1
|
Olawade DB, Rashad I, Egbon E, Teke J, Ovsepian SV, Boussios S. Reversing Epigenetic Dysregulation in Neurodegenerative Diseases: Mechanistic and Therapeutic Considerations. Int J Mol Sci 2025; 26:4929. [PMID: 40430067 PMCID: PMC12112518 DOI: 10.3390/ijms26104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 05/05/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Epigenetic dysregulation has emerged as an important player in the pathobiology of neurodegenerative diseases (NDDs), such as Alzheimer's, Parkinson's, and Huntington's diseases. Aberrant DNA methylation, histone modifications, and dysregulated non-coding RNAs have been shown to contribute to neuronal dysfunction and degeneration. These alterations are often exacerbated by environmental toxins, which induce oxidative stress, inflammation, and genomic instability. Reversing epigenetic aberrations may offer an avenue for restoring brain mechanisms and mitigating neurodegeneration. Herein, we revisit the evidence suggesting the ameliorative effects of epigenetic modulators in toxin-induced models of NDDs. The restoration of normal gene expressions, the improvement of neuronal function, and the reduction in pathological markers by histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors have been demonstrated in preclinical models of NDDs. Encouragingly, in clinical trials of Alzheimer's disease (AD), HDAC inhibitors have caused improvements in cognition and memory. Combining these beneficial effects of epigenetic modulators with neuroprotective agents and the clearance of misfolded amyloid proteins may offer synergistic benefits. Reinforced by the emerging methods for more effective and brain-specific delivery, reversibility, and safety considerations, epigenetic modulators are anticipated to minimize systemic toxicity and yield more favorable outcomes in NDDs. In summary, although still in their infancy, epigenetic modulators offer an integrated strategy to address the multifactorial nature of NDDs, altering their therapeutic landscape.
Collapse
Affiliation(s)
- David B. Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London E16 2RD, UK;
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Department of Public Health, York St John University, London E14 2BA, UK
- School of Health and Care Management, Arden University, Arden House, Middlemarch Park, Coventry CV3 4FJ, UK
| | - Intishar Rashad
- Department of Acute Medicine, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| | - Eghosasere Egbon
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Life Science Engineering, FH Technikum, 1200 Vienna, Austria;
| | - Jennifer Teke
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury CT1 1QU, UK
| | - Saak Victor Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime ME4 4TB, UK;
- Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
| | - Stergios Boussios
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury CT1 1QU, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki—Thermi, 57001 Thessaloniki, Greece
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| |
Collapse
|
2
|
Liu X, Cui JH, Luan C, Li YP, Tong X, Jiang YX, Wang ZJ, Guo C. Repurposing pharmaceuticals for Alzheimer's treatment via adjusting the lactoferrin interacting proteins. Int J Biol Macromol 2025; 314:144230. [PMID: 40379164 DOI: 10.1016/j.ijbiomac.2025.144230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease in humans, has been a major medical challenge. Lactoferrin (Ltf) in salivary glands might be identified as a potential detectable biomarker in AD and a therapeutic target for AD. Pharmaceutical studies directly addressing this biomarker, though, are scarce. Using a computational strategy for drug repurposing, we explored the proximal neighborhood of Ltf by exploring its interactome and regulatory constellations. We aimed to focus on the discovery of potential therapeutic agents for AD. Based on extensive analytical evaluation comprising structural congruence scales, profiling disease clusters, pathway enrichment analyses as well as molecular docking, SPR, in vivo studies, and immunofluorescence assays, our research identified three candidate repurposed drugs: Lovastatin, SU-11652, and SB-239063. Taken together, these results highlight strong binding affinities of the drug candidates to Ltf. In vitro studies showed that such compounds decrease β-amyloid (Aβ) production by increasing the fluorescence signal emitted by Ltf in N2a-sw cells, and that they act by modulating the expression of amyloidogenic pathway-associated enzymes (BACE1 and APH1α). In addition, in vivo studies showed a concomitant reduction in the expression levels of amyloidogenic pathway-related enzymes (BACE1 or APH1α). Thus, computational studies have focused on Ltf interactions that may recommend drug repurposing strategies and options for AD.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Jun-He Cui
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Chuang Luan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yun-Peng Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Xin Tong
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yu-Xuan Jiang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Zhuo-Jue Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Chuang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
3
|
Majdi A, Yaraghi S, Moharrami A, Ghaffari Tabrizi A, Dojahani M, Alirezapour E, Mansori K, Eskandari M, Mostafavi H. Role of histone deacetylases and sirtuins in the ischaemic stroke: a systematic review and meta-analysis of animal studies. Stroke Vasc Neurol 2025:svn-2025-004159. [PMID: 40341167 DOI: 10.1136/svn-2025-004159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/09/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Treatment of ischaemic stroke requires exploration of novel neuroprotective strategies owing to the constraints of thrombolytic therapy. Recent research implies that modulation of histone deacetylases (HDAC) or sirtuins (SIRT) could be beneficial in achieving this goal. METHODS This systematic review and meta-analysis evaluates the effectiveness of HDAC/SIRT enzyme modulation in treating acute ischaemic stroke. It includes relevant studies but excludes human and in vitro research and non-primary studies. An electronic search was conducted across databases PubMed, Web of Science and Scopus until 20 March 2025. The methodological quality was assessed using a modified SYRCLE risk of bias tool. Infarct volume and neurological responses were extracted as key outcomes, and a random-effects meta-analysis of infarct volume was conducted for studies directly targeting HDAC/SIRT enzymes. RESULTS A review of 71 studies involving over 1600 animals focused on ischaemic stroke treatments, predominantly using male rodents in a transient middle cerebral artery occlusion model. Most treatments were administered intraperitoneally, starting from the inception of ischaemia until 5 days afterwards. Non-selective HDAC inhibitors and SIRT1 modulators were targeted most frequently. The meta-analysis on infarct volume with 95% CI showed an overall effect estimate of -1.529 and suggested that non-selective HDAC inhibitors exhibit the most promise in reducing infarct size. Additionally, agonists of SIRT3/7, SIRT6, SIRT1 and HDAC1, along with inhibitors of SIRT5, HDAC6 and HDAC3, may play a significant role in the treatment of ischaemic stroke. Importantly, neuroprotective treatments have been found to be most effective in reducing infarct volume when administered within 24 hours following ischaemia. DISCUSSION This study highlights the most promising neuroprotective trials for ischaemic stroke by focusing on infarct volume as a key outcome. However, relying exclusively on infarct volume may not fully capture the effectiveness of these treatments.
Collapse
Affiliation(s)
- Ali Majdi
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| | - Shahin Yaraghi
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| | - Ali Moharrami
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| | - Amirreza Ghaffari Tabrizi
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| | - Morteza Dojahani
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| | - Erfan Alirezapour
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| | - Kamyar Mansori
- Department of Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| | - Mehdi Eskandari
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| | - Hossein Mostafavi
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran (the Islamic Republic of)
| |
Collapse
|
4
|
Lei X, Sun E, Ru X, Quan Y, Chen X, Zhang Q, Lu Y, Huang Q, Chen Y, Li W, Feng H, Yang Y, Hu R. Acetylation of α-tubulin restores endothelial cell injury and blood-brain barrier disruption after intracerebral hemorrhage in mice. Exp Mol Med 2025:10.1038/s12276-025-01454-9. [PMID: 40335634 DOI: 10.1038/s12276-025-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 05/09/2025] Open
Abstract
Damage to endothelial cells (ECs) is a key factor in blood-brain barrier (BBB) disruption after intracerebral hemorrhage (ICH). While microtubules are essential for EC structure, their role in BBB injury remains unclear. Here we investigated the role of acetylated α-tubulin (α-Ac-Tub) in BBB integration after ICH. Using an autologous blood injection model in the striatum, we showed that the expression of α-Ac-Tub and MEC17, an α-tubulin acetyltransferase, significantly decreased along the vessels around the hematoma after ICH. Conditional MEC17 knockout in ECs further reduced α-Ac-Tub levels and exacerbated BBB leakage, brain edema, hematoma expansion, inflammation and motor dysfunction. Conversely, selective α-Ac-Tub upregulation in ECs via intravenous delivery of AAV-BI30-MEC17-GFP alleviated BBB dysfunction and improved motor recovery. Similarly, the HDAC6 inhibitor tubastatin A enhanced α-Ac-Tub levels, mitigating BBB damage and neurological deficits. Mechanistically, α-Ac-Tub deficiency in ECs reduced tight junction proteins (ZO-1 and Claudin5) and increased F-actin stress fibers through RhoA activation. Together, our findings highlighted α-Ac-Tub as a therapeutic target for restoring BBB function and reducing brain injury after ICH.
Collapse
Affiliation(s)
- Xuejiao Lei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Eryi Sun
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xufang Ru
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yulian Quan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Pathology, Public Health Medical Center, Chongqing, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yougling Lu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qianying Huang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China.
| | - Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China.
- Department of Neurosurgery, The 904th Hospital of PLA, Anhui Medical University, Wuxi, China.
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
5
|
Guo Y, Li J, Liu X, Ding H, Zhang W. Potential therapeutic targets for ischemic stroke in pre-clinical studies: Epigenetic-modifying enzymes DNMT/TET and HAT/HDAC. Front Pharmacol 2025; 16:1571276. [PMID: 40356977 PMCID: PMC12066669 DOI: 10.3389/fphar.2025.1571276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and disability worldwide, driven by genetic predispositions and environmental interactions, with epigenetics playing a pivotal role in mediating these processes. Specific modifying enzymes that regulate epigenetic changes have emerged as promising targets for IS treatment. DNA methyltransferases (DNMTs), ten-eleven translocation (TET) dioxygenases, histone acetyltransferases (HATs), and histone deacetylases (HDACs) are central to epigenetic regulation. These enzymes maintain a dynamic balance between DNA methylation/demethylation and histone acetylation/deacetylation, which critically influences gene expression and neuronal survival in IS. This review is based on both in vivo and in vitro experimental studies, exploring the roles of DNMT/TET and HAT/HDAC in IS, evaluating their potential as therapeutic targets, and discussing the use of natural compounds as modulators of these enzymes to develop novel treatment strategies.
Collapse
Affiliation(s)
- Yurou Guo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Li
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaodan Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Huang Ding
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Wei Zhang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Key Laboratory of Hunan Provincial for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| |
Collapse
|
6
|
Upadhayay S, Soni D, Dhureja M, Temgire P, Kumar V, Arthur R, Kumar P. Role of Fibroblast Growth Factors in Neurological Disorders: Insight into Therapeutic Approaches and Molecular Mechanisms. Mol Neurobiol 2025:10.1007/s12035-025-04962-x. [PMID: 40281300 DOI: 10.1007/s12035-025-04962-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In the last few decades, the incidence and progression of neurological disorders have consistently increased, which mainly occur due to environmental pollution, genetic abnormalities, and modern lifestyles. Several case reports suggested that these factors enhanced oxidative stress, mitochondrial dysfunction, inflammation, and apoptosis, leading to neurological disease. The pathophysiology of neurological disorders is still not understood, mainly due to the diversity within affected populations. Existing treatment options primarily provide symptomatic relief but frequently come with considerable side effects, including depression, anxiety, and restlessness. Fibroblast growth factors (FGFs) are key signalling molecules regulating various cellular functions, including cell proliferation, differentiation, electrical excitability, and injury responses. Hence, several investigations claimed a relationship between FGFs and neurological disorders, and their findings indicated that they could be used as therapeutic targets for neurological disorders. The FGFs are reported to activate various signalling pathways, including Ras/MAPK/PI3k/Akt, and downregulate the GSK-3β/NF-κB pathways responsible for anti-oxidant, anti-inflammatory, and anti-apoptotic effects. Therefore, researchers are interested in developing novel treatment options for neurological disorders. The emergence of unreported FGFs contributes to our understanding of their involvement in these conditions and encourages further exploration of innovative therapeutic approaches. All the data were obtained from published articles using PubMed, Web of Science, and Scopus databases using the search terms Fibroblast Growth Factor, PD, HD, AD, ALS, signalling pathways, and neurological disorders.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Pooja Temgire
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Vishal Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Richmond Arthur
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
7
|
Liu J, Zhen L, Yu D, Wang W. EFFECT AND REGULATORY MECHANISM OF SIRT6 ON POSTCARDIAC ARREST BRAIN INJURY IN RATS. Shock 2025; 63:648-655. [PMID: 39749948 DOI: 10.1097/shk.0000000000002545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
ABSTRACT Aims: Brain injury occupies the predominant cause of neurological dysfunction and mortality after successful cardiopulmonary resuscitation (CPR) from cardiac arrest (CA). This study investigates the role and mechanism of Sirtuin 6 (SIRT6) in postcardiac arrest brain injury in rats. Methods: All rats were subjected to asphyxial CA followed by CPR. Two weeks before modeling, rats were infected with lentivirus containing oe-SIRT6 and oe-FOXO1 through lateral ventricular injection. qRT-PCR and Western blot quantified SIRT6 and FOXO1 expressions in brain tissues. Neurological deficit scores evaluated the neural function of rats at different time points, and Water Maze Test assessed the changes in short-term learning and memory abilities. The survival status of rats 7 days after modeling was recorded. The pathological changes in brain tissues, inflammatory factors, and apoptosis were evaluated by H&E staining, ELISA, and TUNEL, respectively. Ch-IP measured the enrichment of SIRT6 and H3K9ac in the FOXO1 promoter. Results: SIRT6 was poorly expressed while FOXO1 was highly expressed in CA/CPR rats. Elevation of SIRT6 expression alleviated neural function, behavioral ability, and survival rate, as well as abated pathological damage, inflammatory responses, and cell apoptosis in CA/CPR rats. Mechanistically, SIRT6 curbed FOXO1 transcription and expression by lowering the H3K9ac level in the FOXO1 promoter; FOXO1 overexpression abolished the improvement effect of SIRT6 overexpression on brain injury in CA/CPR rats. Conclusions: Elevation of SIRT6 expression restrained the FOXO1 expression by diminishing the H3K9ac level in the FOXO1 promoter, thereby mitigating postcardiac arrest brain injury in rats.
Collapse
Affiliation(s)
- Jianxiong Liu
- Department of Emergency Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | | | | | | |
Collapse
|
8
|
Chen Y, Xiao D, Li X. Lactylation and Central Nervous System Diseases. Brain Sci 2025; 15:294. [PMID: 40149815 PMCID: PMC11940311 DOI: 10.3390/brainsci15030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
As the final product of glycolysis, lactate serves as an energy substrate, metabolite, and signaling molecule in various diseases and mediates lactylation, an epigenetic modification that occurs under both physiological and pathological conditions. Lactylation is a crucial mechanism by which lactate exerts its functions, participating in vital biological activities such as glycolysis-related cellular functions, macrophage polarization, and nervous system regulation. Lactylation links metabolic regulation to central nervous system (CNS) diseases, such as traumatic brain injury, Alzheimer's disease, acute ischemic stroke, and schizophrenia, revealing the diverse functions of lactylation in the CNS. In the future, further exploration of lactylation-associated enzymes and proteins is needed to develop specific lactylation inhibitors or activators, which could provide new tools and strategies for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| |
Collapse
|
9
|
Guzenko VV, Bachurin SS, Khaitin AM, Dzreyan VA, Kalyuzhnaya YN, Bin H, Demyanenko SV. Acetylation of p53 in the Cerebral Cortex after Photothrombotic Stroke. Transl Stroke Res 2024; 15:970-985. [PMID: 37580538 DOI: 10.1007/s12975-023-01183-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
p53 expression and acetylation are crucial for the survival and death of neurons in penumbra. At the same time, the outcome of ischemia for penumbra cells depends largely on the histone acetylation status, but the effect of histone acetyltransferases and deacetylases on non-histone proteins like p53 is largely understudied. With combined in silico and in vitro approach, we have identified enzymes capable of acetylation/deacetylation, distribution, stability, and pro-apoptotic activity of p53 in ischemic penumbra in the course of post-stroke recovery, and also detected involved loci of acetylation in p53. The dynamic regulation of the acetylation of p53 at lysine 320 is controlled by acetyltransferase PCAF and histone deacetylases HDAC1 and HDAC6. The in silico simulation have made it possible to suggest the acetylation of p53 at lysine 320 acetylation may facilitate the shuttling of p53 between the nucleus and cytoplasm in penumbra neurons. Acetylation of p53 at lysine 320 is more preferable than acetylation at lysine 373 and probably promotes survival and repair of penumbra neurons after stroke. Strategies to increase p53 acetylation at lysine 320 via increasing PCAF activity, inhibiting HDAC1 or HDAC6, inhibiting p53, or a combination of these interventions may have therapeutic benefits for stroke recovery and would be promising for neuroprotective therapy of stroke.
Collapse
Affiliation(s)
- V V Guzenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - S S Bachurin
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia
| | - A M Khaitin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - V A Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - Y N Kalyuzhnaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia
| | - He Bin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - S V Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachki ave., Rostov-on-Don, 344090, Russia.
- Department of General and Clinical Biochemistry no.2, Rostov State Medical University, Nakhichevansky lane, Rostov-on-Don, 344022, Russia.
| |
Collapse
|
10
|
Baur K, Şan Ş, Hölzl-Wenig G, Mandl C, Hellwig A, Ciccolini F. GDF15 controls primary cilia morphology and function thereby affecting progenitor proliferation. Life Sci Alliance 2024; 7:e202302384. [PMID: 38719753 PMCID: PMC11077589 DOI: 10.26508/lsa.202302384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
We recently reported that growth/differentiation factor 15 (GDF15) and its receptor GDNF family receptor alpha-like (GFRAL) are expressed in the periventricular germinal epithelium thereby regulating apical progenitor proliferation. However, the mechanisms are unknown. We now found GFRAL in primary cilia and altered cilia morphology upon GDF15 ablation. Mutant progenitors also displayed increased histone deacetylase 6 (Hdac6) and ciliary adenylate cyclase 3 (Adcy3) transcript levels. Consistently, microtubule acetylation, endogenous sonic hedgehog (SHH) activation and ciliary ADCY3 were all affected in this group. Application of exogenous GDF15 or pharmacological antagonists of either HDAC6 or ADCY3 similarly normalized ciliary morphology, proliferation and SHH signalling. Notably, Gdf15 ablation affected Hdac6 expression and cilia length only in the mutant periventricular niche, in concomitance with ciliary localization of GFRAL. In contrast, in the hippocampus, where GFRAL was not expressed in the cilium, progenitors displayed altered Adcy3 expression and SHH signalling, but Hdac6 expression, cilia morphology and ciliary ADCY3 levels remained unchanged. Thus, ciliary signalling underlies the effect of GDF15 on primary cilia elongation and proliferation in apical progenitors.
Collapse
Affiliation(s)
- Katja Baur
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Şeydanur Şan
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
- Sorbonne University, Paris, France
| | - Gabriele Hölzl-Wenig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Claudia Mandl
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Andrea Hellwig
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Francesca Ciccolini
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Peng C, Wang Y, Hu Z, Chen C. Selective HDAC6 inhibition protects against blood-brain barrier dysfunction after intracerebral hemorrhage. CNS Neurosci Ther 2024; 30:e14429. [PMID: 37665135 PMCID: PMC10915991 DOI: 10.1111/cns.14429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUNDS Blood-brain barrier (BBB) disruption after intracerebral hemorrhage (ICH) significantly induces neurological impairment. Previous studies showed that HDAC6 knockdown or TubA can protect the TNF-induced endothelial dysfunction. However, the role of HDAC6 inhibition on ICH-induced BBB disruption remains unknown. METHODS Hemin-induced human brain microvascular endothelial cells (HBMECs) and collagenase-induced rats were employed to investigated the underlying impact of the HDAC6 inhibition in BBB lesion and neuronal dysfunction after ICH. RESULTS We found a significant decrease in acetylated α-tubulin during early phase of ICH. Both 25 or 40 mg/kg of TubA could relieve neurological deficits, perihematomal cell apoptosis, and ipsilateral brain edema in ICH animal model. TubA or specific siRNA of HDAC6 inhibited apoptosis and reduced the endothelial permeability of HBMECs. HDAC6 inhibition rescued the degradation of TJ proteins and repaired TJs collapses after ICH induction. Finally, the results suggested that the protective effects on BBB after ICH induction were exerted via upregulating the acetylated α-tubulin and reducing stress fiber formation. CONCLUSIONS Inhibition of HDAC6 expression showed beneficial effects against BBB disruption after experimental ICH, which suggested that HDAC6 could be a novel and promising target for ICH treatment.
Collapse
Affiliation(s)
- Cuiying Peng
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Department of Neurology, Hunan Provincial Rehabilitation HospitalHunan University of MedicineChangshaHunanChina
| | - Yilin Wang
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhiping Hu
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chunli Chen
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
12
|
Vercalsteren E, Karampatsi D, Buizza C, Nyström T, Klein T, Paul G, Patrone C, Darsalia V. The SGLT2 inhibitor Empagliflozin promotes post-stroke functional recovery in diabetic mice. Cardiovasc Diabetol 2024; 23:88. [PMID: 38424560 PMCID: PMC10905950 DOI: 10.1186/s12933-024-02174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Type-2 diabetes (T2D) worsens stroke recovery, amplifying post-stroke disabilities. Currently, there are no therapies targeting this important clinical problem. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are potent anti-diabetic drugs that also efficiently reduce cardiovascular death and heart failure. In addition, SGLT2i facilitate several processes implicated in stroke recovery. However, the potential efficacy of SGLT2i to improve stroke recovery in T2D has not been investigated. Therefore, we determined whether a post-stroke intervention with the SGLT2i Empagliflozin could improve stroke recovery in T2D mice. T2D was induced in C57BL6J mice by 8 months of high-fat diet feeding. Hereafter, animals were subjected to transient middle cerebral artery occlusion and treated with vehicle or the SGLTi Empagliflozin (10 mg/kg/day) starting from 3 days after stroke. A similar study in non diabetic mice was also conducted. Stroke recovery was assessed using the forepaw grip strength test. To identify potential mechanisms involved in the Empagliflozin-mediated effects, several metabolic parameters were assessed. Additionally, neuronal survival, neuroinflammation, neurogenesis and cerebral vascularization were analyzed using immunohistochemistry/quantitative microscopy. Empagliflozin significantly improved stroke recovery in T2D but not in non-diabetic mice. Improvement of functional recovery was associated with lowered glycemia, increased serum levels of fibroblast growth factor-21 (FGF-21), and the normalization of T2D-induced aberration of parenchymal pericyte density. The global T2D-epidemic and the fact that T2D is a major risk factor for stroke are drastically increasing the number of people in need of efficacious therapies to improve stroke recovery. Our data provide a strong incentive for the potential use of SGLT2i for the treatment of post-stroke sequelae in T2D.
Collapse
Affiliation(s)
- Ellen Vercalsteren
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | - Dimitra Karampatsi
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Thomas Nyström
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Cesare Patrone
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| | - Vladimer Darsalia
- NeuroCardioMetabol Group, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, 118 83, Stockholm, Sweden.
| |
Collapse
|
13
|
Zheng W, Li W, Zeng Y, Yuan H, Yang H, Chen R, Zhu A, Wu J, Song Z, Yan W. Endogenous FGF21 attenuates blood-brain barrier disruption in penumbra after delayed recanalization in MCAO rats through FGFR1/PI3K/Akt pathway. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:648-662. [PMID: 37539567 PMCID: PMC10930414 DOI: 10.11817/j.issn.1672-7347.2023.220380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Restoration of blood circulation within "time window" is the principal treating goal for treating acute ischemic stroke. Previous studies revealed that delayed recanalization might cause serious ischemia/reperfusion injury. However, plenty of evidences showed delayed recanalization improved neurological outcomes in acute ischemic stroke. This study aims to explore the role of delayed recanalization on blood-brain barrier (BBB) in the penumbra (surrounding ischemic core) and neurological outcomes after middle cerebral artery occlusion (MCAO). METHODS Recanalization was performed on the 3rd day after MCAO. BBB disruption was tested by Western blotting, Evans blue dye, and immunofluorescence staining. Infarct volume and neurological outcomes were evaluated on the 7th day after MCAO. The expression of fibroblast growth factor 21 (FGF21), fibroblast growth factor receptor 1 (FGFR1), phosphatidylinositol-3-kinase (PI3K), and serine/threonine kinase (Akt) in the penumbra were observed by immunofluorescence staining and/or Western blotting. RESULTS The extraversion of Evans blue, IgG, and albumin increased surrounding ischemic core after MCAO, but significantly decreased after recanalization. The expression of Claudin-5, Occludin, and zona occludens 1 (ZO-1) decreased surrounding ischemic core after MCAO, but significantly increased after recanalization. Infarct volume reduced and neurological outcomes improved following recanalization (on the 7th day after MCAO). The expressions of Claudin-5, Occludin, and ZO-1 decreased surrounding ischemic core following MCAO, which were up-regulated corresponding to the increases of FGF21, p-FGFR1, PI3K, and p-Akt after recanalization. Intra-cerebroventricular injection of FGFR1 inhibitor SU5402 down-regulated the expression of PI3K, p-Akt, Occludin, Claudin-5, and ZO-1 in the penumbra, which weakened the beneficial effects of recanalization on neurological outcomes after MCAO. CONCLUSIONS Delayed recanalization on the 3rd day after MCAO increases endogenous FGF21 in the penumbra and activates FGFR1/PI3K/Akt pathway, which attenuates BBB disruption in the penumbra and improves neurobehavior in MCAO rats.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Wenjun Li
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Yini Zeng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Hui Yuan
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Ru Chen
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Anding Zhu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Jinze Wu
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Zhi Song
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Wenguang Yan
- Department of Rihabilitation Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
14
|
Yang C, Chen X, Zhang C, Lei X, Lu Y, Wang Y, Feng H, Chen T, Yang Y. Acetylated α-tubulin alleviates injury to the dendritic spines after ischemic stroke in mice. CNS Neurosci Ther 2023. [PMID: 36965035 DOI: 10.1111/cns.14184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND AND AIM Functional recovery is associated with the preservation of dendritic spines in the penumbra area after stroke. Previous studies found that polymerized microtubules (MTs) serve a crucial role in regulating dendritic spine formation and plasticity. However, the mechanisms that are involved are poorly understood. This study is designed to understand whether the upregulation of acetylated α-tubulin (α-Ac-Tub, a marker for stable, and polymerized MTs) could alleviate injury to the dendritic spines in the penumbra area and motor dysfunction after ischemic stroke. METHODS Ischemic stroke was mimicked both in an in vivo and in vitro setup using middle cerebral artery occlusion and oxygen-glucose deprivation models. Thy1-YFP mice were utilized to observe the morphology of the dendritic spines in the penumbra area. MEC17 is the specific acetyltransferase of α-tubulin. Thy1 CreERT2-eYFP and MEC17fl/fl mice were mated to produce mice with decreased expression of α-Ac-Tub in dendritic spines of pyramidal neurons in the cerebral cortex. Moreover, AAV-PHP.B-DIO-MEC17 virus and tubastatin A (TBA) were injected into Thy1 CreERT2-eYFP and Thy1-YFP mice to increase α-Ac-Tub expression. Single-pellet retrieval, irregular ladder walking, rotarod, and cylinder tests were performed to test the motor function after the ischemic stroke. RESULTS α-Ac-Tub was colocalized with postsynaptic density 95. Although knockout of MEC17 in the pyramidal neurons did not affect the density of the dendritic spines, it significantly aggravated the injury to them in the penumbra area and motor dysfunction after stroke. However, MEC17 upregulation in the pyramidal neurons and TBA treatment could maintain mature dendritic spine density and alleviate motor dysfunction after stroke. CONCLUSION Our study demonstrated that α-Ac-Tub plays a crucial role in the maintenance of the structure and functions of mature dendritic spines. Moreover, α-Ac-Tub protected the dendritic spines in the penumbra area and alleviated motor dysfunction after stroke.
Collapse
Affiliation(s)
- Chuanyan Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xuezhu Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chenxu Zhang
- Department of Neurosurgery, the 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| | - Xuejiao Lei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yongling Lu
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuhai Wang
- Department of Neurosurgery, the 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, the 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, 214044, China
| |
Collapse
|
15
|
Zhang Q, Chen Z, Zhang K, Zhu J, Jin T. FGF/FGFR system in the central nervous system demyelinating disease: Recent progress and implications for multiple sclerosis. CNS Neurosci Ther 2023; 29:1497-1511. [PMID: 36924298 PMCID: PMC10173727 DOI: 10.1111/cns.14176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND With millions of victims worldwide, multiple sclerosis is the second most common cause of disability among young adults. Although formidable advancements have been made in understanding the disease, the neurodegeneration associated with multiple sclerosis is only partially counteracted by current treatments, and effective therapy for progressive multiple sclerosis remains an unmet need. Therefore, new approaches are required to delay demyelination and the resulting disability and to restore neural function by promoting remyelination and neuronal repair. AIMS The article reviews the latest literature in this field. MATERIALS AND METHODS The fibroblast growth factor (FGF) signaling pathway is a promising target in progressive multiple sclerosis. DISCUSSION FGF signal transduction contributes to establishing the oligodendrocyte lineage, neural stem cell proliferation and differentiation, and myelination of the central nervous system. Furthermore, FGF signaling is implicated in the control of neuroinflammation. In recent years, interventions targeting FGF, and its receptor (FGFR) have been shown to ameliorate autoimmune encephalomyelitis symptoms in multiple sclerosis animal models moderately. CONCLUSION Here, we summarize the recent findings and investigate the role of FGF/FGFR signaling in the onset and progression, discuss the potential therapeutic advances, and offer fresh insights into managing multiple sclerosis.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Kaili Zhang
- Stomatology College of Inner Mongolia Medical University, Hohhot, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Ptacek J, Snajdr I, Schimer J, Kutil Z, Mikesova J, Baranova P, Havlinova B, Tueckmantel W, Majer P, Kozikowski A, Barinka C. Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells. Int J Mol Sci 2023; 24:4720. [PMID: 36902164 PMCID: PMC10003107 DOI: 10.3390/ijms24054720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.
Collapse
Affiliation(s)
- Jakub Ptacek
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ivan Snajdr
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Zsofia Kutil
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petra Baranova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Werner Tueckmantel
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Alan Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cyril Barinka
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
17
|
Zhu Y, Zheng H, Chen C. Protective effects of histone deacetylase 6 specific inhibitor tubastatin A on subarachnoid hemorrhage in rats and the underlying mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:172-181. [PMID: 36999463 PMCID: PMC10930345 DOI: 10.11817/j.issn.1672-7347.2023.220167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 04/01/2023]
Abstract
OBJECTIVES Subarachnoid hemorrhage (SAH) is a serious cerebrovascular disease. Early brain injury (EBI) and cerebral vasospasm are the main reasons for poor prognosis of SAH patients. The specific inhibitor of histone deacetylase 6 (HDAC6), tubastatin A (TubA), has been proved to have a definite neuroprotective effect on a variety of animal models of acute and chronic central nervous system diseases. However, the neuroprotective effect of TubA on SAH remains unclear. This study aims to investigate the expression and localization of HDAC6 in the early stage of SAH, and to evaluate the protective effects of TubA on EBI and cerebral vasospasm after SAH and the underlying mechanisms. METHODS Adult male SD rats were treated with modified internal carotid artery puncture to establish SAH model. In the first part of the experiment, rats were randomly divided into 6 groups: a sham group, a SAH-3 h group, a SAH-6 h group, a SAH-12 h group, a SAH-24 h group, and a SAH-48 h group. At 3, 6, 12, and 24 h after SAH modeling, the injured cerebral cortex of rats in each group was taken for Western blotting to detect the expression of HDAC6. In addition, the distribution of HDAC6 in the cerebral cortex of the injured side was measured by immunofluorescence double staining in SAH-24 h group rats. In the second part, rats were randomly divided into 4 groups: a sham group, a SAH group, a SAH+TubAL group (giving 25 mg/kg TubA), and a SAH+TubAH group (giving 40 mg/kg TubA). At 24 h after modeling, the injured cerebral cortex tissue was taken for Western blotting to detect the expression levels of HDAC6, endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining to detect apoptosis, and hematoxylin and eosin (HE) staining to detect the diameter of middle cerebral artery. RESULTS The protein expression of HDAC6 began to increase at 6 h after SAH (P<0.05), peaked at 24 h (P<0.001), and decreased at 48 h, but there was still a difference compared with the sham group (P<0.05). HDAC6 is mainly expressed in the cytoplasm of the neurons. Compared with the sham group, the neurological score was decreased significantly and brain water content was increased significantly in the SAH group (both P<0.01). Compared with the SAH group, the neurological score was increased significantly and brain water content was decreased significantly in the SAH+TubAH group (both P<0.05), while the improvement of the above indexes was not significant in the SAH+TubAL group (both P>0.05). Compared with the sham group, the expression of eNOS was significantly decreased (P<0.01) and the expressions of iNOS and HDAC6 were significantly increased (P<0.05 and P<0.01, respectively) in the SAH group. Compared with the SAH group, the expression of eNOS was significantly increased, and iNOS and HDAC6 were significantly decreased in the SAH+TubA group (all P<0.05). Compared with the SAH group, the number of TUNEL positive cells was significantly decreased and the diameter of middle cerebral artery was significantly increased in the SAH+TubA group (both P<0.05) . CONCLUSIONS HDAC6 is mainly expressed in neurons and is up-regulated in the cerebral cortex at the early stage of SAH. TubA has protective effects on EBI and cerebral vasospasm in SAH rats by reducing brain edema and cell apoptosis in the early stage of SAH. In addition, its effect of reducing cerebral vasospasm may be related to regulating the expression of eNOS and iNOS.
Collapse
Affiliation(s)
- Yuwei Zhu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Haiping Zheng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
18
|
HDAC Inhibitors Alleviate Uric Acid-Induced Vascular Endothelial Cell Injury by Way of the HDAC6/FGF21/PI3K/AKT Pathway. J Cardiovasc Pharmacol 2023; 81:150-164. [PMID: 36607630 PMCID: PMC9901848 DOI: 10.1097/fjc.0000000000001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Uric acid (UA) accumulation triggers endothelial dysfunction, oxidative stress, and inflammation. Histone deacetylase (HDAC) plays a vital role in regulating the pathological processes of various diseases. However, the influence of HDAC inhibitor on UA-induced vascular endothelial cell injury (VECI) remains undefined. Hence, this study aimed to investigate the effect of HDACs inhibition on UA-induced vascular endothelial cell dysfunction and its detailed mechanism. UA was used to induce human umbilical vein endothelial cell (HUVEC) injury. Meanwhile, potassium oxonate-induced and hypoxanthine-induced hyperuricemia mouse models were also constructed. A broad-spectrum HDAC inhibitor trichostatin A (TSA) or selective HDAC6 inhibitor TubastatinA (TubA) was given to HUVECs or mice to determine whether HDACs can affect UA-induced VECI. The results showed pretreatment of HUVECs with TSA or HDAC6 knockdown-attenuated UA-induced VECI and increased FGF21 expression and phosphorylation of AKT, eNOS, and FoxO3a. These effects could be reversed by FGF21 knockdown. In vivo, both TSA and TubA reduced inflammation and tissue injury while increased FGF21 expression and phosphorylation of AKT, eNOS, and FoxO3a in the aortic and renal tissues of hyperuricemia mice. Therefore, HDACs, especially HDAC6 inhibitor, alleviated UA-induced VECI through upregulating FGF21 expression and then activating the PI3K/AKT pathway. This suggests that HDAC6 may serve as a novel therapeutic target for treating UA-induced endothelial dysfunction.
Collapse
|
19
|
Peng C, Gong X, Hu Z, Chen C, Jiang Z. Selective HDAC6 inhibitor TubA offers neuroprotection after intracerebral hemorrhage via inhibiting neuronal apoptosis. PeerJ 2023; 11:e15293. [PMID: 37138816 PMCID: PMC10150719 DOI: 10.7717/peerj.15293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
A large body of evidence has demonstrated that neuronal apoptosis is involved in the pathological process of secondary brain injury following intracerebral hemorrhage (ICH). Additionally, our previous studies determined that the inhibition of HDAC6 activity by tubacin or specific shRNA can attenuate neuronal apoptosis in an oxygen-glucose deprivation reperfusion model. However, whether the pharmacological inhibition of HDAC6-attenuated neuronal apoptosis in ICH remains unclear. In this study, we used hemin-induced SH-SY5Y cells to simulate a hemorrhage state in vitro and adopted a collagenase-induced ICH rat model in vivo to assess the effect of the HDAC6 inhibition. We found a significant increase in HDAC6 during the early stages of ICH. As expected, the acetylated α-tubulin significantly decreased in correlation with the expression of HDAC6. Medium and high doses (25, 40 mg/kg) of TubA, a selective inhibitor of HDAC6, both reduced neurological impairments, histological impairments, and ipsilateral brain edema in vivo. TubA or HDAC6 siRNA both alleviated neuronal apoptosis in vivo and in vitro. Finally, HDAC6 inhibition increased the level of acetylated α-tubulin and Bcl-2 and lowered the expression of Bax and cleaved caspase-3 post-ICH. In general, these results suggested that the pharmacological inhibition of HDAC6 may act as a novel and promising therapeutic target for ICH therapy by up-regulating acetylated α-tubulin and reducing neuronal apoptosis.
Collapse
|
20
|
Lee JH, Kim HS, Jang SW, Lee GR. Histone deacetylase 6 plays an important role in TGF-β-induced murine Treg cell differentiation by regulating cell proliferation. Sci Rep 2022; 12:22550. [PMID: 36581745 PMCID: PMC9800578 DOI: 10.1038/s41598-022-27230-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Regulatory T (Treg) cells maintain immune homeostasis by preventing abnormal or excessive immune responses. Histone deacetylase 6 (HDAC6) regulates expression of Foxp3, and thus, Treg cell differentiation; however, its role in Treg cell differentiation is unclear and somewhat controversial. Here, we investigated the role of HDAC6 in TGF-β-induced murine Treg cells. HDAC6 expression was higher in Treg cells than in other T helper cell subsets. Pharmacological inhibitors of HDAC6 selectively inhibited Treg cell differentiation and suppressive function. A specific HDAC6 inhibitor induced changes in global gene expression by Treg cells. Of these changes, genes related to cell division were prominently affected. In summary, HDAC6 plays an important role in TGF-β-induced murine Treg cell differentiation by regulating cell proliferation.
Collapse
Affiliation(s)
- Ji Hyeon Lee
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Hyeong Su Kim
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Sung Woong Jang
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| | - Gap Ryol Lee
- grid.263736.50000 0001 0286 5954Department of Life Science, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107 Korea
| |
Collapse
|
21
|
Cycloastragenol suppresses M1 and promotes M2 polarization in LPS-stimulated BV-2 cells and ischemic stroke mice. Int Immunopharmacol 2022; 113:109290. [DOI: 10.1016/j.intimp.2022.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/05/2022]
|
22
|
Synthesis, structure activity relationship and biological evaluation of a novel series of quinoline–based benzamide derivatives as anticancer agents and histone deacetylase (HDAC) inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Liao S, Liu Y, Kong Y, Shi H, Xu B, Tang B, Li C, Chen Y, Chen J, Du J, Zhang Y. A bionic multichannel nanofiber conduit carrying Tubastatin A for repairing injured spinal cord. Mater Today Bio 2022; 17:100454. [PMID: 36310542 PMCID: PMC9615035 DOI: 10.1016/j.mtbio.2022.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord injury is a kind of nerve injury disease with high disability rate. The bioscaffold, which presents a biomimetic structure, can be used as “bridge” to fill the cavity formed by the liquefaction and necrosis of spinal nerve cells, and connects the two ends of the fracture to promote the effective recovery of nerve function. Tubasatin A (TUBA) is a potent selective histone deacetylase 6 (HDAC6) inhibitor, which can inhibit the overexpression of HDAC6 after spinal cord injury. However, TUBA is limited by high efflux ratios, low brain penetration and uptake in the treatment of spinal cord injury. Therefore, an effective carrier with efficient load rate, sustained drug release profile, and prominent repair effect is urgent to be developed. In this study, we have prepared a bionic multichannel Tubasatin A loaded nanofiber conduit (SC-TUBA(+)) through random electrospinning and post-triple network bond crosslinking for inhibiting HDAC6 as well as promoting axonal regeneration during spinal cord injury treatment. The Tubasatin A-loaded nanofibers were shown to be successfully contained in poly(glycolide-co-ε-caprolactone) (PGCL)/silk fibroin (SF) matrix, and the formed PGCL/SF-TUBA nanofibers exhibited an uniform and smooth morphology and appropriate surface wettability. Importantly, the TUBA loaded nanofibers showed a sustained-release profile, and still maintains activity and promoted the extension of axonal. In addition, the total transection large span model of rat back and immunofluorescent labeling, histological, and neurobehavioral analysis were performed for inducing spinal cord injury at T9-10, evaluating therapeutic efficiency of SC-TUBA(+), and elucidating the mechanism of TUBA release system in vivo. All the results demonstrated the significantly reduced glial scar formation, increased nerve fiber number, inhibited inflammation, reduced demyelination and protected bladder tissue of TUBA-loaded nanofibers for spinal cord injury compared to SC-TUBA, SC and Control groups, indicating their great potential for injured spinal cord healing clinically.
Collapse
Affiliation(s)
- Shiyang Liao
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China
| | - Yonghang Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd, Shanghai, 201620, PR China
| | - Yanlong Kong
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China
| | - Haitao Shi
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Bitong Xu
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Bo Tang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Congbin Li
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China
| | - Yitian Chen
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Jing Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, PR China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd, Shanghai, 201620, PR China,Corresponding author. School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd, Shanghai, 201620, PR China.
| | - Yadong Zhang
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China,Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China,Corresponding author. Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China.
| |
Collapse
|
24
|
Shi X, Jiang X, Chen C, Zhang Y, Sun X. The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol Res 2022; 184:106452. [PMID: 36116706 DOI: 10.1016/j.phrs.2022.106452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Microtubules, a highly dynamic cytoskeleton, participate in many cellular activities including mechanical support, organelles interactions, and intracellular trafficking. Microtubule organization can be regulated by modification of tubulin subunits, microtubule-associated proteins (MAPs) or agents modulating microtubule assembly. Increasing studies demonstrate that microtubule disorganization correlates with various cardiocerebrovascular diseases including heart failure and ischemic stroke. Microtubules also mediate intracellular transport as well as intercellular transfer of mitochondria, a power house in cells which produce ATP for various physiological activities such as cardiac mechanical function. It is known to all that both microtubules and mitochondria participate in the progression of cancer and Parkinson's disease. However, the interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases remain unclear. In this paper, we will focus on the roles of microtubules in cardiocerebrovascular diseases, and discuss the interplay of mitochondria and microtubules in disease development and treatment. Elucidation of these issues might provide significant diagnostic value as well as potential targets for cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Xuan Jiang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Congwei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yu Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
25
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y, Cui X. Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother 2022; 151:113125. [PMID: 35609367 DOI: 10.1016/j.biopha.2022.113125] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamate-mediated excitotoxicity is an important mechanism leading to post ischemic stroke damage. After acute stroke, the sudden reduction in cerebral blood flow is most initially followed by ion transport protein dysfunction and disruption of ion homeostasis, which in turn leads to impaired glutamate release, reuptake, and excessive N-methyl-D-aspartate receptor (NMDAR) activation, promoting neuronal death. Despite extensive evidence from preclinical studies suggesting that excessive NMDAR stimulation during ischemic stroke is a central step in post-stroke damage, NMDAR blockers have failed to translate into clinical stroke treatment. Current treatment options for stroke are very limited, and there is therefore a great need to develop new targets for neuroprotective therapeutic agents in ischemic stroke to extend the therapeutic time window. In this review, we highlight recent findings on glutamate release, reuptake mechanisms, NMDAR and its downstream cellular signaling pathways in post-ischemic stroke damage, and review the pathological changes in each link to help develop viable new therapeutic targets. We then also summarize potential neuroprotective drugs and therapeutic approaches for these new targets in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zihuan Shen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chen Chen
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Fan Ding
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Yuling Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Chang Shang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Clinical Medical School, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Laiyun Xin
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Zhang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
26
|
Wang M, Zhou C, Yu L, Kong D, Ma W, Lv B, Wang Y, Wu W, Zhou M, Cui G. Upregulation of MDH1 acetylation by HDAC6 inhibition protects against oxidative stress-derived neuronal apoptosis following intracerebral hemorrhage. Cell Mol Life Sci 2022; 79:356. [PMID: 35678904 PMCID: PMC11073123 DOI: 10.1007/s00018-022-04341-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/18/2022] [Accepted: 04/30/2022] [Indexed: 11/25/2022]
Abstract
Oxidative stress impairs functional recovery after intracerebral hemorrhage (ICH). Histone deacetylase 6 (HDAC6) plays an important role in the initiation of oxidative stress. However, the function of HDAC6 in ICH and the underlying mechanism of action remain elusive. We demonstrated here that HDAC6 knockout mice were resistant to oxidative stress following ICH, as assessed by the MDA and NADPH/NADP+ assays and ROS detection. HDAC6 deficiency also resulted in reduced neuronal apoptosis and lower expression levels of apoptosis-related proteins. Further mechanistic studies showed that HDAC6 bound to malate dehydrogenase 1 (MDH1) and mediated-MDH1 deacetylation on the lysine residues at position 121 and 298. MDH1 acetylation was inhibited in HT22 cells that were challenged with ICH-related damaging agents (Hemin, Hemoglobin, and Thrombin), but increased when HDAC6 was inhibited, suggesting an interplay between HDAC6 and MDH1. The acetylation-mimetic mutant, but not the acetylation-resistant mutant, of MDH1 protected neurons from oxidative injury. Furthermore, HDAC6 inhibition failed to alleviate brain damage after ICH when MDH1 was knockdown. Taken together, our study showed that HDAC6 inhibition protects against brain damage during ICH through MDH1 acetylation.
Collapse
Affiliation(s)
- Miao Wang
- Department of Geriatrics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China.
- Department of Neurology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chao Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Lu Yu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Delian Kong
- Department of Neurology, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurology, Xuzhou First People's Hospital, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weijing Ma
- Department of Neurology, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bingchen Lv
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Yan Wang
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Weifeng Wu
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Mingyue Zhou
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China
| | - Guiyun Cui
- Institute of Nervous System Diseases and Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, No. 99 West Huaihai Road, Xuzhou, 221006, Jiangsu Province, People's Republic of China.
| |
Collapse
|
27
|
Macrophage migration inhibitory factor (MIF) acetylation protects neurons from ischemic injury. Cell Death Dis 2022; 13:466. [PMID: 35585040 PMCID: PMC9117661 DOI: 10.1038/s41419-022-04918-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Ischemia-induced neuronal death leads to serious lifelong neurological deficits in ischemic stroke patients. Histone deacetylase 6 (HDAC6) is a promising target for neuroprotection in many neurological disorders, including ischemic stroke. However, the mechanism by which HDAC6 inhibition protects neurons after ischemic stroke remains unclear. Here, we discovered that genetic ablation or pharmacological inhibition of HDAC6 reduced brain injury after ischemic stroke by increasing macrophage migration inhibitory factor (MIF) acetylation. Mass spectrum analysis and biochemical results revealed that HDAC6 inhibitor or aspirin treatment promoted MIF acetylation on the K78 residue. MIF K78 acetylation suppressed the interaction between MIF and AIF, which impaired MIF translocation to the nucleus in ischemic cortical neurons. Moreover, neuronal DNA fragmentation and neuronal death were impaired in the cortex after ischemia in MIF K78Q mutant mice. Our results indicate that the neuroprotective effect of HDAC6 inhibition and aspirin treatment results from MIF K78 acetylation; thus, MIF K78 acetylation may be a therapeutic target for ischemic stroke and other neurological diseases.
Collapse
|
28
|
Xu J, Zhao X, Jiang X, He L, Wu X, Wang J, Chen Q, Li Y, Zhang M. Tubastatin A Improves Post-Resuscitation Myocardial Dysfunction by Inhibiting NLRP3-Mediated Pyroptosis Through Enhancing Transcription Factor EB Signaling. J Am Heart Assoc 2022; 11:e024205. [PMID: 35322683 PMCID: PMC9075499 DOI: 10.1161/jaha.121.024205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Myocardial dysfunction is the leading cause of early death following successful cardiopulmonary resuscitation (CPR) in people with cardiac arrest (CA), which is potentially driven by cell pyroptosis mediated by NOD‐like receptor pyrin domain 3 (NLRP3) inflammasome. Recently, histone deacetylase 6 (HDAC6) inhibition was shown to exert effective myocardial protection against regional ischemia/reperfusion injury. In this study, we investigated whether tubastatin A, a specific histone deacetylase 6 inhibitor, could improve postresuscitation myocardial dysfunction through the inhibition of NLRP3‐mediated cell pyroptosis and its modulation mechanism. Methods and Results Healthy male white domestic swine were used to establish the model of CA/CPR in vivo, and the H9c2 cardiomyocyte hypoxia/reoxygenation model was used to simulate the CA/CPR process in vitro. Consequently, tubastatin A inhibited NLRP3 inflammasome activation, decreased proinflammatory cytokines production and cell pyroptosis, and increased cell survival after hypoxia/reoxygenation in H9c2 cardiomyocytes in vitro. In addition, tubastatin A increased the acetylated levels of transcription factor EB and its translocation to the nucleus, and its protective effect above was partly abrogated by transcription factor EB short interfering RNA after hypoxia/reoxygenation in H9c2 cardiomyocytes. Similarly, tubastatin A promoted cardiac transcription factor EB nuclear translocation, inhibited NLRP3‐mediated cell pyroptosis, and mitigated myocardial dysfunction after CA/CPR in swine. Conclusions The inhibition of histone deacetylase 6 activity by tubastatin A limited NLRP3 inflammasome activation and cell pyroptosis probably through the enhancement of transcription factor EB signaling, and therefore improved myocardial dysfunction after CA/CPR.
Collapse
Affiliation(s)
- Jiefeng Xu
- Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province Hangzhou China.,Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine Hangzhou China
| | - Xue Zhao
- Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,Department of Emergency Medicine Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine Hangzhou China
| | - Xiangkang Jiang
- Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province Hangzhou China.,Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine Hangzhou China
| | - Lu He
- Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province Hangzhou China.,Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine Hangzhou China
| | - Xinjie Wu
- Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,Department of Emergency Medicine The First Hospital of Ninghai Ningbo China
| | | | - Qijiang Chen
- Department of Intensive Care Medicine The First Hospital of Ninghai Ningbo China
| | - Yulin Li
- Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province Hangzhou China.,Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine Hangzhou China
| | - Mao Zhang
- Department of Emergency Medicine Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province Hangzhou China.,Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine Hangzhou China
| |
Collapse
|
29
|
Li S, Dou B, Shu S, Wei L, Zhu S, Ke Z, Wang Z. Suppressing NK Cells by Astragaloside IV Protects Against Acute Ischemic Stroke in Mice Via Inhibiting STAT3. Front Pharmacol 2022; 12:802047. [PMID: 35185544 PMCID: PMC8852846 DOI: 10.3389/fphar.2021.802047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
Natural killer (NK) cells, a key member of innate lymphocytes, are a promising immunotherapeutic target for ischemic stroke. Astragaloside IV (ASIV) is isolated from Astragalus mongholicus Bunge (Fabaceae), a herbal medicine possessing immunomodulatory ability. This study investigated the effect of ASIV on NK cells during the acute stage of brain ischemic injury in a mouse model of middle cerebral artery occlusion (MCAO). MCAO mice treated with ASIV had better functional outcomes, smaller brain infarction and less NK cell brain infiltration. NK cell depletion echoed the protective effect of ASIV. Notably, ASIV did not enhance the protective effect of NK cell depletion against brain ischemic injury. ASIV inhibited glial cell-derived CCL2-mediated chemotaxis to prevent post-ischemic NK cell brain recruitment. Meanwhile, ASIV also abrogated NK cell-mediated cytolytic killing of neurons subjected to oxygen-glucose deprivation and suppressed NK cell-derived IFN-γ and NKG2D expression in the ischemic brain. The inhibitory effect of ASIV on NK cell brain infiltration and activation was mimicked by cryptotanshinone, a STAT3 inhibitor. There was no additive effect when ASIV and cryptotanshinone were used together. In conclusion, ASIV inhibits post-ischemic brain infiltration and activation of NK cells through STAT3 suppression, and this inhibitory effect of ASIV on NK cells plays a key role in its protection against acute ischemic brain injury. Our findings suggest that ASIV is a promising therapeutic candidate in NK cell-based immunotherapy for the treatment of acute ischemic stroke and pave the way for potential clinical trials.
Collapse
Affiliation(s)
- Shichun Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baokai Dou
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shi Shu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Luyao Wei
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiguo Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zunji Ke, ; Zhifei Wang,
| | - Zhifei Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zunji Ke, ; Zhifei Wang,
| |
Collapse
|
30
|
Piermarini E, Akarsu S, Connors T, Kneussel M, Lane MA, Morfini G, Karabay A, Baas PW, Qiang L. Modeling gain-of-function and loss-of-function components of SPAST-based hereditary spastic paraplegia using transgenic mice. Hum Mol Genet 2021; 31:1844-1859. [PMID: 34935948 PMCID: PMC9169457 DOI: 10.1093/hmg/ddab367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a disease in which dieback degeneration of corticospinal tracts, accompanied by axonal swellings, leads to gait deficiencies. SPG4-HSP, the most common form of the disease, results from mutations of human spastin gene (SPAST), which is the gene that encodes spastin, a microtubule-severing protein. The lack of a vertebrate model that recapitulates both the etiology and symptoms of SPG4-HSP has stymied the development of effective therapies for the disease. hSPAST-C448Y mice, which express human mutant spastin at the ROSA26 locus, display corticospinal dieback and gait deficiencies but not axonal swellings. On the other hand, mouse spastin gene (Spast)-knockout (KO) mice display axonal swellings but not corticospinal dieback or gait deficiencies. One possibility is that reduced spastin function, resulting in axonal swellings, is not the cause of the disease but exacerbates the toxic effects of the mutant protein. To explore this idea, Spast-KO and hSPAST-C448Y mice were crossbred, and the offspring were compared with the parental lines via histological and behavioral analyses. The crossbred animals displayed axonal swellings as well as earlier onset, worsened gait deficiencies and corticospinal dieback compared with the hSPAST-C448Y mouse. These results, together with observations on changes in histone deacetylases 6 and tubulin modifications in the axon, indicate that each of these three transgenic mouse lines is valuable for investigating a different component of the disease pathology. Moreover, the crossbred mice are the best vertebrate model to date for testing potential therapies for SPG4-HSP.
Collapse
Affiliation(s)
- Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Seyma Akarsu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA,Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Theresa Connors
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Arzu Karabay
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Peter W Baas
- To whom correspondence should be addressed at: Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA. Tel: +1 2159918311; Fax: +1 2158439082; ; Tel: +1 2159918298;
| | - Liang Qiang
- To whom correspondence should be addressed at: Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA. Tel: +1 2159918311; Fax: +1 2158439082; ; Tel: +1 2159918298;
| |
Collapse
|
31
|
Li Y, Sang S, Ren W, Pei Y, Bian Y, Chen Y, Sun H. Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: A review (2010-2020). Eur J Med Chem 2021; 226:113874. [PMID: 34619465 DOI: 10.1016/j.ejmech.2021.113874] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which is characterized by the primary risk factor, age. Several attempts have been made to treat AD, while most of them end in failure. However, with the deepening study of pathogenesis of AD, the expression of HDAC6 in the hippocampus, which plays a major role of the memory formation, is becoming worth of notice. Neurofibrillary tangles (NFTs), a remarkable lesion in AD, has been characterized in association with the abnormal accumulation of hyperphosphorylated Tau, which is mainly caused by the high expression of HDAC6. On the other hand, the hypoacetylated tubulin induced by HDAC6 is also fatal for the neuronal transport, which is the key impact of the formation of axons and dendrites. Overall, the significantly increased expression of HDAC6 in brain regions is deleterious to neuron survival in AD patients. Based on the above research, the inhibition of HDAC6 seems to be a potential therapeutic method for the treatment of AD. Up to now, various types of HDAC6 inhibitors have been discovered. This review mainly analyzes the HDAC6 inhibitors reported amid 2010-2020 in terms of their structure, selectivity and pharmacological impact towards AD. And we aim at facilitating the design and development of better HDAC6 inhibitors in the future.
Collapse
Affiliation(s)
- Yunheng Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijie Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
32
|
Xu J, Wu F, Li Y, Wang F, Lin W, Qian S, Li H, Fan Y, Li H, Chen L, Xu H, Chen L, Liu Y, Li X, He J. Fibroblast growth factor 21 associating with serotonin and dopamine in the cerebrospinal fluid predicts impulsivity in healthy subjects. BMC Neurosci 2021; 22:68. [PMID: 34800969 PMCID: PMC8605581 DOI: 10.1186/s12868-021-00676-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/11/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Impulsivity is more commonly reported in subjects with mental disorders compared to healthy subjects, suggesting a potential application of impulsivity in predicting impulsivity-related mental disorders. However, no biomarker of impulsivity available so far. This study explored the association between cerebrospinal fluid (CSF) fibroblast growth factor 21 (FGF21), a key hormonal mediator of the stress response, and impulsivity in healthy subjects. METHODS A total of 126 healthy persons subjected to surgery of anterior cruciate ligament were recruited in the present study. The impulsiveness of the subjects was evaluated by the Chinese version of the Barratt Impulsiveness Scale (BIS)-11 before surgery. CSF and blood samples of the subjects were collected before spinal anesthesia for surgery. The levels of FGF21, serotonin and dopamine in CSF and the level of FGF21 in blood of the subjects were measured by ELISA using commercial kits. RESULTS Negative correlations were found between BIS-11 total score and either FGF21, serotonin or dopamine in CSF. However, BIS-11 total score was not correlated with FGF21 in blood. In addition, FGF21 was positively correlated with serotonin and dopamine in CSF, respectively. Multivariable linear regression models indicated that the decrease of FGF21 level associating with the decrease of serotonin and dopamine level in CSF contributed to the higher impulsivity. Furthermore, receiver operating characteristic curve (ROC) analysis indicated an important role of CSF FGF21 predicting high impulsivity. CONCLUSIONS FGF21, serotonin and dopamine in CSF associate with impulsivity in opposite directions. The decrease of CSF FGF21 is related to higher impulsivity, and indicate that CSF FGF21 may predict impulsivity in healthy subjects.
Collapse
Affiliation(s)
- Jinzhong Xu
- Department of Clinical Pharmacy, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Fenzan Wu
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, China
| | - Yuying Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
- Key Laboratory of Psychosomatic Medicine, Inner Mongolia Medical University, Huhhot, China
| | - Wenhui Lin
- Central Laboratory, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Song Qian
- The Criminal Science and Technology Department, Zhejiang Police College, Hangzhou, Zhejiang, China
| | - Hui Li
- Xinjiang Key Laboratory of Neurological Disorder Research, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuncao Fan
- Central Laboratory, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling, Zhejiang, China
| | - Huai Li
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijing Chen
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyun Xu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Chen
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanlong Liu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jue He
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
33
|
Demyanenko S, Dzreyan V, Sharifulina S. Histone Deacetylases and Their Isoform-Specific Inhibitors in Ischemic Stroke. Biomedicines 2021; 9:biomedicines9101445. [PMID: 34680562 PMCID: PMC8533589 DOI: 10.3390/biomedicines9101445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia is the second leading cause of death in the world and multimodal stroke therapy is needed. The ischemic stroke generally reduces the gene expression due to suppression of acetylation of histones H3 and H4. Histone deacetylases inhibitors have been shown to be effective in protecting the brain from ischemic damage. Histone deacetylases inhibitors induce neurogenesis and angiogenesis in damaged brain areas promoting functional recovery after cerebral ischemia. However, the role of different histone deacetylases isoforms in the survival and death of brain cells after stroke is still controversial. This review aims to analyze the data on the neuroprotective activity of nonspecific and selective histone deacetylase inhibitors in ischemic stroke.
Collapse
|
34
|
Du Y, Yang X, Li Z, Le W, Hao Y, Song Y, Wang F, Guan Y. HDAC6-mediated Hsp90 deacetylation reduces aggregation and toxicity of the protein alpha-synuclein by regulating chaperone-mediated autophagy. Neurochem Int 2021; 149:105141. [PMID: 34298079 DOI: 10.1016/j.neuint.2021.105141] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Histone deacetylase 6 (HDAC6) has been shown to control major cell response pathways to the cytotoxic ubiquitinated aggregates in some protein aggregation diseases. However, it is not well known whether HDAC6 affects the aggregation process of α-synuclein (α-syn) in Parkinson's disease (PD). Previously, we demonstrated that HDAC6 inhibition exacerbated the nigrostriatal dopamine neurodegeneration and up-regulated α-syn oligomers in a heat shock protein 90 (Hsp90)-dependent manner in PD mouse model. Here, we further showed that HDAC6 overexpression partly improved the behavior deficits of the PD model and alleviated the nigrostriatal dopamine (DA) neurons injury. Furthermore, HDAC6 was found to regulate α-syn oligomers levels through activation of chaperone-mediated autophagy (CMA). During this process, Hsp90 deacetylation mediated the crosstalk between HDAC6 and lysosome-associated membrane protein type 2A. Liquid chromatography-tandem mass spectrometry and mutational analysis showed that acetylation status Hsp90 at the K489 site was a strong determinant for HDAC6-induced CMA activation, α-syn oligomers levels, and cell survival in the cell model of PD. Therefore, our findings uncovered the mechanism of HDAC6 in the PD model that HDAC6 regulated α-syn oligomers levels and DA neurons survival partly through modulating CMA, and Hsp90 deacetylation at the K489 site mediated the crosstalk between HDAC6 and CMA. HDAC6 and its downstream effectors appear as key modulators of the cytotoxic α-syn aggregates, which deserve further investigations to evaluate their values as potential therapeutic targets in PD.
Collapse
Affiliation(s)
- Yunlan Du
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial Hospital, Chengdu, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yeping Song
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Strategies to Improve the Efficiency of Transplantation with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke: A Review of Recent Progress. Stem Cells Int 2021; 2021:9929128. [PMID: 34490053 PMCID: PMC8418553 DOI: 10.1155/2021/9929128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is a common global disease that is characterized by a loss of neurological function and a poor prognosis in many patients. However, only a limited number of treatments are available for this condition at present. Given that the efficacies of these treatments tend to be poor, cerebral ischemia can create a significant burden on patients, families, and society. Mesenchymal stem cell (MSC) transplantation treatment has shown significant potential in animal models of ischemic stroke; however, the specific mechanisms underlying this effect have yet to be elucidated. Furthermore, clinical trials have yet to yield promising results. Consequently, there is an urgent need to identify new methods to improve the efficiency of MSC transplantation as an optimal treatment for ischemic stroke. In this review, we provide an overview of recent scientific reports concerning novel strategies that promote MSC transplantation as an effective therapeutic approach, including physical approaches, chemical agents, traditional Chinese medicines and extracts, and genetic modification. Our analyses showed that two key factors need to be considered if we are to improve the efficacy of MSC transplantation treatments: survival ability and homing ability. We also highlight the importance of other significant mechanisms, including the enhanced activation of MSCs to promote neurogenesis and angiogenesis, and the regulation of permeability in the blood-brain barrier. Further in-depth investigations of the specific mechanisms underlying MSC transplantation treatment will help us to identify effective methods that improve the efficiency of MSC transplantation for ischemic stroke. The development of safer and more effective methods will facilitate the application of MSC transplantation as a promising adjuvant therapy for the treatment of poststroke brain damage.
Collapse
|
36
|
Demyanenko S, Sharifulina S. The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors after Cerebral Ischemia: Facts and Hypotheses. Int J Mol Sci 2021; 22:ijms22157947. [PMID: 34360712 PMCID: PMC8348732 DOI: 10.3390/ijms22157947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylase (HDAC) and histone acetyltransferase (HAT) regulate transcription and the most important functions of cells by acetylating/deacetylating histones and non-histone proteins. These proteins are involved in cell survival and death, replication, DNA repair, the cell cycle, and cell responses to stress and aging. HDAC/HAT balance in cells affects gene expression and cell signaling. There are very few studies on the effects of stroke on non-histone protein acetylation/deacetylation in brain cells. HDAC inhibitors have been shown to be effective in protecting the brain from ischemic damage. However, the role of different HDAC isoforms in the survival and death of brain cells after stroke is still controversial. HAT/HDAC activity depends on the acetylation site and the acetylation/deacetylation of the main proteins (c-Myc, E2F1, p53, ERK1/2, Akt) considered in this review, that are involved in the regulation of cell fate decisions. Our review aims to analyze the possible role of the acetylation/deacetylation of transcription factors and signaling proteins involved in the regulation of survival and death in cerebral ischemia.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Svetlana Sharifulina
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
- Neuroscience Center HiLife, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
37
|
Dordoe C, Chen K, Huang W, Chen J, Hu J, Wang X, Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol 2021; 12:671131. [PMID: 33967812 PMCID: PMC8102031 DOI: 10.3389/fphar.2021.671131] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the leading cause of death worldwide, and its treatment remains a challenge. Complex pathological processes are involved in stroke, which causes a reduction in the supply of oxygen and energy to the brain that triggers subsequent cascade events, such as oxidative stress, inflammatory responses and apoptosis, resulting in brain injury. Stroke is a devastating disease for which there are few treatments, but physical rehabilitation can help improve stroke recovery. Although there are very few treatments for stroke patients, the discovery of fibroblast growth factors (FGFs) in mammals has led to the finding that FGFs can effectively treat stroke in animal models. As presented in this review, FGFs play essential roles by functioning as homeostatic factors and controlling cells and hormones involved in metabolism. They could be used as effective therapeutic agents for stroke. In this review, we will discuss the pharmacological actions of FGFs on multiple targets, including their ability to directly promote neuron survival, enhance angiogenesis, protect against blood-brain barrier (BBB) disruption, and regulate microglial modulation, in the treatment of ischemic stroke and their theoretical mechanisms and actions, as well as the therapeutic potential and limitations of FGFs for the clinical treatment of stroke.
Collapse
Affiliation(s)
- Confidence Dordoe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Keyang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenting Huang
- School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
38
|
Xu Q, Mou Y, Wang S, Gao X, Zhang Y, Wang Z, Xu X, Han Y, Jia W, Zhang M, Zhao L, Liu D. Design, synthesis and biological evaluation of selective histone deacetylase 6 (HDAC6) inhibitors bearing benzoindazole or pyrazoloindazole scaffold as surface recognition motif. Bioorg Chem 2021; 111:104910. [PMID: 33894432 DOI: 10.1016/j.bioorg.2021.104910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 04/07/2021] [Indexed: 01/26/2023]
Abstract
A series of compounds were designed and synthesized based on the compound 11i bearing phenylpyrazole scaffold with histone deacetylase 6 (HDAC6) inhibitory activity. Most of the compounds showed considerable inhibitory activity against HDAC6 and compound A16 with good inhibitory activity was found therein. We further found that A16 had an inhibitory effect on inflammatory mediators (NO, TNF-α, IL-6) involved in inflammatory response and neuroendocrine regulation. In addition, A16 has a certain neuroprotective effect on PC12 cells injured by hydrogen peroxide. Acute toxicity assay showed that the LD50 of A16 was 274.47 mg/kg in mouse model. Furthermore, A16 displayed good stability properties in microsomes and plasma.
Collapse
Affiliation(s)
- Qihao Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siyuan Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Gao
- Department of Pharmacology, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yulong Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangwei Xu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Han
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenlong Jia
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Meihui Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
39
|
He T, Shang J, Gao C, Guan X, Chen Y, Zhu L, Zhang L, Zhang C, Zhang J, Pang T. A novel SIRT6 activator ameliorates neuroinflammation and ischemic brain injury via EZH2/FOXC1 axis. Acta Pharm Sin B 2021; 11:708-726. [PMID: 33777677 PMCID: PMC7982432 DOI: 10.1016/j.apsb.2020.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide with limited medications and neuroinflammation was recognized as a critical player in the progression of stroke, but how to control the overactive neuroinflammation is still a long-standing challenge. Here, we designed a novel SIRT6 activator MDL-811 which remarkably inhibited inflammatory response in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and primary mouse microglia, which were abolished by silencing SIRT6. RNA-seq screening identified the forkhead box C1 (Foxc1) is a key gene evoked by MDL-811 stimulation and is required for the anti-inflammatory effects of MDL-811. We found MDL-811-activated SIRT6 directly interacted with enhancer of zeste homolog 2 (EZH2) and promoted deacetylation of EZH2 which could bind to the promoter of Foxc1 and upregulate its expression to modulate inflammation. Moreover, our data demonstrated that MDL-811 not only ameliorated sickness behaviors in neuroinflammatory mice induced by LPS, but also markedly reduced the brain injury in ischemic stroke mice in addition to promoting long-term functional recovery. Importantly, MDL-811 also exhibited strong anti-inflammatory effects in human monocytes isolated from ischemic stroke patients, underlying an interesting translational perspective. Taken together, MDL-811 could be an alternative therapeutic candidate for ischemic stroke and other brain disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Tailin He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Jialin Shang
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chenglong Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Guan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yingyi Chen
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liwen Zhu
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China
| | - Luyong Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Cunjin Zhang
- Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China
| | - Jian Zhang
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Zheng X, Zhu Z, Guo D, Zhong C, Xu T, Peng Y, Wang A, Peng H, Ju Z, Geng D, Zhang Y, He J. Prognostic value of plasma fibroblast growth factor 21 among patients with acute ischemic stroke. Eur J Neurol 2021; 28:844-851. [PMID: 33320402 DOI: 10.1111/ene.14683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE To evaluate the association between plasma fibroblast growth factor 21 (FGF-21) and clinical outcomes in patients with acute ischemic stroke. METHODS A total of 3412 acute ischemic stroke patients from the China Antihypertensive Trial in Acute Ischemic Stroke with plasma FGF-21 measurements were included in this analysis. The primary outcome was a combination of death or major disability (modified Rankin Scale score ≥3) within 1 year after stroke. RESULTS During the 1-year of follow-up, 745 (21.83%) patients experienced the primary outcome; 550 had a major disability and 195 died. After multivariate adjustment, higher plasma FGF-21 was significantly associated with increased risk of the primary outcome (odds ratio = 1.52, 95% confidence interval = 1.11-1.29). Each 1-SD increase of log-transformed FGF-21 (0.67 pg/ml) was associated with 19%, 3%, and 33% increased risk of the primary outcome, major disability, and death, respectively. The addition of FGF-21 to the conventional risk factors significantly improved prediction of the primary outcome in ischemic stroke patients (net reclassification index = 10.8%, p = 0.011; integrated discrimination improvement = 0.3%, p = 0.038). CONCLUSIONS Higher plasma FGF-21 was associated with poor prognosis in acute ischemic stroke patients, suggesting that FGF-21 may be a prognostic marker for ischemic stroke.
Collapse
Affiliation(s)
- Xiaowei Zheng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, China.,Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, China
| | - Tan Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, China
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei, China
| | - Aili Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, China
| | - Zhong Ju
- Department of Neurology, Kerqin District First People's Hospital of Tongliao City, Tongliao City, China
| | - Deqin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Jiangsu, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
41
|
Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition. Front Med 2020; 15:79-90. [PMID: 33369712 DOI: 10.1007/s11684-020-0783-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/14/2020] [Indexed: 01/30/2023]
Abstract
Natural killer (NK) cells, a type of cytotoxic lymphocytes, can infiltrate into ischemic brain and exacerbate neuronal cell death. Astragaloside IV (ASIV) is the major bioactive ingredient of Astragalus membranaceus, a Chinese herbal medicine, and possesses potent immunomodulatory and neuroprotective properties. This study investigated the effects of ASIV on post-ischemic brain infiltration and activation of NK cells. ASIV reduced brain infarction and alleviated functional deficits in MCAO rats, and these beneficial effects persisted for at least 7 days. Abundant NK cells infiltrated into the ischemic hemisphere on day 1 after brain ischemia, and this infiltration was suppressed by ASIV. Strikingly, ASIV reversed NK cell deficiency in the spleen and blood after brain ischemia. ASIV inhibited astrocyte-derived CCL2 upregulation and reduced CCR2+ NK cell levels in the ischemic brain. Meanwhile, ASIV attenuated NK cell activating receptor NKG2D levels and reduced interferon-γ production. ASIV restored acetylation of histone H3 and the p65 subunit of nuclear factor-κB in the ischemic brain, suggesting inhibition of histone deacetylase (HDAC). Simultaneously, ASIV prevented p65 nuclear translocation. The effects of ASIV on reducing CCL2 production, restoring acetylated p65 levels and preventing p65 nuclear translocation were mimicked by valproate, an HDAC inhibitor, in astrocytes subjected to oxygen-glucose deprivation. Our findings suggest that ASIV inhibits post-ischemic NK cell brain infiltration and activation and reverses NK cell deficiency in the periphery, which together contribute to the beneficial effects of ASIV against brain ischemia. Furthermore, ASIV's effects on suppressing NK cell brain infiltration and activation may involve HDAC inhibition.
Collapse
|
42
|
LoPresti P. HDAC6 in Diseases of Cognition and of Neurons. Cells 2020; 10:E12. [PMID: 33374719 PMCID: PMC7822434 DOI: 10.3390/cells10010012] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
Central nervous system (CNS) neurodegenerative diseases are characterized by faulty intracellular transport, cognition, and aggregate regulation. Traditionally, neuroprotection exerted by histone deacetylase (HDAC) inhibitors (HDACi) has been attributed to the ability of this drug class to promote histone acetylation. However, HDAC6 in the healthy CNS functions via distinct mechanisms, due largely to its cytoplasmic localization. Indeed, in healthy neurons, cytoplasmic HDAC6 regulates the acetylation of a variety of non-histone proteins that are linked to separate functions, i.e., intracellular transport, neurotransmitter release, and aggregate formation. These three HDAC6 activities could work independently or in synergy. Of particular interest, HDAC6 targets the synaptic protein Bruchpilot and neurotransmitter release. In pathological conditions, HDAC6 becomes abundant in the nucleus, with deleterious consequences for transcription regulation and synapses. Thus, HDAC6 plays a leading role in neuronal health or dysfunction. Here, we review recent findings and novel conclusions on the role of HDAC6 in neurodegeneration. Selective studies with pan-HDACi are also included. We propose that an early alteration of HDAC6 undermines synaptic transmission, while altering transport and aggregation, eventually leading to neurodegeneration.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
43
|
Linares GR, Leng Y, Maric D, Chuang DM. Overexpression of fibroblast growth factor-21 (FGF-21) protects mesenchymal stem cells against caspase-dependent apoptosis induced by oxidative stress and inflammation. Cell Biol Int 2020; 44:2163-2169. [PMID: 32557962 PMCID: PMC10848314 DOI: 10.1002/cbin.11409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/03/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022]
Abstract
The clinical application of stem cells offers great promise as a potential avenue for therapeutic use in neurodegenerative diseases. However, cell loss after transplantation remains a major challenge, which currently plagues the field. On the basis of our previous findings that fibroblast growth factor 21 (FGF-21) protected neurons from glutamate excitotoxicity and that upregulation of FGF-21 in a rat model of ischemic stroke was associated with neuroprotection, we proposed that overexpression of FGF-21 protects bone marrow-derived mesenchymal stem cells (MSCs) from apoptosis. To test this hypothesis, we examined whether the detrimental effects of apoptosis can be mitigated by the transgenic overexpression of FGF-21 in MSCs. FGF-21 was transduced into MSCs by lentivirus and its overexpression was confirmed by quantitative polymerase chain reaction. Moreover, FGF-21 overexpression did not stimulate the expression of other FGF family members, suggesting it does not activate a positive feedback system. The effects of hydrogen peroxide (H2 O2 ), tumor necrosis factor-α (TNF-α), and staurosporine, known inducers of apoptosis, were evaluated in FGF-21 overexpressing MSCs and mCherry control MSCs. Caspases 3 and 7 activity was markedly and dose-dependently increased by all three stimuli in mCherry MSCs. FGF-21 overexpression robustly suppressed caspase activation induced by H2 O2 and TNF-α, but not staurosporine. Moreover, the assessment of apoptotic morphological changes confirmed the protective effects of FGF-21 overexpression. Taken together, these results provide compelling evidence that FGF-21 plays a crucial role in protecting MSCs from apoptosis induced by oxidative stress and inflammation and merits further investigation as a strategy for enhancing the therapeutic efficacy of stem cell-based therapies.
Collapse
Affiliation(s)
- Gabriel R. Linares
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Los Angeles, CA 90033, USA
| | - Yan Leng
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dragan Maric
- Flow Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - De-Maw Chuang
- Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Xu Y, Wang Q, Chen J, Ma Y, Liu X. Updating a Strategy for Histone Deacetylases and Its Inhibitors in the Potential Treatment of Cerebral Ischemic Stroke. DISEASE MARKERS 2020; 2020:8820803. [PMID: 32963637 PMCID: PMC7492879 DOI: 10.1155/2020/8820803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is one of the severe diseases with a pathological condition that leads to nerve cell dysfunction with seldom available therapy options. Currently, there are few proven effective treatments available for improving cerebral ischemic stroke outcome. However, recently, there is increasing evidence that inhibition of histone deacetylase (HDAC) activity exerts a strong protective effect in in vivo and vitro models of ischemic stroke. Review Summary. HDAC is a posttranslational modification that is negatively regulated by histone acetyltransferase (HATS) and histone deacetylase. Based on function and DNA sequence similarity, histone deacetylases (HDACs) are organized into four different subclasses (I-IV). Modifications of histones play a crucial role in cerebral ischemic affair development after translation by modulating disrupted acetylation homeostasis. HDAC inhibitors (HDACi) mainly exert neuroprotective effects by enhancing histone and nonhistone acetylation levels and enhancing gene expression and protein modification functions. This article reviews HDAC and its inhibitors, hoping to find meaningful therapeutic targets. CONCLUSIONS HDAC may be a new biological target for cerebral ischemic stroke. Future drug development targeting HDAC may make it a potentially effective anticerebral ischemic stroke drug.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Jianxin Chen
- Department of Neurology, Jinan First People's Hospital, Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| |
Collapse
|
45
|
Chi Z, Le TPH, Lee SK, Guo E, Kim D, Lee S, Seo SY, Lee SY, Kim JH, Lee SY. Honokiol ameliorates angiotensin II-induced hypertension and endothelial dysfunction by inhibiting HDAC6-mediated cystathionine γ-lyase degradation. J Cell Mol Med 2020; 24:10663-10676. [PMID: 32755037 PMCID: PMC7521302 DOI: 10.1111/jcmm.15686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hypertension and endothelial dysfunction are associated with various cardiovascular diseases. Hydrogen sulphide (H2S) produced by cystathionine γ‐lyase (CSE) promotes vascular relaxation and lowers hypertension. Honokiol (HNK), a natural compound in the Magnolia plant, has been shown to retain multifunctional properties such as anti‐oxidative and anti‐inflammatory activities. However, a potential role of HNK in regulating CSE and hypertension remains largely unknown. Here, we aimed to demonstrate that HNK co‐treatment attenuated the vasoconstriction, hypertension and H2S reduction caused by angiotensin II (AngII), a well‐established inducer of hypertension. We previously found that histone deacetylase 6 (HDAC6) mediates AngII‐induced deacetylation of CSE, which facilitates its ubiquitination and proteasomal degradation. Our current results indicated that HNK increased endothelial CSE protein levels by enhancing its stability in a sirtuin‐3‐independent manner. Notably, HNK could increase CSE acetylation levels by inhibiting HDAC6 catalytic activity, thereby blocking the AngII‐induced degradative ubiquitination of CSE. CSE acetylation and ubiquitination occurred mainly on the lysine 73 (K73) residue. Conversely, its mutant (K73R) was resistant to both acetylation and ubiquitination, exhibiting higher protein stability than that of wild‐type CSE. Collectively, our findings suggested that HNK treatment protects CSE against HDAC6‐mediated degradation and may constitute an alternative for preventing endothelial dysfunction and hypertensive disorders.
Collapse
Affiliation(s)
- Zhexi Chi
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Truc Phan Hoang Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Sang Ki Lee
- Department of Sport Science, Chungnam National University, Daejeon, Korea
| | - Erling Guo
- Department of Sport Science, Chungnam National University, Daejeon, Korea
| | - Dongsoo Kim
- Department of Anesthesiology and Pain Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Sanha Lee
- College of Pharmacy, Gachon University, Incheon, Korea
| | | | - Sook Young Lee
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Jae Hyung Kim
- Department of Anesthesiology and Pain Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
46
|
Localization and Expression of Sirtuins 1, 2, 6 and Plasticity-Related Proteins in the Recovery Period after a Photothrombotic Stroke in Mice. J Stroke Cerebrovasc Dis 2020; 29:105152. [PMID: 32912518 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Sirtuins, class III histone deacetylases, are involved in the regulation of tissue repair processes and brain functions after a stroke. The ability of some isoforms of sirtuins to circulate between the nucleus and cytoplasm may have various pathophysiological effects on the cells. In present work, we focused on the role of non-mitochondrial sirtuins SIRT1, SIRT2, and SIRT6 in the restoration of brain cells following ischemic stroke. Here, using a photothrombotic stroke (PTS) model in mice, we studied whether local stroke affects the level and intracellular localization of SIRT1, SIRT2, and SIRT6 in neurons and astrocytes of the intact cerebral cortex adjacent to the ischemic ipsilateral hemisphere and in the analogous region of the contralateral hemisphere at different time points during the recovery period after a stroke. We evaluated the co-localization of sirtuins with growth-associated protein-43 (GAP-43), the presynaptic marker synaptophysin (SYN) and acetylated α-tubulin (Ac-α-Tub), that are associated with brain plasticity and are known to be involved in brain repair after a stroke. The results show that during the recovery period, an increase in SIRT1 and SIRT2 levels occurred. The increase of SIRT1 level was associated with an increase in synaptic plasticity proteins, whereas the increase of SIRT2 level was associated with an acetylated of α-tubulin, that can reduce the mobility of neurites. SIRT6 co-localized with GAP-43, but not with SYN. Moreover, we showed that SIRT1, SIRT2, and SIRT6 are not involved in the PTS-induced apoptosis of penumbra cells. Taken together, our results suggest that sirtuins functions differ depending on cell type, intracellular localization, specificity of sirtuins isoforms to different substrates and nature of post-translational modifications of enzymes.
Collapse
|
47
|
Demyanenko SV, Dzreyan VA, Uzdensky AB. Overexpression of HDAC6, but not HDAC3 and HDAC4 in the penumbra after photothrombotic stroke in the rat cerebral cortex and the neuroprotective effects of α-phenyl tropolone, HPOB, and sodium valproate. Brain Res Bull 2020; 162:151-165. [PMID: 32592806 DOI: 10.1016/j.brainresbull.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
Epigenetic processes play important roles in brain responses to ischemic injury. We studied effects of photothrombotic stroke (PTS, a model of ischemic stroke) on the intracellular level and cellular localization of histone deacetylases HDAC3, HDAC4 and HDAC6 in the rat brain cortex, and tested the potential neuroprotector ability of their inhibitors. The background level of HDAC3, HDAC4 and HDAC6 in the rat cerebral cortex was relatively low. HDAC3 localized in the nuclei of some neurons and few astrocytes. HDAC4 was found in the neuronal cytoplasm. After PTS, their levels in penumbra did not change, but HDAC4 appeared in the nuclei of some cells. Its level in the cytoplasmic, but not nuclear fraction of penumbra decreased at 24, but not 4 h after PTS. HDAC6 was upregulated in neurons and astrocytes in the PTS-induced penumbra, especially in the nuclear fraction. Unlike HDAC3 and HDAC4, HDAC6 co-localized with TUNEL-positive apoptotic cells. Inhibitory analysis confirmed the involvement of HDAC6, but not HDAC3 and HDAC4 in neurodegeneration. HDAC6 inhibitor HPOB, HDAC2/8 inhibitor α-phenyl tropolone, and non-specific histone deacetylase inhibitor sodium valproate, but not HDAC3 inhibitor BRD3308, or HDAC4 inhibitor LMK235, decreased PTS-induced infarction volume in the mouse brain, reduced apoptosis, and recovered the motor behavior. HPOB also restored PTS-impaired acetylation of α-tubulin. α-phenyl tropolone restored acetylation of histone H4 in penumbra cells. These results suggest that histone deacetylases HDAC6 and HDAC2 are the possible molecular targets for anti-ischemic therapy, and their inhibitors α-phenyl tropolone, HBOP and sodium valproate can be considered as promising neuroprotectors.
Collapse
Affiliation(s)
- S V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia
| | - V A Dzreyan
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia
| | - A B Uzdensky
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia.
| |
Collapse
|
48
|
Activation of AK005401 aggravates acute ischemia/reperfusion mediated hippocampal injury by directly targeting YY1/FGF21. Aging (Albany NY) 2020; 11:5108-5123. [PMID: 31336365 PMCID: PMC6682521 DOI: 10.18632/aging.102106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Ischemia exerts a negative impact on mitochondrial function, which ultimately results in neuronal damage via alterations in gene transcription and protein expression. Long non- coding RNAs (LncRNAs) play pivotal roles in the regulation of target protein expression and gene transcription. In the present study, we observed the effect of an unclassical LncRNA AK005401on ischemia/reperfusion (I/R) ischemia-mediated hippocampal injury and investigated the regulatory role of fibroblast growth factor 21 (FGF21) and Yin Yang 1 (YY1). C57Black/6 mice were subjected to I/R using the bilateral common carotid clip reperfusion method, and AK005401 siRNA oligos were administered via intracerebroventricular injection. HT22 cells were used to establish a model of oxygen-glucose deprivation/reoxygenation (OGD/R). We observed pathological morphology and mitochondrial structure. Neuronal apoptosis was evident. Cell activity, cell respiration, FGF21, YY1, and antioxidant capacity were evaluated. I/R or OGD/R significantly increased the expressions of AK005401and YY1 and decreased FGF21expression, which further attenuated the activation of PI3K/Akt, promoted reactive oxygen species (ROS) generation, and then caused mitochondria dysfunction and cell apoptosis, which were reversed by AK005401 siRNA oligos and were aggravated by overexpression of AK005401 and YY1. We conclude that AK005401/YY1/FGF21 signaling pathway has an important role in I/R-mediated hippocampal injury.
Collapse
|
49
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
50
|
Shen S, Svoboda M, Zhang G, Cavasin MA, Motlova L, McKinsey TA, Eubanks JH, Bařinka C, Kozikowski AP. Structural and in Vivo Characterization of Tubastatin A, a Widely Used Histone Deacetylase 6 Inhibitor. ACS Med Chem Lett 2020; 11:706-712. [PMID: 32435374 DOI: 10.1021/acsmedchemlett.9b00560] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022] Open
Abstract
Tubastatin A, a tetrahydro-γ-carboline-capped selective HDAC6 inhibitor (HDAC6i), was rationally designed 10 years ago, and has become the best investigated HDAC6i to date. It shows efficacy in various neurological disease animal models, as HDAC6 plays a crucial regulatory role in axonal transport deficits, protein aggregation, as well as oxidative stress. In this work, we provide new insights into this HDAC6i by investigating the molecular basis of its interactions with HDAC6 through X-ray crystallography, determining its functional capability to elevate the levels of acetylated α-tubulin in vitro and in vivo, correlating PK/PD profiles to determine effective doses in plasma and brain, and finally assessing its therapeutic potential toward psychiatric diseases through use of the SmartCube screening platform.
Collapse
Affiliation(s)
- Sida Shen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Michal Svoboda
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Guangming Zhang
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Maria A. Cavasin
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Lucia Motlova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - James H. Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | | |
Collapse
|