1
|
Florini F, Visone JE, Hadjimichael E, Malpotra S, Nötzel C, Kafsack BFC, Deitsch KW. scRNA-seq reveals transcriptional plasticity of var gene expression in Plasmodium falciparum for host immune avoidance. Nat Microbiol 2025:10.1038/s41564-025-02008-5. [PMID: 40379932 DOI: 10.1038/s41564-025-02008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2025] [Indexed: 05/19/2025]
Abstract
Plasmodium falciparum evades antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. Previous work with clonal P. falciparum populations revealed var gene expression profiles inconsistent with uniform single var gene expression. However, the mechanisms underpinning this and how it might contribute to chronic infections were unclear. Here, using single-cell transcriptomics employing enrichment probes and a portable microwell system, we analysed var gene expression in clonal 3D7 and IT4 parasite lines. We show that in addition to mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. Reduced var gene expression resulted in greatly decreased antibody recognition of infected cells. This transcriptional flexibility provides parasites with greater adaptive capacity and could explain the antigenically 'invisible' parasites observed in chronic asymptomatic infections.
Collapse
Affiliation(s)
- Francesca Florini
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Joseph E Visone
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Shivali Malpotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Christopher Nötzel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Björn F C Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
Florini F, Visone JE, Hadjimichael E, Malpotra S, Nötzel C, Kafsack BF, Deitsch KW. Transcriptional plasticity of virulence genes provides malaria parasites with greater adaptive capacity for avoiding host immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584127. [PMID: 38496509 PMCID: PMC10942408 DOI: 10.1101/2024.03.08.584127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Chronic, asymptomatic malaria infections contribute substantially to disease transmission and likely represent the most significant impediment preventing malaria elimination and eradication. Plasmodium falciparum parasites evade antibody recognition through transcriptional switching between members of the var gene family, which encodes the major virulence factor and surface antigen on infected red blood cells. This process can extend infections for up to a year; however, infections have been documented to last for over a decade, constituting an unseen reservoir of parasites that undermine eradication and control efforts. How parasites remain immunologically "invisible" for such lengthy periods is entirely unknown. Here we show that in addition to the accepted paradigm of mono-allelic var gene expression, individual parasites can simultaneously express multiple var genes or enter a state in which little or no var gene expression is detectable. This unappreciated flexibility provides parasites with greater adaptive capacity than previously understood and challenges the dogma of mutually exclusive var gene expression. It also provides an explanation for the antigenically "invisible" parasites observed in chronic asymptomatic infections.
Collapse
Affiliation(s)
| | | | - Evi Hadjimichael
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Shivali Malpotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | | | - Björn F.C. Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
3
|
Abdi AI, Achcar F, Sollelis L, Silva-Filho JL, Mwikali K, Muthui M, Mwangi S, Kimingi HW, Orindi B, Andisi Kivisi C, Alkema M, Chandrasekar A, Bull PC, Bejon P, Modrzynska K, Bousema T, Marti M. Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. eLife 2023; 12:e85140. [PMID: 36916164 PMCID: PMC10059685 DOI: 10.7554/elife.85140] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
The malaria parasite life cycle includes asexual replication in human blood, with a proportion of parasites differentiating to gametocytes required for transmission to mosquitoes. Commitment to differentiate into gametocytes, which is marked by activation of the parasite transcription factor ap2-g, is known to be influenced by host factors but a comprehensive model remains uncertain. Here, we analyze data from 828 children in Kilifi, Kenya with severe, uncomplicated, and asymptomatic malaria infection over 18 years of falling malaria transmission. We examine markers of host immunity and metabolism, and markers of parasite growth and transmission investment. We find that inflammatory responses associated with reduced plasma lysophosphatidylcholine levels are associated with markers of increased investment in parasite sexual reproduction (i.e. transmission investment) and reduced growth (i.e. asexual replication). This association becomes stronger with falling transmission and suggests that parasites can rapidly respond to the within-host environment, which in turn is subject to changing transmission.
Collapse
Affiliation(s)
- Abdirahman I Abdi
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
- Pwani University Biosciences Research Centre, Pwani UniversityKilifiKenya
| | - Fiona Achcar
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | - Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | - João Luiz Silva-Filho
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | | | | | | | | | | | - Cheryl Andisi Kivisi
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
- Pwani University Biosciences Research Centre, Pwani UniversityKilifiKenya
| | - Manon Alkema
- Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Amrita Chandrasekar
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
| | - Peter C Bull
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
| | - Katarzyna Modrzynska
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
| | - Teun Bousema
- Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| |
Collapse
|
4
|
Alteration of the expression of sirtuins and var genes by heat shock in the malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2022; 248:111458. [PMID: 35031386 DOI: 10.1016/j.molbiopara.2022.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND In Plasmodium falciparum the monoallelic expression of var virulence genes is regulated through epigenetic mechanisms. A study in the Gambia showed that an increase in var gene expression is associated with fever, high blood lactate with commonly-expressed var genes expressed in patients with severe malaria. A strong association was demonstrated between the upregulation of PfSir2A and group B var genes. A subsequent study in Kenya extended this association to show a link between elevated expression of PfSir2A and overall var transcript levels. We investigate here the link between heat shock and/or lactate levels on sirtuin and var gene expression levels in vitro. METHODS In vitro experiments were conducted using laboratory and recently-laboratory-adapted Kenyan isolates of P. falciparum. To investigate a potential cause-and-effect relationship between host stress factors and parasite gene expression, qPCR was used to measure the expression of sirtuins and var genes after highly synchronous cultured parasites had been exposed to 2 h or 6 h of heat shock at 40 °C or elevated lactate. RESULTS Heat shock was shown to increase the expression ofPfSir2B in the trophozoites, whereas exposure to lactate was not. After the ring stages were exposed to heat shock and lactate, there was no alteration in the expression of sirtuins and severe-disease-associated upsA and upsB var genes. The association between high blood lactate and sirtuin/var gene expression that was previously observed in vivo appears to be coincidental rather than causative. CONCLUSIONS This study demonstrates that heat stress in a laboratory and recently-laboratory-adapted isolates of P. falciparum results in a small increase in PfSir2B transcripts in the trophozoite stages only. This finding adds to our understanding of how patient factors can influence the outcome of Plasmodium falciparum infections.
Collapse
|
5
|
Sahu PK, Duffy FJ, Dankwa S, Vishnyakova M, Majhi M, Pirpamer L, Vigdorovich V, Bage J, Maharana S, Mandala W, Rogerson SJ, Seydel KB, Taylor TE, Kim K, Sather DN, Mohanty A, Mohanty RR, Mohanty A, Pattnaik R, Aitchison JD, Hoffman A, Mohanty S, Smith JD, Bernabeu M, Wassmer SC. Determinants of brain swelling in pediatric and adult cerebral malaria. JCI Insight 2021; 6:145823. [PMID: 34549725 PMCID: PMC8492338 DOI: 10.1172/jci.insight.145823] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Cerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites. Machine learning models trained on the African pediatric cohort could classify brain swelling in Indian children CM cases but had weaker performance for adult classification, due to overall lower parasite var transcript levels in this age group and more severe thrombocytopenia in Rourkela adults. Subgrouping of patients with CM revealed higher parasite biomass linked to severe thrombocytopenia and higher Group A–EPCR var transcripts in mild thrombocytopenia. Overall, these findings provide evidence that higher parasite biomass and a subset of Group A–EPCR binding variants are common features in children and adult CM cases, despite age differences in brain swelling.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Fergal J Duffy
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Selasi Dankwa
- Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | | - Lukas Pirpamer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Jabamani Bage
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Sameer Maharana
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Wilson Mandala
- Malawi University of Science and Technology, Limbe, Malawi
| | - Stephen J Rogerson
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Karl B Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kami Kim
- Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - D Noah Sather
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Akshaya Mohanty
- Infectious Diseases Biology Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Anita Mohanty
- Department of Intensive Care, IGH, Rourkela, Odisha, India
| | | | - John D Aitchison
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Angelika Hoffman
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Maria Bernabeu
- Seattle Children's Research Institute, Seattle, Washington, USA.,European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
6
|
Antibody Levels to Plasmodium falciparum Erythrocyte Membrane Protein 1-DBLγ11 and DBLδ-1 Predict Reduction in Parasite Density. mSystems 2021; 6:e0034721. [PMID: 34128693 PMCID: PMC8269226 DOI: 10.1128/msystems.00347-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant surface antigen family expressed on infected red blood cells that plays a role in immune evasion and mediates adhesion to vascular endothelium. PfEMP1s are potential targets of protective antibodies as suggested by previous seroepidemiology studies. Here, we used previously reported proteomic analyses of PfEMP1s of clinical parasite isolates collected from Malian children to identify targets of immunity. We designed a peptide library representing 11 PfEMP1 domains commonly identified on clinical isolates by membrane proteomics and then examined peptide-specific antibody responses in Malian children. The number of previous malaria infections was associated with development of PfEMP1 antibodies to peptides from domains CIDRα1.4, DBLγ11, DBLβ3, and DBLδ1. A zero-inflated negative binomial model with random effects (ZINBRE) was used to identify peptide reactivities that were associated with malaria risk. This peptide selection and serosurvey strategy revealed that high antibody levels to peptides from DBLγ11 and DBLδ1 domains correlated with decreased parasite burden in future infections, supporting the notion that specific PfEMP1 domains play a role in protective immunity. IMPORTANCEPlasmodium infection causes devastating disease and high mortality in young children. Immunity develops progressively as children acquire protection against severe disease, although reinfections and recrudescences still occur throughout life in areas of endemicity, partly due to parasite immunoevasion via switching of variant proteins such as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed on the infected erythrocyte surface. Understanding the mechanisms behind antibody protection can advance development of new therapeutic interventions that address this challenge. PfEMP1 domain-specific antibodies have been linked to reduction in severe malaria; however, the large diversity of PfEMP1 domains in circulating parasites has not been fully investigated. We designed representative peptides based on B cell epitopes of PfEMP1 domains identified in membranes of clinical parasite isolates and surveyed peptide-specific antibody responses among young Malian children in a longitudinal birth cohort. We examined previous infections and age as factors contributing to antibody acquisition and identified antibody specificities that predict malaria risk.
Collapse
|
7
|
Gnangnon B, Duraisingh MT, Buckee CO. Deconstructing the parasite multiplication rate of Plasmodium falciparum. Trends Parasitol 2021; 37:922-932. [PMID: 34119440 DOI: 10.1016/j.pt.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Epidemiological indicators describing population-level malaria transmission dynamics are widely used to guide policy recommendations. However, the determinants of malaria outcomes within individuals are still poorly understood. This conceptual gap partly reflects the fact that there are few indicators that robustly predict the trajectory of individual infections or clinical outcomes. The parasite multiplication rate (PMR) is a widely used indicator for the Plasmodium intraerythrocytic development cycle (IDC), for example, but its relationship to clinical outcomes is complex. Here, we review its calculation and use in P. falciparum malaria research, as well as the parasite and host factors that impact it. We also provide examples of metrics that can help to link within-host dynamics to malaria clinical outcomes when used alongside the PMR.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caroline O Buckee
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
8
|
Nyarko PB, Claessens A. Understanding Host-Pathogen-Vector Interactions with Chronic Asymptomatic Malaria Infections. Trends Parasitol 2020; 37:195-204. [PMID: 33127332 DOI: 10.1016/j.pt.2020.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The last malaria parasite standing will display effective adaptations to selective forces. While substantial progress has been made in reducing malaria mortality, eradication will require elimination of all Plasmodium parasites, including those in asymptomatic infections. These typically chronic, low-density infections are difficult to detect, yet can persist for months. We argue that asymptomatic infection is the parasite's best asset for survival but it can be exploited if studied as a new model for host-pathogen-vector interactions. Regular sampling from cohorts of asymptomatic individuals can provide a means to investigate continuous parasite development within its natural host. State-of-the-art techniques can now be applied to such infections. This approach may reveal key molecular drivers of chronic infections - a critical step for malaria eradication.
Collapse
Affiliation(s)
- Prince B Nyarko
- Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of Montpellier, France
| | | |
Collapse
|
9
|
Andrade CM, Fleckenstein H, Thomson-Luque R, Doumbo S, Lima NF, Anderson C, Hibbert J, Hopp CS, Tran TM, Li S, Niangaly M, Cisse H, Doumtabe D, Skinner J, Sturdevant D, Ricklefs S, Virtaneva K, Asghar M, Homann MV, Turner L, Martins J, Allman EL, N'Dri ME, Winkler V, Llinás M, Lavazec C, Martens C, Färnert A, Kayentao K, Ongoiba A, Lavstsen T, Osório NS, Otto TD, Recker M, Traore B, Crompton PD, Portugal S. Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season. Nat Med 2020; 26:1929-1940. [PMID: 33106664 DOI: 10.1038/s41591-020-1084-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022]
Abstract
The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.
Collapse
Affiliation(s)
- Carolina M Andrade
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hannah Fleckenstein
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Nathalia F Lima
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carrie Anderson
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine S Hopp
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tuan M Tran
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shanping Li
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Moussa Niangaly
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Hamidou Cisse
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Jeff Skinner
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Dan Sturdevant
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Stacy Ricklefs
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimmo Virtaneva
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Muhammad Asghar
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Manijeh Vafa Homann
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Louise Turner
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Joana Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Erik L Allman
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA
| | | | - Volker Winkler
- Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Huck Center for Malaria Research, The Pennsylvania State University, State College, PA, USA.,Department of Chemistry, The Pennsylvania State University, State College, PA, USA
| | | | - Craig Martens
- Rocky Mountain Laboratory Research Technologies Section, Genomics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Anna Färnert
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Thomas Lavstsen
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical Sciences, University of Copenhagen, København N, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Portugal and ICVS/3B's -PT Government Associate Laboratory, Braga, Portugal
| | - Thomas D Otto
- Institute of Infection, Immunity & Inflammation, MVLS, University of Glasgow, Glasgow, UK
| | - Mario Recker
- Centre for Mathematics & the Environment, University of Exeter, Penryn Campus, Penryn, UK
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Silvia Portugal
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany. .,German Center for Infection Research (DZIF), Heidelberg, Heidelberg, Germany. .,Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
10
|
Dimonte S, Bruske EI, Enderes C, Otto TD, Turner L, Kremsner P, Frank M. Identification of a conserved var gene in different Plasmodium falciparum strains. Malar J 2020; 19:194. [PMID: 32471507 PMCID: PMC7260770 DOI: 10.1186/s12936-020-03257-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The multicopy var gene family of Plasmodium falciparum is of crucial importance for pathogenesis and antigenic variation. So far only var2csa, the var gene responsible for placental malaria, was found to be highly conserved among all P. falciparum strains. Here, a new conserved 3D7 var gene (PF3D7_0617400) is identified in several field isolates. METHODS DNA sequencing, transcriptional analysis, Cluster of Differentiation (CD) 36-receptor binding, indirect immunofluorescence with PF3D7_0617400-antibodies and quantification of surface reactivity against semi-immune sera were used to characterize an NF54 clone and a Gabonese field isolate clone (MOA C3) transcribing the gene. A population of 714 whole genome sequenced parasites was analysed to characterize the conservation of the locus in African and Asian isolates. The genetic diversity of two var2csa fragments was compared with the genetic diversity of 57 microsatellites fragments in field isolates. RESULTS PFGA01_060022400 was identified in a Gabonese parasite isolate (MOA) from a chronic infection and found to be 99% identical with PF3D7_0617400 of the 3D7 genome strain. Transcriptional analysis and immunofluorescence showed expression of the gene in an NF54 and a MOA clone but CD36 binding assays and surface reactivity to semi-immune sera differed markedly in the two clones. Long-read Pacific bioscience whole genome sequencing showed that PFGA01_060022400 is located in the internal cluster of chromosome 6. The full length PFGA01_060022400 was detected in 36 of 714 P. falciparum isolates and 500 bp fragments were identified in more than 100 isolates. var2csa was in parts highly conserved (He = 0) but in other parts as variable (He = 0.86) as the 57 microsatellites markers (He = 0.8). CONCLUSIONS Individual var gene sequences exhibit conservation in the global parasite population suggesting that purifying selection may limit overall genetic diversity of some var genes. Notably, field and laboratory isolates expressing the same var gene exhibit markedly different phenotypes.
Collapse
Affiliation(s)
- Sandra Dimonte
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany
| | - Ellen I Bruske
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany
| | - Corinna Enderes
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Centre of Immunobiology, Institute of Infection, Immunity & Inflammation, College of MVLS, University of Glasgow, Glasgow, UK
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100, Copenhagen, Denmark
| | - Peter Kremsner
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tuebingen, Wilhelmstr. 27, 72074, Tuebingen, Germany.
| |
Collapse
|
11
|
Llorà-Batlle O, Tintó-Font E, Cortés A. Transcriptional variation in malaria parasites: why and how. Brief Funct Genomics 2020; 18:329-341. [PMID: 31114839 DOI: 10.1093/bfgp/elz009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/04/2019] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Transcriptional differences enable the generation of alternative phenotypes from the same genome. In malaria parasites, transcriptional plasticity plays a major role in the process of adaptation to fluctuations in the environment. Multiple studies with culture-adapted parasites and field isolates are starting to unravel the different transcriptional alternatives available to Plasmodium falciparum and the underlying molecular mechanisms. Here we discuss how epigenetic variation, directed transcriptional responses and also genetic changes that affect transcript levels can all contribute to transcriptional variation and, ultimately, parasite survival. Some transcriptional changes are driven by stochastic events. These changes can occur spontaneously, resulting in heterogeneity within parasite populations that provides the grounds for adaptation by dynamic natural selection. However, transcriptional changes can also occur in response to external cues. A better understanding of the mechanisms that the parasite has evolved to alter its transcriptome may ultimately contribute to the design of strategies to combat malaria to which the parasite cannot adapt.
Collapse
Affiliation(s)
- Oriol Llorà-Batlle
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Hospital Clínic - Universitat de Barcelona, 08036 Barcelona, Catalonia, Spain
| | | |
Collapse
|
12
|
Kivisi CA, Muthui M, Hunt M, Fegan G, Otto TD, Githinji G, Warimwe GM, Rance R, Marsh K, Bull PC, Abdi AI. Exploring Plasmodium falciparum Var Gene Expression to Assess Host Selection Pressure on Parasites During Infancy. Front Immunol 2019; 10:2328. [PMID: 31681266 PMCID: PMC6798654 DOI: 10.3389/fimmu.2019.02328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
In sub-Saharan Africa, children below 5 years bear the greatest burden of severe malaria because they lack naturally acquired immunity that develops following repeated exposure to infections by Plasmodium falciparum. Antibodies to the surface of P. falciparum infected erythrocytes (IE) play an important role in this immunity. In children under the age of 6 months, relative protection from severe malaria is observed and this is thought to be partly due to trans-placental acquired protective maternal antibodies. However, the protective effect of maternal antibodies has not been fully established, especially the role of antibodies to variant surface antigens (VSA) expressed on IE. Here, we assessed the immune pressure on parasites infecting infants using markers associated with the acquisition of naturally acquired immunity to surface antigens. We hypothesized that, if maternal antibodies to VSA imposed a selection pressure on parasites, then the expression of a relatively conserved subset of var genes called group A var genes in infants should change with waning maternal antibodies. To test this, we compared their expression in parasites from children between 0 and 12 months and above 12 months of age. The transcript quantity and the proportional expression of group A var subgroup, including those containing domain cassette 13, were positively associated with age during the first year of life, which contrasts with above 12 months. This was accompanied by a decline in infected erythrocyte surface antibodies and an increase in parasitemia during this period. The observed increase in group A var gene expression with age in the first year of life, when the maternal antibodies are waning and before acquisition of naturally acquired antibodies with repeated exposure, is consistent with the idea that maternally acquired antibodies impose a selection pressure on parasites that infect infants and may play a role in protecting these infants against severe malaria.
Collapse
Affiliation(s)
- Cheryl A Kivisi
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya.,Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | | | - Martin Hunt
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Greg Fegan
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - George M Warimwe
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Richard Rance
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| | - Kevin Marsh
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Peter C Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Abdirahman I Abdi
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| |
Collapse
|
13
|
Penha-Gonçalves C. Genetics of Malaria Inflammatory Responses: A Pathogenesis Perspective. Front Immunol 2019; 10:1771. [PMID: 31417551 PMCID: PMC6682681 DOI: 10.3389/fimmu.2019.01771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
Despite significant progress in combating malaria in recent years the burden of severe disease and death due to Plasmodium infections remains a global public health concern. Only a fraction of infected people develops severe clinical syndromes motivating a longstanding search for genetic determinants of malaria severity. Strong genetic effects have been repeatedly ascribed to mutations and allelic variants of proteins expressed in red blood cells but the role of inflammatory response genes in disease pathogenesis has been difficult to discern. We revisited genetic evidence provided by inflammatory response genes that have been repeatedly associated to malaria, namely TNF, NOS2, IFNAR1, HMOX1, TLRs, CD36, and CD40LG. This highlighted specific genetic variants having opposing roles in the development of distinct malaria clinical outcomes and unveiled diverse levels of genetic heterogeneity that shaped the complex association landscape of inflammatory response genes with malaria. However, scrutinizing genetic effects of individual variants corroborates a pathogenesis model where pro-inflammatory genetic variants acting in early infection stages contribute to resolve infection but at later stages confer increased vulnerability to severe organ dysfunction driven by tissue inflammation. Human genetics studies are an invaluable tool to find genes and molecular pathways involved in the inflammatory response to malaria but their precise roles in disease pathogenesis are still unexploited. Genome editing in malaria experimental models and novel genotyping-by-sequencing techniques are promising approaches to delineate the relevance of inflammatory response gene variants in the natural history of infection thereby will offer new rational angles on adjuvant therapeutics for prevention and clinical management of severe malaria.
Collapse
|
14
|
Bachmann A, Bruske E, Krumkamp R, Turner L, Wichers JS, Petter M, Held J, Duffy MF, Sim BKL, Hoffman SL, Kremsner PG, Lell B, Lavstsen T, Frank M, Mordmüller B, Tannich E. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog 2019; 15:e1007906. [PMID: 31295334 PMCID: PMC6650087 DOI: 10.1371/journal.ppat.1007906] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/23/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Plasmodium falciparum malaria is linked to the variant surface antigen PfEMP1, which mediates tethering of infected erythrocytes to the host endothelium and is encoded by approximately 60 var genes per parasite genome. Repeated episodes of malaria infection result in the gradual acquisition of protective antibodies against PfEMP1 variants. The antibody repertoire is believed to provide a selective pressure driving the clonal expansion of parasites expressing unrecognized PfEMP1 variants, however, due to the lack of experimental in vivo models there is only limited experimental evidence in support of this concept. To get insight into the impact of naturally acquired immunity on the expressed var gene repertoire early during infection we performed controlled human malaria infections of 20 adult African volunteers with life-long malaria exposure using aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria PfSPZ Challenge) and correlated serological data with var gene expression patterns from ex vivo parasites. Among the 10 African volunteers who developed patent infections, individuals with low antibody levels showed a steep rise in parasitemia accompanied by broad activation of multiple, predominantly subtelomeric var genes, similar to what we previously observed in naïve volunteers. In contrast, individuals with intermediate antibody levels developed asymptomatic infections and the ex vivo parasite populations expressed only few var gene variants, indicative of clonal selection. Importantly, in contrast to parasites from naïve volunteers, expression of var genes coding for endothelial protein C receptor (EPCR)-binding PfEMP1 that are associated with severe childhood malaria was rarely detected in semi-immune adult African volunteers. Moreover, we followed var gene expression for up to six parasite replication cycles and demonstrated for the first time in vivo a shift in the dominant var gene variant. In conclusion, our data suggest that P. falciparum activates multiple subtelomeric var genes at the onset of blood stage infection facilitating rapid expansion of parasite clones which express PfEMP1 variants unrecognized by the host's immune system, thus promoting overall parasite survival in the face of host immunity.
Collapse
Affiliation(s)
- Anna Bachmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ellen Bruske
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Ralf Krumkamp
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louise Turner
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - J. Stephan Wichers
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael F. Duffy
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Peter G. Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Bertrand Lell
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research (DZIF), African partner institution, CERMEL, Gabon
| | - Thomas Lavstsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - Matthias Frank
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Egbert Tannich
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| |
Collapse
|
15
|
Tuju J, Mackinnon MJ, Abdi AI, Karanja H, Musyoki JN, Warimwe GM, Gitau EN, Marsh K, Bull PC, Urban BC. Antigenic cartography of immune responses to Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PLoS Pathog 2019; 15:e1007870. [PMID: 31260501 PMCID: PMC6625739 DOI: 10.1371/journal.ppat.1007870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/12/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Naturally acquired clinical immunity to Plasmodium falciparum is partly mediated by antibodies directed at parasite-derived antigens expressed on the surface of red blood cells which mediate disease and are extremely diverse. Unlike children, adults recognize a broad range of variant surface antigens (VSAs) and are protected from severe disease. Though crucial to the design and feasibility of an effective malaria vaccine, it is not yet known whether immunity arises through cumulative exposure to each of many antigenic types, cross-reactivity between antigenic types, or some other mechanism. In this study, we measured plasma antibody responses of 36 children with symptomatic malaria to a diverse panel of 36 recombinant proteins comprising part of the DBLα domain (the 'DBLα-tag') of PfEMP1, a major class of VSAs. We found that although plasma antibody responses were highly specific to individual antigens, serological profiles of responses across antigens fell into one of just two distinct types. One type was found almost exclusively in children that succumbed to severe disease (19 out of 20) while the other occurred in all children with mild disease (16 out of 16). Moreover, children with severe malaria had serological profiles that were narrower in antigen specificity and shorter-lived than those in children with mild malaria. Borrowing a novel technique used in influenza-antigenic cartography-we mapped these dichotomous serological profiles to amino acid sequence variation within a small sub-region of the PfEMP1 DBLα domain. By applying our methodology on a larger scale, it should be possible to identify epitopes responsible for eliciting the protective version of serological profiles to PfEMP1 thereby accelerating development of a broadly effective anti-disease malaria vaccine.
Collapse
Affiliation(s)
- James Tuju
- KEMRI-Wellcome Trust Research Programme, Kenya
- Department of Chemistry and Biochemistry, Pwani University, Kilifi, Kenya
| | | | | | | | | | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Evelyn N. Gitau
- African Population and Health Research Center, Nairobi, Kenya
| | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Britta C. Urban
- Liverpool School of Tropical Medicine, Department of Tropical Disease Biology, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
16
|
Castillo AI, Nelson ADL, Lyons E. Tail Wags the Dog? Functional Gene Classes Driving Genome-Wide GC Content in Plasmodium spp. Genome Biol Evol 2019; 11:497-507. [PMID: 30689842 PMCID: PMC6385630 DOI: 10.1093/gbe/evz015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2019] [Indexed: 01/16/2023] Open
Abstract
Plasmodium parasites are valuable models to understand how nucleotide composition affects mutation, diversification, and adaptation. No other observed eukaryotes have undergone such large changes in genomic Guanine-Cytosine (GC) content as seen in the genus Plasmodium (∼30% within 35-40 Myr). Although mutational biases are known to influence GC content in the human-infective Plasmodium vivax and Plasmodium falciparum; no study has addressed how different gene functional classes contribute to genus-wide compositional changes, or if Plasmodium GC content variation is driven by natural selection. Here, we tested the hypothesis that certain gene processes and functions drive variation in global GC content between Plasmodium species. We performed a large-scale comparative genomic analysis using the genomes and predicted genes of 17 Plasmodium species encompassing a wide genomic GC content range. Genic GC content was sorted and divided into ten equally sized quantiles that were then assessed for functional enrichment classes. In agreement that selection on gene classes may drive genomic GC content, trans-membrane proteins were enriched within extreme GC content quantiles (Q1 and Q10). Specifically, variant surface antigens, which primarily interact with vertebrate immune systems, showed skewed GC content distributions compared with other trans-membrane proteins. Although a definitive causation linking GC content, expression, and positive selection within variant surface antigens from Plasmodium vivax, Plasmodium berghei, and Plasmodium falciparum could not be established, we found that regardless of genomic nucleotide composition, genic GC content and expression were positively correlated during trophozoite stages. Overall, these data suggest that, alongside mutational biases, functional protein classes drive Plasmodium GC content change.
Collapse
Affiliation(s)
- Andreina I Castillo
- School of Environmental Science, Policy, and Management, University of California, Berkeley
| | | | - Eric Lyons
- BIO5 Institute, School of Plant Sciences, University of Arizona
| |
Collapse
|
17
|
Ararat-Sarria M, Patarroyo MA, Curtidor H. Parasite-Related Genetic and Epigenetic Aspects and Host Factors Influencing Plasmodium falciparum Invasion of Erythrocytes. Front Cell Infect Microbiol 2019; 8:454. [PMID: 30693273 PMCID: PMC6339890 DOI: 10.3389/fcimb.2018.00454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023] Open
Abstract
Malaria, a disease caused by Plasmodium parasites, is widespread throughout tropical and sub-tropical regions worldwide; it mostly affects children and pregnant woman. Eradication has stalled despite effective prevention measures and medication being available for this disease; this has mainly been due to the parasite's resistance to medical treatment and the mosquito vector's resistance to insecticides. Tackling such resistance involves using renewed approaches and techniques for accruing a deep understanding of the parasite's biology, and developing new drugs and vaccines. Studying the parasite's invasion of erythrocytes should shed light on its ability to switch between invasion phenotypes related to the expression of gene sets encoding proteins acting as ligands during target cell invasion, thereby conferring mechanisms for evading a particular host's immune response and adapting to changes in target cell surface receptors. This review considers some factors influencing the expression of such phenotypes, such as Plasmodium's genetic, transcriptional and epigenetic characteristics, and explores some host-related aspects which could affect parasite phenotypes, aiming at integrating knowledge regarding this topic and the possible relationship between the parasite's biology and host factors playing a role in erythrocyte invasion.
Collapse
Affiliation(s)
- Monica Ararat-Sarria
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Hernando Curtidor
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
18
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
19
|
Host factors that modify Plasmodium falciparum adhesion to endothelial receptors. Sci Rep 2017; 7:13872. [PMID: 29066816 PMCID: PMC5655674 DOI: 10.1038/s41598-017-14351-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/10/2017] [Indexed: 12/11/2022] Open
Abstract
P. falciparum virulence is related to adhesion and sequestration of infected erythrocytes (IE) in deep vascular beds, but the endothelial receptors involved in severe malaria remain unclear. In the largest ever study of clinical isolates, we surveyed adhesion of freshly collected IE from children under 5 years of age in Mali to identify novel vascular receptors, and examined the effects of host age, hemoglobin type, blood group and severe malaria on levels of IE adhesion to a panel of endothelial receptors. Several novel molecules, including integrin α3β1, VE-cadherin, ICAM-2, junctional adhesion molecule-B (JAM-B), laminin, and cellular fibronectin, supported binding of IE from children. Severe malaria was not significantly associated with levels of IE adhesion to any of the 19 receptors. Hemoglobin AC, which reduces severe malaria risk, reduced IE binding to the receptors CD36 and integrin α5β1, while hemoglobin AS did not modify IE adhesion to any receptors. Blood groups A, AB and B significantly reduced IE binding to ICAM-1. Severe malaria risk varies with age, but age significantly impacted the level of IE binding to only a few receptors: IE binding to JAM-B decreased with age, while binding to CD36 and integrin α5β1 significantly increased with age.
Collapse
|
20
|
Abdi AI, Hodgson SH, Muthui MK, Kivisi CA, Kamuyu G, Kimani D, Hoffman SL, Juma E, Ogutu B, Draper SJ, Osier F, Bejon P, Marsh K, Bull PC. Plasmodium falciparum malaria parasite var gene expression is modified by host antibodies: longitudinal evidence from controlled infections of Kenyan adults with varying natural exposure. BMC Infect Dis 2017; 17:585. [PMID: 28835215 PMCID: PMC5569527 DOI: 10.1186/s12879-017-2686-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
Background The PfEMP1 family of Plasmodium falciparum antigens play a key role in pathogenesis of severe malaria through their insertion into the surface of parasite infected erythrocytes, and adhesion to host cells. Previous studies have suggested that parasites expressing PfEMP1 subclasses group A and DC8, associated with severe malaria, may have a growth advantage in immunologically naïve individuals. However, this idea has not been tested in longitudinal studies. Methods Here we assessed expression of the var genes encoding PfEMP1, in parasites sampled from volunteers with varying prior exposure to malaria, following experimental infection by sporozoites (PfSPZ). Using qPCR, we tested for associations between the expression of various var subgroups in surviving parasite populations from each volunteer and 1) the levels of participants’ antibodies to infected erythrocytes before challenge infection and 2) the apparent in vivo parasite multiplication rate. Results We show that 1) expression of var genes encoding for group A and DC8-like PfEMP1 were associated with low levels of antibodies to infected erythrocytes (αIE) before challenge, and 2) expression of a DC8-like CIDRα1.1 domain was associated with higher apparent parasite multiplication rate in a manner that was independent of levels of prior antibodies to infected erythrocytes. Conclusions This study provides insight into the role of antibodies to infected erythrocytes surface antigens in the development of naturally acquired immunity and may help explain why specific PfEMP1 variants may be associated with severe malaria. Trial registration Pan African Clinical Trial Registry: PACTR201211000433272. Date of registration: 10th October 2012.
Collapse
Affiliation(s)
- Abdirahman I Abdi
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya. .,Pwani University, P. O. Box 195-80108, Kilifi, Kenya.
| | | | - Michelle K Muthui
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Cheryl A Kivisi
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya.,Pwani University, P. O. Box 195-80108, Kilifi, Kenya
| | - Gathoni Kamuyu
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Domtila Kimani
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | | | - Elizabeth Juma
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.,Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.,Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | | | - Faith Osier
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Peter C Bull
- Department of Pathology, University of Cambridge, 17 Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
21
|
Mira-Martínez S, van Schuppen E, Amambua-Ngwa A, Bottieau E, Affara M, Van Esbroeck M, Vlieghe E, Guetens P, Rovira-Graells N, Gómez-Pérez GP, Alonso PL, D'Alessandro U, Rosanas-Urgell A, Cortés A. Expression of the Plasmodium falciparum Clonally Variant clag3 Genes in Human Infections. J Infect Dis 2017; 215:938-945. [PMID: 28419281 PMCID: PMC5407054 DOI: 10.1093/infdis/jix053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background Many genes of the malaria parasite Plasmodium falciparum show clonally variant expression regulated at the epigenetic level. These genes participate in fundamental host-parasite interactions and contribute to adaptive processes. However, little is known about their expression patterns during human infections. A peculiar case of clonally variant genes are the 2 nearly identical clag3 genes, clag3.1 and clag3.2, which mediate nutrient uptake and are linked to resistance to some toxic compounds. Methods We developed a procedure to characterize the expression of clag3 genes in naturally infected patients and in experimentally infected human volunteers. Results We provide the first description of clag3 expression during human infections, which revealed mutually exclusive expression and identified the gene predominantly expressed. Adaptation to culture conditions or selection with a toxic compound resulted in isolate-dependent changes in clag3 expression. We also found that clag3 expression patterns were reset during transmission stages. Conclusions Different environment conditions select for parasites with different clag3 expression patterns, implying functional differences between the proteins encoded. The epigenetic memory is likely erased before parasites start infection of a new human host. Altogether, our findings support the idea that clonally variant genes facilitate the adaptation of parasite populations to changing conditions through bet-hedging strategies.
Collapse
Affiliation(s)
- Sofía Mira-Martínez
- Institute of Tropical Medicine, Antwerp, Belgium.,Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Evi van Schuppen
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | | | - Muna Affara
- Medical Research Council Unit, Fajara, The Gambia
| | | | | | | | - Núria Rovira-Graells
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gloria P Gómez-Pérez
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Pedro L Alonso
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Umberto D'Alessandro
- Institute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council Unit, Fajara, The Gambia.,London School of Hygiene and Tropical Medicine, United Kingdom
| | | | - Alfred Cortés
- Barcelona Institute for Global Health (ISGlobal), Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
22
|
Abstract
Organisms with identical genome sequences can show substantial differences in their phenotypes owing to epigenetic changes that result in different use of their genes. Epigenetic regulation of gene expression plays a key role in the control of several fundamental processes in the biology of malaria parasites, including antigenic variation and sexual differentiation. Some of the histone modifications and chromatin-modifying enzymes that control the epigenetic states of malaria genes have been characterized, and their functions are beginning to be unraveled. The fundamental principles of epigenetic regulation of gene expression appear to be conserved between malaria parasites and model eukaryotes, but important peculiarities exist. Here, we review the current knowledge of malaria epigenetics and discuss how it can be exploited for the development of new molecular markers and new types of drugs that may contribute to malaria eradication efforts.
Collapse
Affiliation(s)
- Alfred Cortés
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain.,ICREA, Barcelona, Catalonia 08010, Spain
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
23
|
Valmaseda A, Bassat Q, Aide P, Cisteró P, Jiménez A, Casellas A, Machevo S, Aguilar R, Sigaúque B, Chauhan VS, Langer C, Beeson J, Chitnis C, Alonso PL, Gaur D, Mayor A. Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates. Sci Rep 2017; 7:4717. [PMID: 28680086 PMCID: PMC5498679 DOI: 10.1038/s41598-017-05025-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/23/2017] [Indexed: 11/24/2022] Open
Abstract
Plasmodium falciparum proteins involved in erythrocyte invasion are main targets of acquired immunity and important vaccine candidates. We hypothesized that anti-parasite immunity acquired upon exposure would limit invasion-related gene (IRG) expression and affect the clinical impact of the infection. 11 IRG transcript levels were measured in P. falciparum isolates by RT-PCR, and IgG/IgM against invasion ligands by Luminex®, in 50 Mozambican adults, 25 children with severe malaria (SM) and 25 with uncomplicated malaria (UM). IRG expression differences among groups and associations between IRG expression and clinical/immunologic parameters were assessed. IRG expression diversity was higher in parasites infecting children than adults (p = 0.022). eba140 and ptramp expression decreased with age (p = 0.003 and 0.007, respectively) whereas p41 expression increased (p = 0.022). pfrh5 reduction in expression was abrupt early in life. Parasite density decreased with increasing pfrh5 expression (p < 0.001) and, only in children, parasite density increased with p41 expression (p = 0.007), and decreased with eba175 (p = 0.013). Antibody responses and IRG expression were not associated. In conclusion, IRG expression is associated with age and parasite density, but not with specific antibody responses in the acute phase of infection. Our results confirm the importance of multi-antigen vaccines development to avoid parasite immune escape when tested in malaria-exposed individuals.
Collapse
Affiliation(s)
- Aida Valmaseda
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Pau Cisteró
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
| | - Aina Casellas
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sonia Machevo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Ruth Aguilar
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Betuel Sigaúque
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Virander S Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Christine Langer
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pedro L Alonso
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| |
Collapse
|
24
|
Batugedara G, Lu XM, Bunnik EM, Le Roch KG. The Role of Chromatin Structure in Gene Regulation of the Human Malaria Parasite. Trends Parasitol 2017; 33:364-377. [PMID: 28065669 PMCID: PMC5410391 DOI: 10.1016/j.pt.2016.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/11/2022]
Abstract
The human malaria parasite, Plasmodium falciparum, depends on a coordinated regulation of gene expression for development and propagation within the human host. Recent developments suggest that gene regulation in the parasite is largely controlled by epigenetic mechanisms. Here, we discuss recent advancements contributing to our understanding of the mechanisms controlling gene regulation in the parasite, including nucleosome landscape, histone modifications, and nuclear architecture. In addition, various processes involved in regulation of parasite-specific genes and gene families are examined. Finally, we address the use of epigenetic processes as targets for novel antimalarial therapies. Collectively, these topics highlight the unique biology of P. falciparum, and contribute to our understanding of mechanisms regulating gene expression in this deadly parasite.
Collapse
Affiliation(s)
- Gayani Batugedara
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA
| | - Xueqing M Lu
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA
| | - Evelien M Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Karine G Le Roch
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
25
|
Saiwaew S, Sritabal J, Piaraksa N, Keayarsa S, Ruengweerayut R, Utaisin C, Sila P, Niramis R, Udomsangpetch R, Charunwatthana P, Pongponratn E, Pukrittayakamee S, Leitgeb AM, Wahlgren M, Lee SJ, Day NPJ, White NJ, Dondorp AM, Chotivanich K. Effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum infected erythrocytes. PLoS One 2017; 12:e0172718. [PMID: 28249043 PMCID: PMC5332063 DOI: 10.1371/journal.pone.0172718] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/08/2017] [Indexed: 12/04/2022] Open
Abstract
In severe falciparum malaria cytoadherence of parasitised red blood cells (PRBCs) to vascular endothelium (causing sequestration) and to uninfected red cells (causing rosette formation) contribute to microcirculatory flow obstruction in vital organs. Heparin can reverse the underlying ligand-receptor interactions, but may increase the bleeding risks. As a heparin-derived polysaccharide, sevuparin has been designed to retain anti-adhesive properties, while the antithrombin-binding domains have been eliminated, substantially diminishing its anticoagulant activity. Sevuparin has been evaluated recently in patients with uncomplicated falciparum malaria, and is currently investigated in a clinical trial for sickle cell disease. The effects of sevuparin on rosette formation and cytoadherence of Plasmodium falciparum isolates from Thailand were investigated. Trophozoite stages of P. falciparum-infected RBCs (Pf-iRBCs) were cultured from 49 patients with malaria. Pf-iRBCs were treated with sevuparin at 37°C and assessed in rosetting and in cytoadhesion assays with human dermal microvascular endothelial cells (HDMECs) under static and flow conditions. The proportion of Pf-iRBCs forming rosettes ranged from 6.5% to 26.0% (median = 12.2%). Rosetting was dose dependently disrupted by sevuparin (50% disruption by 250 μg/mL). Overall 57% of P. falciparum isolates bound to HDMECs under static conditions; median (interquartile range) Pf-iRBC binding was 8.5 (3.0–38.0) Pf-iRBCs/1000 HDMECs. Sevuparin in concentrations ≥ 100 μg/mL inhibited cytoadherence. Sevuparin disrupts P. falciparum rosette formation in a dose dependent manner and inhibits cytoadherence to endothelial cells. The data support assessment of sevuparin as an adjunctive treatment to the standard therapy in severe falciparum malaria.
Collapse
Affiliation(s)
- Somporn Saiwaew
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Juntima Sritabal
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nattaporn Piaraksa
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Srisuda Keayarsa
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Patima Sila
- Mae Ramat Hospital, Mae Ramat, Tak, Thailand
| | - Rangsan Niramis
- Queen Sirikit National Institute of Child Health, Bangkok, Thailand
| | - Rachanee Udomsangpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Prakaykaew Charunwatthana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Emsri Pongponratn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sue J. Lee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
26
|
Bruske EI, Dimonte S, Enderes C, Tschan S, Flötenmeyer M, Koch I, Berger J, Kremsner P, Frank M. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription. PLoS One 2016; 11:e0166135. [PMID: 27907004 PMCID: PMC5132323 DOI: 10.1371/journal.pone.0166135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections.
Collapse
Affiliation(s)
- Ellen Inga Bruske
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Sandra Dimonte
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Corinna Enderes
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | - Serena Tschan
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
| | | | - Iris Koch
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Peter Kremsner
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- CERMEL (Centre de Recherche Médicale de Lambaréné), Lambaréné, Gabon
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tuebingen, Tuebingen, Germany
- CERMEL (Centre de Recherche Médicale de Lambaréné), Lambaréné, Gabon
- * E-mail:
| |
Collapse
|
27
|
Gomes PS, Bhardwaj J, Rivera-Correa J, Freire-De-Lima CG, Morrot A. Immune Escape Strategies of Malaria Parasites. Front Microbiol 2016; 7:1617. [PMID: 27799922 PMCID: PMC5066453 DOI: 10.3389/fmicb.2016.01617] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.
Collapse
Affiliation(s)
- Pollyanna S Gomes
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Jyoti Bhardwaj
- Division of Parasitology, Council of Scientific and Industrial Research-Central Drug Research InstituteLucknow, Uttar Pradesh, India; Academy of Scientific and Innovative ResearchAnusandhan Bhawan, New Delhi, India
| | - Juan Rivera-Correa
- Division of Parasitology, Department of Microbiology, New York University School of Medicine New York, NY, USA
| | - Celio G Freire-De-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Serological Conservation of Parasite-Infected Erythrocytes Predicts Plasmodium falciparum Erythrocyte Membrane Protein 1 Gene Expression but Not Severity of Childhood Malaria. Infect Immun 2016; 84:1331-1335. [PMID: 26883585 PMCID: PMC4862716 DOI: 10.1128/iai.00772-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/08/2016] [Indexed: 11/27/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria. These data have led to a working hypothesis that PfEMP1 variants associated with parasite virulence are relatively conserved in structure. However, the longevity of such serologically conserved variants in the parasite population is unknown. Here, using infected erythrocytes from recently sampled clinical P. falciparum samples, we measured serological conservation using pools of antibodies in sera that had been sampled 10 to 12 years earlier. The serological conservation of infected erythrocytes strongly correlated with the expression of specific PfEMP1 subsets previously found to be associated with severe malaria. However, we found no association between serological conservation per se and disease severity within these data. This contrasts with the simple hypothesis that P. falciparum isolates with a serologically conserved group of PfEMP1 variants cause severe malaria. The data are instead consistent with periodic turnover of the immunodominant epitopes of PfEMP1 associated with severe malaria.
Collapse
|