1
|
Zhu H, Lou J, Yang Z, Bai J, Jiang P, Wang X, Liu X. STT3B promotes porcine epidemic diarrhea virus replication by regulating N-glycosylation of PEDV S protein. J Virol 2025; 99:e0001825. [PMID: 39945486 PMCID: PMC11915848 DOI: 10.1128/jvi.00018-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/19/2025] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a highly pathogenic enteric coronavirus, has caused significant economic losses worldwide in recent years. The PEDV spike (S) protein has been reported to undergo extensive N-glycosylation, suggesting that glycosylation plays a crucial role in PEDV replication. In this study, we demonstrated that the N-glycosylation pathway promotes PEDV replication by facilitating the glycosylation of the S protein. First, we observed that pharmacological inhibition of host N-glycosylation using specific inhibitors significantly reduces viral replication. Furthermore, genetic ablation of STT3A or STT3B, the catalytically active subunits of the oligosaccharyltransferase (OST) complex, revealed that the STT3B-OST complex, but not STT3A, is preferentially required for PEDV replication. Notably, we showed that the N-glycosylation of the PEDV S protein depends on the oligosaccharyltransferase activity of STT3B. Together, the study demonstrated the critical role of the N-glycosylation pathway in PEDV replication by elucidating the relationship between the N-glycosylation of the PEDV S protein and STT3B, thereby presenting a potential new target for the prevention and control of PEDV.IMPORTANCEThe highly N-glycosylated spike protein of porcine epidemic diarrhea virus (PEDV) is a multifunctional protein that plays a crucial role in the viral replication cycle. In this study, using pharmacological inhibitors, we demonstrated the importance of the N-glycosylation pathway in PEDV replication. Genetic analysis revealed that STT3B, one of the catalytically active subunits of the oligosaccharyltransferase complex, promotes viral proliferation by regulating the N-glycosylation of the PEDV spike protein. Our findings enhance the understanding of the role of the N-glycosylation pathway in viral infection and identify STT3B as a potential therapeutic target for controlling PEDV infection.
Collapse
Affiliation(s)
- Huixin Zhu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinxiu Lou
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhen Yang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
2
|
Xiong N, Du Y, Huang C, Yan Q, Zhao L, Yang C, Sun Q, Gao Z, Wang C, Zhan J, Zhang H, Wang S, Ye Y, Li Y, Shen Z. N-glycosylation Modification of CTSD Affects Liver Metastases in Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411740. [PMID: 39716927 PMCID: PMC11831497 DOI: 10.1002/advs.202411740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/01/2024] [Indexed: 12/25/2024]
Abstract
Liver metastasis is the primary factor contributing to unfavorable prognosis in colorectal cancer (CRC). Although N-glycosylation is implicated in metastasis, there is a notable paucity of comprehensive studies addressing the N-glycosylation proteomics associated with liver metastasis in CRC. In this study, N-glycosylated proteins and N-glycosylation sites of differential expression between primary lesions and paired liver metastatic lesions are identified. Cathepsin D (CTSD) is further screened as a potentially pivotal N-glycosylated protein in CRC liver metastasis. Glycosyltransferases complex DDOST and STT3B can regulate N-glycosylation modification at residue 263 of CTSD (a protease), thereby affecting CTSD protease to lyse ACADM. ACADM can regulate ferroptosis-related proteins (ACSL4, SLC7A11, and GPX4) to further influence the invasion and metastasis of CRC cells. This newly discovered mechanism provides potential therapeutic targets for CRC treatment and insights for controlling CRC progression and metastasis.
Collapse
Affiliation(s)
- Nan Xiong
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijing100044China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchBeijing100044China
- Laboratory of Surgical OncologyPeking University People's HospitalBeijing100044China
| | - Yan Du
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijing100044China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchBeijing100044China
- Laboratory of Surgical OncologyPeking University People's HospitalBeijing100044China
| | - Chuncui Huang
- Key Laboratory of Epigenetic Regulation and InterventionInstitute of BiophysicsChinese Academy of Sciences15 Datun RoadBeijing100101China
- University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049China
| | - Quanyi Yan
- Western Institute of Health Data Science28 High Tech AvenueChongqing401329China
| | - Long Zhao
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijing100044China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchBeijing100044China
- Laboratory of Surgical OncologyPeking University People's HospitalBeijing100044China
| | - Changjiang Yang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijing100044China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchBeijing100044China
- Laboratory of Surgical OncologyPeking University People's HospitalBeijing100044China
| | - Qing Sun
- Key Laboratory of Epigenetic Regulation and InterventionInstitute of BiophysicsChinese Academy of Sciences15 Datun RoadBeijing100101China
- University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049China
| | - Zhidong Gao
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijing100044China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchBeijing100044China
- Laboratory of Surgical OncologyPeking University People's HospitalBeijing100044China
| | - Caihong Wang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijing100044China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchBeijing100044China
- Laboratory of Surgical OncologyPeking University People's HospitalBeijing100044China
| | - Jun Zhan
- Program for Cancer and Cell BiologyDepartment of Human AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Hongquan Zhang
- Program for Cancer and Cell BiologyDepartment of Human AnatomyHistology and EmbryologySchool of Basic Medical SciencesPeking University Health Science CenterBeijing100191China
| | - Shan Wang
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijing100044China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchBeijing100044China
- Laboratory of Surgical OncologyPeking University People's HospitalBeijing100044China
| | - Yingjiang Ye
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijing100044China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchBeijing100044China
- Laboratory of Surgical OncologyPeking University People's HospitalBeijing100044China
| | - Yan Li
- Key Laboratory of Epigenetic Regulation and InterventionInstitute of BiophysicsChinese Academy of Sciences15 Datun RoadBeijing100101China
- University of Chinese Academy of Sciences19 Yuquan RoadBeijing100049China
| | - Zhanlong Shen
- Department of Gastroenterological SurgeryPeking University People's HospitalBeijing100044China
- Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment ResearchBeijing100044China
- Laboratory of Surgical OncologyPeking University People's HospitalBeijing100044China
| |
Collapse
|
3
|
Cho EB, Vu VA, Park SH, Trinh LT, Yoon JB, Kim S. Transmembrane E3 ligase RNF128 regulates N-glycosylation by promoting ribophorin I ubiquitination and degradation. BMB Rep 2024; 57:546-552. [PMID: 39567208 PMCID: PMC11693597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
Ring finger protein 128 (RNF128) is a transmembrane E3 ubiquitin ligase mainly localized in the endoplasmic reticulum that is involved in various processes, including T cell anergy and tumor progression. However, the biological function of RNF128 in N-glycosylation remains unexplored. To investigate the functional role of RNF128, we used the proximity-directed biotin labeling method, and identified ribophorin I (RPN1) as a novel RNF128 substrate, demonstrating that RNF128 ubiquitinated RPN1 and promoted its degradation. RPN1 is a subunit of oligosaccharyltransferase complexes that facilitate N-glycosylation by binding substrates, and presenting them to the catalytic core. RPN1 also functions as an N-glycosylation-dependent chaperone that helps export a subset of newly synthesized glycoproteins to the plasma membrane. We found that RNF128 affects the N-glycosylation of model glycoproteins, such as sex hormone- binding globulin and asialoglycoprotein receptor 1. Furthermore, RNF128 inhibits the export of the opioid receptor mu 1 (OPRM1) to the plasma membrane, while expressing ubiquitination-incompetent RPN1 mutant, rescues the defect of OPRM1 export caused by RNF128 overexpression. Additionally, RNF128 influences colorectal cancer cell migration. The RNF128-dependent degradation of RPN1 likely inhibits the cell surface expression of specific glycoproteins, thereby affecting distinct cellular functions. This study contributes to understanding of the biological and functional roles of RNF128- and RPN1-dependent N-glycosylation. [BMB Reports 2024; 57(12): 546-552].
Collapse
Affiliation(s)
- Eun-Bee Cho
- Department of Medical Life Sciences, Seoul 03722, Korea
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Van Anh Vu
- Department of Medical Life Sciences, Seoul 03722, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sang-Hee Park
- Department of Medical Life Sciences, Seoul 03722, Korea
| | - Lan Thi Trinh
- Department of Medical Life Sciences, Seoul 03722, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sungjoo Kim
- Department of Medical Life Sciences, Seoul 03722, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
4
|
Ma M, Dubey R, Jen A, Pusapati GV, Singal B, Shishkova E, Overmyer KA, Cormier-Daire V, Fedry J, Aravind L, Coon JJ, Rohatgi R. Regulated N-glycosylation controls chaperone function and receptor trafficking. Science 2024; 386:667-672. [PMID: 39509507 PMCID: PMC7617332 DOI: 10.1126/science.adp7201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024]
Abstract
One-fifth of human proteins are N-glycosylated in the endoplasmic reticulum (ER) by two oligosaccharyltransferases, OST-A and OST-B. Contrary to the prevailing view of N-glycosylation as a housekeeping function, we identified an ER pathway that modulates the activity of OST-A. Genetic analyses linked OST-A to HSP90B1, an ER chaperone for membrane receptors, and CCDC134, an ER luminal protein. During its translocation into the ER, an N-terminal peptide in HSP90B1 templates the assembly of a translocon complex containing CCDC134 and OST-A that protects HSP90B1 during folding, preventing its hyperglycosylation and degradation. Disruption of this pathway impairs WNT and IGF1R signaling and causes the bone developmental disorder osteogenesis imperfecta. Thus, N-glycosylation can be regulated by specificity factors in the ER to control cell surface receptor signaling and tissue development.
Collapse
Affiliation(s)
- Mengxiao Ma
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramin Dubey
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI53506, USA
| | - Ganesh V. Pusapati
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bharti Singal
- Stanford SLAC CryoEM Initiative, Stanford, CA 94305, USA
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI53515, USA
| | - Katherine A. Overmyer
- Morgridge Institute for Research, Madison, WI53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI53506, USA
| | - Valérie Cormier-Daire
- Université de Paris Cité, Génétique clinique, INSERM UMR 1163, Institut Imagine, Hôpital Necker-Enfants Malades (AP-HP), Paris, France
| | - Juliette Fedry
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD20894, USA
| | - Joshua J. Coon
- National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI53515, USA
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI53506, USA
- Department of Chemistry, University of Wisconsin, Madison, WI53506, USA
| | - Rajat Rohatgi
- Departments of Biochemistry and Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Wright MT, Timalsina B, Garcia Lopez V, Hermanson JN, Garcia S, Plate L. Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics. Mol Syst Biol 2024; 20:1049-1075. [PMID: 39103653 PMCID: PMC11369088 DOI: 10.1038/s44320-024-00058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Many cellular processes are governed by protein-protein interactions that require tight spatial and temporal regulation. Accordingly, it is necessary to understand the dynamics of these interactions to fully comprehend and elucidate cellular processes and pathological disease states. To map de novo protein-protein interactions with time resolution at an organelle-wide scale, we developed a quantitative mass spectrometry method, time-resolved interactome profiling (TRIP). We apply TRIP to elucidate aberrant protein interaction dynamics that lead to the protein misfolding disease congenital hypothyroidism. We deconvolute altered temporal interactions of the thyroid hormone precursor thyroglobulin with pathways implicated in hypothyroidism pathophysiology, such as Hsp70-/90-assisted folding, disulfide/redox processing, and N-glycosylation. Functional siRNA screening identified VCP and TEX264 as key protein degradation components whose inhibition selectively rescues mutant prohormone secretion. Ultimately, our results provide novel insight into the temporal coordination of protein homeostasis, and our TRIP method should find broad applications in investigating protein-folding diseases and cellular processes.
Collapse
Affiliation(s)
- Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Bibek Timalsina
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Sarah Garcia
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
6
|
Albers MD, Tiemann B, Kaynert JT, Pich A, Bakker H. Conserved cysteines prevent C-mannosylation of mucin Cys domains. FEBS J 2024; 291:3539-3552. [PMID: 38708720 DOI: 10.1111/febs.17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Mucins are major components of the mucus. Besides the highly O-glycosylated tandem repeat domains, mucins contain Cys domains (CysDs). CysDs contain conserved disulfide-forming cysteine residues as well as a WxxW motif. Since this is the consensus sequence for tryptophan C-mannosylation, mucin CysDs have been suggested to be targets for C-mannosyltransferases, but this has never been directly shown. Here, we recombinantly expressed human mucin CysDs in Chinese hamster ovary (CHO) cells and analyzed the C-mannosylation status. Mass spectrometric analysis revealed that the putative C-mannose site is not or only barely C-mannosylated. However, mutation of the adjacent cysteine residues enabled C-mannosylation to occur. In contrast to mucin CysDs, the homologous CysD of human cartilage intermediate layer protein 1 (CILP1) lacks these cysteine residues preceding the WxxW motif. We show that CILP1 CysD is C-mannosylated, but introducing a cysteine at the -2 position causes this modification to be lost. We thus conclude that the presence of cysteine residues prevents the modification of the WxxW motif in CysDs.
Collapse
Affiliation(s)
| | - Birgit Tiemann
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| | | | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Germany
| |
Collapse
|
7
|
Couto PM, Guardia CMA, Couto FL, Labriola CA, Labanda MS, Caramelo JJ. Acceptors stability modulates the efficiency of post-translational protein N-glycosylation. FASEB J 2024; 38:e23782. [PMID: 38934375 PMCID: PMC11307252 DOI: 10.1096/fj.202302267r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
N-glycosylation is the most common protein modification in the eukaryotic secretory pathway. It involves the attachment a high mannose glycan to Asn residues in the context of Asn-X-Ser/Thr/Cys, a motif known as N-glycosylation sequon. This process is mediated by STT3A and STT3B, the catalytic subunits of the oligosaccharyltransferase complexes. STT3A forms part of complexes associated with the SEC61 translocon and functions co-translationally. Vacant sequons have another opportunity for glycosylation by complexes carrying STT3B. Local sequence information plays an important role in determining N-glycosylation efficiency, but non-local factors can also have a significant impact. For instance, certain proteins associated with human genetic diseases exhibit abnormal N-glycosylation levels despite having wild-type acceptor sites. Here, we investigated the effect of protein stability on this process. To this end, we generated a family of 40 N-glycan acceptors based on superfolder GFP, and we measured their efficiency in HEK293 cells and in two derived cell lines lacking STT3B or STT3A. Sequon occupancy was highly dependent on protein stability, improving as the thermodynamic stability of the acceptor proteins decreases. This effect is mainly due to the activity of the STT3B-based OST complex. These findings can be integrated into a simple kinetic model that distinguishes local information within sequons from global information of the acceptor proteins.
Collapse
Affiliation(s)
- Paula M. Couto
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | - Carlos M. A. Guardia
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Facundo L. Couto
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | - Carlos A. Labriola
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | - María S. Labanda
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | - Julio J. Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
9
|
Munteanu CVA, Chirițoiu GN, Petrescu AJ, Petrescu ȘM. Defining the altered glycoproteomic space of the early secretory pathway by class I mannosidase pharmacological inhibition. Front Mol Biosci 2023; 9:1064868. [PMID: 36699698 PMCID: PMC9869281 DOI: 10.3389/fmolb.2022.1064868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
N-glycosylation is a key process for various biological functions like protein folding, maturation and sorting for the conventional secretory compartment, cell-cell communication and immune response. This is usually accomplished by a complex system of mannosidases in which those from class I have an outstanding role, commonly involved in the early protein sorting associated to the Endoplasmic Reticulum (ER) in the N-glycan dependent quality control (ERQC) and ER-associated degradation (ERAD). Although these are vital processes in maintaining cellular homeostasis, large-scale analysis studies for this pool of molecules, further denoted as proteins from the early secretory pathway (ESP), were limited addressed. Here, using a custom workflow employing a combination of glycomics and deglycoproteomics analyses, using lectin affinity and selective Endoglycosidase H (Endo H) digestion, we scrutinize the steady-state oligomannosidic glycoprotein load and delineate ESP fraction in melanoma cells. All of these were assessed by applying our workflow for glycosite relative quantification of both the peptide chain and carbohydrate structure in cells with inhibited activity of class I mannosidases after kifunensine treatment. We found that most of the ESP are transient clients involved in cell communication via extracellular matrix, particularly integrin-mediated communication which adopt Man9 N-glycans in kifunensine-treated cells. Moreover, our results reveal that core-fucosylation is decreased subsequent inhibition of class I mannosidases and this could be explained by a general lower protein level of FUT8, the enzyme responsible for fucosylation. By comparing our data with results obtained following downregulation of a key mannosidase in misfolded protein degradation, we mapped both novel and previously suggested endogenous substrate candidates like PCDH2, HLA-B, LAMB2 or members of the integrin family of proteins such as ITGA1 and ITGA4, thus validating the findings obtained using our workflow regarding accumulation and characterization of ESP transitory members following mannosidase class I inhibition. This workflow and the associated dataset not only allowed us to investigate the oligomannosidic glycoprotein fraction but also to delineate differences mediated at glycosite-level upon kifunensine treatment and outline the potential associated cellular responses.
Collapse
Affiliation(s)
- Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Gabriela N Chirițoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| |
Collapse
|
10
|
Tu Y, Yin XJ, Liu Q, Zhang S, Wang J, Ji BZ, Zhang J, Sun MS, Yang Y, Wang CH, Yin L, Liu Y. MITA oligomerization upon viral infection is dependent on its N-glycosylation mediated by DDOST. PLoS Pathog 2022; 18:e1010989. [PMID: 36449507 PMCID: PMC9710844 DOI: 10.1371/journal.ppat.1010989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The mediator of IRF3 activation (MITA, also named STING) is critical for immune responses to abnormal cytosolic DNA and has been considered an important drug target in the clinical therapy of tumors and autoimmune diseases. In the present study, we report that MITA undergoes DDOST-mediated N-glycosylation in the endoplasmic reticulum (ER) upon DNA viral infection. Selective mutation of DDOST-dependent N-glycosylated residues abolished MITA oligomerization and thereby its immune functions. Moreover, increasing the expression of Ddost in the mouse brain effectively strengthens the local immune response to herpes simplex virus-1 (HSV-1) and prolongs the survival time of mice with HSV encephalitis (HSE). Our findings reveal the dependence of N-glycosylation on MITA activation and provide a new perspective on the pathogenesis of HSE.
Collapse
Affiliation(s)
- Yi Tu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiu-Juan Yin
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Liu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shan Zhang
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Wang
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ben-Zhe Ji
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Zhang
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ming-Shun Sun
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Yang Yang
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen-Hui Wang
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Yin
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Liu
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
11
|
Varone E, Chernorudskiy A, Cherubini A, Cattaneo A, Bachi A, Fumagalli S, Erol G, Gobbi M, Lenardo MJ, Borgese N, Zito E. ERO1 alpha deficiency impairs angiogenesis by increasing N-glycosylation of a proangiogenic VEGFA. Redox Biol 2022; 56:102455. [PMID: 36063727 PMCID: PMC9463388 DOI: 10.1016/j.redox.2022.102455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
N-glycosylation and disulfide bond formation are two essential steps in protein folding that occur in the endoplasmic reticulum (ER) and reciprocally influence each other. Here, to analyze crosstalk between N-glycosylation and oxidation, we investigated how the protein disulfide oxidase ERO1-alpha affects glycosylation of the angiogenic VEGF121, a key regulator of vascular homeostasis. ERO1 deficiency, while retarding disulfide bond formation in VEGF121, increased utilization of its single N-glycosylation sequon, which lies close to an intra-polypeptide disulfide bridge, and concomitantly slowed its secretion. Unbiased mass-spectrometric analysis revealed interactions between VEGF121 and N-glycosylation pathway proteins in ERO1-knockout (KO), but not wild-type cells. Notably, MAGT1, a thioredoxin-containing component of the post-translational oligosaccharyltransferase complex, was a major hit exclusive to ERO1-deficient cells. Thus, both a reduced rate of formation of disulfide bridges, and the increased trapping potential of MAGT1 may increase N-glycosylation of VEGF121. Extending our investigation to tissues, we observed altered lectin staining of ERO1 KO breast tumor xenografts, implicating ERO1 as a physiologic regulator of protein N-glycosylation. Our study, highlighting the effect of ERO1 loss on N-glycosylation of proteins, is particularly relevant not only to angiogenesis but also to other cancer patho-mechanisms in light of recent findings suggesting a close causal link between alterations in protein glycosylation and cancer development.
Collapse
|
12
|
Liu D, De Schutter K, Chen P, Smagghe G. The N-glycosylation-related genes as potential targets for RNAi-mediated pest control of the Colorado potato beetle (Leptinotarsa decemlineata). PEST MANAGEMENT SCIENCE 2022; 78:3815-3822. [PMID: 34821017 DOI: 10.1002/ps.6732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND N-glycosylation is one of the most common and important post-translational modifications in the eukaryotic cell. The study of protein N-glycosylation in several model insects confirmed the importance of this process in insect development, immunity, survival and fertility. The Colorado potato beetle (Leptinotarsa decemlineata) (CPB) is a common pest of Solanaceae crops. With the infamous title of champion of insecticide resistance, novel pest control strategies for this insect are needed. Luckily this pest insect is reported as very sensitive for the post-genomic technology of RNA interference (RNAi). RESULTS In this project, we investigated the importance of N-glycosylation in the survival and development of CPB using RNAi-mediated gene silencing of N-glycosylation-related genes (NGRGs) during the different transition steps from the larva, through the pupa to the adult stage. High mortality was observed in the larval stage with the silencing of early NGRGs, as STT3a, DAD1 and GCS1. With dsRNA against middle NGRGs, abnormal phenotypes at the ecdysis process and adult formation were observed, while the silencing of late NGRGs did not cause mortality. CONCLUSION The lethal phenotypes observed on silencing of the genes involved in the early processing steps of the N-glycosylation pathway suggest these genes are good candidates for RNAi-mediated control of CPB. Next to the gene-specific mechanism of RNAi for biosafety and possible implementation in integrated pest management, we believe these early NGRGs provide a possible alternative to the well-known target genes Snf7 and vacuolar ATPases that are now used in the first commercial RNAi-based products and thus they may be useful in the context of proactive resistance management. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Liu
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Pengyu Chen
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Wu Y, Wang H, Wei D. Oncogenic magnesium transporter 1 upregulates programmed death-1-ligand 1 expression and contributes to growth and radioresistance of glioma cells through the ERK/MAPK signaling pathway. Bioengineered 2022; 13:9575-9587. [PMID: 35416125 PMCID: PMC9161830 DOI: 10.1080/21655979.2022.2037214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Radiotherapy has been established as a major therapeutic modality for glioma, whereas new therapeutic targets are needed to prevent tumor recurrence. This study intends to explore the regulatory role of magnesium transporter 1 (MAGT1) in radiotherapy resistance of glioma through modulating ERK and programmed death-1-ligand 1 (PD-L1). Our bioinformatics analysis identified differentially expressed MAGT1 in glioma, expression of which was subsequently determined in cohort data of TCGA database and microarray dataset as well as glioma cell lines. Artificial modulation of MAGT1, ERK, and PD-L1 expression was performed to examine their effects on glioma cell proliferation and radioresistance, as reflected by MTT and colony formation assays under irradiation. Mouse glioma cells with manipulated MAGT1 and ERK inhibitors were further injected into mice to assess the in vivo tumor formation ability of glioma cells. It was noted that MAGT1 expression was highly expressed in glioma tissues of TCGA data and microarray dataset, which was then validated in glioma cell lines. Ectopic expression of MAGT1 was revealed to promote the proliferation and radioresistance of glioma cells, which was attributed to the MAGT1-mediated activation of the ERK/MAPK signaling pathway. It was illuminated that MAGT1 stimulated PD-L1 expression through the ERK/MAPK pathway and thus facilitated glioma cell growth. Additionally, MAGT1 overexpression accelerated the in vivo tumor formation of glioma cells, while the ERK inhibitor negated its effect. In conclusion, MAGT1 enhances the growth and radioresistance of glioma cells through the ERK/MAPK signaling pathway-mediated upregulation of PD-L1 expression.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Tumor Radiotherapy, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Hongbing Wang
- Department of Tumor Radiotherapy, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Dongdong Wei
- Department of Tumor Radiotherapy, Cangzhou Central Hospital, Cangzhou, P. R. China
| |
Collapse
|
14
|
Aberrant Cellular Glycosylation May Increase the Ability of Influenza Viruses to Escape Host Immune Responses through Modification of the Viral Glycome. mBio 2022; 13:e0298321. [PMID: 35285699 PMCID: PMC9040841 DOI: 10.1128/mbio.02983-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Individuals with metabolic dysregulation of cellular glycosylation often experience severe influenza disease, with a poor immune response to the virus and low vaccine efficacy. Here, we investigate the consequences of aberrant cellular glycosylation for the glycome and the biology of influenza virus. We transiently induced aberrant N-linked glycosylation in cultured cells with an oligosaccharyltransferase inhibitor, NGI-1. Cells treated with NGI-1 produced morphologically unaltered viable influenza virus with sequence-neutral glycosylation changes (primarily reduced site occupancy) in the hemagglutinin and neuraminidase proteins. Hemagglutinin with reduced glycan occupancy required a higher concentration of surfactant protein D (an important innate immunity respiratory tract collectin) for inhibition compared to that with normal glycan occupancy. Immunization of mice with NGI-1-treated virus significantly reduced antihemagglutinin and antineuraminidase titers of total serum antibody and reduced hemagglutinin protective antibody responses. Our data suggest that aberrant cellular glycosylation may increase the risk of severe influenza as a result of the increased ability of glycome-modified influenza viruses to evade the immune response.
Collapse
|
15
|
Lack of NKG2D in MAGT1-deficient patients is caused by hypoglycosylation. Hum Genet 2022; 141:1279-1286. [PMID: 35182234 DOI: 10.1007/s00439-021-02400-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
Mutations in the X-linked gene MAGT1 cause a Congenital Disorder of Glycosylation (CDG), with two distinct clinical phenotypes: a primary immunodeficiency (XMEN disorder) versus intellectual and developmental disability. It was previously established that MAGT1 deficiency abolishes steady-state expression of the immune response protein NKG2D (encoded by KLRK1) in lymphocytes. Here, we show that the reduced steady-state levels of NKG2D are caused by hypoglycosylation of the protein and we pinpoint the exact site that is underglycosylated in MAGT1-deficient patients. Furthermore, we challenge the possibility that supplementation with magnesium restores NKG2D levels and show that the addition of this ion does not significantly improve NKG2D steady-state expression nor does it rescue the hypoglycosylation defect in CRISPR-engineered human cell lines. Moreover, magnesium supplementation of an XMEN patient did not result in restoration of NKG2D expression on the cell surface of lymphocytes. In summary, we demonstrate that in MAGT1-deficient patients, the lack of NKG2D is caused by hypoglycosylation, further elucidating the pathophysiology of XMEN/MAGT1-CDG.
Collapse
|
16
|
Randzavola LO, Mortimer PM, Garside E, Dufficy ER, Schejtman A, Roumelioti G, Yu L, Pardo M, Spirohn K, Tolley C, Brandt C, Harcourt K, Nichols E, Nahorski M, Woods G, Williamson JC, Suresh S, Sowerby JM, Matsumoto M, Santos CXC, Kiar CS, Mukhopadhyay S, Rae WM, Dougan GJ, Grainger J, Lehner PJ, Calderwood MA, Choudhary J, Clare S, Speak A, Santilli G, Bateman A, Smith KGC, Magnani F, Thomas DC. EROS is a selective chaperone regulating the phagocyte NADPH oxidase and purinergic signalling. eLife 2022; 11:76387. [PMID: 36421765 PMCID: PMC9767466 DOI: 10.7554/elife.76387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
EROS (essential for reactive oxygen species) protein is indispensable for expression of gp91phox, the catalytic core of the phagocyte NADPH oxidase. EROS deficiency in humans is a novel cause of the severe immunodeficiency, chronic granulomatous disease, but its mechanism of action was unknown until now. We elucidate the role of EROS, showing it acts at the earliest stages of gp91phox maturation. It binds the immature 58 kDa gp91phox directly, preventing gp91phox degradation and allowing glycosylation via the oligosaccharyltransferase machinery and the incorporation of the heme prosthetic groups essential for catalysis. EROS also regulates the purine receptors P2X7 and P2X1 through direct interactions, and P2X7 is almost absent in EROS-deficient mouse and human primary cells. Accordingly, lack of murine EROS results in markedly abnormal P2X7 signalling, inflammasome activation, and T cell responses. The loss of both ROS and P2X7 signalling leads to resistance to influenza infection in mice. Our work identifies EROS as a highly selective chaperone for key proteins in innate and adaptive immunity and a rheostat for immunity to infection. It has profound implications for our understanding of immune physiology, ROS dysregulation, and possibly gene therapy.
Collapse
Affiliation(s)
- Lyra O Randzavola
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Paige M Mortimer
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Emma Garside
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Elizabeth R Dufficy
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - Andrea Schejtman
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Georgia Roumelioti
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Lu Yu
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Mercedes Pardo
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Kerstin Spirohn
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer InstituteBostonUnited States,Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States,Department of Cancer Biology, Dana-Farber Cancer InstituteBostonUnited States
| | | | | | | | - Esme Nichols
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| | - Mike Nahorski
- Cambridge Institute of Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Geoff Woods
- Cambridge Institute of Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - James C Williamson
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Shreehari Suresh
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - John M Sowerby
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of MedicineKyotoJapan
| | - Celio XC Santos
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College LondonLondonUnited Kingdom
| | - Cher Shen Kiar
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College LondonLondonUnited Kingdom
| | - William M Rae
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Gordon J Dougan
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom
| | - John Grainger
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Paul J Lehner
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer InstituteBostonUnited States,Department of Genetics, Blavatnik Institute, Harvard Medical SchoolBostonUnited States,Department of Cancer Biology, Dana-Farber Cancer InstituteBostonUnited States
| | - Jyoti Choudhary
- Functional Proteomics, Division of Cancer Biology, Institute of Cancer ResearchLondonUnited Kingdom
| | - Simon Clare
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
| | | | - Giorgia Santilli
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child HealthLondonUnited Kingdom
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome CampusHinxtonUnited Kingdom
| | - Kenneth GC Smith
- The Department of Medicine, University of Cambridge School of Clinical MedicineCambridgeUnited Kingdom,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Francesca Magnani
- Department of Biology and Biotechnology, University of PaviaPaviaItaly
| | - David C Thomas
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
17
|
Sharma SR, Crispell G, Mohamed A, Cox C, Lange J, Choudhary S, Commins SP, Karim S. Alpha-Gal Syndrome: Involvement of Amblyomma americanum α-D-Galactosidase and β-1,4 Galactosyltransferase Enzymes in α-Gal Metabolism. Front Cell Infect Microbiol 2021; 11:775371. [PMID: 34926322 PMCID: PMC8671611 DOI: 10.3389/fcimb.2021.775371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-Gal Syndrome (AGS) is an IgE-mediated delayed-type hypersensitivity reaction to the oligosaccharide galactose-α-1, 3-galactose (α-gal) injected into humans from the lone-star tick (Amblyomma americanum) bite. Indeed, α-gal is discovered in salivary glands of lone-star tick; however, the tick's specific intrinsic factors involved in endogenous α-gal production and presentation to host during hematophagy are poorly understood. This study aimed to investigate the functional role of two tick enzymes, α-D-galactosidase (ADGal) and β-1,4 galactosyltransferases (β-1,4GalT), in endogenous α-gal production, carbohydrate metabolism, and N-glycan profile in lone-star tick. The ADGal enzyme cleaves terminal α-galactose moieties from glycoproteins and glycolipids, whereas β-1,4GalT transfers α-galactose to a β1,4 terminal linkage acceptor sugars-GlcNAc, Glc, and Xyl-in various processes of glycoconjugate synthesis. An RNA interference approach was utilized to silence ADGal and β-1,4GalT in Am. americanum to examine their function in α-gal metabolism in tick and AGS onset. Silencing of ADGal led to the significant downregulation of genes involved in galactose metabolism and transport in Am. americanum. Immunoblot and N-glycan analysis of the Am. americanum salivary glands showed a significant reduction in α-gal levels in silenced tissues. However, there was no significant difference in the level of α-gal in β-1,4GalT-silenced tick salivary glands. A basophil-activation test showed a decrease in the frequency of activated basophil by ADGal-silenced salivary glands. These results provide an insight into the roles of ADGal and β-1,4GalT in α-gal production and presentation in ticks and the probable involvement in the onset of AGS.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gary Crispell
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ahmed Mohamed
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Cameron Cox
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Joshua Lange
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shailesh Choudhary
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Scott P. Commins
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Shahid Karim
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
18
|
van Lith M, Pringle MA, Fleming B, Gaeta G, Im J, Gilmore R, Bulleid NJ. A cytosolic reductase pathway is required for efficient N-glycosylation of an STT3B-dependent acceptor site. J Cell Sci 2021; 134:273533. [PMID: 34734627 PMCID: PMC8645230 DOI: 10.1242/jcs.259340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
N-linked glycosylation of proteins entering the secretory pathway is an essential modification required for protein stability and function. Previously, it has been shown that there is a temporal relationship between protein folding and glycosylation, which influences the occupancy of specific glycosylation sites. Here, we used an in vitro translation system that reproduces the initial stages of secretory protein translocation, folding and glycosylation under defined redox conditions. We found that the efficiency of glycosylation of hemopexin was dependent upon a robust NADPH-dependent cytosolic reductive pathway, which could be mimicked by the addition of a membrane-impermeable reducing agent. We identified a hypoglycosylated acceptor site that is adjacent to a cysteine involved in a short-range disulfide. We show that efficient glycosylation at this site is influenced by the cytosolic reductive pathway acting on both STT3A- and STT3B-dependent glycosylation. Our results provide further insight into the important role of the endoplasmic reticulum redox conditions in glycosylation site occupancy and demonstrate a link between redox conditions in the cytosol and glycosylation efficiency.
Collapse
Affiliation(s)
- Marcel van Lith
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marie Anne Pringle
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Bethany Fleming
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Giorgia Gaeta
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Headington, Oxford OX3 7LD, UK
| | - Jisu Im
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Cellular Protein Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
19
|
Wilson MP, Garanto A, Pinto e Vairo F, Ng BG, Ranatunga WK, Ventouratou M, Baerenfaenger M, Huijben K, Thiel C, Ashikov A, Keldermans L, Souche E, Vuillaumier-Barrot S, Dupré T, Michelakakis H, Fiumara A, Pitt J, White SM, Lim SC, Gallacher L, Peters H, Rymen D, Witters P, Ribes A, Morales-Romero B, Rodríguez-Palmero A, Ballhausen D, de Lonlay P, Barone R, Janssen MC, Jaeken J, Freeze HH, Matthijs G, Morava E, Lefeber DJ. Active site variants in STT3A cause a dominant type I congenital disorder of glycosylation with neuromusculoskeletal findings. Am J Hum Genet 2021; 108:2130-2144. [PMID: 34653363 DOI: 10.1016/j.ajhg.2021.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022] Open
Abstract
Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.
Collapse
|
20
|
Fenech EJ, Ben-Dor S, Schuldiner M. Double the Fun, Double the Trouble: Paralogs and Homologs Functioning in the Endoplasmic Reticulum. Annu Rev Biochem 2021; 89:637-666. [PMID: 32569522 DOI: 10.1146/annurev-biochem-011520-104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evolution of eukaryotic genomes has been propelled by a series of gene duplication events, leading to an expansion in new functions and pathways. While duplicate genes may retain some functional redundancy, it is clear that to survive selection they cannot simply serve as a backup but rather must acquire distinct functions required for cellular processes to work accurately and efficiently. Understanding these differences and characterizing gene-specific functions is complex. Here we explore different gene pairs and families within the context of the endoplasmic reticulum (ER), the main cellular hub of lipid biosynthesis and the entry site for the secretory pathway. Focusing on each of the ER functions, we highlight specificities of related proteins and the capabilities conferred to cells through their conservation. More generally, these examples suggest why related genes have been maintained by evolutionary forces and provide a conceptual framework to experimentally determine why they have survived selection.
Collapse
Affiliation(s)
- Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
21
|
Becker SK, Sponder G, Sandhu MA, Trappe S, Kolisek M, Aschenbach JR. The Combined Influence of Magnesium and Insulin on Central Metabolic Functions and Expression of Genes Involved in Magnesium Homeostasis of Cultured Bovine Adipocytes. Int J Mol Sci 2021; 22:ijms22115897. [PMID: 34072724 PMCID: PMC8199494 DOI: 10.3390/ijms22115897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/28/2022] Open
Abstract
At the onset of lactation, dairy cows suffer from insulin resistance, insulin deficiency or both, similar to human diabetes, resulting in lipolysis, ketosis and fatty liver. This work explored the combined effects of different levels of magnesium (0.1, 0.3, 1 and 3 mM) and insulin (25, 250 and 25,000 pM) on metabolic pathways and the expression of magnesium-responsive genes in a bovine adipocyte model. Magnesium starvation (0.1 mM) and low insulin (25 pM) independently decreased or tended to decrease the accumulation of non-polar lipids and uptake of the glucose analog 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-deoxyglucose (6-NBDG). Activity of glycerol 3-phosphate dehydrogenase (GPDH) was highest at 25 pM insulin and 3 mM magnesium. Expression of SLC41A1 and SLC41A3 was reduced at 0.1 mM magnesium either across insulin concentrations (SLC41A1) or at 250 pM insulin (SLC41A3). MAGT1 expression was reduced at 3 mM magnesium. NIPA1 expression was reduced at 3 mM and 0.1 mM magnesium at 25 and 250 pM insulin, respectively. Expression of SLC41A2, CNNM2, TRPM6 and TRPM7 was not affected. We conclude that magnesium promotes lipogenesis in adipocytes and inversely regulates the transcription of genes that increase vs. decrease cytosolic magnesium concentration. The induction of GAPDH activity by surplus magnesium at low insulin concentration can counteract excessive lipomobilization.
Collapse
Affiliation(s)
- Sandra K. Becker
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
| | - Gerhard Sponder
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
| | - Mansur A. Sandhu
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
- Department of Veterinary Biomedical Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Susanne Trappe
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia;
| | - Jörg R. Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, 14163 Berlin, Germany; (S.K.B.); (G.S.); (M.A.S.); (S.T.)
- Correspondence: ; Tel.: +49-30-838-62601; Fax: +49-30-838-462601
| |
Collapse
|
22
|
Honer J, Niemeyer KM, Fercher C, Diez Tissera AL, Jaberolansar N, Jafrani YMA, Zhou C, Caramelo JJ, Shewan AM, Schulz BL, Brodsky JL, Zacchi LF. TorsinA folding and N-linked glycosylation are sensitive to redox homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119073. [PMID: 34062155 PMCID: PMC8889903 DOI: 10.1016/j.bbamcr.2021.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
The Endoplasmic Reticulum (ER) is responsible for the folding and post-translational modification of secretory proteins, as well as for triaging misfolded proteins. During folding, there is a complex yet only partially understood interplay between disulfide bond formation, which is an enzyme catalyzed event in the oxidizing environment of the ER, along with other post-translational modifications (PTMs) and chaperone-supported protein folding. Here, we used the glycoprotein torsinA as a model substrate to explore the impact of ER redox homeostasis on PTMs and protein biogenesis. TorsinA is a AAA+ ATPase with unusual oligomeric properties and controversial functions. The deletion of a C-terminal glutamic acid residue (∆E) is associated with the development of Early-Onset Torsion Dystonia, a severe movement disorder. TorsinA differs from other AAA+ ATPases since it is an ER resident, and as a result of its entry into the ER torsinA contains two N-linked glycans and at least one disulfide bond. The role of these PTMs on torsinA biogenesis and function and the identity of the enzymes that catalyze them are poorly defined. Using a yeast torsinA expression system, we demonstrate that a specific protein disulfide isomerase, Pdi1, affects the folding and N-linked glycosylation of torsinA and torsinA∆E in a redox-dependent manner, suggesting that the acquisition of early torsinA folding intermediates is sensitive to perturbed interactions between Cys residues and the quality control machinery. We also highlight the role of specific Cys residues during torsinA biogenesis and demonstrate that torsinA∆E is more sensitive than torsinA when these Cys residues are mutated.
Collapse
Affiliation(s)
- Jonas Honer
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Katie M Niemeyer
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Christian Fercher
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ana L Diez Tissera
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405 Buenos Aires, Argentina
| | - Noushin Jaberolansar
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yohaann M A Jafrani
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Chun Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Julio J Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405 Buenos Aires, Argentina
| | - Annette M Shewan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Benjamin L Schulz
- Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jeffrey L Brodsky
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Lucía F Zacchi
- Department of Biological Sciences, A320 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, United States of America; Australian Research Council Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), 1405 Buenos Aires, Argentina; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
23
|
Marinko JT, Wright MT, Schlebach JP, Clowes KR, Heintzman DR, Plate L, Sanders CR. Glycosylation limits forward trafficking of the tetraspan membrane protein PMP22. J Biol Chem 2021; 296:100719. [PMID: 33933451 PMCID: PMC8191293 DOI: 10.1016/j.jbc.2021.100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Peripheral myelin protein 22 (PMP22) folds and trafficks inefficiently, with only 20% of newly expressed protein trafficking to the cell surface. This behavior is exacerbated in many of the mutants associated with Charcot–Marie–Tooth disease, motivating further study. Here we characterized the role of N-glycosylation in limiting PMP22 trafficking. We first eliminated N-glycosylation using an N41Q mutation, which resulted in an almost 3-fold increase in trafficking efficiency of wildtype (WT) PMP22 and a 10-fold increase for the severely unstable L16P disease mutant in HEK293 cells, with similar results in Schwann cells. Total cellular levels were also much higher for the WT/N41Q mutant, although not for the L16P/N41Q form. Depletion of oligosaccharyltransferase OST-A and OST-B subunits revealed that WT PMP22 is N-glycosylated posttranslationally by OST-B, whereas L16P is cotranslationally glycosylated by OST-A. Quantitative proteomic screens revealed similarities and differences in the interactome for WT, glycosylation-deficient, and unstable mutant forms of PMP22 and also suggested that L16P is sequestered at earlier stages of endoplasmic reticulum quality control. CRISPR knockout studies revealed a role for retention in endoplasmic reticulum sorting receptor 1 (RER1) in limiting the trafficking of all three forms, for UDP-glucose glycoprotein glucosyltransferase 1 (UGGT1) in limiting the trafficking of WT and L16P but not N41Q, and calnexin (CNX) in limiting the trafficking of WT and N41Q but not L16P. This work shows that N-glycosylation is a limiting factor to forward trafficking PMP22 and sheds light on the proteins involved in its quality control.
Collapse
Affiliation(s)
- Justin T Marinko
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Katherine R Clowes
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
24
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Abstract
N-glycosylation is a highly conserved glycan modification, and more than 7000 proteins are N-glycosylated in humans. N-glycosylation has many biological functions such as protein folding, trafficking, and signal transduction. Thus, glycan modification to proteins is profoundly involved in numerous physiological and pathological processes. The N-glycan precursor is biosynthesized in the endoplasmic reticulum (ER) from dolichol phosphate by sequential enzymatic reactions to generate the dolichol-linked oligosaccharide composed of 14 sugar residues, Glc3Man9GlcNAc2. The oligosaccharide is then en bloc transferred to the consensus sequence N-X-S/T (X represents any amino acid except proline) of nascent proteins. Subsequently, the N-glycosylated nascent proteins enter the folding step, in which N-glycans contribute largely to attaining the correct protein fold by recruiting the lectin-like chaperones, calnexin, and calreticulin. Despite the N-glycan-dependent folding process, some glycoproteins do not fold correctly, and these misfolded glycoproteins are destined to degradation by proteasomes in the cytosol. Properly folded proteins are transported to the Golgi, and N-glycans undergo maturation by the sequential reactions of glycosidases and glycosyltransferases, generating complex-type N-glycans. N-Acetylglucosaminyltransferases (GnT-III, GnT-IV, and GnT-V) produce branched N-glycan structures, affording a higher complexity to N-glycans. In this chapter, we provide an overview of the biosynthetic pathway of N-glycans in the ER and Golgi.
Collapse
|
26
|
Pothion H, Jehan C, Tostivint H, Cartier D, Bucharles C, Falluel-Morel A, Boukhzar L, Anouar Y, Lihrmann I. Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxid Redox Signal 2020; 33:1257-1275. [PMID: 32524825 DOI: 10.1089/ars.2019.7931] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Selenoproteins incorporate the essential nutrient selenium into their polypeptide chain. Seven members of this family reside in the endoplasmic reticulum (ER), the exact function of most of which is poorly understood. Especially, how ER-resident selenoproteins control the ER redox and ionic environment is largely unknown. Since alteration of ER function is observed in many diseases, the elucidation of the role of selenoproteins could enhance our understanding of the mechanisms involved in ER homeostasis. Recent Advances: Among selenoproteins, selenoprotein T (SELENOT) is remarkable as the most evolutionarily conserved and the only ER-resident selenoprotein whose gene knockout in mouse is lethal. Recent data indicate that SELENOT contributes to ER homeostasis: reduced expression of SELENOT in transgenic cell and animal models promotes accumulation of reactive oxygen and nitrogen species, depletion of calcium stores, activation of the unfolded protein response and impaired hormone secretion. Critical Issues: SELENOT is anchored to the ER membrane and associated with the oligosaccharyltransferase complex, suggesting that it regulates the early steps of N-glycosylation. Furthermore, it exerts a selenosulfide oxidoreductase activity carried by its thioredoxin-like domain. However, the physiological role of the redox activity of SELENOT is not fully understood. Likewise, the nature of its redox partners needs to be further characterized. Future Directions: Given the impact of ER stress in pathologies such as neurodegenerative, cardiovascular, metabolic and immune diseases, understanding the role of SELENOT and developing derived therapeutic tools such as selenopeptides to improve ER proteostasis and prevent ER stress could contribute to a better management of these diseases.
Collapse
Affiliation(s)
- Hugo Pothion
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Cédric Jehan
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hervé Tostivint
- Physiologie moléculaire et Adaptation, UMR 7221 CNRS and Muséum National d'Histoire Naturelle, Paris, France
| | - Dorthe Cartier
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bucharles
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Anthony Falluel-Morel
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Loubna Boukhzar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Youssef Anouar
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Isabelle Lihrmann
- Rouen-Normandie University, UNIROUEN, Inserm, U1239, Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Mont-Saint-Aignan Cedex, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
27
|
Wright MT, Kouba L, Plate L. Thyroglobulin Interactome Profiling Defines Altered Proteostasis Topology Associated With Thyroid Dyshormonogenesis. Mol Cell Proteomics 2020; 20:100008. [PMID: 33581410 PMCID: PMC7950113 DOI: 10.1074/mcp.ra120.002168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 12/02/2022] Open
Abstract
Thyroglobulin (Tg) is a secreted iodoglycoprotein serving as the precursor for triiodothyronine and thyroxine hormones. Many characterized Tg gene mutations produce secretion-defective variants resulting in congenital hypothyroidism. Tg processing and secretion is controlled by extensive interactions with chaperone, trafficking, and degradation factors comprising the secretory proteostasis network. While dependencies on individual proteostasis network components are known, the integration of proteostasis pathways mediating Tg protein quality control and the molecular basis of mutant Tg misprocessing remain poorly understood. We employ a multiplexed quantitative affinity purification-mass spectrometry approach to define the Tg proteostasis interactome and changes between WT and several congenital hypothyroidism variants. Mutant Tg processing is associated with common imbalances in proteostasis engagement including increased chaperoning, oxidative folding, and engagement by targeting factors for endoplasmic reticulum-associated degradation. Furthermore, we reveal mutation-specific changes in engagement with N-glycosylation components, suggesting distinct requirements for 1 Tg variant on dual engagement of both oligosaccharyltransferase complex isoforms for degradation. Modulating dysregulated proteostasis components and pathways may serve as a therapeutic strategy to restore Tg secretion and thyroid hormone biosynthesis.
Collapse
Affiliation(s)
- Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Logan Kouba
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
28
|
Rodelo-Haad C, Pendón-Ruiz de Mier MV, Díaz-Tocados JM, Martin-Malo A, Santamaria R, Muñoz-Castañeda JR, Rodríguez M. The Role of Disturbed Mg Homeostasis in Chronic Kidney Disease Comorbidities. Front Cell Dev Biol 2020; 8:543099. [PMID: 33282857 PMCID: PMC7688914 DOI: 10.3389/fcell.2020.543099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Some of the critical mechanisms that mediate chronic kidney disease (CKD) progression are associated with vascular calcifications, disbalance of mineral metabolism, increased oxidative and metabolic stress, inflammation, coagulation abnormalities, endothelial dysfunction, or accumulation of uremic toxins. Also, it is widely accepted that pathologies with a strong influence in CKD progression are diabetes, hypertension, and cardiovascular disease (CVD). A disbalance in magnesium (Mg) homeostasis, more specifically hypomagnesemia, is associated with the development and progression of the comorbidities mentioned above, and some mechanisms might explain why low serum Mg is associated with negative clinical outcomes such as major adverse cardiovascular and renal events. Furthermore, it is likely that hypomagnesemia causes the release of inflammatory cytokines and C-reactive protein and promotes insulin resistance. Animal models have shown that Mg supplementation reverses vascular calcifications; thus, clinicians have focused on the potential benefits that Mg supplementation may have in humans. Recent evidence suggests that Mg reduces coronary artery calcifications and facilitates peripheral vasodilation. Mg may reduce vascular calcification by direct inhibition of the Wnt/β-catenin signaling pathway. Furthermore, Mg deficiency worsens kidney injury induced by an increased tubular load of phosphate. One important consequence of excessive tubular load of phosphate is the reduction of renal tubule expression of α-Klotho in moderate CKD. Low Mg levels worsen the reduction of Klotho induced by the tubular load of phosphate. Evidence to support clinical translation is yet insufficient, and more clinical studies are required to claim enough evidence for decision-making in daily practice. Meanwhile, it seems reasonable to prevent and treat Mg deficiency. This review aims to summarize the current understanding of Mg homeostasis, the potential mechanisms that may mediate the effect of Mg deficiency on CKD progression, CVD, and mortality.
Collapse
Affiliation(s)
- Cristian Rodelo-Haad
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - M Victoria Pendón-Ruiz de Mier
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Juan Miguel Díaz-Tocados
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain
| | - Alejandro Martin-Malo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Rafael Santamaria
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Juan Rafael Muñoz-Castañeda
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| | - Mariano Rodríguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.,University of Córdoba, Córdoba, Spain.,Nephrology Service, Reina Sofia University Hospital, Córdoba, Spain.,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Global view of human protein glycosylation pathways and functions. Nat Rev Mol Cell Biol 2020; 21:729-749. [PMID: 33087899 DOI: 10.1038/s41580-020-00294-x] [Citation(s) in RCA: 743] [Impact Index Per Article: 148.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Glycosylation is the most abundant and diverse form of post-translational modification of proteins that is common to all eukaryotic cells. Enzymatic glycosylation of proteins involves a complex metabolic network and different types of glycosylation pathways that orchestrate enormous amplification of the proteome in producing diversity of proteoforms and its biological functions. The tremendous structural diversity of glycans attached to proteins poses analytical challenges that limit exploration of specific functions of glycosylation. Major advances in quantitative transcriptomics, proteomics and nuclease-based gene editing are now opening new global ways to explore protein glycosylation through analysing and targeting enzymes involved in glycosylation processes. In silico models predicting cellular glycosylation capacities and glycosylation outcomes are emerging, and refined maps of the glycosylation pathways facilitate genetic approaches to address functions of the vast glycoproteome. These approaches apply commonly available cell biology tools, and we predict that use of (single-cell) transcriptomics, genetic screens, genetic engineering of cellular glycosylation capacities and custom design of glycoprotein therapeutics are advancements that will ignite wider integration of glycosylation in general cell biology.
Collapse
|
30
|
Platelets and Defective N-Glycosylation. Int J Mol Sci 2020; 21:ijms21165630. [PMID: 32781578 PMCID: PMC7460655 DOI: 10.3390/ijms21165630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
N-glycans are covalently linked to an asparagine residue in a simple acceptor sequence of proteins, called a sequon. This modification is important for protein folding, enhancing thermodynamic stability, and decreasing abnormal protein aggregation within the endoplasmic reticulum (ER), for the lifetime and for the subcellular localization of proteins besides other functions. Hypoglycosylation is the hallmark of a group of rare genetic diseases called congenital disorders of glycosylation (CDG). These diseases are due to defects in glycan synthesis, processing, and attachment to proteins and lipids, thereby modifying signaling functions and metabolic pathways. Defects in N-glycosylation and O-glycosylation constitute the largest CDG groups. Clotting and anticlotting factor defects as well as a tendency to thrombosis or bleeding have been described in CDG patients. However, N-glycosylation of platelet proteins has been poorly investigated in CDG. In this review, we highlight normal and deficient N-glycosylation of platelet-derived molecules and discuss the involvement of platelets in the congenital disorders of N-glycosylation.
Collapse
|
31
|
Freeze HH. XMEN: welcome to the glycosphere. J Clin Invest 2020; 130:80-82. [PMID: 31815737 DOI: 10.1172/jci134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
XMEN (X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia) is a complex primary immunological deficiency caused by mutations in MAGT1, a putative magnesium transporter. In this issue of the JCI, Ravell et al. greatly expand the clinical picture. The authors investigated patients' mutations and symptoms and reported distinguishing immunophenotypes. They also showed that MAGT1 is required for N-glycosylation of key T cell and NK cell receptors that can account for some of the clinical features. Notably, transfection of the affected lymphocytes with MAGT1 mRNA restored both N-glycosylation and receptor function. Now we can add XMEN to the ever-growing family of congenital disorders of glycosylation (CDG).
Collapse
|
32
|
Zhang Q, Zheng Q, Yu X, He Y, Guo W. Overview of distinct 5-methylcytosine profiles of messenger RNA in human hepatocellular carcinoma and paired adjacent non-tumor tissues. J Transl Med 2020; 18:245. [PMID: 32571340 PMCID: PMC7310161 DOI: 10.1186/s12967-020-02417-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Post-transcriptional methylation modifications, including 5-methylcytosine (m5C) modification, are closely related to the tumorigenesis of cancers. However, the mRNA profile of m5C modification in hepatocellular carcinoma (HCC) is unknown. METHODS Methylated RNA immunoprecipitation sequencing was performed to identify m5C peaks on mRNA of human HCC tissues and adjacent tissues, and differences in m5C between the two groups were analyzed. In addition, we conducted a bioinformatics analysis to predict the function of specific methylated transcripts. RESULTS We found that there was a noticeable difference in m5C between HCC and paired non-tumor tissues, suggesting that m5C could play a role in the pathogenesis of HCC. In addition, analyses of gene ontology and the Kyoto Encyclopedia of Genes and Genomes showed that the unique distribution pattern of mRNA m5C in HCC was associated with a wide range of cellular functions. CONCLUSIONS Our results revealed different distribution patterns of m5C in HCC and adjacent tissues and provided new insights into a novel function of m5C RNA methylation of mRNA in HCC progression.
Collapse
Affiliation(s)
- Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
33
|
Huang C, Suzuki T. The occurrence of nonglycosylated forms of
N
‐glycoprotein upon proteasome inhibition does not confirm cytosolic deglycosylation. FEBS Lett 2020; 594:1433-1442. [DOI: 10.1002/1873-3468.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Chengcheng Huang
- Glycometabolic Biochemistry Laboratory RIKEN Cluster for Pioneering Research Wako Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory RIKEN Cluster for Pioneering Research Wako Japan
| |
Collapse
|
34
|
Tamana S, Promponas VJ. An updated view of the oligosaccharyltransferase complex in Plasmodium. Glycobiology 2019; 29:385-396. [PMID: 30835280 DOI: 10.1093/glycob/cwz011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 01/27/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022] Open
Abstract
Despite the controversy regarding the importance of protein N-linked glycosylation in species of the genus Plasmodium, genes potentially encoding core subunits of the oligosaccharyltransferase (OST) complex have already been characterized in completely sequenced genomes of malaria parasites. Nevertheless, the currently established notion is that only four out of eight subunits of the OST complex-which is considered conserved across eukaryotes-are present in Plasmodium species. In this study, we carefully conduct computational analysis to provide unequivocal evidence that all components of the OST complex, with the exception of Swp1/Ribophorin II, can be reliably identified within completely sequenced plasmodial genomes. In fact, most of the subunits currently considered as absent from Plasmodium refer to uncharacterized protein sequences already existing in sequence databases. Interestingly, the main reason why the unusually short Ost4 subunit (36 residues long in yeast) has not been identified so far in plasmodia (and possibly other species) is the failure of gene-prediction pipelines to detect such a short coding sequence. We further identify elusive OST subunits in select protist species with completely sequenced genomes. Thus, our work highlights the necessity of a systematic approach towards the characterization of OST subunits across eukaryotes. This is necessary both for obtaining a concrete picture of the evolution of the OST complex but also for elucidating its possible role in eukaryotic pathogens.
Collapse
Affiliation(s)
- Stella Tamana
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, CY, Nicosia, Cyprus
| | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, CY, Nicosia, Cyprus
| |
Collapse
|
35
|
Harada Y, Ohkawa Y, Kizuka Y, Taniguchi N. Oligosaccharyltransferase: A Gatekeeper of Health and Tumor Progression. Int J Mol Sci 2019; 20:ijms20236074. [PMID: 31810196 PMCID: PMC6929149 DOI: 10.3390/ijms20236074] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Oligosaccharyltransferase (OST) is a multi-span membrane protein complex that catalyzes the addition of glycans to selected Asn residues within nascent polypeptides in the lumen of the endoplasmic reticulum. This process, termed N-glycosylation, is a fundamental post-translational protein modification that is involved in the quality control, trafficking of proteins, signal transduction, and cell-to-cell communication. Given these crucial roles, N-glycosylation is essential for homeostasis at the systemic and cellular levels, and a deficiency in genes that encode for OST subunits often results in the development of complex genetic disorders. A growing body of evidence has also demonstrated that the expression of OST subunits is cell context-dependent and is frequently altered in malignant cells, thus contributing to tumor cell survival and proliferation. Importantly, a recently developed inhibitor of OST has revealed this enzyme as a potential target for the treatment of incurable drug-resistant tumors. This review summarizes our current knowledge regarding the functions of OST in the light of health and tumor progression, and discusses perspectives on the clinical relevance of inhibiting OST as a tumor treatment.
Collapse
Affiliation(s)
- Yoichiro Harada
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan; (Y.H.); (Y.O.)
| | - Yuki Ohkawa
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan; (Y.H.); (Y.O.)
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan; (Y.H.); (Y.O.)
- Correspondence: ; Tel.: +81-6-6945-1181
| |
Collapse
|
36
|
Comprehensive Interactome Analysis Reveals that STT3B Is Required for N-Glycosylation of Lassa Virus Glycoprotein. J Virol 2019; 93:JVI.01443-19. [PMID: 31511384 PMCID: PMC6854512 DOI: 10.1128/jvi.01443-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/28/2022] Open
Abstract
Glycoproteins play vital roles in the arenavirus life cycle by facilitating virus entry and participating in the virus budding process. N-glycosylation of GPs is responsible for their proper functioning; however, little is known about the host factors on which the virus depends for this process. In this study, a comprehensive LASV GP interactome was characterized, and further study revealed that STT3B-dependent N-glycosylation was preferentially required by arenavirus GPs and critical for virus infectivity. The two specific thioredoxin subunits of STT3B-OST MAGT1 and TUSC3 were found to be essential for the N-glycosylation of viral GP. NGI-1, a small-molecule inhibitor of OST, also showed a robust inhibitory effect on arenavirus. Our study provides new insights into LASV GP-host interactions and extends the potential targets for the development of novel therapeutics against Lassa fever in the future. Lassa virus (LASV) is the causative agent of a fatal hemorrhagic fever in humans. The glycoprotein (GP) of LASV mediates viral entry into host cells, and correct processing and modification of GP by host factors is a prerequisite for virus replication. Here, using an affinity purification-coupled mass spectrometry (AP-MS) strategy, 591 host proteins were identified as interactors of LASV GP. Gene ontology analysis was performed to functionally annotate these proteins, and the oligosaccharyltransferase (OST) complex was highly enriched. Functional studies conducted by using CRISPR-Cas9-mediated knockouts showed that STT3A and STT3B, the two catalytically active isoforms of the OST complex, are essential for the propagation of the recombinant arenavirus rLCMV/LASV glycoprotein precursor, mainly via affecting virus infectivity. Knockout of STT3B, but not STT3A, caused hypoglycosylation of LASV GP, indicating a preferential requirement of LASV for the STT3B-OST isoform. Furthermore, double knockout of magnesium transporter 1 (MAGT1) and tumor suppressor candidate 3 (TUSC3), two specific subunits of STT3B-OST, also caused hypoglycosylation of LASV GP and affected virus propagation. Site-directed mutagenesis analysis revealed that the oxidoreductase CXXC active-site motif of MAGT1 or TUSC3 is essential for the glycosylation of LASV GP. NGI-1, a small-molecule OST inhibitor, can effectively reduce virus infectivity without affecting cell viability. The STT3B-dependent N-glycosylation of GP is conserved among other arenaviruses, including both the Old World and New World groups. Our study provided a systematic view of LASV GP-host interactions and revealed the preferential requirement of STT3B for LASV GP N-glycosylation. IMPORTANCE Glycoproteins play vital roles in the arenavirus life cycle by facilitating virus entry and participating in the virus budding process. N-glycosylation of GPs is responsible for their proper functioning; however, little is known about the host factors on which the virus depends for this process. In this study, a comprehensive LASV GP interactome was characterized, and further study revealed that STT3B-dependent N-glycosylation was preferentially required by arenavirus GPs and critical for virus infectivity. The two specific thioredoxin subunits of STT3B-OST MAGT1 and TUSC3 were found to be essential for the N-glycosylation of viral GP. NGI-1, a small-molecule inhibitor of OST, also showed a robust inhibitory effect on arenavirus. Our study provides new insights into LASV GP-host interactions and extends the potential targets for the development of novel therapeutics against Lassa fever in the future.
Collapse
|
37
|
Shi R, Hu W, Zhang Y, Gao S, Smith AH, Ye J, Cai L, Graham LM, Li C. Ascorbate inducible N259 glycans on prolyl 4-hydroxylase subunit α1 promote hydroxylation and secretion of type I collagen. Cell Mol Life Sci 2019; 76:3449-3464. [PMID: 30919021 PMCID: PMC6698205 DOI: 10.1007/s00018-019-03081-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
Ascorbic acid (vitamin C, VC) increases the secretion of mature collagen by promoting the activity of prolyl 4-hydroxylase subunit α 1 (P4HA1). To explore the mechanism involved, we investigated the role of N-linked glycosylation, which can regulate enzyme activity. P4HA1 has two glycosylation sites, Asn (N) 113 and N259. Our studies show that glycosylation of N259, but not N113, by STT3B and magnesium transporter 1 (MAGT1) is augmented by VC. N259 glycosylation on P4HA1 correlates with enhanced pepsin-resistant collagen 1α2 secretion. Downregulation of Stt3b and Magt1 reduces N259 glycans on P4HA1. In collagen 1α2 purified from Stt3b-silenced fibroblasts, decreased hydroxylation is found at five specific proline residues, while significantly increased hydroxylation is noted at two proline residues. Similarly, in collagen 1α1, reduced proline hydroxylation is detected at eight sites and increased proline hydroxylation is found at four sites. These results suggest that N-linked glycosylation of P4HA1 can direct hydroxylation at specific proline residues and affect collagen maturation.
Collapse
Affiliation(s)
- Run Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 78 Heng Zhi Gang Road, Guangzhou, 510095, China
| | - Weimin Hu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 78 Heng Zhi Gang Road, Guangzhou, 510095, China
| | - Yan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, Hubei, China
| | - Shanshan Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, Hubei, China
| | - Andrew H Smith
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland, OH, USA
- Department of Vascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Jun Ye
- Department of Statistics, University of Akron, Akron, OH, USA
| | - Lili Cai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, Hubei, China
| | - Linda M Graham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland, OH, USA.
- Department of Vascular Surgery, Cleveland Clinic, Cleveland, OH, USA.
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, 44 Xiao Hong Shan Zhong Qu, Wuhan, 430071, Hubei, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 78 Heng Zhi Gang Road, Guangzhou, 510095, China.
| |
Collapse
|
38
|
Shrimal S, Cherepanova NA, Mandon EC, Venev SV, Gilmore R. Asparagine-linked glycosylation is not directly coupled to protein translocation across the endoplasmic reticulum in Saccharomyces cerevisiae. Mol Biol Cell 2019; 30:2626-2638. [PMID: 31433728 PMCID: PMC6761772 DOI: 10.1091/mbc.e19-06-0330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mammalian cells express two oligosaccharyltransferase complexes, STT3A and STT3B, that have distinct roles in N-linked glycosylation. The STT3A complex interacts directly with the protein translocation channel to mediate glycosylation of proteins using an N-terminal-to-C-terminal scanning mechanism. N-linked glycosylation of proteins in budding yeast has been assumed to be a cotranslational reaction. We have compared glycosylation of several glycoproteins in yeast and mammalian cells. Prosaposin, a cysteine-rich protein that contains STT3A-dependent glycosylation sites, is poorly glycosylated in yeast cells and STT3A-deficient human cells. In contrast, a protein with extreme C-terminal glycosylation sites was efficiently glycosylated in yeast by a posttranslocational mechanism. Posttranslocational glycosylation was also observed for carboxypeptidase Y-derived reporter proteins that contain closely spaced acceptor sites. A comparison of two recent protein structures indicates that the yeast OST is unable to interact with the yeast heptameric Sec complex via an evolutionarily conserved interface due to occupation of the OST binding site by the Sec63 protein. The efficiency of glycosylation in yeast is not enhanced for proteins that are translocated by the Sec61 or Ssh1 translocation channels instead of the Sec complex. We conclude that N-linked glycosylation and protein translocation are not directly coupled in yeast cells.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Elisabet C Mandon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
39
|
Matsuda-Lennikov M, Biancalana M, Zou J, Ravell JC, Zheng L, Kanellopoulou C, Jiang P, Notarangelo G, Jing H, Masutani E, Oler AJ, Olano LR, Schulz BL, Lenardo MJ. Magnesium transporter 1 (MAGT1) deficiency causes selective defects in N-linked glycosylation and expression of immune-response genes. J Biol Chem 2019; 294:13638-13656. [PMID: 31337704 DOI: 10.1074/jbc.ra119.008903] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Magnesium transporter 1 (MAGT1) critically mediates magnesium homeostasis in eukaryotes and is highly-conserved across different evolutionary branches. In humans, loss-of-function mutations in the MAGT1 gene cause X-linked magnesium deficiency with Epstein-Barr virus (EBV) infection and neoplasia (XMEN), a disease that has a broad range of clinical and immunological consequences. We have previously shown that EBV susceptibility in XMEN is associated with defective expression of the antiviral natural-killer group 2 member D (NKG2D) protein and abnormal Mg2+ transport. New evidence suggests that MAGT1 is the human homolog of the yeast OST3/OST6 proteins that form an integral part of the N-linked glycosylation complex, although the exact contributions of these perturbations in the glycosylation pathway to disease pathogenesis are still unknown. Using MS-based glycoproteomics, along with CRISPR/Cas9-KO cell lines, natural killer cell-killing assays, and RNA-Seq experiments, we now demonstrate that humans lacking functional MAGT1 have a selective deficiency in both immune and nonimmune glycoproteins, and we identified several critical glycosylation defects in important immune-response proteins and in the expression of genes involved in immunity, particularly CD28. We show that MAGT1 function is partly interchangeable with that of the paralog protein tumor-suppressor candidate 3 (TUSC3) but that each protein has a different tissue distribution in humans. We observed that MAGT1-dependent glycosylation is sensitive to Mg2+ levels and that reduced Mg2+ impairs immune-cell function via the loss of specific glycoproteins. Our findings reveal that defects in protein glycosylation and gene expression underlie immune defects in an inherited disease due to MAGT1 deficiency.
Collapse
Affiliation(s)
- Mami Matsuda-Lennikov
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Matthew Biancalana
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Juan Zou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Juan C Ravell
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Chrysi Kanellopoulou
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Ping Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Giulia Notarangelo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Huie Jing
- Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Evan Masutani
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892.,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Andrew J Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Lisa Renee Olano
- Laboratory of Neurotoxicology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Benjamin L Schulz
- University of Queensland, School of Chemistry and Molecular Biology, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda, Maryland 20892 .,Clinical Genomics Program, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
40
|
Cherepanova NA, Venev SV, Leszyk JD, Shaffer SA, Gilmore R. Quantitative glycoproteomics reveals new classes of STT3A- and STT3B-dependent N-glycosylation sites. J Cell Biol 2019; 218:2782-2796. [PMID: 31296534 PMCID: PMC6683751 DOI: 10.1083/jcb.201904004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 11/24/2022] Open
Abstract
Cherepanova et al. provide quantitative glycoproteomic analyses of human cells that lack either the STT3A or STT3B oligosaccharyltransferase (OST) complex, revealing new classes of STT3A- and STT3B-dependent glycosylation sites and indicating how cooperation between the OST complexes maximizes acceptor site occupancy in cellular glycoproteins. Human cells express two oligosaccharyltransferase complexes (STT3A and STT3B) with partially overlapping functions. The STT3A complex interacts directly with the protein translocation channel to mediate cotranslational glycosylation, while the STT3B complex can catalyze posttranslocational glycosylation. We used a quantitative glycoproteomics procedure to compare glycosylation of roughly 1,000 acceptor sites in wild type and mutant cells. Analysis of site occupancy data disclosed several new classes of STT3A-dependent acceptor sites including those with suboptimal flanking sequences and sites located within cysteine-rich protein domains. Acceptor sites located in short loops of multi-spanning membrane proteins represent a new class of STT3B-dependent site. Remarkably, the lumenal ER chaperone GRP94 was hyperglycosylated in STT3A-deficient cells, bearing glycans on five silent sites in addition to the normal glycosylation site. GRP94 was also hyperglycosylated in wild-type cells treated with ER stress inducers including thapsigargin, dithiothreitol, and NGI-1.
Collapse
Affiliation(s)
- Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA
| | - John D Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA.,Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, MA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
41
|
Shrimal S, Gilmore R. Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Glycobiology 2019; 29:288-297. [PMID: 30312397 DOI: 10.1093/glycob/cwy093] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 11/12/2022] Open
Abstract
Asparagine-linked (N-linked) glycosylation is one of the most common protein modification reactions in eukaryotic cells, occurring upon the majority of proteins that enter the secretory pathway. X-ray crystal structures of the single subunit OSTs from eubacterial and archaebacterial organisms revealed the location of donor and acceptor substrate binding sites and provided the basis for a catalytic mechanism. Cryoelectron microscopy structures of the octameric yeast OST provided substantial insight into the organization and assembly of the multisubunit oligosaccharyltransferases. Furthermore, the cryoelectron microscopy structure of a complex consisting of a mammalian OST complex, the protein translocation channel and a translating ribosome revealed new insight into the mechanism of cotranslational glycosylation.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA
| |
Collapse
|
42
|
Klaver E, Zhao P, May M, Flanagan-Steet H, Freeze HH, Gilmore R, Wells L, Contessa J, Steet R. Selective inhibition of N-linked glycosylation impairs receptor tyrosine kinase processing. Dis Model Mech 2019; 12:dmm.039602. [PMID: 31101650 PMCID: PMC6602306 DOI: 10.1242/dmm.039602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Global inhibition of N-linked glycosylation broadly reduces glycan occupancy on glycoproteins, but identifying how this inhibition functionally impacts specific glycoproteins is challenging. This limits our understanding of pathogenesis in the congenital disorders of glycosylation (CDG). We used selective exo-enzymatic labeling of cells deficient in the two catalytic subunits of oligosaccharyltransferase - STT3A and STT3B - to monitor the presence and glycosylation status of cell surface glycoproteins. We show reduced abundance of two canonical tyrosine receptor kinases - the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) - at the cell surface in STT3A-null cells, due to decreased N-linked glycan site occupancy and proteolytic processing in combination with increased endoplasmic reticulum localization. Providing cDNA for Golgi-resident proprotein convertase subtilisin/kexin type 5a (PCSK5a) and furin cDNA to wild-type and mutant cells produced under-glycosylated forms of PCSK5a, but not furin, in cells lacking STT3A. Reduced glycosylation of PCSK5a in STT3A-null cells or cells treated with the oligosaccharyltransferase inhibitor NGI-1 corresponded with failure to rescue receptor processing, implying that alterations in the glycosylation of this convertase have functional consequences. Collectively, our findings show that STT3A-dependent inhibition of N-linked glycosylation on receptor tyrosine kinases and their convertases combines to impair receptor processing and surface localization. These results provide new insight into CDG pathogenesis and highlight how the surface abundance of some glycoproteins can be dually impacted by abnormal glycosylation.
Collapse
Affiliation(s)
- Elsenoor Klaver
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Melanie May
- Research Division, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Hudson H Freeze
- Sanford Children's Health Research Center, Sanford-Burnham-Prebys Discovery Institute, La Jolla, CA 92037, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worchester, MA 01655, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Joseph Contessa
- Departments of Therapeutic Radiology and Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Richard Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA .,Research Division, Greenwood Genetic Center, Greenwood, SC 29646, USA
| |
Collapse
|
43
|
Bousfield GR, Harvey DJ. Follicle-Stimulating Hormone Glycobiology. Endocrinology 2019; 160:1515-1535. [PMID: 31127275 PMCID: PMC6534497 DOI: 10.1210/en.2019-00001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023]
Abstract
FSH glycosylation varies in two functionally important aspects: microheterogeneity, resulting from oligosaccharide structure variation, and macroheterogeneity, arising from partial FSHβ subunit glycosylation. Although advances in mass spectrometry permit extensive characterization of FSH glycan populations, microheterogeneity remains difficult to illustrate, and comparisons between different studies are challenging because no standard format exists for rendering oligosaccharide structures. FSH microheterogeneity is illustrated using a consistent glycan diagram format to illustrate the large array of structures associated with one hormone. This is extended to commercially available recombinant FSH preparations, which exhibit greatly reduced microheterogeneity at three of four glycosylation sites. Macroheterogeneity is demonstrated by electrophoretic mobility shifts due to the absence of FSHβ glycans that can be assessed by Western blotting of immunopurified FSH. Initially, macroheterogeneity was hoped to matter more than microheterogeneity. However, it now appears that both forms of carbohydrate heterogeneity have to be taken into consideration. FSH glycosylation can reduce its apparent affinity for its cognate receptor by delaying initial interaction with the receptor and limiting access to all of the available binding sites. This is followed by impaired cellular signaling responses that may be related to reduced receptor occupancy or biased signaling. To resolve these alternatives, well-characterized FSH glycoform preparations are necessary.
Collapse
Affiliation(s)
- George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| | - David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| |
Collapse
|
44
|
Mutations in MAGT1 lead to a glycosylation disorder with a variable phenotype. Proc Natl Acad Sci U S A 2019; 116:9865-9870. [PMID: 31036665 DOI: 10.1073/pnas.1817815116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. We identified two patients with defective serum transferrin glycosylation and mutations in the MAGT1 gene. These patients present with a phenotype that is mainly characterized by intellectual and developmental disability. MAGT1 has been described to be a subunit of the oligosaccharyltransferase (OST) complex and more specifically of the STT3B complex. However, it was also claimed that MAGT1 is a magnesium (Mg2+) transporter. So far, patients with mutations in MAGT1 were linked to a primary immunodeficiency, characterized by chronic EBV infections attributed to a Mg2+ homeostasis defect (XMEN). We compared the clinical and cellular phenotype of our two patients to that of an XMEN patient that we recently identified. All three patients have an N-glycosylation defect, as was shown by the study of different substrates, such as GLUT1 and SHBG, demonstrating that the posttranslational glycosylation carried out by the STT3B complex is dysfunctional in all three patients. Moreover, MAGT1 deficiency is associated with an enhanced expression of TUSC3, the homolog protein of MAGT1, pointing toward a compensatory mechanism. Hence, we delineate MAGT1-CDG as a disorder associated with two different clinical phenotypes caused by defects in glycosylation.
Collapse
|
45
|
Chang IJ, Byers HM, Ng BG, Merritt JL, Gilmore R, Shrimal S, Wei W, Zhang Y, Blair AB, Freeze HH, Zhang B, Lam C. Factor VIII and vWF deficiency in STT3A-CDG. J Inherit Metab Dis 2019; 42:325-332. [PMID: 30701557 PMCID: PMC6658093 DOI: 10.1002/jimd.12021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/08/2018] [Accepted: 12/06/2018] [Indexed: 11/09/2022]
Abstract
STT3A-CDG (OMIM# 615596) is an autosomal recessive N-linked glycosylation disorder characterized by seizures, developmental delay, intellectual disability, and a type I carbohydrate deficient transferrin pattern. All previously reported cases (n = 6) have been attributed to a homozygous pathogenic missense variant c.1877C>T (p.Val626Ala) in STT3A. We describe a patient with a novel homozygous likely pathogenic missense variant c.1079A>C (p.Tyr360Ser) who presents with chronically low Factor VIII (FVIII) and von Willebrand Factor (vWF) levels and activities in addition to the previously reported symptoms of developmental delay and seizures. VWF in our patient's plasma is present in a mildly hypoglycosylated form. FVIII antigen levels were too low to quantify in our patient. Functional studies with STT3A-/- HEK293 cells showed severely reduced FVIII antigen and activity levels in conditioned media <10% expected, but normal intracellular levels. We also show decreased glycosylation of STT3A-specific acceptors in fibroblasts from our patient, providing a mechanistic explanation for how STT3A deficiency leads to a severe defect in FVIII secretion. Our results suggest that certain STT3A-dependent N-glycans are required for efficient FVIII secretion, and the decreased FVIII level in our patient is a combined effect of both severely impaired FVIII secretion and lower plasma VWF level. Our report expands both the genotype and phenotype of STT3A-CDG; demonstrating, as in most types of CDG, that there are multiple disease-causing variants in STT3A.
Collapse
Affiliation(s)
- Irene J. Chang
- Department of Pediatrics, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Heather M. Byers
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, California
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - John Lawrence Merritt
- Department of Pediatrics, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Wei Wei
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yuan Zhang
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amanda B. Blair
- Department of Pediatrics, Division of Hematology-Oncology, University of Washington, Seattle, Washington
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Bin Zhang
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christina Lam
- Department of Pediatrics, Division of Medical Genetics, University of Washington, Seattle, Washington
| |
Collapse
|
46
|
Lu H, Cherepanova NA, Gilmore R, Contessa JN, Lehrman MA. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction. FASEB J 2019; 33:6801-6812. [PMID: 30811219 DOI: 10.1096/fj.201802044rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a contagious neurotropic herpesvirus responsible for oral lesions and herpesviral encephalitis. The HSV-1 envelope contains N-glycosylated proteins involved in infection and that are candidate drug targets. NGI-1 is a small-molecule inhibitor of oligosaccharyltransferase (OST) complexes STT3A-OST and STT3B-OST, which catalyze cotranslational and post-translational N-glycosylation, respectively. Because host OSTs attach HSV-1 glycans, NGI-1 might have anti-HSV-1 activity. We evaluated HSV-1 function using NGI-1 and human embryonic kidney 293 knockout lines for OST isoform-specific catalytic and accessory subunits. N-glycosylation of 2 representative envelope proteins (gC and gD) was primarily dependent upon STT3A-OST, but to a large extent replaceable by STT3B-OST. Knockouts impairing STT3A- or STT3B-OST activity, by themselves, did not appreciably affect HSV-1 function (plaque-forming units, normalized to viral particles measured by unglycosylated capsid protein VP5 content). However, with cells lacking STT3B-OST activity (missing the catalytic subunit STT3B or the oxidoreductase subunits magnesium transporter 1/tumor suppressor candidate 3) and thus solely dependent upon STT3A-OST for N-glycosylation, NGI-1 treatment resulted in HSV-1 having cell type-dependent dysfunction (affecting infectivity with Vero cells much more than with the 293 lines). Ablation of post-translational N-glycosylation can therefore make HSV-1 infectivity, and possibly masking of immunogenic peptide epitopes by glycans, highly sensitive to pharmacological inhibition of cotranslational N-glycosylation.-Lu, H., Cherepanova, N. A., Gilmore, R., Contessa, J. N., Lehrman, M. A. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction.
Collapse
Affiliation(s)
- Hua Lu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology and Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mark A Lehrman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
47
|
Jeon YJ, Kim T, Park D, Nuovo GJ, Rhee S, Joshi P, Lee BK, Jeong J, Suh SS, Grotzke JE, Kim SH, Song J, Sim H, Kim Y, Peng Y, Jeong Y, Garofalo M, Zanesi N, Kim J, Liang G, Nakano I, Cresswell P, Nana-Sinkam P, Cui R, Croce CM. miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nat Commun 2018; 9:5110. [PMID: 30504895 PMCID: PMC6269493 DOI: 10.1038/s41467-018-07561-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/09/2018] [Indexed: 02/05/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is leading cause of cancer-related deaths in the world. The Tumor Suppressor Candidate 3 (TUSC3) at chromosome 8p22 known to be frequently deleted in cancer is often found to be deleted in advanced stage of solid tumors. However, the role of TUSC3 still remains controversial in lung cancer and context-dependent in several cancers. Here we propose that miR-224/-520c-dependent TUSC3 deficiency enhances the metastatic potential of NSCLC through the alteration of three unfolded protein response pathways and HRD1-dependent ERAD. ATF6α-dependent UPR is enhanced whereas the affinity of HRD1 to its substrates, PERK, IRE1α and p53 is weakened. Consequently, the alteration of UPRs and the suppressed p53-NM23H1/2 pathway by TUSC3 deficiency is ultimately responsible for enhancing metastatic potential of lung cancer. These findings provide mechanistic insight of unrecognized roles of TUSC3 in cancer progression and the oncogenic role of HRD1-dependent ERAD in cancer metastasis.
Collapse
Affiliation(s)
- Young-Jun Jeon
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taewan Kim
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Dongju Park
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Gerard J Nuovo
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Pooja Joshi
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Bum-Kyu Lee
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Johan Jeong
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Sung-Suk Suh
- Department of Biosciences, Mokpo National University, Muan, 58554, South Korea
| | - Jeff E Grotzke
- Departments of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
- Gwangju Center, Korea Basic Science Institute, Gwangju, 61186, Korea
| | - Jieun Song
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Hosung Sim
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Yonghwan Kim
- Department of Life System, Sookmyung Woman's University, Seoul, 140-742, Republic of Korea
| | - Yong Peng
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Youngtae Jeong
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Michela Garofalo
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Transcriptional Networks in Lung Cancer Group, Cancer Research United Kingdom Manchester Institute, University of Manchester, Manchester, M20 4BX, United Kingdom
| | - Nicola Zanesi
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jonghwan Kim
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ichiro Nakano
- Department of Neurosurgery UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Peter Cresswell
- Departments of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Medical Oncology, The Ohio State University, Columbus, OH, 43210, USA
| | - Ri Cui
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Carlo M Croce
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
48
|
TRPM7 and MagT1 in the osteogenic differentiation of human mesenchymal stem cells in vitro. Sci Rep 2018; 8:16195. [PMID: 30385806 PMCID: PMC6212439 DOI: 10.1038/s41598-018-34324-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/12/2018] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells are fundamental for bone formation and repair since they respond to microenvironmental stimuli by undergoing osteogenic differentiation. We show that the kinase and cation channel TRPM7 and the magnesium transporter MagT1 have a role in harmonizing the osteogenic differentiation of human mesenchymal stem cells. TRPM7 and MagT1 are upregulated in osteogenic differentiation and silencing either one accelerates osteogenic differentiation, partly through the activation of autophagy. Intriguingly, similar results were obtained when the cells were cultured under magnesium deficient conditions. These results underpin the contribution of magnesium, TRPM7 and MagT1 to autophagy and osteoblastogenesis.
Collapse
|
49
|
Gupta SK, Shukla P. Glycosylation control technologies for recombinant therapeutic proteins. Appl Microbiol Biotechnol 2018; 102:10457-10468. [DOI: 10.1007/s00253-018-9430-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
|
50
|
Medina-Cano D, Ucuncu E, Nguyen LS, Nicouleau M, Lipecka J, Bizot JC, Thiel C, Foulquier F, Lefort N, Faivre-Sarrailh C, Colleaux L, Guerrera IC, Cantagrel V. High N-glycan multiplicity is critical for neuronal adhesion and sensitizes the developing cerebellum to N-glycosylation defect. eLife 2018; 7:38309. [PMID: 30311906 PMCID: PMC6185108 DOI: 10.7554/elife.38309] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022] Open
Abstract
Proper brain development relies highly on protein N-glycosylation to sustain neuronal migration, axon guidance and synaptic physiology. Impairing the N-glycosylation pathway at early steps produces broad neurological symptoms identified in congenital disorders of glycosylation. However, little is known about the molecular mechanisms underlying these defects. We generated a cerebellum specific knockout mouse for Srd5a3, a gene involved in the initiation of N-glycosylation. In addition to motor coordination defects and abnormal granule cell development, Srd5a3 deletion causes mild N-glycosylation impairment without significantly altering ER homeostasis. Using proteomic approaches, we identified that Srd5a3 loss affects a subset of glycoproteins with high N-glycans multiplicity per protein and decreased protein abundance or N-glycosylation level. As IgSF-CAM adhesion proteins are critical for neuron adhesion and highly N-glycosylated, we observed impaired IgSF-CAM-mediated neurite outgrowth and axon guidance in Srd5a3 mutant cerebellum. Our results link high N-glycan multiplicity to fine-tuned neural cell adhesion during mammalian brain development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ekin Ucuncu
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Lam Son Nguyen
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Michael Nicouleau
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Joanna Lipecka
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | | | - Christian Thiel
- Center for Child and Adolescent Medicine, Kinderheilkunde I, University of Heidelberg, Heidelberg, Germany
| | - François Foulquier
- Université Lille, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, CNRS, Lille, France
| | | | | | - Laurence Colleaux
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Ida Chiara Guerrera
- Proteomics platform 3P5-Necker, Université Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Vincent Cantagrel
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| |
Collapse
|