly suggest the therapeutic potential of artemisinin in the prevention and treatment of uveal melanomas.
Collapse
Affiliation(s)
- Mohd Farhan
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Marta Silva
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Xing Xingan
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Zhiwei Zhou
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| | - Wenhua Zheng
- Cancer Center and Center of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Institute of Translation Medicine, Faculty of Health Sciences and Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
15
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
16
|
Cheng X, Wei J, Ge Q, Xing D, Zhou X, Qian Y, Jiang G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug Deliv 2021; 28:37-53. [PMID: 33336610 PMCID: PMC7751395 DOI: 10.1080/10717544.2020.1856225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some cancers such as human breast cancer, prostate cancer, and lung cancer easily metastasize to bone, leading to osteolysis and bone destruction accompanied by a complicated microenvironment. Systemic administration of bisphosphonates (BP) or denosumab is the routine therapy for osteolysis but with non-negligible side effects such as mandibular osteonecrosis and hypocalcemia. Thus, it is imperative to exploit optimized drug delivery systems, and some novel nanotechnology and nanomaterials have opened new horizons for scientists. Targeted and local drug delivery systems can optimize biodistribution depending on nanoparticles (NPs) or microspheres (MS) and implantable biomaterials with the controllable property. Drug delivery kinetics can be optimized by smart and sustained/local drug delivery systems for responsive delivery and sustained delivery. These delicately fabricated drug delivery systems with special matrix, structure, morphology, and modification can minimize unexpected toxicity caused by systemic delivery and achieve desired effects through integrating multiple drugs or multiple functions. This review summarized recent studies about optimized drug delivery systems for the treatment of cancer metastatic osteolysis, aimed at giving some inspiration in designing efficient multifunctional drug delivery systems.
Collapse
Affiliation(s)
- Xi Cheng
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qi Ge
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Danlei Xing
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
17
|
Hinz N, Jücker M. AKT in Bone Metastasis of Solid Tumors: A Comprehensive Review. Cancers (Basel) 2021; 13:cancers13102287. [PMID: 34064589 PMCID: PMC8151478 DOI: 10.3390/cancers13102287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bone metastasis is a frequent complication of solid tumors and leads to a reduced overall survival. Although much progress has been made in the field of tumor therapy in the last years, bone metastasis depicts a stage of the disease with a lack of appropriate therapeutical options. Hence, this review aims to present the role of AKT in bone metastasis of solid tumors to place the spotlight on AKT as a possible therapeutical approach for patients with bone metastases. Furthermore, we intended to discuss postulated underlying molecular mechanisms of the bone metastasis-promoting effect of AKT, especially in highly bone-metastatic breast, prostate, and lung cancer. To conclude, this review identified the AKT kinase as a potential therapeutical target in bone metastasis and revealed remaining questions, which need to be addressed in further research projects. Abstract Solid tumors, such as breast cancer and prostate cancer, often form bone metastases in the course of the disease. Patients with bone metastases frequently develop complications, such as pathological fractures or hypercalcemia and exhibit a reduced life expectancy. Thus, it is of vital importance to improve the treatment of bone metastases. A possible approach is to target signaling pathways, such as the PI3K/AKT pathway, which is frequently dysregulated in solid tumors. Therefore, we sought to review the role of the serine/threonine kinase AKT in bone metastasis. In general, activation of AKT signaling was shown to be associated with the formation of bone metastases from solid tumors. More precisely, AKT gets activated in tumor cells by a plethora of bone-derived growth factors and cytokines. Subsequently, AKT promotes the bone-metastatic capacities of tumor cells through distinct signaling pathways and secretion of bone cell-stimulating factors. Within the crosstalk between tumor and bone cells, also known as the vicious cycle, the stimulation of osteoblasts and osteoclasts also causes activation of AKT in these cells. As a consequence, bone metastasis is reduced after experimental inhibition of AKT. In summary, AKT signaling could be a promising therapeutical approach for patients with bone metastases of solid tumors.
Collapse
|
18
|
Khongsti K, Pasupuleti BG, Das B, Bez G. 1,2,3-Triazole tethered 1,2,4‑trioxane trimer induces apoptosis in metastatic cancer cells and inhibits their proliferation, migration and invasion. Bioorg Chem 2021; 112:104952. [PMID: 33971565 DOI: 10.1016/j.bioorg.2021.104952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Artemisinin (ART) has been in use against different cancer cells and its derivatives and conjugates are more cytotoxic to iron-rich cancer cells. It is desirable to develop easily achievable synthetic 1,2,4-trioxanes having the same pharmacophore as that of ART. To explore more efficient compounds, a 1,2,3-triazole tethered 1,2,4‑trioxane trimer (4T) was synthesized and the anti-cancer effects of ART and 4T on MDA-MB-435 and MDA-MB-231 cells were investigated concerning regulation of osteopontin (OPN) expression, which is associated with cancer progression and malignancy. 1H NMR and 13C NMR, oxidative stress analysis, flow cytometry, western blot, Real-Time PCR, transfections, luciferase assay, cell viability, proliferation, migration and chemotactic invasion assays were used in this study. It was observed that the 4T induced apoptosis by inhibiting Bcl-2 (~0.6-fold) and cleavage of caspase-3 (intrinsic pathway) in these metastatic cancer cells, and also reduced colony formation, migration and invasion of these cancer cells. The treatment of 4T decreased the reduced glutathione level and increased the activities of glucose-6-phosphate dehydrogenase and glutathione reductase in the 4T treated cancer cells as compared to their respective controls. Further, the expression of OPN was diminished (~0.5-fold) by the 4T in these cell lines. It was also observed that the key mitogen-activated protein kinase pathway proteins, mitogen-activated protein kinase kinase1/2 (~1.8-fold) and extracellular signal-regulated kinase1/2 (~16-fold), were also activated following the treatment of the 4T. However, the phosphorylated c-Jun level, a component of activator protein-1, was significantly reduced in these cancer cells upon 4T treatment. Taken together, we hypothesize that 4T may be useful for controlling cancer progression and malignancy.
Collapse
Affiliation(s)
- Kitboklang Khongsti
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | | | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
19
|
Zhang G, Li N, Tong Y, Li P, Han H, Song Q, Yang B, Cui L. Artemisinin derivatives inhibit adipogenic differentiation of 3T3-L1 preadipocytes through upregulation of CHOP. Biochem Biophys Res Commun 2021; 557:309-315. [PMID: 33894419 DOI: 10.1016/j.bbrc.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Artemisinin derivatives could inhibit adipogenic differentiation of 3T3-L1 preadipocytes and prevent obesity in mice. However, the molecular mechanism remains largely unclear. Our research was designed to investigate the specific molecular target of artemisinin derivatives in adipogenic differentiation of 3T3-L1 preadipocytes. Here, we revealed that in response to dihydroartemisinin (DHA) or artesunate (ATS), intracellular lipid was decreased in a concentration dependent manner as shown by BODIPY staining. Quantitative PCR analysis showed that expression of Cebpa, Pparg, Fabp4 and Plin was significantly decreased by DHA treatment in a concentration and time dependent manner. Also, DHA treatment remarkably downregulated expression of CCAAT/enhancer-binding protein α (C/EBPα) and nuclear receptor peroxisome proliferation-activated receptor γ (PPARγ) of adipogenic induced 3T3-L1 cells as assayed by western blotting. RNA-seq analysis identified thousands of differential expression genes (DEGs), among which CHOP expression was significantly improved in DHA treated cells. Upregulation of CHOP was verified by quantitative PCR and western blotting, respectively. Knockdown of CHOP by the specific shRNA revealed that the inhibition of adipogenesis by DHA was strongly blocked, resulting in restored lipid accumulation and expression of adipogenic molecules. In conclusions, the inhibitory effect of DHA on adipogenic differentiation of 3T3-L1 preadipocytes was exerted in a concentration and time dependent manner, which was mediated by expression of CHOP.
Collapse
Affiliation(s)
- Guoying Zhang
- Department of Central Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Na Li
- Department of Central Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yongjuan Tong
- Department of Central Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Peilin Li
- Department of Plastic and Cosmetic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Haotian Han
- Department of Plastic and Cosmetic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Qihan Song
- Department of Central Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Bin Yang
- Department of Central Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Lei Cui
- Department of Central Laboratory, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Department of Plastic and Cosmetic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
20
|
Reactive oxygen species (ROS): Critical roles in breast tumor microenvironment. Crit Rev Oncol Hematol 2021; 160:103285. [DOI: 10.1016/j.critrevonc.2021.103285] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
|
21
|
Hu H, Li C, Zhang H, Wu G, Huang Y. Role of vasodilator-stimulated phosphoprotein in RANKL-differentiated murine macrophage RAW264.7 cells: Modulation of NF-κB, c-Fos and NFATc1 transcription factors. Exp Ther Med 2021; 21:412. [PMID: 33747153 PMCID: PMC7967814 DOI: 10.3892/etm.2021.9856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is essential for osteoclast differentiation, and reduced VASP expression results in depressed osteoclast differentiation. Previously, we demonstrated the importance of VASP and Ras-related C3 botulinum toxin substrate 1 interactions in osteosarcoma cell migration and metastasis using Mg-63 and Saos2 cells. However, the molecular details of the functional role of VASP in cell motility and migration remain to be elucidated. The present study demonstrated that VASP affects the expression of αV-integrin, tartrate-resistant acid phosphatase (TRAP) and lamellipodia protrusion in RAW 264.7 murine macrophage cells. The RAW 264.7 mouse monocyte macrophage cell line was used as an osteoclast precursor. RAW 264.7 cells were treated with 50 ng/ml of receptor activator of nuclear factor κ-Β ligand (RANKL) in order to induce cell differentiation (osteoclastogenesis). Small interfering RNA (siRNA) was used to silence VASP, and RT-PCR and western blotting were used to determine the expression for genes and proteins, respectively. TRAP staining as a histochemical marker for osteoclast and fluorescent microscopy for lamellipodia protrusion was performed. RANKL treatment significantly increased the gene and protein expression of VASP, αV-integrin and TRAP in RAW 264.7 cells. Silencing of VASP significantly reduced the RANKL-induced expression of αV-integrin, TRAP and lamellipodia protrusion. In addition, knockdown of VASP attenuated RANKL-stimulated activation of NF-κB, c-Fos and nuclear factor of activated T cells cytoplasmic 1 transcription factors, and the phosphorylation of the p65 and IκBα. These results suggest the critical role of VASP in regulating osteoclast differentiation, which should be further explored in osteosarcoma research.
Collapse
Affiliation(s)
- Hao Hu
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Chao Li
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Haitao Zhang
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Gang Wu
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Yong Huang
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
22
|
Dai X, Zhang X, Chen W, Chen Y, Zhang Q, Mo S, Lu J. Dihydroartemisinin: A Potential Natural Anticancer Drug. Int J Biol Sci 2021; 17:603-622. [PMID: 33613116 PMCID: PMC7893584 DOI: 10.7150/ijbs.50364] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives (ARTs), and it is an effective clinical drug widely used to treat malaria. Recently, the anticancer activity of DHA has attracted increasing attention. Nevertheless, there is no systematic summary on the anticancer effects of DHA. Notably, studies have shown that DHA exerts anticancer effects through various molecular mechanisms, such as inhibiting proliferation, inducing apoptosis, inhibiting tumor metastasis and angiogenesis, promoting immune function, inducing autophagy and endoplasmic reticulum (ER) stress. In this review, we comprehensively summarized the latest progress regarding the anticancer activities of DHA in cancer. Importantly, the underlying anticancer molecular mechanisms and pharmacological effects of DHA in vitro and in vivo are the focus of our attention. Interestingly, new methods to improve the solubility and bioavailability of DHA are discussed, which greatly enhance its anticancer efficacy. Remarkably, DHA has synergistic anti-tumor effects with a variety of clinical drugs, and preclinical and clinical studies provide stronger evidence of its anticancer potential. Moreover, this article also gives suggestions for further research on the anticancer effects of DHA. Thus, we hope to provide a strong theoretical support for DHA as an anticancer drug.
Collapse
Affiliation(s)
- Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| |
Collapse
|
23
|
Ma L, Zhao X, Liu Y, Wu J, Yang X, Jin Q. Dihydroartemisinin attenuates osteoarthritis by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone. Int J Mol Med 2021; 47:22. [PMID: 33448319 PMCID: PMC7846423 DOI: 10.3892/ijmm.2021.4855] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to investigate whether dihydroartemisinin (DHA) alleviates osteoarthritis (OA) in a mouse model of OA. Ten-week-old female C57BL/6j mice were used to establish OA models by anterior cruciate ligament transection (ACLT) and ovariectomized (OVX). DHA was then used to treat the OA in the ACLT and OVX mice. Safranin O-fast green staining and Osteoarthritis Research Society International (OARSI)-modified Mankin scores were used to grade articular cartilage degeneration. Expression of metalloproteinase-13 (MMP-13) and vascular endothelial growth factor (VEGF) in the articular cartilage and leukemia inhibitory factor (LIF), sclerostin, and β-catenin in the subchondral bone were analyzed by immunohistochemistry. Expression of RANKL and CD31 were detected by immunofluorescence. Micro-computed tomography was used to ascertain alterations in the microarchitecture of the subchondral bone. The results demonstrated that DHA decreased MMP-13 and VEGF expression in the articular cartilage. DHA decreased OARSI scores and reduced articular cartilage degeneration. In addition, DHA reduced abnormal subchondral bone remodeling, as demonstrated by a reduction in trabecular separation (Tb.Sp), increased bone volume fractions (BV/TV), as well as bone mineral densities (BMD) compared with the ACLT+vehicle group and the OVX+vehicle group. Furthermore, DHA decreased the inhibition of sclerostin through reduction of LIF secretion by osteoclasts and, hence, attenuated aberrant bone remodeling and inhibited angiogenesis in subchondral bone, further reducing the progression of OA. The present study demonstrated that DHA attenuated OA by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone, which may be a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Long Ma
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xin Zhao
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yibin Liu
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jiang Wu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaochun Yang
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
24
|
Huang TE, Deng YN, Hsu JL, Leu WJ, Marchesi E, Capobianco ML, Marchetti P, Navacchia ML, Guh JH, Perrone D, Hsu LC. Evaluation of the Anticancer Activity of a Bile Acid-Dihydroartemisinin Hybrid Ursodeoxycholic-Dihydroartemisinin in Hepatocellular Carcinoma Cells. Front Pharmacol 2020; 11:599067. [PMID: 33343369 PMCID: PMC7748086 DOI: 10.3389/fphar.2020.599067] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults and accounts for 85-90% of all primary liver cancer. Based on the estimation by the International Agency for Research on Cancer in 2018, liver cancer is the fourth leading cause of cancer death globally. Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is a well-known drug for the treatment of malaria. Previous studies have demonstrated that DHA exhibits antitumor effects toward a variety of human cancers and has a potential for repurposing as an anticancer drug. However, its short half-life is a concern and may limit the application in cancer therapy. We have reported that UDC-DHA, a hybrid of bile acid ursodeoxycholic acid (UDCA) and DHA, is ∼12 times more potent than DHA against a HCC cell line HepG2. In this study, we found that UDC-DHA was also effective against another HCC cell line Huh-7 with an IC50 of 2.16 μM, which was 18.5-fold better than DHA with an IC50 of 39.96 μM. UDC-DHA was much more potent than the combination of DHA and UDCA at 1:1 molar ratio, suggesting that the covalent linkage rather than a synergism between UDCA and DHA is critical for enhancing DHA potency in HepG2 cells. Importantly, UDC-DHA was much less toxic to normal cells than DHA. UDC-DHA induced G0/G1 arrest and apoptosis. Both DHA and UDC-DHA significantly elevated cellular reactive oxygen species generation but with different magnitude and timing in HepG2 cells; whereas only DHA but not UDC-DHA induced reactive oxygen species in Huh-7 cells. Depolarization of mitochondrial membrane potential was detected in both HepG2 and Huh-7 cells and may contribute to the anticancer effect of DHA and UDC-DHA. Furthermore, UDC-DHA was much more stable than DHA based on activity assays and high performance liquid chromatography-MS/MS analysis. In conclusion, UDC-DHA and DHA may exert anticancer actions via similar mechanisms but a much lower concentration of UDC-DHA was required, which could be attributed to a better stability of UDC-DHA. Thus, UDC-DHA could be a better drug candidate than DHA against HCC and further investigation is warranted.
Collapse
Affiliation(s)
- Tzu-En Huang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Yi-Ning Deng
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Massimo L Capobianco
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna, Italy
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna, Italy
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Jiang W, Rixiati Y, Huang H, Shi Y, Huang C, Jiao B. Asperolide A prevents bone metastatic breast cancer via the PI3K/AKT/mTOR/c-Fos/NFATc1 signaling pathway. Cancer Med 2020; 9:8173-8185. [PMID: 32976685 PMCID: PMC7643645 DOI: 10.1002/cam4.3432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer is the leading cause of death among women with malignant tumors worldwide. Bone metastasis is the main factor affecting the prognosis of breast cancer. Therefore, both antitumor and anti‐breast‐cancer‐induced osteolysis agents are urgently needed. Methods We examined the effect of Asperolide A (AA), a marine‐derived agent, on osteolysis and RANKL‐induced phosphoinositide 3‐kinase (PI3K)/AKT/mTOR/c‐FOS/nuclear factor‐activated T cell 1 (NFATc1) pathway activation, F‐actin ring formation, and reactive oxygen species (ROS) generation in vitro. We evaluated AA effect on breast cancer MDA‐MB‐231 and MDA‐MB‐436 cells in vitro through CCK8 assay, wound healing assay, transwell assay, Annexin V‐FITC/PI staining for cell apoptosis, and cell cycle assay. Furthermore, we assessed the effect of AA in vivo using a breast cancer‐induced bone osteolysis nude mouse model, followed by micro‐computed tomography, tartrate‐resistant acid phosphatase staining, and hematoxylin and eosin staining. Results Asperolide A inhibited osteoclast formation and differentiation, bone resorption, F‐actin belt formation, ROS activity, and osteoclast‐specific gene and protein expressions and prevented PI3K/AKT/mTOR/c‐FOS/NFATc1 signaling activation in a dose‐dependent manner in vitro. AA also inhibited breast cancer growth and breast cancer‐induced bone osteolysis by reducing osteoclast formation and function and inactivated PI3K/AKT/mTOR signaling in vivo. Conclusions Our study demonstrated that AA suppressed bone metastatic breast cancer. These findings indicate AA as a potential, novel curative drug candidate for patients with bone metastatic breast cancer.
Collapse
Affiliation(s)
- Wenli Jiang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | | | - Hao Huang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing, China
| | - YiJun Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | - Caiguo Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China
| |
Collapse
|
26
|
Kiani BH, Kayani WK, Khayam AU, Dilshad E, Ismail H, Mirza B. Artemisinin and its derivatives: a promising cancer therapy. Mol Biol Rep 2020; 47:6321-6336. [PMID: 32710388 DOI: 10.1007/s11033-020-05669-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The world is experiencing a cancer epidemic and an increase in the prevalence of the disease. Cancer remains a major killer, accounting for more than half a million deaths annually. There is a wide range of natural products that have the potential to treat this disease. One of these products is artemisinin; a natural product from Artemisia plant. The Nobel Prize for Medicine was awarded in 2015 for the discovery of artemisinin in recognition of the drug's efficacy. Artemisinin produces highly reactive free radicals by the breakdown of two oxygen atoms that kill cancerous cells. These cells sequester iron and accumulate as much as 1000 times in comparison with normal cells. Generally, chemotherapy is toxic to both cancerous cells and normal cells, while no significant cytotoxicity from artemisinin to normal cells has been found in more than 4000 case studies, which makes it far different than conventional chemotherapy. The pleiotropic response of artemisinin in cancer cells is responsible for growth inhibition by multiple ways including inhibition of angiogenesis, apoptosis, cell cycle arrest, disruption of cell migration, and modulation of nuclear receptor responsiveness. It is very encouraging that artemisinin and its derivatives are anticipated to be a novel class of broad-spectrum antitumor agents based on efficacy and safety. This review aims to highlight these achievements and propose potential strategies to develop artemisinin and its derivatives as a new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Asma Umer Khayam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
27
|
PEGylated-Paclitaxel and Dihydroartemisinin Nanoparticles for Simultaneously Delivering Paclitaxel and Dihydroartemisinin to Colorectal Cancer. Pharm Res 2020; 37:129. [DOI: 10.1007/s11095-020-02819-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
|
28
|
Zhang J. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: A review of in vivo and in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103358. [PMID: 32143118 DOI: 10.1016/j.etap.2020.103358] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/16/2023]
Abstract
Osteoporosis is a progressive systemic disease characterized by low bone mineral density and deterioration of bone microarchitecture. The current therapies are effective to prevent further bone loss and fractures but they are accompanied by undesirable side effects and cost issues. The discovery of Chinese herbal medicines with osteoprotective effects provides alternative treatments to prevent bone loss without causing severe side effects. Artemisinin (ARS) and its related compounds have been clinically used as antimalarial agents. Interestingly, their bioactivity is not limited to antimalarial treatment. Experimental evidences indicate that ARS compounds are a potential type of therapeutic alternative medicine for bone loss induced by accelerated osteoclastic bone resorption. The present review intends to summarize the current understandings of ARS compounds and their molecular mechanisms of actions in preventing bone loss. ARS compounds selectively inhibit osteoclast differentiation by downregulation of pathways involved in receptor activator of nuclear factor kappa-B ligand (RANKL) -induced osteoclastogenesis, and have no effect on osteogenic differentiation of osteoblasts. The exact mechanism of activation and action of these anti-resorption effects are not fully elucidated. Considering the characteristic of high levels of intracellular iron in osteoclasts, ARS compounds may inhibit osteoclast differentiation via mechanisms associated with intracellular iron, including the cleavage of endoperoxide bridge, oxidative damage and ferroptosis. The anti-resorptive effects of ARS compounds need to be further investigated in bone loss models caused by different factors, and to be under clinical development.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
29
|
Luan Z, Li J, Huang X, Feng W, Ma S, Song F, Wu Z, Zhang X, Wei L, Yang Z, Yao J. Gö6983 attenuates breast cancer-induced osteolysis by the apoptotic pathway. Cell Biol Int 2019; 44:838-847. [PMID: 31814221 DOI: 10.1002/cbin.11281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/05/2019] [Indexed: 11/11/2022]
Abstract
Bone metastasis caused by breast cancer leads to significant complications in treatment, and the resulting osteolysis considerably affects patients' overall survival and quality of life. Gö6983 is a broad spectrum protein kinase C inhibitor. In this study, based on our finding that the Gö6983 inhibits osteolysis, we applied Gö6983 to the MDA-MB-231 breast cancer-induced mouse bone metastasis model. And we found that Gö6983 has a strong inhibitory effect on the tumorigenic model of breast cancer by promoting the mitochondrial apoptosis pathway. Our study, therefore, demonstrates that Gö6983 has a potential inhibitory effect on breast cancer-induced osteoclast activation and provides mechanistic insight that may prove useful for designing future treatments.
Collapse
Affiliation(s)
- Zhiwei Luan
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Jia Li
- Departments of Pathology, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Huang
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wenyu Feng
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shiting Ma
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fengyang Song
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengyuan Wu
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohan Zhang
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
| | - Linfeng Wei
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenyi Yang
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Yao
- Departments of Orthopedics, The First Affliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
30
|
Dihydroartemisinin Promotes the Osteogenesis of Human Mesenchymal Stem Cells via the ERK and Wnt/ β-Catenin Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3456719. [PMID: 31534957 PMCID: PMC6732601 DOI: 10.1155/2019/3456719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/26/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Dihydroartemisinin (DHA), which is considered to be one of the active compounds within Artemisia annua, has extensively been used in recent years as the most effective drug against malaria, having many biological functions including anticancer, antifungal, and immunomodulatory activities. However, DHA plays a role in the regulation of the proliferation and human mesenchymal stem cells (hMSCs) osteogenic differentiation that remains unknown. We explored DHA's effect on hMSCs' proliferation as well as the osteogenic differentiation, together with its underlying mechanisms of action. We showed that DHA enhanced osteogenic differentiation but had no significant effect on hMSCs' proliferation. It probably exerted its functions through the signaling pathways of ERK1/2 as well as Wnt/β. Because DHA has low toxicity and costs, it might be regarded as an important drug for fracture treatment and tissue engineering.
Collapse
|
31
|
Wang L, Li J, Shi X, Li S, Tang PMK, Li Z, Li H, Wei C. Antimalarial Dihydroartemisinin triggers autophagy within HeLa cells of human cervical cancer through Bcl-2 phosphorylation at Ser70. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 52:147-156. [PMID: 30599894 DOI: 10.1016/j.phymed.2018.09.221] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/25/2018] [Accepted: 09/25/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND As an effective antimalarial medicine, Dihydroartemisinin (DHA) has therapeutic potential on human cervical cancer. However, its working mechanism has not been elucidated. PURPOSE This study aimed to investigate the reversal effect of DHA on human cervical cancer HeLa cells, and explored its mechanism of action in vitro and in vivo. STUDY DESIGN/METHODS The effect and mechanism of DHA on HeLa cells was examined by using CCK-8 assay, flow cytometry, transmission electron microscopy, immunofluorescence, and Western blot analysis in human hepatocellular carcinoma cells. RESULTS In this study, it was confirmed that DHA had statistically equivalent anti-tumor efficiency in HeLa cells with a clinical chemotherapeutic agent of cisplatin. Meanwhile, DHA triggered autophagy, where LC3B-II expression was dose-dependently increased. Further, it was revealed that DHA promotes reactive oxygen species (ROS) generation, with DNA double-strand breaks (DSB) damage, as up-regulation of γH2AX protein and foci formation. Interestingly, we firstly demonstrated that DHA induced autophagy through promotion of the phosphorylation of Bcl-2 (Ser70), independent of the phosphorylated JNK1/2 (Thr183/Tyr185). Moreover, DHA-treated HeLa cells displayed an increase in the pro-autophagic protein Beclin-1 with downregulated the phospho-mTOR (Ser2448). Furthermore, upregulated pro-apoptotic protein Bak-1, but not Bax, suggesting Bak-1 is included in DHA-induced autophagy. CONCLUSION Therefore, DHA upregulates the phosphorylation of Bcl-2 (Ser70) and mTOR (Ser2448) and induces autophagic cell death in Hela cells. This study provided a mechanism to support DHA, an autophagy inducer, as a potential therapeutic agent for human cervical cancer.
Collapse
Affiliation(s)
- Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Clinical Laboratory, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianchun Li
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Clinical Laboratory, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xinli Shi
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China; Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China.
| | - Shenghao Li
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, Department of Pathobiology and Immunology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Zhen Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China
| | - Hui Li
- Department of Otolaryngology Head and Neck Surgery, Bethune International Peace Hospital, Shijiazhuang 050081, China
| | - Cong Wei
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Clinical Laboratory, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
32
|
Komaki S, Sakai E, Fukuma Y, Nishishita K, Okamoto K, Tsukuba T. Dihydroartemisinin represses osteoclastogenesis of bone marrow macrophages through reduced NFATc1 expression and impaired phosphorylation of IκBα. Biomed Res 2018; 39:169-177. [PMID: 30101837 DOI: 10.2220/biomedres.39.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Osteoclasts are multinucleated bone resorbing cells whose differentiation is regulated by several important signaling pathways. Several lines of evidence indicate that dihydroartemisinin (DHA), an anti-malarial drug, inhibits osteoclast differentiation with little cytotoxicity. However, the detailed inhibitory mechanisms of DHA on osteoclastogenesis from native cells remain to be elucidated. In this study, we investigated the effects of DHA on the differentiation of bone marrow-derived macrophages into osteoclasts. DHA inhibited receptor activator of nuclear factor κ-B ligand (RANKL)-induced osteoclast formation and its bone resorbing activity. Mechanistically, DHA treatment markedly abolished phosphorylation of IκBα, and slightly affected a p38 MAPK dependent pathway. Moreover, DHA treatment induced down-regulation of nuclear factor of activated T cells cytoplasmic-1 (NFATc1), a master regulator for osteoclast differentiation and its target proteins, such as Src and cathepsin K. These results indicate that DHA represses RANKL-induced osteoclastogenesis of bone marrow macrophages through reduced NFATc1 expression and impaired phosphorylation of IκBα.
Collapse
Affiliation(s)
- Shunsuke Komaki
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences
| | - Eiko Sakai
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences
| | - Yutaka Fukuma
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kazuhisa Nishishita
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
33
|
Tang K, Jiang K, Chen H, Chen Z, Xu H, Ye Z. Robotic vs. Retropubic radical prostatectomy in prostate cancer: A systematic review and an meta-analysis update. Oncotarget 2018; 8:32237-32257. [PMID: 27852051 PMCID: PMC5458281 DOI: 10.18632/oncotarget.13332] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 10/21/2016] [Indexed: 11/25/2022] Open
Abstract
CONTEXT The safety and feasibility of robotic-assisted radical prostatectomy (RARP) compared with retropubic radical prostatectomy(RRP) is debated. Recently, a number of large-scale and high-quality studies have been conducted. OBJECTIVE To obtain a more valid assessment, we update the meta-analysis of RARP compared with RRP to assessed its safety and feasibility in treatment of prostate cancer. METHODS A systematic search of Medline, Embase, Pubmed, and the Cochrane Library was performed to identify studies that compared RARP with RRP. Outcomes of interest included perioperative, pathologic variables and complications. RESULTS 78 studies assessing RARP vs. RRP were included for meta-analysis. Although patients underwent RRP have shorter operative time than RARP (WMD: 39.85 minutes; P < 0.001), patients underwent RARP have less intraoperative blood loss (WMD = -507.67ml; P < 0.001), lower blood transfusion rates (OR = 0.13; P < 0.001), shorter time to remove catheter (WMD = -3.04day; P < 0.001), shorter hospital stay (WMD = -1.62day; P < 0.001), lower PSM rates (OR:0.88; P = 0.04), fewer positive lymph nodes (OR:0.45;P < 0.001), fewer overall complications (OR:0.43; P < 0.001), higher 3- and 12-mo potent recovery rate (OR:3.19;P = 0.02; OR:2.37; P = 0.005, respectively), and lower readmission rate (OR:0.70, P = 0.03). The biochemical recurrence free survival of RARP is better than RRP (OR:1.33, P = 0.04). All the other calculated results are similar between the two groups. CONCLUSIONS Our results indicate that RARP appears to be safe and effective to its counterpart RRP in selected patients.
Collapse
Affiliation(s)
- Kun Tang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kehua Jiang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Urology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Hongbo Chen
- Department of Urology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Zhiqiang Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Zhu W, Zhang W, Xu N, Li Y, Xu J, Zhang H, Li Y, Lv S, Liu W, Wang H. Dihydroartemisinin induces apoptosis and downregulates glucose metabolism in JF-305 pancreatic cancer cells. RSC Adv 2018; 8:20692-20700. [PMID: 35542352 PMCID: PMC9080833 DOI: 10.1039/c8ra00565f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/13/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cell promotion of glycolysis provides a promising therapeutic target for cancer treatment. Dihydroartemisinin (DHA) displays cytotoxicity to multiple human tumor cells. However, its effects on pancreatic cancer cells are not well studied. The objective of this study was to investigate the effect of DHA on glucose metabolism and cell viability in JF-305 pancreatic cancer cells. To achieve these goals, cell viability was measured with MTT assay, and the occurrence of apoptosis was detected. Glucose uptake, lactate production, and ATP content were measured. Western blotting was used for the detection of apoptosis-related protein expression. The result showed that DHA caused significant reduction in JF-305 cell viability, arrested the cell phase in G2/M, induced apoptosis, and decreased the mitochondrial membrane potential and accumulated ROS. DHA also inhibited glucose uptake, lactate generation, and ATP production. Western blotting showed that treatment with DHA increased the activity of caspase-9 and caspase-3, downregulated Bcl-2 expression, and upregulated the expression levels of Bax and Cyto C. Meanwhile, DHA downregulated the Akt/mTOR signaling pathway and inhibited glucose transporter 1 expression. Our data suggest that DHA treatment increased the apoptosis of JF-305 pancreatic cancer cells, and the effect of apoptosis may be associated with the inhibition of glycolysis. Cancer cell promotion of glycolysis provides a promising therapeutic target for cancer treatment.![]()
Collapse
Affiliation(s)
- Wenhe Zhu
- Jilin Medical University
- Jilin 132013
- China
| | - Wei Zhang
- Jilin Medical University
- Jilin 132013
- China
| | - Na Xu
- Jilin Medical University
- Jilin 132013
- China
| | - Yawei Li
- Jilin Medical University
- Jilin 132013
- China
| | - Junjie Xu
- Jilin Medical University
- Jilin 132013
- China
| | - Hong Zhang
- Jilin Medical University
- Jilin 132013
- China
| | - Yan Li
- Jilin Medical University
- Jilin 132013
- China
| | - Shijie Lv
- Jilin Medical University
- Jilin 132013
- China
| | - Wensen Liu
- Institute of Military Veterinary Medicine
- Academy of Military Medical Sciences
- Changchun 130122
- China
| | | |
Collapse
|
35
|
Cao JT, Mo HM, Wang Y, Zhao K, Zhang TT, Wang CQ, Xu KL, Han ZH. Dihydroartemisinin-induced apoptosis in human acute monocytic leukemia cells. Oncol Lett 2017; 15:3178-3184. [PMID: 29435054 DOI: 10.3892/ol.2017.7644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/08/2017] [Indexed: 12/19/2022] Open
Abstract
Dihydroartemisinin (DHA) is a derivative of artemisinin. The present study aimed to investigate whether DHA induces apoptosis in the THP-1 human acute monocytic leukemia cell line (AMoL), and to identify the relative molecular mechanisms. The results of the present study demonstrated that the viability of THP-1 cells were inhibited by DHA in a dose- and time-dependent manner, which was accompanied by morphological characteristics associated with apoptosis. After 24 h of 200 µM DHA treatment, the proportion of apoptotic cells was significantly increased compared with the untreated controls (P<0.01). In addition, DHA downregulated the levels of B-cell lymphoma (Bcl)-2, protein kinase B (Akt)1, Akt2 and Akt3 gene expression, and increased the expression of the Bcl-2-associated X protein apoptosis regulator. The protein expression of phospho-Akt and phospho-extracellular signal-regulated kinase (ERK) was also decreased, and the protein expression level of cleaved caspase-3 was increased following treatment with DHA. Therefore, DHA may induce apoptosis in the AMoL THP-1 cell line via currently unknown underlying molecular mechanisms, including the downregulation of ERK and Akt, and the activation of caspase-3.
Collapse
Affiliation(s)
- Jia-Tian Cao
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Hui-Min Mo
- Institute of Hematology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yue Wang
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Kai Zhao
- Institute of Hematology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Tian-Tian Zhang
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Chang-Qian Wang
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Kai-Lin Xu
- Institute of Hematology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhi-Hua Han
- Department of Cardiology, The Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| |
Collapse
|
36
|
Kumari K, Keshari S, Sengupta D, Sabat SC, Mishra SK. Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment. BMC Cancer 2017; 17:858. [PMID: 29246124 PMCID: PMC5732364 DOI: 10.1186/s12885-017-3863-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Well-known anti-malarial drug artemisinin exhibits potent anti-cancerous activities. In-vivo and in-vitro studies showed its anti-tumor and immunomodulatory properties signifying it as a potent drug candidate for study. The studies of mechanisms of cell movement are relevant which can be understood by knowing the involvement of genes in an effect of a drug. Although cytotoxicity and anti-proliferative activity of artemisinin is evident, the genes participating in its anti-migratory and reduced invasive effect are not well studied. The present study reports the alteration in the expression of 84 genes involved in cell motility upon artemisinin treatment in MCF-7 breast cancer cells using pathway focused gene expression PCR array. In addition, the effect of artemisinin on epigenetic modifier HDACs is studied. Methods We checked the functional stimulus of artemisinin on cell viability, migration, invasion and apoptosis in breast cancerous cell lines. Using qRT-PCR and western blot, we validated the altered expression of relevant genes associated with proliferation, migration, invasion, apoptosis and mammary gland development. Results Artemisinin inhibited cell proliferation of estrogen receptor negative breast cancer cells with fewer efficacies in comparison to estrogen receptor positive ones. At the same time, cell viability and proliferation of normal breast epithelial MCF10A cells was un-affected. Artemisinin strongly inhibited cancer cell migration and invasion. Along with orphan nuclear receptors (ERRα, ERRβ and ERRγ), artemisinin altered the ERα/ERβ/PR/Her expression status of MCF-7 cells. The expression of genes involved in the signaling pathways associated with proliferation, migration, invasion and apoptosis was significantly altered which cooperatively resulted into reduced growth promoting activities of breast cancer cells. Interestingly, artemisinin exhibited inhibitory effect on histone deacetylases (HDACs). Conclusions Upregulated expression of tumor suppressor genes along with reduced expression of oncogenes significantly associated with growth stimulating signaling pathways in response to artemisinin treatment suggests its efficacy as an effective drug in breast cancer treatment.
Collapse
Affiliation(s)
- Kanchan Kumari
- Cancer Biology Laboratory, Institute of Life Sciences (Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | | | | | - Surendra C Sabat
- Molecular biology of abiotic stress, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sandip K Mishra
- Cancer Biology Laboratory, Institute of Life Sciences (Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
37
|
Qin Y, Yang G, Li M, Liu HJ, Zhong WL, Yan XQ, Qiao KL, Yang JH, Zhai DH, Yang W, Chen S, Zhou HG, Sun T, Yang C. Dihydroartemisinin inhibits EMT induced by platinum-based drugs via Akt-Snail pathway. Oncotarget 2017; 8:103815-103827. [PMID: 29262602 PMCID: PMC5732768 DOI: 10.18632/oncotarget.21793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022] Open
Abstract
Artemisinin and its derivatives exhibit a high activity against a range of cancer cell types both in vitro and in vivo. In clinical practice, platinum-based anti-cancer chemotherapy is widely used to treat tumors. However, a large proportion of patients receiving these treatments will relapse because of metastasis and drug resistance. The purpose of this study is to explore the combinational anti-metastatic effect of platinum-based drugs and dihydroartemisinin (DHA). Both DDP and oxaliplatin (OXA) at low doses could induce epithelial–mesenchymal transition (EMT) in HCC. Meanwhile, co-administration of DHA could enhance DDP and OXA chemosensitivity in HCC and reverse drug resistance. DHA reversed the morphological changes induced by DDP or OXA and reversed the changes in EMT biomarkers induced by DDP and OXA in HCC in vitro and in vivo via AKT–Snail signaling. DHA significantly increased platinum-based drug sensitivity and suppressed EMT induced by platinum-based drugs via AKT–Snail signaling in HCC. DHA is expected to become the new adjuvant for chemotherapy.
Collapse
Affiliation(s)
- Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Meng Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hui-Juan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wei-Long Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xue-Qin Yan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Kai-Liang Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jia-Huan Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Deng-Hui Zhai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wei Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hong-Gang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
38
|
From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol 2017; 46:65-83. [DOI: 10.1016/j.semcancer.2017.02.009] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/24/2022]
|
39
|
Cao Z, Liu C, Bai Y, Dou C, Li JM, Shi DW, Dong SW, Xiang Q. Inhibitory effect of dihydroartemisinin on chondrogenic and hypertrophic differentiation of mesenchymal stem cells. Am J Transl Res 2017; 9:2748-2759. [PMID: 28670366 PMCID: PMC5489878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Chondrocytes located in hyaline cartilage may maintain phenotype while the chondrocytes situated in calcified cartilage differentiate into hypertrophy. Chondrogenic and hypertrophic differentiation of mesenchymal stem cells (MSCs) are two subsequent processes during endochondral ossification. However, it is necessary for chondrocytes to hold homeostasis and to inhibit hypertrophic differentiation in stem cell-based regenerated cartilage. Dihydroartemisinin (DHA) is derived from artemisia apiacea which has many biological functions such as anti-malarial and anti-tumor. Whereas the effects of DHA on chondrogenic and hypertrophic differentiation are poorly understand. In this study, the cytotoxicity of DHA was determined by CCK8 assay and the cell apoptosis was analyzed by flow cytometry. Additionally, the effects of DHA on chondrogenic and hypertrophic differentiation of MSCs are explored by RT-PCR, western blotting and immunohistochemistry. The results showed that DHA inhibited expression of chondrogenic markers including Sox9 and Col2a1 by activating Nrf2 and Notch signaling. After induced to chondrogenesis, cells were treated with hypertrophic induced medium with DHA. The results revealed that hypertrophic markers including Runx2 and Col10a1 were down-regulated following DHA treatment through Pax6/HOXA2 and Gli transcription factors. These findings indicate that DHA is negative to chondrogenesis and is protective against chondrocyte hypertrophy to improve chondrocytes stability. Therefore, DHA might be not suited for chondogenesis but be potential as a new therapeutic candidate to maintain the biological function of regenerated cartilage.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Anatomy, Third Military Medical UniversityChongqing, China
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Chuan Liu
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Jian-Mei Li
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Duo-Wei Shi
- Department of Orthopaedics, Jinchuan Group Company Workers HospitalJinchang 737103, Gansu, China
| | - Shi-Wu Dong
- Department of Biomedical Materials Science, Third Military Medical UniversityChongqing, China
| | - Qiang Xiang
- Department of Emergency, Southwest Hospital, Third Military Medical UniversityChongqing, China
| |
Collapse
|
40
|
Shao YY, Zhang TL, Wu LX, Zou HC, Li S, Huang J, Zhou HH. AKT Axis, miR-21, and RECK Play Pivotal Roles in Dihydroartemisinin Killing Malignant Glioma Cells. Int J Mol Sci 2017; 18:ijms18020350. [PMID: 28208619 PMCID: PMC5343885 DOI: 10.3390/ijms18020350] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/04/2017] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is known to play important roles in inhibiting proliferation rate, inducing apoptosis, as well as hindering the metastasis and invasion of glioma cells, but the underlying mechanisms are still unclear so far. In this study, methyl thiazolyl tetrazolium (MTT), colony-forming, wound healing, invasion, and apoptosis assays were performed to investigate the effect of DHA on malignant glioma cells. Results showed that DHA induced apoptosis of malignant glioma cells through Protein Kinase B (AKT) axis, induced death of malignant glioma cells by downregulating miR-21, and inhibited the invasion of malignant glioma cells corresponding with up-regulation of the reversion-inducing-cysteine-rich protein with kazal motifs (RECK). These results revealed that AKT axis, miR-21, and RECK play pivotal roles in DHA killing malignant glioma cells, suggesting that DHA is a potential agent for treating glioma.
Collapse
Affiliation(s)
- Ying-Ying Shao
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| | - Tao-Lan Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Lan-Xiang Wu
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| | - He-Cun Zou
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| | - Shuang Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Jin Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China.
| | - Hong-Hao Zhou
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
41
|
Jiang J, Geng G, Yu X, Liu H, Gao J, An H, Cai C, Li N, Shen D, Wu X, Zheng L, Mi Y, Yang S. Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis. Oncotarget 2016; 7:87271-87283. [PMID: 27895313 PMCID: PMC5349987 DOI: 10.18632/oncotarget.13536] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 11/02/2016] [Indexed: 12/24/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is an aggressive malignancy and long-term survival remains unsatisfactory for patients with metastatic and recurrent disease. Repurposing the anti-malarial drug dihydroartemisinin (DHA) has been proved to possess potent antitumor effect on various cancers. However, the effects of DHA in preventing the invasion of NSCLC cells have not been studied. In the present study, we determined the inhibitory effects of DHA on invasion and migration and the possible mechanisms involved using A549 and H1975 cells. DHA inhibited in vitro migration and invasion of NSCLC cells even in low concentration with little cytotoxicity. Additionally, low concentration DHA also inhibited Warburg effect in NSCLC cells. Mechanically, DHA negatively regulates NF-κB signaling to inhibit the GLUT1 translocation. Blocking the NF-κB signaling largely abolishes the inhibitory effects of DHA on the translocation of GLUT1 to the plasma membrane and the Warburg effect. Furthermore, GLUT1 knockdown significantly decreased the inhibition of invasion, and migration by DHA. Our results suggested that DHA can inhibit metastasis of NSCLC by targeting glucose metabolism via inhibiting NF-κB signaling pathway and DHA may deserve further investigation in NSCLC treatment.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Guojun Geng
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Xiuyi Yu
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Hongming Liu
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Jing Gao
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Hanxiang An
- Department of Medical Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Chengfu Cai
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ning Li
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Dongyan Shen
- Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Xiaoqiang Wu
- Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Lisheng Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Yanjun Mi
- Department of Thoracic Surgery, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
- Department of Medical Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Shuyu Yang
- Xiamen Diabetes Institution, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
42
|
Zhang Z, Guo M, Zhao S, Shao J, Zheng S. ROS-JNK1/2-dependent activation of autophagy is required for the induction of anti-inflammatory effect of dihydroartemisinin in liver fibrosis. Free Radic Biol Med 2016; 101:272-283. [PMID: 27989749 DOI: 10.1016/j.freeradbiomed.2016.10.498] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023]
Abstract
Accumulating evidence identifies autophagy as an inflammation-related defensive mechanism against diseases including liver fibrosis. Therefore, autophagy may represent a new pharmacologic target for drug development to treat liver fibrosis. In this study, we sought to investigate the effect of dihydroartemisinin (DHA) on autophagy, and to further examine the molecular mechanisms of DHA-induced anti-inflammatory effects. We found that DHA appeared to play an essential role in controlling excessive inflammation. DHA suppressed inflammation in rat liver fibrosis model and inhibited the expression of proinflammatory cytokines in activated hepatic stellate cells (HSCs). Interestingly, DHA increased the autophagosome generation and autophagic flux in activated HSCs, which is underlying mechanism for the anti-inflammatory activity of DHA. Autophagy depletion impaired the induction of anti-inflammatory effect of DHA, while autophagy induction showed a synergistic effect with DHA. Importantly, our study also identified a crucial role for reactive oxygen species (ROS) in the facilitation of DHA-induced autophagy. Antioxidants, such as glutathione and N-acetyl cysteine, significantly abrogated ROS production, and in turn, prevented DHA-induced autophagosome generation and autophagic flux. Besides, we found that c-Jun N-terminal kinase1/2 (JNK1/2) was a downstream signaling molecule of ROS that mediated the induction of autophagy by DHA. Down-regulation of JNK1/2 activity, using selective JNK1/2 inhibitor (SP600125) or siJNK1/2, led to an inhibition of DHA-induced autophagy. Overall, these results provide novel implications to reveal the molecular mechanism of DHA-induced anti-inflammatory effects, by which points to the possibility of using DHA based proautophagic drugs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mei Guo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, PR China
| | - Shifeng Zhao
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jiangjuan Shao
- Department of Pharmacy, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shizhong Zheng
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, PR China.
| |
Collapse
|
43
|
Dou C, Ding N, Xing J, Zhao C, Kang F, Hou T, Quan H, Chen Y, Dai Q, Luo F, Xu J, Dong S. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway. Cell Death Dis 2016; 7:e2162. [PMID: 27031959 PMCID: PMC4823966 DOI: 10.1038/cddis.2016.69] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/27/2016] [Accepted: 03/02/2016] [Indexed: 12/19/2022]
Abstract
Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss.
Collapse
Affiliation(s)
- C Dou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.,Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - N Ding
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - J Xing
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - C Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - F Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - T Hou
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - H Quan
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Y Chen
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Q Dai
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - F Luo
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - J Xu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - S Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China.,China Orthopedic Regenerative Medicine Group, Chongqing 400038, China
| |
Collapse
|