1
|
Song J, Lee Y, Kim MS, Ha G, Jang W, Batjargal U, Kim Y, Kim HJ, Lee J. High throughput drug screening platform utilizing capillary and artery cell layered models based on tumor-vascular cell interactions. LAB ON A CHIP 2025; 25:2349-2363. [PMID: 40177711 DOI: 10.1039/d4lc00950a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Interactions between tumors and adjacent blood vessels are critical in the tumor microenvironment (TME) for influencing angiogenesis and hematogenous metastasis. Understanding these interactions within the native TME is vital for targeting various tumors, including brain tumors, due to the complexities of the blood-brain barrier. Developing an accurate tumor model that includes cell-cell and cell-matrix interactions, as well as blood flow-induced shear stress, is essential for high-throughput screening (HTS) of anti-cancer drugs. Here, we developed a glioblastoma (GBM) model surrounded by vascular cells. The arterial model was constructed by encapsulating GBM spheroids with layers of human smooth muscle cells (SMCs) and human umbilical vein endothelial cells (HUVECs), while the capillary cell layered model used only HUVECs. Comparative analysis with tumors from different organs revealed the significant role for platelet endothelial cell adhesion molecule (PECAM) in GBM-blood vascular cell interactions. Cytokine secretion analysis demonstrated PECAM's impact on tumor-specific angiogenic potential. Testing with anti-cancer drugs revealed increased expression of PECAM-associated proteins, drug resistance cytokines, and genes associated with tumor progression and metastasis. Additionally, we developed a HTS platform by encapsulating these tumor models in hydrogels and subjecting them to media circulation, effectively mimicking the dynamic TME, suitable for cancer treatment research and drug development.
Collapse
Affiliation(s)
- Jihyeon Song
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| | - Yeji Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| | - Min-Seok Kim
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
| | - Giheon Ha
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| | - WonJun Jang
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Ulziituya Batjargal
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Younggyun Kim
- Department of Bioengineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Han-Jun Kim
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
- Interdisciplinary Major Program in Innovative Pharmaceutical Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea.
| |
Collapse
|
2
|
Kozalak G, Koşar A. Bone-on-a-Chip Systems for Hematological Cancers. BIOSENSORS 2025; 15:176. [PMID: 40136973 PMCID: PMC11940066 DOI: 10.3390/bios15030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Hematological malignancies originating from blood, bone marrow, and lymph nodes include leukemia, lymphoma, and myeloma, which necessitate the use of a distinct chemotherapeutic approach. Drug resistance frequently complicates their treatment, highlighting the need for predictive tools to guide therapeutic decisions. Conventional 2D/3D cell cultures do not fully encompass in vivo criteria, and translating disease models from mice to humans proves challenging. Organ-on-a-chip technology presents an avenue to surmount genetic disparities between species, offering precise design, concurrent manipulation of various cell types, and extrapolation of data to human physiology. The development of bone-on-a-chip (BoC) systems is crucial for accurately representing the in vivo bone microenvironment, predicting drug responses for hematological cancers, mitigating drug resistance, and facilitating personalized therapeutic interventions. BoC systems for modeling hematological cancers and drug research can encompass intricate designs and integrated platforms for analyzing drug response data to simulate disease scenarios. This review provides a comprehensive examination of BoC systems applicable to modeling hematological cancers and visualizing drug responses within the intricate context of bone. It thoroughly discusses the materials pertinent to BoC systems, suitable in vitro techniques, the predictive capabilities of BoC systems in clinical settings, and their potential for commercialization.
Collapse
Affiliation(s)
- Gül Kozalak
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabancı University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
3
|
Isinelli G, Failla S, Plebani R, Prete A. Exploring oncology treatment strategies with tyrosine kinase inhibitors through advanced 3D models (Review). MEDICINE INTERNATIONAL 2025; 5:13. [PMID: 39790707 PMCID: PMC11707505 DOI: 10.3892/mi.2024.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
The limitations of two-dimensional (2D) models in cancer research have hindered progress in fully understanding the complexities of drug resistance and therapeutic failures. However, three-dimensional (3D) models provide a more accurate representation of in vivo environments, capturing critical cellular interactions and dynamics that are essential in evaluating the efficacy and toxicity of tyrosine kinase inhibitors (TKIs). These advanced models enable researchers to explore drug resistance mechanisms with greater precision, optimizing treatment strategies and improving the predictive accuracy of clinical outcomes. By leveraging 3D models, it will be possible to deepen the current understanding of TKIs and drive forward innovations in cancer treatment. The present review discusses the limitations of 2D models and the transformative impact of 3D models on oncology research, highlighting their roles in addressing the challenges of 2D systems and advancing TKI studies.
Collapse
Affiliation(s)
- Giorgia Isinelli
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Chemistry, Biology and Biotechnology, University of Perugia, I-06123 Perugia, Italy
| | - Sharon Failla
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D'Annunzio’ University, I-66100 Chieti-Pescara, Italy
| | - Alessandro Prete
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, I-56122 Pisa, Italy
| |
Collapse
|
4
|
An L, Liu Y, Liu Y. Organ-on-a-Chip Applications in Microfluidic Platforms. MICROMACHINES 2025; 16:201. [PMID: 40047688 PMCID: PMC11857120 DOI: 10.3390/mi16020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/09/2025]
Abstract
Microfluidic technology plays a crucial role in organ-on-a-chip (OoC) systems by replicating human physiological processes and disease states, significantly advancing biomedical research and drug discovery. This article reviews the design and fabrication processes of microfluidic devices. It also explores how these technologies are integrated into OoC platforms to simulate human physiological environments, highlighting key principles, technological advances, and diverse applications. Through case studies involving the simulation of multiple organs such as the heart, liver, and lungs, the article evaluates the impact of OoC systems' integrated microfluidic technology on drug screening, toxicity assessment, and personalized medicine. In addition, this article considers technical challenges, ethical issues, and future directions, and looks ahead to further optimizing the functionality and biomimetic precision of OoCs through innovation, emphasizing its critical role in promoting personalized medicine and precision treatment strategies.
Collapse
Affiliation(s)
- Ling An
- School of Engineering, Dali University, Dali 671003, China;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671003, China;
| | - Yaling Liu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
5
|
Lee J, Kim Y, Jung HI, Lim J, Kwak BS. Channel-assembling tumor microenvironment on-chip for evaluating anticancer drug efficacy. J Control Release 2025; 377:376-384. [PMID: 39566854 DOI: 10.1016/j.jconrel.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Organ-on-a-chip is an advanced system for evaluating drug response in diseases. It simulates the in vivo tumor microenvironment, aiding in the understanding of drug mechanisms and tumor responses. It mimics the structure of the tumor microenvironment and the dynamic conditions within the body. As a result, it holds the potential for applications in precision and personalized medicine. However, there are still limitations in sequential development processes and complex structures, resulting in time-consuming molecular interference during system development. In this study, we developed a channel-assembling tumor microenvironment-on-chip (CATOC) system to overcome these limitations. CATOC was easily segmented into blood vessels and a tumor microenvironment-on-chip, which can be independently developed. The tumor microenvironment-on-chip consists of two independent channels for evaluating drug responses in different types of tumor microenvironments. Each fully developed system was physically interconnected to create a CATOC. Interconnected CATOC was used to validate chemical and targeted anticancer drug responses in different subtypes of the breast tumor microenvironment. We also emphasized the significance of on-chip experiments by observing the drug response of tumor spheroids on CATOC and scaffold-free platforms.
Collapse
Affiliation(s)
- Jaehun Lee
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea; Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Youngwon Kim
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea; Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea
| | - Hyo-Il Jung
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seadaemun-gu, Seoul 03722, Republic of Korea; The DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiseok Lim
- MediSphere Inc., Gyeongsan-si, Gyeongsanbuk-do, Republic of Korea; Yeungnam University, School of Mechanical Engineering, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.
| | - Bong Seop Kwak
- Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do 10326, Republic of Korea; MediSphere Inc., Gyeongsan-si, Gyeongsanbuk-do, Republic of Korea.
| |
Collapse
|
6
|
Lipreri MV, Totaro MT, Boos JA, Basile MS, Baldini N, Avnet S. A Novel Microfluidic Platform for Personalized Anticancer Drug Screening Through Image Analysis. MICROMACHINES 2024; 15:1521. [PMID: 39770275 PMCID: PMC11677617 DOI: 10.3390/mi15121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The advancement of personalized treatments in oncology has garnered increasing attention, particularly for rare and aggressive cancer with low survival rates like the bone tumors osteosarcoma and chondrosarcoma. This study introduces a novel PDMS-agarose microfluidic device tailored for generating patient-derived tumor spheroids and serving as a reliable tool for personalized drug screening. Using this platform in tandem with a custom imaging index, we evaluated the impact of the anticancer agent doxorubicin on spheroids from both tumor types. The device produces 20 spheroids, each around 300 µm in diameter, within a 24 h timeframe, facilitating assessments of characteristics and reproducibility. Following spheroid generation, we measured patient-derived spheroid diameters in bright-field images, calcein AM-positive areas/volume, and the binary fraction area, a metric analyzing fluorescence intensity. By employing a specially developed equation that combines viability signal extension and intensity, we observed a substantial decrease in spheroid viability of around 75% for both sarcomas at the highest dosage (10 µM). Osteosarcoma spheroids exhibited greater sensitivity to doxorubicin than chondrosarcoma spheroids within 48 h. This approach provides a reliable in vitro model for aggressive sarcomas, representing a personalized approach for drug screening that could lead to more effective cancer treatments tailored to individual patients, despite some implementation challenges.
Collapse
Affiliation(s)
- Maria Veronica Lipreri
- Biomedical Science, Technologies, and Nanobiotecnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.V.L.)
| | - Marilina Tamara Totaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Julia Alicia Boos
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Klingelbergstrasse 48, 4056 Basel, Switzerland;
| | - Maria Sofia Basile
- Biomedical Science, Technologies, and Nanobiotecnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.V.L.)
| | - Nicola Baldini
- Biomedical Science, Technologies, and Nanobiotecnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (M.V.L.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
7
|
Molika P, Leetanaporn K, Chiangjong W, Choochuen P, Navakanitworakul R. Proteomic Analysis Reveals Cadherin, Actin, and Focal Adhesion Molecule-Mediated Formation of Cervical Cancer Spheroids. Cells 2024; 13:2004. [PMID: 39682752 PMCID: PMC11640617 DOI: 10.3390/cells13232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer spheroids are spherical, three-dimensional (3D), in vitro assemblies of cancer cells, which are gaining importance as a useful model in cancer behavior studies. Designed to simulate key features of the in vivo tumor microenvironment, spheroids offer reliable insights for drug screening and testing applications. We observed contrasting phenotypes in 3D cervical cancer (CC) cultures. Thus, in this study, we compared the proteomes of 3D and traditional two-dimensional (2D) cultures of CC cell lines, HeLa, SiHa, and C33A. When cultured in in-house poly-(2-hydroxyethyl methacrylate)-coated plates under conditions suitable for 3D spheroid formation, these CC cell lines yielded spheroids exhibiting different features. Proteomic analysis of cells cultured in 2D and 3D cultures revealed similar protein profiles but remarkable differences in the expression levels of some proteins. In SiHa and C33A cells, the upregulation of key proteins required for spheroid formation was insufficient for the formation of compact spheroids. In contrast, HeLa cells could form compact spheroids because they upregulated the proteins, including cadherin-binding, cytoskeleton, and adhesion proteins, necessary for spheroid formation during the remodeling process. Overall, this study unravels the mechanisms underlying the formation of spheroids in the commonly used CC cell lines.
Collapse
Affiliation(s)
- Piyatida Molika
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.M.); (K.L.); (P.C.)
| | - Kittinun Leetanaporn
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.M.); (K.L.); (P.C.)
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongsakorn Choochuen
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.M.); (K.L.); (P.C.)
| | - Raphatphorn Navakanitworakul
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.M.); (K.L.); (P.C.)
| |
Collapse
|
8
|
Fang T, Xie X, Lu W, Hong Z, Peng W, Zhou J, Wang M, Yao B. Patient-Derived Organoids on a Microarray for Drug Resistance Study in Breast Cancer. Anal Chem 2024; 96:18384-18391. [PMID: 39499082 DOI: 10.1021/acs.analchem.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Drug resistance is always a challenge in cancer treatment, whether for chemotherapy, targeting, or immunotherapy. Although tumor cell lines are derived from cancer patients, they gradually lost the original characteristics, including heterogeneity and tumor microenvironment (TME), during the long period of in vitro culturing. Therefore, it is urgent to use patient-derived tumor models instead of cancer cell lines to study tumor drug resistance. Herein, we developed a microarray device that serves as a platform for high-throughput and three-dimensional culture of breast cancer patient-derived organoids (BCOs) and investigated their resistance to adriamycin (ADM). Coupled with fluorescence microscopy, this system enabled on-chip drug response monitoring and cell viability assessment without the consumption of a large number of tumor cells. The organoids were divided into a resistant BCO group (RBCO) and a sensitive BCO group (SBCO) according to their half-inhibitory concentration (IC50). Different from cancer cell lines, BCOs demonstrated obvious heterogeneity in drug treatment. Ivermectin (IVM), a broad-spectrum antiparasitic agent approved by the Food and Drug Administration (FDA), was observed to synergistically augment ADM-induced cytotoxicity in organoids. The BCO chip provides a promising platform for investigation of drug resistance and preclinical drug screening based on clinical samples.
Collapse
Affiliation(s)
- Tianyuan Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xinlun Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Wei Lu
- GeneX (Zhejiang) Precision Medicine Co., Ltd, Hangzhou 311100, China
| | - Zichen Hong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Wenbo Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jun Zhou
- Department of Breast surgery, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Min Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bo Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Martínez-Alonso C, Izzo L, Rodríguez-Carrasco Y, Ruiz MJ. Integrated Approach to Cyclopiazonic Acid Cytotoxicity Using In Vitro (2D and 3D Models) and In Silico Methods. Toxins (Basel) 2024; 16:473. [PMID: 39591228 PMCID: PMC11598133 DOI: 10.3390/toxins16110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Cyclopiazonic acid (CPA) is an indole-tetramic acid neurotoxin produced by Aspergillus and Penicillium genera present mainly in fruit, cereals and nuts. This study compares the cytotoxicity produced by CPA after 24, 48 and 72 h of exposure using both monolayers and 3D spheroids in human neuroblastoma SH-SY5Y cells. Furthermore, CPA toxicokinetics was evaluated using in silico models. Cytotoxicity increased dose- and time-dependently, as shown by the MTT assay. The lowest CPA IC50 values were found in the monolayer study compared to the 3D spheroids at all exposure times (24 h: 864.01 vs. 1132; 48 h: 437 vs. 1069; 72 h: 392 vs. 567 nM). The CPA exposure on SH-SY5Y spheroid organization and morphology was also studied. Morphological changes, including spheroid disaggregation, were observed after mycotoxin exposure. The in silico methods, SwissADME and admetSAR, were used for short and full ADMEt profiles of CPA. The ADMEt predictive profile shows high gastrointestinal absorption and ability to penetrate the blood-brain barrier. Including in silico studies emphasizes the comprehensive approach to understanding mycotoxin toxicity and risk assessment. By combining in vitro 3D spheroid models with computational simulations, this study aims to provide a holistic perspective on the effects of CPA, enhancing the accuracy and relevance of our findings.
Collapse
Affiliation(s)
- Carmen Martínez-Alonso
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent A Estelles s/n, Burjassot, 46100 Valencia, Spain; (C.M.-A.); (M.-J.R.)
| | - Luana Izzo
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano, 49, 80131 Naples, Italy;
| | - Yelko Rodríguez-Carrasco
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent A Estelles s/n, Burjassot, 46100 Valencia, Spain; (C.M.-A.); (M.-J.R.)
| | - María-José Ruiz
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy and Food Science, University of Valencia, Av. Vicent A Estelles s/n, Burjassot, 46100 Valencia, Spain; (C.M.-A.); (M.-J.R.)
| |
Collapse
|
10
|
Jiang Y, Hao M, Chen S, Xie Y, Liu K. Exploring the impact of microfluidic chip structure on the efficacy of three-dimensional tumor microspheres cultivation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7005-7014. [PMID: 39282915 DOI: 10.1039/d4ay01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Three-dimensional (3D) tumor microspheres can simulate the interaction and growth dynamics of tumor cells, and have been used as a new in vitro model for drug screening and tumor biology related research. The scaffold-free culture of 3D tumor microspheres on microfluidic chips has many advantages, including low cost, high throughput, convenience and flexibility. However, it is still unclear how various factors, such as chip structure, influence the culture effect of tumor microspheres. The lack of standardized evaluation and characterization of the culture effect hinders the further optimization and development of chip function. This study presents numerical simulations of multiple parts or processes of the proposed 3D culture chips with two different structural parameters based on computational fluid dynamics (CFD) methods. An evaluation system for tumor microspheres was established. The prediction of the CFD simulation was consistent with the culture results of the chips, reflecting the important role of the structural parameters of the microtrap in the formation of uniform tumor microspheres. Furthermore, the velocity of cell suspension also had a significant impact on the retention of tumor cells. Additionally, the drug screening results of tumor microspheres indicated that tumor microspheres exhibit greater drug resistance, which may be attributed to their size. These results offer valuable insights into the factors that influence the characteristics of tumor microspheres. This research provides a reference and direction for the optimal design and functional evaluation of scaffold-free 3D culture chips, and holds promise for promoting the development of novel drug research platforms.
Collapse
Affiliation(s)
- Yue Jiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Ming Hao
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Shulei Chen
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Yuanhua Xie
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Kun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, China
| |
Collapse
|
11
|
Rossi M, Pellegrino C, Rydzyk MM, Farruggia G, de Biase D, Cetrullo S, D'Adamo S, Bisi A, Blasi P, Malucelli E, Cappadone C, Gobbi S. Chalcones induce apoptosis, autophagy and reduce spreading in osteosarcoma 3D models. Biomed Pharmacother 2024; 179:117284. [PMID: 39151310 DOI: 10.1016/j.biopha.2024.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Osteosarcoma is the most common primary bone malignancy with a challenging prognosis marked by a high rate of metastasis. The limited success of current treatments may be partially attributed to an incomplete understanding of osteosarcoma pathophysiology and to the absence of reliable in vitro models to select the best molecules for in vivo studies. Among the natural compounds relevant for osteosarcoma treatment, Licochalcone A (Lic-A) and chalcone derivatives are particularly interesting. Here, Lic-A and selected derivatives have been evaluated for their anticancer effect on multicellular tumor spheroids from MG63 and 143B osteosarcoma cell lines. A metabolic activity assay revealed Lic-A, 1i, and 1k derivatives as the most promising candidates. To delve into their mechanism of action, caspase activity assay was conducted in 2D and 3D in vitro models. Notably, apoptosis and autophagic induction was generally observed for Lic-A and 1k. The invasion assay demonstrated that Lic-A and 1k possess the ability to mitigate the spread of osteosarcoma cells within a matrix. The effectiveness of chalcone as a natural scaffold for generating potential antiproliferative agents against osteosarcoma has been demonstrated. In particular, chalcones exert their antiproliferative activity by inducing apoptosis and autophagy, and in addition they are capable of reducing cell invasion. These findings suggest Lic-A and 1k as promising antitumor agents against osteosarcoma cells.
Collapse
Affiliation(s)
- M Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - C Pellegrino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - M M Rydzyk
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - G Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - D de Biase
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - S Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy; Istituto Nazionale per le Ricerche Cardiovascolari, Bologna 40126, Italy
| | - S D'Adamo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna 40138, Italy
| | - A Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - P Blasi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy; Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - E Malucelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| | - C Cappadone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy.
| | - S Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40127, Italy
| |
Collapse
|
12
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Yau JNN, Yempala T, Muthuramalingam RPK, Giustarini G, Teng G, Ang WH, Gibson D, Adriani G, Pastorin G. Fluorescence-Guided Spatial Drug Screening in 3D Colorectal Cancer Spheroids. Adv Healthc Mater 2024; 13:e2400203. [PMID: 38774999 DOI: 10.1002/adhm.202400203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/06/2024] [Indexed: 06/04/2024]
Abstract
The limited recapitulation of critical cancer features in 2D cultures causes poor translatability of preclinical results from in vitro assays to in vivo tumor models. This contributes to slow drug development with a low success rate. 3D cultures better recapitulate the tumor microenvironment, enabling more accurate predictions when screening drug candidates and improving the development of chemotherapeutics. Platinum (Pt) (IV) compounds are promising prodrugs designed to reduce the severe systemic toxicity of widely used Food and Drug Administration (FDA)-approved Pt(II) drugs such as cisplatin. Here, this work presents spatiotemporal evaluations in 3D colorectal cancer (CRC) spheroids of mitochondria-targeting Pt(IV) complexes. CRC spheroids provide a greater pathophysiological recapitulation of in vivo tumors than 2D cultures by a marked upregulation of the ABCG2 chemoresistance marker expression. Furthermore, new 3D-staining protocols are introduced to evaluate the real-time decrease in mitochondria membrane potential (ΔΨ) in CRC spheroids, and a Pt-sensing dye to quantify the Pt mitochondrial accumulation. Finally, this work demonstrates a correlation between in vitro results and the efficacy of the compounds in vivo. Overall, the CRC spheroids represent a fast and cost-effective model to assess the behavior of Pt compounds in vitro and predict their translational potential in CRC treatment.
Collapse
Affiliation(s)
- Jia Ning Nicolette Yau
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
| | - Thirumal Yempala
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Ram Pravin Kumar Muthuramalingam
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Giulio Giustarini
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
| | - Germaine Teng
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
| | - Wee Han Ang
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Giulia Adriani
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, 138648, Singapore
- Department of Biomedical Engineering, Faculty of Engineerin, National University of Singapore, Singapore, 117578, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
14
|
Mehta V, Vilikkathala Sudhakaran S, Nellore V, Madduri S, Rath SN. 3D stem-like spheroids-on-a-chip for personalized combinatorial drug testing in oral cancer. J Nanobiotechnology 2024; 22:344. [PMID: 38890730 PMCID: PMC11186147 DOI: 10.1186/s12951-024-02625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Functional drug testing (FDT) with patient-derived tumor cells in microfluidic devices is gaining popularity. However, the majority of previously reported microfluidic devices for FDT were limited by at least one of these factors: lengthy fabrication procedures, absence of tumor progenitor cells, lack of clinical correlation, and mono-drug therapy testing. Furthermore, personalized microfluidic models based on spheroids derived from oral cancer patients remain to be thoroughly validated. Overcoming the limitations, we develop 3D printed mold-based, dynamic, and personalized oral stem-like spheroids-on-a-chip, featuring unique serpentine loops and flat-bottom microwells arrangement. RESULTS This unique arrangement enables the screening of seven combinations of three drugs on chemoresistive cancer stem-like cells. Oral cancer patients-derived stem-like spheroids (CD 44+) remains highly viable (> 90%) for 5 days. Treatment with a well-known oral cancer chemotherapy regimen (paclitaxel, 5 fluorouracil, and cisplatin) at clinically relevant dosages results in heterogeneous drug responses in spheroids. These spheroids are derived from three oral cancer patients, each diagnosed with either well-differentiated or moderately-differentiated squamous cell carcinoma. Oral spheroids exhibit dissimilar morphology, size, and oral tumor-relevant oxygen levels (< 5% O2). These features correlate with the drug responses and clinical diagnosis from each patient's histopathological report. CONCLUSIONS Overall, we demonstrate the influence of tumor differentiation status on treatment responses, which has been rarely carried out in the previous reports. To the best of our knowledge, this is the first report demonstrating extensive work on development of microfluidic based oral cancer spheroid model for personalized combinatorial drug screening. Furthermore, the obtained clinical correlation of drug screening data represents a significant advancement over previously reported personalized spheroid-based microfluidic devices. Finally, the maintenance of patient-derived spheroids with high viability under oral cancer relevant oxygen levels of less than 5% O2 is a more realistic representation of solid tumor microenvironment in our developed device.
Collapse
Affiliation(s)
- Viraj Mehta
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India
| | - Sukanya Vilikkathala Sudhakaran
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India
| | - Vijaykumar Nellore
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India
| | - Srinivas Madduri
- Department of Surgery, University of Geneva, 1205, Geneva, Switzerland
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, 502285, Telangana, India.
| |
Collapse
|
15
|
Pipiya VV, Gilazieva ZE, Issa SS, Rizvanov AA, Solovyeva VV. Comparison of primary and passaged tumor cell cultures and their application in personalized medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:581-599. [PMID: 38966179 PMCID: PMC11220317 DOI: 10.37349/etat.2024.00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024] Open
Abstract
Passaged cell lines represent currently an integral component in various studies of malignant neoplasms. These cell lines are utilized for drug screening both in monolayer cultures or as part of three-dimensional (3D) tumor models. They can also be used to model the tumor microenvironment in vitro and in vivo through xenotransplantation into immunocompromised animals. However, immortalized cell lines have some limitations of their own. The homogeneity of cell line populations and the extensive passaging in monolayer systems make these models distant from the original disease. Recently, there has been a growing interest among scientists in the use of primary cell lines, as these are passaged directly from human tumor tissues. In this case, cells retain the morphological and functional characteristics of the tissue from which they were derived, an advantage often not observed in passaged cultures. This review highlights the advantages and limitations of passaged and primary cell cultures, their similarities and differences, as well as existing test systems that are based on primary and passaged cell cultures for drug screening purposes.
Collapse
Affiliation(s)
- Vladislava V. Pipiya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
16
|
Chiang CC, Anne R, Chawla P, Shaw RM, He S, Rock EC, Zhou M, Cheng J, Gong YN, Chen YC. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics. LAB ON A CHIP 2024; 24:3169-3182. [PMID: 38804084 PMCID: PMC11165951 DOI: 10.1039/d4lc00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Despite recent advances in cancer treatment, refining therapeutic agents remains a critical task for oncologists. Precise evaluation of drug effectiveness necessitates the use of 3D cell culture instead of traditional 2D monolayers. Microfluidic platforms have enabled high-throughput drug screening with 3D models, but current viability assays for 3D cancer spheroids have limitations in reliability and cytotoxicity. This study introduces a deep learning model for non-destructive, label-free viability estimation based on phase-contrast images, providing a cost-effective, high-throughput solution for continuous spheroid monitoring in microfluidics. Microfluidic technology facilitated the creation of a high-throughput cancer spheroid platform with approximately 12 000 spheroids per chip for drug screening. Validation involved tests with eight conventional chemotherapeutic drugs, revealing a strong correlation between viability assessed via LIVE/DEAD staining and phase-contrast morphology. Extending the model's application to novel compounds and cell lines not in the training dataset yielded promising results, implying the potential for a universal viability estimation model. Experiments with an alternative microscopy setup supported the model's transferability across different laboratories. Using this method, we also tracked the dynamic changes in spheroid viability during the course of drug administration. In summary, this research integrates a robust platform with high-throughput microfluidic cancer spheroid assays and deep learning-based viability estimation, with broad applicability to various cell lines, compounds, and research settings.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Rajiv Anne
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Pooja Chawla
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Rachel M Shaw
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Sarah He
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Carnegie Mellon University, Department of Biological Sciences, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yi-Nan Gong
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, 3420 Forbes Avenue, Pittsburgh, PA, 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
17
|
Lamichhane A, Tavana H. Three-Dimensional Tumor Models to Study Cancer Stemness-Mediated Drug Resistance. Cell Mol Bioeng 2024; 17:107-119. [PMID: 38737455 PMCID: PMC11082110 DOI: 10.1007/s12195-024-00798-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/01/2024] [Indexed: 05/14/2024] Open
Abstract
Solid tumors often contain genetically different populations of cancer cells, stromal cells, various structural and soluble proteins, and other soluble signaling molecules. The American Cancer society estimated 1,958,310 new cancer cases and 609,820 cancer deaths in the United States in 2023. A major barrier against successful treatment of cancer patients is drug resistance. Gain of stem cell-like states by cancer cells under drug pressure or due to interactions with the tumor microenvironment is a major mechanism that renders therapies ineffective. Identifying approaches to target cancer stem cells is expected to improve treatment outcomes for patients. Most of our understanding of drug resistance and the role of cancer stemness is from monolayer cell cultures. Recent advances in cell culture technologies have enabled developing sophisticated three-dimensional tumor models that facilitate mechanistic studies of cancer drug resistance. This review summarizes the role of cancer stemness in drug resistance and highlights the various tumor models that are used to discover the underlying mechanisms and test potentially novel therapeutics.
Collapse
Affiliation(s)
- Astha Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA
| |
Collapse
|
18
|
Liu YC, Chen P, Chang R, Liu X, Jhang JW, Enkhbat M, Chen S, Wang H, Deng C, Wang PY. Artificial tumor matrices and bioengineered tools for tumoroid generation. Biofabrication 2024; 16:022004. [PMID: 38306665 DOI: 10.1088/1758-5090/ad2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/01/2024] [Indexed: 02/04/2024]
Abstract
The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.
Collapse
Affiliation(s)
- Yung-Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Ping Chen
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ray Chang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Jhe-Wei Jhang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Myagmartsend Enkhbat
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Shan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| | - Hongxia Wang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chuxia Deng
- Cancer Centre, Faculty of Health Sciences, MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325024, People's Republic of China
| |
Collapse
|
19
|
Senrung A, Lalwani S, Janjua D, Tripathi T, Kaur J, Ghuratia N, Aggarwal N, Chhokar A, Yadav J, Chaudhary A, Joshi U, Bharti AC. 3D tumor spheroids: morphological alterations a yardstick to anti-cancer drug response. IN VITRO MODELS 2023; 2:219-248. [PMID: 39872501 PMCID: PMC11756486 DOI: 10.1007/s44164-023-00059-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 01/30/2025]
Abstract
Tumor spheroids are one of the well-characterized 3D culture systems bearing close resemblance to the physiological tissue organization and complexity of avascular solid tumor stage with hypoxic core. They hold a wide-spread application in the field of pharmaceutical science and anti-cancer drug research. However, the difficulty in determining optimal technique for the generation of spheroids with uniform size and shape, evaluation of experimental outputs, or mass production often limits their usage in anti-cancer research and in high-throughput drug screening. In recent times, several studies have demonstrated various simple techniques for generating uniform-size 3D spheroids, including the hanging drop (HD), liquid overlay technique (LOT), and microfluidic approaches. Morphological alterations apart from biochemical assays, and staining techniques are suitably employed for the evaluation of experimental outcomes within 3D spheroid models. Morphological alterations in response to effective anti-cancer drug treatment in 3D tumor spheroids such as reduced spheroid size, loss of spheroid compactness and integrity or smooth surface, are highly reliable. These alterations can significantly reduce the need for biochemical assays and staining techniques, resulting in both time and cost savings. The present article specifically covers a variety of available procedures in spheroid generation. For practical applicability, we have supplemented our review study with the generation of glioblastoma U87 spheroids using HD and LOT methods. Additionally, we have also incorporated the outcome of U87 spheroid treatment with doxorubicin on spheroid morphology.
Collapse
Affiliation(s)
- Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Sakshi Lalwani
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Jasleen Kaur
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Netra Ghuratia
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007 India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007 India
| |
Collapse
|
20
|
Nayak P, Bentivoglio V, Varani M, Signore A. Three-Dimensional In Vitro Tumor Spheroid Models for Evaluation of Anticancer Therapy: Recent Updates. Cancers (Basel) 2023; 15:4846. [PMID: 37835541 PMCID: PMC10571930 DOI: 10.3390/cancers15194846] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Advanced tissue engineering processes and regenerative medicine provide modern strategies for fabricating 3D spheroids. Several different 3D cancer models are being developed to study a variety of cancers. Three-dimensional spheroids can correctly replicate some features of solid tumors (such as the secretion of soluble mediators, drug resistance mechanisms, gene expression patterns and physiological responses) better than 2D cell cultures or animal models. Tumor spheroids are also helpful for precisely reproducing the three-dimensional organization and microenvironmental factors of tumors. Because of these unique properties, the potential of 3D cell aggregates has been emphasized, and they have been utilized in in vitro models for the detection of novel anticancer drugs. This review discusses applications of 3D spheroid models in nuclear medicine for diagnosis and therapy, immunotherapy, and stem cell and photodynamic therapy and also discusses the establishment of the anticancer activity of nanocarriers.
Collapse
Affiliation(s)
- Pallavi Nayak
- Nuclear Medicine Unit, University Hospital Sant’Andrea, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00189 Roma, Italy; (V.B.); (M.V.); (A.S.)
| | | | | | | |
Collapse
|
21
|
Kannan S, Ko PL, Wu HM, Tung YC. Efficient single-cell oxygen consumption rate characterization based on frequency domain fluorescence lifetime imaging microscopy measurement and microfluidic platform. BIOMICROFLUIDICS 2023; 17:054105. [PMID: 37840539 PMCID: PMC10576626 DOI: 10.1063/5.0161752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Cell metabolism is critical in regulating normal cell functions to maintain energy homeostasis. In order to monitor cell metabolism, the oxygen consumption rate (OCR) of cells has been characterized as an important factor. In conventional cell analysis, the cells are characterized in bulk due to technical limitations. However, the heterogeneity between the cells cannot be identified. Therefore, single-cell analysis has been proposed to reveal cellular functions and their heterogeneity. In this research, an approach integrating a microfluidic device and widefield frequency domain fluorescence imaging lifetime microscopy (FD-FLIM) for single-cell OCR characterization in an efficient manner is developed. The microfluidic device provides an efficient platform to trap and isolate single cells in microwells with the buffer saline containing an oxygen-sensitive phosphorescent dye. The oxygen tension variation within the microwells can be efficiently estimated by measuring the fluorescence lifetime change using the FD-FLIM, and the OCR values of the single cells can then be calculated. In the experiments, breast cancer (MCF-7) cells are exploited for the OCR measurement. The results demonstrate the functionality of the developed approach and show the heterogeneity among the cells. The developed approach possesses great potential to advance cellular metabolism studies with single-cell resolution.
Collapse
Affiliation(s)
| | | | - Hsiao-Mei Wu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
22
|
Engrácia DM, Pinto CIG, Mendes F. Cancer 3D Models for Metallodrug Preclinical Testing. Int J Mol Sci 2023; 24:11915. [PMID: 37569291 PMCID: PMC10418685 DOI: 10.3390/ijms241511915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Despite being standard tools in research, the application of cellular and animal models in drug development is hindered by several limitations, such as limited translational significance, animal ethics, and inter-species physiological differences. In this regard, 3D cellular models can be presented as a step forward in biomedical research, allowing for mimicking tissue complexity more accurately than traditional 2D models, while also contributing to reducing the use of animal models. In cancer research, 3D models have the potential to replicate the tumor microenvironment, which is a key modulator of cancer cell behavior and drug response. These features make cancer 3D models prime tools for the preclinical study of anti-tumoral drugs, especially considering that there is still a need to develop effective anti-cancer drugs with high selectivity, minimal toxicity, and reduced side effects. Metallodrugs, especially transition-metal-based complexes, have been extensively studied for their therapeutic potential in cancer therapy due to their distinctive properties; however, despite the benefits of 3D models, their application in metallodrug testing is currently limited. Thus, this article reviews some of the most common types of 3D models in cancer research, as well as the application of 3D models in metallodrug preclinical studies.
Collapse
Affiliation(s)
- Diogo M. Engrácia
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Catarina I. G. Pinto
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
| | - Filipa Mendes
- Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal; (D.M.E.); (C.I.G.P.)
- Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
23
|
Ahmed TA, Eldaly B, Eldosuky S, Elkhenany H, El-Derby AM, Elshazly MF, El-Badri N. The interplay of cells, polymers, and vascularization in three-dimensional lung models and their applications in COVID-19 research and therapy. Stem Cell Res Ther 2023; 14:114. [PMID: 37118810 PMCID: PMC10144893 DOI: 10.1186/s13287-023-03341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/14/2023] [Indexed: 04/30/2023] Open
Abstract
Millions of people have been affected ever since the emergence of the corona virus disease of 2019 (COVID-19) outbreak, leading to an urgent need for antiviral drug and vaccine development. Current experimentation on traditional two-dimensional culture (2D) fails to accurately mimic the in vivo microenvironment for the disease, while in vivo animal model testing does not faithfully replicate human COVID-19 infection. Human-based three-dimensional (3D) cell culture models such as spheroids, organoids, and organ-on-a-chip present a promising solution to these challenges. In this report, we review the recent 3D in vitro lung models used in COVID-19 infection and drug screening studies and highlight the most common types of natural and synthetic polymers used to generate 3D lung models.
Collapse
Affiliation(s)
- Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Bassant Eldaly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Shadwa Eldosuky
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Hoda Elkhenany
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22785, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Muhamed F Elshazly
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
24
|
Do TD, Pham UT, Nguyen LP, Nguyen TM, Bui CN, Oliver S, Pham P, Tran TQ, Hoang BT, Pham MTH, Pham DTN, Nguyen DT. Fabrication of a Low-Cost Microfluidic Device for High-Throughput Drug Testing on Static and Dynamic Cancer Spheroid Culture Models. Diagnostics (Basel) 2023; 13:diagnostics13081394. [PMID: 37189495 DOI: 10.3390/diagnostics13081394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Drug development is a complex and expensive process from new drug discovery to product approval. Most drug screening and testing rely on in vitro 2D cell culture models; however, they generally lack in vivo tissue microarchitecture and physiological functionality. Therefore, many researchers have used engineering methods, such as microfluidic devices, to culture 3D cells in dynamic conditions. In this study, a simple and low-cost microfluidic device was fabricated using Poly Methyl Methacrylate (PMMA), a widely available material, and the total cost of the completed device was USD 17.75. Dynamic and static cell culture examinations were applied to monitor the growth of 3D cells. α-MG-loaded GA liposomes were used as the drug to test cell viability in 3D cancer spheroids. Two cell culture conditions (i.e., static and dynamic) were also used in drug testing to simulate the effect of flow on drug cytotoxicity. Results from all assays showed that with the velocity of 0.005 mL/min, cell viability was significantly impaired to nearly 30% after 72 h in a dynamic culture. This device is expected to improve in vitro testing models, reduce and eliminate unsuitable compounds, and select more accurate combinations for in vivo testing.
Collapse
Affiliation(s)
- Tung Dinh Do
- Saint Paul General Hospital, No. 12, Chu Van An St., Ba Dinh Dist, Ha Noi 10000, Vietnam
| | - Uyen Thu Pham
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 10000, Vietnam
| | - Linh Phuong Nguyen
- School of Preventive Medicine and Public Health, Hanoi Medical University, 1 Ton That Tung St., Dong Da Dist., Hanoi 10000, Vietnam
| | - Trang Minh Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 10000, Vietnam
| | - Cuong Nguyen Bui
- Hung Yen University of Technology and Education (UTEHY), 39A St., Khoai Chau Dist., Hung Yen 17000, Vietnam
| | - Susan Oliver
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Phuong Pham
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Toan Quoc Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 10000, Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 10000, Vietnam
| | - Bich Thi Hoang
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 10000, Vietnam
| | - Minh Thi Hong Pham
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 10000, Vietnam
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 10000, Vietnam
| | - Dung Thuy Nguyen Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Duong Thanh Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 10000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet St., Cau Giay Dist., Hanoi 10000, Vietnam
| |
Collapse
|
25
|
Wu Y, Zhao Y, Zhou Y, Islam K, Liu Y. Microfluidic Droplet-Assisted Fabrication of Vessel-Supported Tumors for Preclinical Drug Discovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15152-15161. [PMID: 36920885 PMCID: PMC10249002 DOI: 10.1021/acsami.2c23305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/07/2023] [Indexed: 06/11/2023]
Abstract
High-fidelity in vitro tumor models are important for preclinical drug discovery processes. Currently, the most commonly used model for in vitro drug testing remains the two-dimensional (2D) cell monolayer. However, the natural in vivo tumor microenvironment (TME) consists of extracellular matrix (ECM), supporting stromal cells and vasculature. They not only participate in the progression of tumors but also hinder drug delivery and effectiveness on tumor cells. Here, we report an integrated engineering system to generate vessel-supported tumors for preclinical drug screening. First, gelatin-methacryloyl (GelMA) hydrogel was selected to mimic tumor extracellular matrix (ECM). HCT-116 tumor cells were encapsulated into individual micro-GelMA beads with microfluidic droplet technique to mimic tumor-ECM interactions in vitro. Then, normal human lung fibroblasts were mingled with tumor cells to imitate the tumor-stromal interaction. The tumor cells and fibroblasts reconstituted in the individual GelMA microbead and formed a biomimetic heterotypic tumor model with a core-shell structure. Next, the cell-laden beads were consociated into a functional on-chip vessel network platform to restore the tumor-tumor microenvironment (TME) interaction. Afterward, the anticancer drug paclitaxel was tested on the individual and vessel-supported tumor models. It was demonstrated that the blood vessel-associated TME conferred significant additional drug resistance in the drug screening experiment. The reported system is expected to enable the large-scale fabrication of vessel-supported heterotypic tumor models of various cellular compositions. It is believed to be promising for the large-scale fabrication of biomimetic in vitro tumor models and may be valuable for improving the efficiency of preclinical drug discovery processes.
Collapse
Affiliation(s)
- Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuwen Zhao
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Khayrul Islam
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
26
|
Anup N, Gadeval A, Tekade RK. A 3D-Printed Graphene BioFuse Implant for Postsurgical Adjuvant Therapy of Cancer: Proof of Concept in 2D- and 3D-Spheroid Tumor Models. ACS APPLIED BIO MATERIALS 2023; 6:1195-1212. [PMID: 36893437 DOI: 10.1021/acsabm.2c01031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Three-dimensional printing is an emerging technology that is finding its niche applications in diverse fields owing to its flexibility concerning personalization and design. Surgery followed by adjuvant therapy is the standard treatment plan in most cancers from stage I to stage III. Most of the available adjuvant therapies, like chemotherapy, radiation therapy, immunotherapy, hormonal therapy, etc., are associated with severe side effects that considerably reduce the quality of life of patients. In addition, there is always the chance of tumor recurrence or metastasis development followed by surgery. This investigation reports the development of a 3D-printed, biodegradable, laser-responsive implant with a chemo-combined thermal ablating potential for adjuvant therapy of cancer. The 3D-printable ink was developed using poly(l-lactide) and hydroxypropyl methylcellulose as the base polymer, doxorubicin as the chemotherapeutic agent, and reduced graphene oxide as the photothermal ablating agent. The personalized implant released the drug pH-dependently (p value < 0.0001) for an extended period (93.55 ± 1.80% → 28 days). The 3D-printed implant exhibited acceptable biophysical properties (tensile strength: 3.85 ± 0.15 MPa; modulus: 92.37 ± 11.50 MPa; thickness: 110 μm) with laser-responsive hyperthermia (ΔT: 37 ± 0.9 °C → 48.5 ± 1.07 °C; 5 min; 1.5 W/cm2) and inherent biodegradable property (SEM analysis). The 3D-printed implant was evaluated for its therapeutic potential in 2D- and 3D-spheroid tumor models (MDA-MB 231 and SCC 084 2D cells) employing MTT cytotoxicity assay, apoptosis assay, cell cycle analysis, and gene expression analysis. The biomolecular aspects and biomechanics of the 3D-printed BioFuse implant were also evaluated by determining the effect of treatment on the expression levels of HSP1A, Hsp70, BAX, and PTEN. It is advocated that the knowledge developed in this project will significantly assist and advance the science aiming to develop a clinically translatable postsurgical adjuvant therapy for cancer.
Collapse
Affiliation(s)
- Neelima Anup
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
27
|
Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, Ziegler DS, Kavallaris M. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev 2023; 196:114777. [PMID: 36931346 DOI: 10.1016/j.addr.2023.114777] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.
Collapse
Affiliation(s)
- Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Katharina Gaus Light Microscopy Facility, Mark Wainright Analytical Center, UNSW Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Kids Cancer Center, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; UNSW RNA Institute, UNSW Sydney, NSW, Australia.
| |
Collapse
|
28
|
Hsieh PH, Phal Y, Prasanth KV, Bhargava R. Cell Phase Identification in a Three-Dimensional Engineered Tumor Model by Infrared Spectroscopic Imaging. Anal Chem 2023; 95:3349-3357. [PMID: 36574385 PMCID: PMC10214899 DOI: 10.1021/acs.analchem.2c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell cycle progression plays a vital role in regulating proliferation, metabolism, and apoptosis. Three-dimensional (3D) cell cultures have emerged as an important class of in vitro disease models, and incorporating the variation occurring from cell cycle progression in these systems is critical. Here, we report the use of Fourier transform infrared (FT-IR) spectroscopic imaging to identify subtle biochemical changes within cells, indicative of the G1/S and G2/M phases of the cell cycle. Following previous studies, we first synchronized samples from two-dimensional (2D) cell cultures, confirmed their states by flow cytometry and DNA quantification, and recorded spectra. We determined two critical wavenumbers (1059 and 1219 cm-1) as spectral indicators of the cell cycle for a set of isogenic breast cancer cell lines (MCF10AT series). These two simple spectral markers were then applied to distinguish cell cycle stages in a 3D cell culture model using four cell lines that represent the main stages of cancer progression from normal cells to metastatic disease. Temporal dependence of spectral biomarkers during acini maturation validated the hypothesis that the cells are more proliferative in the early stages of acini development; later stages of the culture showed stability in the overall composition but unique spatial differences in cells in the two phases. Altogether, this study presents a computational and quantitative approach for cell phase analysis in tissue-like 3D structures without any biomarker staining and provides a means to characterize the impact of the cell cycle on 3D biological systems and disease diagnostic studies using IR imaging.
Collapse
Affiliation(s)
- Pei-Hsuan Hsieh
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yamuna Phal
- Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Johnson A, Reimer S, Childres R, Cupp G, Kohs TCL, McCarty OJT, Kang Y(A. The Applications and Challenges of the Development of In Vitro Tumor Microenvironment Chips. Cell Mol Bioeng 2023; 16:3-21. [PMID: 36660587 PMCID: PMC9842840 DOI: 10.1007/s12195-022-00755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor microenvironment (TME) plays a critical, yet mechanistically elusive role in tumor development and progression, as well as drug resistance. To better understand the pathophysiology of the complex TME, a reductionist approach has been employed to create in vitro microfluidic models called "tumor chips". Herein, we review the fabrication processes, applications, and limitations of the tumor chips currently under development for use in cancer research. Tumor chips afford capabilities for real-time observation, precise control of microenvironment factors (e.g. stromal and cellular components), and application of physiologically relevant fluid shear stresses and perturbations. Applications for tumor chips include drug screening and toxicity testing, assessment of drug delivery modalities, and studies of transport and interactions of immune cells and circulating tumor cells with primary tumor sites. The utility of tumor chips is currently limited by the ability to recapitulate the nuances of tumor physiology, including extracellular matrix composition and stiffness, heterogeneity of cellular components, hypoxic gradients, and inclusion of blood cells and the coagulome in the blood microenvironment. Overcoming these challenges and improving the physiological relevance of in vitro tumor models could provide powerful testing platforms in cancer research and decrease the need for animal and clinical studies.
Collapse
Affiliation(s)
- Annika Johnson
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Samuel Reimer
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Ryan Childres
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Grace Cupp
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| | - Tia C. L. Kohs
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering, George Fox University, 414 N. Meridian Street, #6088, Newberg, OR 97132 USA
| |
Collapse
|
30
|
Fu W, Sun M, Zhang J, Xuanyuan T, Liu X, Zhou Y, Liu W. Combinatorial Drug Screening Based on Massive 3D Tumor Cultures Using Micropatterned Array Chips. Anal Chem 2023; 95:2504-2512. [PMID: 36651128 DOI: 10.1021/acs.analchem.2c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The establishment and application of a generalizable three-dimensional (3D) tumor device for high-throughput screening plays an important role in drug discovery and cancer therapeutics. In this study, we introduce a facile microplatform for considerable 3D tumor generation and combinatorial drug screening evaluation. High fidelity of chip fabrication was achieved depending on the simple and well-improved microcontact printing. We demonstrated the high stability and repeatability of the established tumor-on-a-chip system for controllable and massive production of 3D tumors with high size uniformity. Importantly, we accomplished the screening-like chemotherapy investigation involving individual and combinatorial drugs and validated the high accessibility and applicability of the system in 3D tumor-based manipulation and analysis on a large scale. This achievement in tumor-on-a-chip has potential applications in plenty of biomedical fields such as tumor biology, pharmacology, and tissue microengineering. It offers an insight into the development of the popularized microplatform with easy-to-fabricate and easy-to-operate properties for cancer exploration and therapy.
Collapse
Affiliation(s)
- Wenzhu Fu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Xufang Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Yujie Zhou
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
31
|
Tutty MA, Prina-Mello A. Three-Dimensional Spheroids for Cancer Research. Methods Mol Biol 2023; 2645:65-103. [PMID: 37202612 DOI: 10.1007/978-1-0716-3056-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro cell culture is one of the most widely used tools used today for increasing our understanding of various things such as protein production, mechanisms of drug action, tissue engineering, and overall cellular biology. For the past decades, however, cancer researchers have relied heavily on conventional two-dimensional (2D) monolayer culture techniques to test a variety of aspects of cancer research ranging from the cytotoxic effects of antitumor drugs to the toxicity of diagnostic dyes and contact tracers. However, many promising cancer therapies have either weak or no efficacy in real-life conditions, therefore delaying or stopping altogether their translating to the clinic. This is, in part, due to the reductionist 2D cultures used to test these materials, which lack appropriate cell-cell contacts, have altered signaling, do not represent the natural tumor microenvironment, and have different drug responses, due to their reduced malignant phenotype when compared to real in vivo tumors. With the most recent advances, cancer research has moved into 3D biological investigation. Three-dimensional (3D) cultures of cancer cells not only recapitulate the in vivo environment better than their 2D counterparts, but they have, in recent years, emerged as a relatively low-cost and scientifically accurate methodology for studying cancer. In this chapter, we highlight the importance of 3D culture, specifically 3D spheroid culture, reviewing some key methodologies for forming 3D spheroids, discussing the experimental tools that can be used in conjunction with 3D spheroids and finally their applications in cancer research.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland.
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, Dublin, Ireland
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute, (TTMI), School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St. James's Cancer Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
32
|
Sendra M, Štampar M, Fras K, Novoa B, Figueras A, Žegura B. Adverse (geno)toxic effects of bisphenol A and its analogues in hepatic 3D cell model. ENVIRONMENT INTERNATIONAL 2023; 171:107721. [PMID: 36580735 PMCID: PMC9875311 DOI: 10.1016/j.envint.2022.107721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 05/10/2023]
Abstract
Bisphenol A (BPA) is one of the most widely used and versatile chemical compounds in polymer additives and epoxy resins for manufacturing a range of products for human applications. It is known as endocrine disruptor, however, there is growing evidence that it is genotoxic. Because of its adverse effects, the European Union has restricted its use to protect human health and the environment. As a result, the industry has begun developing BPA analogues, but there are not yet sufficient toxicity data to claim that they are safe. We investigated the adverse toxic effects of BPA and its analogues (BPS, BPAP, BPAF, BPFL, and BPC) with emphasis on their cytotoxic and genotoxic activities after short (24-h) and prolonged (96-h) exposure in in vitro hepatic three-dimensional cell model developed from HepG2 cells. The results showed that BPFL and BPC (formed by an additional ring system) were the most cytotoxic analogues that affected cell viability, spheroid surface area and morphology, cell proliferation, and apoptotic cell death. BPA, BPAP, and BPAF induced DNA double-strand break formation (γH2AX assay), whereas BPAF and BPC increased the percentage of p-H3-positive cells, indicating their aneugenic activity. All BPs induced DNA single-strand break formation (comet assay), with BPAP (≥0.1 μM) being the most effective and BPA and BPC the least effective (≥1 μM) under conditions applied. The results indicate that not all of the analogues studied are safer alternatives to BPA and thus more in-depth research is urgently needed to adequately evaluate the risks of BPA analogues and assess their safety for humans.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain; International Research Center in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Martina Štampar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia.
| | - Katarina Fras
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia.
| | - Beatriz Novoa
- Immunology and Genomics Group, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.
| | - Antonio Figueras
- Immunology and Genomics Group, Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, 1000 Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia.
| |
Collapse
|
33
|
Kroupová J, Hanuš J, Štěpánek F. Surprising efficacy twist of two established cytostatics revealed by a-la-carte 3D cell spheroid preparation protocol. Eur J Pharm Biopharm 2022; 180:224-237. [DOI: 10.1016/j.ejpb.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|
34
|
Sonju JJ, Dahal A, Prasasty VD, Shrestha P, Liu YY, Jois SD. Assessment of Antitumor and Antiproliferative Efficacy and Detection of Protein-Protein Interactions in Cancer Cells from 3D Tumor Spheroids. Curr Protoc 2022; 2:e569. [PMID: 36286844 PMCID: PMC9886098 DOI: 10.1002/cpz1.569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When compared to two-dimensional (2D) cell cultures, 3D spheroids have been considered suitable in vitro models for drug discovery research and other studies of drug activity. Based on different 3D cell culture procedures, we describe procedures we have used to obtain 3D tumor spheroids by both the hanging-drop and ultra-low-attachment plate methods and to analyze the antiproliferative and antitumor efficacy of different chemotherapeutic agents, including a peptidomimetic. We have applied this method to breast and lung cancer cell lines such as BT-474, MCF-7, A549, and Calu-3. We also describe a proximity ligation assay of the cells from the spheroid model to detect protein-protein interactions of EGFR and HER2. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Growth of 3D spheroids using the hanging-drop method Basic Protocol 2: Growth of spheroids using ultra-low-attachment plates Support Protocol 1: Cell viability assay of tumor spheroids Support Protocol 2: Antiproliferative and antitumor study in 3D tumor spheroids Support Protocol 3: Proximity ligation assay on cells derived from 3D spheroids.
Collapse
Affiliation(s)
- Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
- These authors contributed equally to this work
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
- These authors contributed equally to this work
| | - Vivitri Dewi Prasasty
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana
| |
Collapse
|
35
|
Liu L, Liu H, Huang X, Liu X, Zheng C. A High-Throughput and Uniform Amplification Method for Cell Spheroids. MICROMACHINES 2022; 13:1645. [PMID: 36296003 PMCID: PMC9607487 DOI: 10.3390/mi13101645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cell culture is an important life science technology. Compared with the traditional two-dimensional cell culture, three-dimensional cell culture can simulate the natural environment and structure specificity of cell growth in vivo. As such, it has become a research hotspot. The existing three-dimensional cell culture techniques include the hanging drop method, spinner flask method, etc., making it difficult to ensure uniform morphology of the obtained cell spheroids while performing high-throughput. Here, we report a method for amplifying cell spheroids with the advantages of quickly enlarging the culture scale and obtaining cell spheroids with uniform morphology and a survival rate of over 95%. Technically, it is easy to operate and convenient to change substances. These results indicate that this method has the potential to become a promising approach for cell-cell, cell-stroma, cell-organ mutual interaction research, tissue engineering, and anti-cancer drug screening.
Collapse
Affiliation(s)
- Liyuan Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Haixia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
- Department of Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| |
Collapse
|
36
|
Khan AH, Zhou SP, Moe M, Ortega Quesada BA, Bajgiran KR, Lassiter HR, Dorman JA, Martin EC, Pojman JA, Melvin AT. Generation of 3D Spheroids Using a Thiol-Acrylate Hydrogel Scaffold to Study Endocrine Response in ER + Breast Cancer. ACS Biomater Sci Eng 2022; 8:3977-3985. [PMID: 36001134 PMCID: PMC9472224 DOI: 10.1021/acsbiomaterials.2c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Culturing cancer cells in a three-dimensional (3D) environment
better recapitulates in vivo conditions by mimicking
cell-to-cell interactions and mass transfer limitations of metabolites,
oxygen, and drugs. Recent drug studies have suggested that a high
rate of preclinical and clinical failures results from mass transfer
limitations associated with drug entry into solid tumors that 2D model
systems cannot predict. Droplet microfluidic devices offer a promising
alternative to grow 3D spheroids from a small number of cells to reduce
intratumor heterogeneity, which is lacking in other approaches. Spheroids
were generated by encapsulating cells in novel thiol–acrylate
(TA) hydrogel scaffold droplets followed by on-chip isolation of single
droplets in a 990- or 450-member trapping array. The TA hydrogel rapidly
(∼35 min) polymerized on-chip to provide an initial scaffold
to support spheroid development followed by a time-dependent degradation.
Two trapping arrays were fabricated with 150 or 300 μm diameter
traps to investigate the effect of droplet size and cell seeding density
on spheroid formation and growth. Both trapping arrays were capable
of ∼99% droplet trapping efficiency with ∼90% and 55%
cellular encapsulation in trapping arrays containing 300 and 150 μm
traps, respectively. The oil phase was replaced with media ∼1
h after droplet trapping to initiate long-term spheroid culturing.
The growth and viability of MCF-7 3D spheroids were confirmed for
7 days under continuous media flow using a customized gravity-driven
system to eliminate the need for syringe pumps. It was found that
a minimum of 10 or more encapsulated cells are needed to generate
a growing spheroid while fewer than 10 parent cells produced stagnant
3D spheroids. As a proof of concept, a drug susceptibility study was
performed treating the spheroids with fulvestrant followed by interrogating
the spheroids for proliferation in the presence of estrogen. Following
fulvestrant exposure, the spheroids showed significantly less proliferation
in the presence of estrogen, confirming drug efficacy.
Collapse
Affiliation(s)
- Anowar H Khan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sophia P Zhou
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Margaret Moe
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Braulio A Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Khashayar R Bajgiran
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Haley R Lassiter
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - James A Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Elizabeth C Martin
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
37
|
Rahimifard M, Bagheri Z, Hadjighassem M, Jaktaji RP, Behroodi E, Haghi-Aminjan H, Movahed MA, Latifi H, Hosseindoost S, Zarghi A, Pourahmad J. Investigation of anti-cancer effects of new pyrazino[1,2-a]benzimidazole derivatives on human glioblastoma cells through 2D in vitro model and 3D-printed microfluidic device. Life Sci 2022; 302:120505. [PMID: 35358594 DOI: 10.1016/j.lfs.2022.120505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022]
Abstract
AIMS Recent studies show targeted therapy of new pyrazino[1,2-a]benzimidazole derivatives with COX-II inhibitory effects on different cancer cells. This study aimed to investigate 2D cell culture and 3D spheroid formation of glioblastoma multiforme (GBM) cells using a microfluidic device after exposure to these compounds. MAIN METHODS After isolating astrocytes from human GBM samples, IC50 of 2,6-dimethyl pyrazino[1,2-a]benzimidazole (L1) and 3,4,5-trimethoxy pyrazino[1,2-a]benzimidazole (L2) were determined as 13 μM and 85 μM, respectively. Then, in all experiments, cells were exposed to subtoxic concentrations of L1 (6.5 μM) and L2 (42.5 μM), which were ½IC50. In the following, in two phases, cell cycle, migration, and gene expression through 2D cell culture and tumor spheroid formation ability using a 3D-printed microfluidic chip were assessed. KEY FINDINGS The obtained results showed that both compounds have positive effects in reducing G2/M cell population and GBM cell migration. Furthermore, real-time gene expression data showed that L1 and L2 significantly impact the upregulation of P21 and P53 and down-regulation of cyclin D1, MMP2, and MMP9. On the other hand, GBM spheroids exposed to L1 and L2 become smaller with fewer live cells. SIGNIFICANCE Our data on human isolated astrocyte cells in 2D and 3D cell culture conditions showed that L1 and L2 compounds could reduce GBM cells' invasion by controlling gene expressions associated with migration and proliferation. Moreover, designing microfluidic platform and related cell culture protocols facilitates the broad screening of 3D multicellular tumor spheroids derived from GBM tumor biopsies and provides effective drug development for brain gliomas.
Collapse
Affiliation(s)
- Mahban Rahimifard
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Bagheri
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Behroodi
- Laser and Plasma Research Institute, Shahid Beheshti University G.C., Tehran, Iran
| | - Hamed Haghi-Aminjan
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahsa Azami Movahed
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Latifi
- Laser and Plasma Research Institute, Shahid Beheshti University G.C., Tehran, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal and Pharmaceutical Chemistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jalal Pourahmad
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Lei L, Ma B, Xu C, Liu H. Emerging tumor-on-chips with electrochemical biosensors. Trends Analyt Chem 2022; 153:116640. [DOI: 10.1016/j.trac.2022.116640] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Foglizzo V, Cocco E, Marchiò S. Advanced Cellular Models for Preclinical Drug Testing: From 2D Cultures to Organ-On-A-Chip Technology. Cancers (Basel) 2022; 14:cancers14153692. [PMID: 35954355 PMCID: PMC9367322 DOI: 10.3390/cancers14153692] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Novel strategies that aim at personalizing cancer therapy are in rapid evolution. In the past decade, new methods to test for the efficacy of either standard-of-care medicines or novel targeted compounds have been implemented. In this review, we introduce the reader to experimental studies that employ patient-derived material to produce spheroids, organoids, or organs-on-a-chip as platforms that allow a more accurate representation of cancer complexity compared to bidimensional cell cultures. We discuss on the versatility and reliability of these model systems, provide evidence of their usage in drug screenings, and describe potential downfalls. The open question is whether or not tumor mimicry in vitro will be, in the near future, advanced enough to prospectively inform about treatment outcome on a certain patient. Abstract Cancer is a complex disease arising from a homeostatic imbalance of cell-intrinsic and microenvironment-related mechanisms. A multimodal approach to treat cancer that includes surgery, chemotherapy, and radiation therapy often fails in achieving tumor remission and produces unbearable side effects including secondary malignancies. Novel strategies have been implemented in the past decades in order to replace conventional chemotherapeutics with targeted, less toxic drugs. Up to now, scientists have relied on results achieved in animal research before proceeding to clinical trials. However, the high failure rate of targeted drugs in early phase trials leaves no doubt about the inadequacy of those models. In compliance with the need of reducing, and possibly replacing, animal research, studies have been conducted in vitro with advanced cellular models that more and more mimic the tumor in vivo. We will here review those methods that allow for the 3D reconstitution of the tumor and its microenvironment and the implementation of the organ-on-a-chip technology to study minimal organ units in disease progression. We will make specific reference to the usability of these systems as predictive cancer models and report on recent applications in high-throughput screenings of innovative and targeted drug compounds.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.F.); (E.C.)
| | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.F.); (E.C.)
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence:
| |
Collapse
|
40
|
Chang S, Wen J, Su Y, Ma H. Microfluidic platform for studying the anti-cancer effect of ursolic acid on tumor spheroid. Electrophoresis 2022; 43:1466-1475. [PMID: 35315532 DOI: 10.1002/elps.202100382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/09/2022]
Abstract
At present, the probability that a new anti-tumor drug will eventually succeed in clinical trials is extremely low. In order to make up for this shortcoming, the use of a three-dimensional (3D) cell culture model for secondary screening is often necessary. Cell spheroid is the easiest 3D model tool for drug screening. In this study, the microfluidic chip with a microwell array was manufactured, which could allow the formation of tumor spheroids with uniform size and easily retrieve cell spheroids from the chip. Cell spheroids were successfully cultured for over 15 days and the survival rate was as high as 80%. Subsequently, cellular response to the ursolic acid (UA) was observed on the chip. Compared to the monolayer culture cells in vitro, the tumor spheroids showed minor levels of epithelial-mesenchymal transition fluctuation after drug treatment. The mechanism of cell spheroid resistance to UA was further verified by detecting the expression level of upstream pathway proteins. But the invasive ability of tumor spheroids was attenuated when the duration of action of UA extended. The anti-cancer effect of UA was innovatively evaluated on breast cancer by using the microfluidic device, which could provide a basis and direction for future preclinical research on UA.
Collapse
Affiliation(s)
- Shiqi Chang
- College of Medical Laboratory, Dalian Medical University, Dalian, P. R. China
| | - Jing Wen
- College of Medical Laboratory, Dalian Medical University, Dalian, P. R. China
| | - Yue Su
- College of Medical Laboratory, Dalian Medical University, Dalian, P. R. China
| | - Huipeng Ma
- College of Medical Laboratory, Dalian Medical University, Dalian, P. R. China
| |
Collapse
|
41
|
Tuerxun K, He J, Ibrahim I, Yusupu Z, Yasheng A, Xu Q, Tang R, Aikebaier A, Wu Y, Tuerdi M, Nijiati M, Zou X, Xu T. Bioartificial livers: a review of their design and manufacture. Biofabrication 2022; 14. [PMID: 35545058 DOI: 10.1088/1758-5090/ac6e86] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Acute liver failure (ALF) is a rapidly progressive disease with high morbidity and mortality rates. Liver transplantation and artificial liver support systems, such as artificial livers (ALs) and bioartificial livers (BALs), are the two major therapies for ALF. Compared to ALs, BALs are composed of functional hepatocytes that provide essential liver functions, including detoxification, metabolite synthesis, and biotransformation. Furthermore, BALs can potentially provide effective support as a form of bridging therapy to liver transplantation or spontaneous recovery for patients with ALF. In this review, we systematically discussed the currently available state-of-the-art designs and manufacturing processes for BAL support systems. Specifically, we classified the cell sources and bioreactors that are applied in BALs, highlighted the advanced technologies of hepatocyte culturing and bioreactor fabrication, and discussed the current challenges and future trends in developing next generation BALs for large scale clinical applications.
Collapse
Affiliation(s)
- Kahaer Tuerxun
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Jianyu He
- Department of Mechanical Engineering, Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, Beijing, 100084, CHINA
| | - Irxat Ibrahim
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Zainuer Yusupu
- Department of Ultrasound, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Abudoukeyimu Yasheng
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Qilin Xu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Ronghua Tang
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Aizemaiti Aikebaier
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Yuanquan Wu
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Maimaitituerxun Tuerdi
- Department of hepatobiliary and pancreatic surgery, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Mayidili Nijiati
- Medical imaging center, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, China, Kashi, Xinjiang, 844000, CHINA
| | - Xiaoguang Zou
- Hospital Organ, First People's Hospital of Kashi, 120th, Yingbin Road, Kashi, Xinjiang, 844000, CHINA
| | - Tao Xu
- Tsinghua University, 30 Shuangqing Road, Haidian District, Beijing, 100084, CHINA
| |
Collapse
|
42
|
De Stefano P, Bianchi E, Dubini G. The impact of microfluidics in high-throughput drug-screening applications. BIOMICROFLUIDICS 2022; 16:031501. [PMID: 35646223 PMCID: PMC9142169 DOI: 10.1063/5.0087294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/02/2022] [Indexed: 05/05/2023]
Abstract
Drug discovery is an expensive and lengthy process. Among the different phases, drug discovery and preclinical trials play an important role as only 5-10 of all drugs that begin preclinical tests proceed to clinical trials. Indeed, current high-throughput screening technologies are very expensive, as they are unable to dispense small liquid volumes in an accurate and quick way. Moreover, despite being simple and fast, drug screening assays are usually performed under static conditions, thus failing to recapitulate tissue-specific architecture and biomechanical cues present in vivo even in the case of 3D models. On the contrary, microfluidics might offer a more rapid and cost-effective alternative. Although considered incompatible with high-throughput systems for years, technological advancements have demonstrated how this gap is rapidly reducing. In this Review, we want to further outline the role of microfluidics in high-throughput drug screening applications by looking at the multiple strategies for cell seeding, compartmentalization, continuous flow, stimuli administration (e.g., drug gradients or shear stresses), and single-cell analyses.
Collapse
Affiliation(s)
- Paola De Stefano
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Elena Bianchi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| |
Collapse
|
43
|
Dsouza VL, Kuthethur R, Kabekkodu SP, Chakrabarty S. Organ-on-Chip platforms to study tumor evolution and chemosensitivity. Biochim Biophys Acta Rev Cancer 2022; 1877:188717. [PMID: 35304293 DOI: 10.1016/j.bbcan.2022.188717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Despite tremendous advancements in oncology research and therapeutics, cancer remains a primary cause of death worldwide. One of the significant factors in this critical challenge is a precise diagnosis and limited knowledge on how the tumor microenvironment (TME) behaves to the treatment and its role in chemo-resistance. Therefore, it is critical to understand the contribution of a heterogeneous TME in cancer drug response in individual patients for effective therapy management. Micro-physiological systems along with tissue engineering have facilitated the development of more physiologically relevant platforms, known as Organ-on-Chips (OoC). OoC platforms recapitulate the critical hallmarks of the TME in vitro and subsequently abet in sensitivity and efficacy testing of anti-cancer drugs before clinical trials. The OoC platforms incorporating conventional in vitro models enable researchers to control the cellular, molecular, chemical, and biophysical parameters of the TME in precise combinations while analyzing how they contribute to tumor progression and therapy response. This review discusses the application of OoC platforms integrated with conventional 2D cell lines, 3D organoids and spheroid models, and the organotypic tissue slices, including patient-derived and xenograft tumor slice cultures in cancer treatment responses. We summarize the relevance and drawbacks of conventional in vitro models in assessing cancer treatment response, challenges and limitations associated with OoC models, and future opportunities enabled by the OoC technologies towards developing personalized cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Venzil Lavie Dsouza
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
44
|
Azizipour N, Avazpour R, Sawan M, Ajji A, H Rosenzweig D. Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22093191. [PMID: 35590879 DOI: 10.1039/d2sd00004k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 05/27/2023]
Abstract
Spheroids have become an essential tool in preclinical cancer research. The uniformity of spheroids is a critical parameter in drug test results. Spheroids form by self-assembly of cells. Hence, the control of homogeneity of spheroids in terms of size, shape, and density is challenging. We developed surface-optimized polydimethylsiloxane (PDMS) biochip platforms for uniform spheroid formation on-chip. These biochips were surface modified with 10% bovine serum albumin (BSA) to effectively suppress cell adhesion on the PDMS surface. These surface-optimized platforms facilitate cell self-aggregations to produce homogenous non-scaffold-based spheroids. We produced uniform spheroids on these biochips using six different established human cell lines and a co-culture model. Here, we observe that the concentration of the BSA is important in blocking cell adhesion to the PDMS surfaces. Biochips treated with 3% BSA demonstrated cell repellent properties similar to the bare PDMS surfaces. This work highlights the importance of surface modification on spheroid production on PDMS-based microfluidic devices.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Mohamad Sawan
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, Westlake Institute for Advanced Study, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- The Research Center for High Performance Polymer and Composite Systems, Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Derek H Rosenzweig
- Department of Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| |
Collapse
|
45
|
Azizipour N, Avazpour R, Sawan M, Ajji A, H. Rosenzweig D. Surface Optimization and Design Adaptation toward Spheroid Formation On-Chip. SENSORS (BASEL, SWITZERLAND) 2022; 22:3191. [PMID: 35590879 PMCID: PMC9104470 DOI: 10.3390/s22093191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022]
Abstract
Spheroids have become an essential tool in preclinical cancer research. The uniformity of spheroids is a critical parameter in drug test results. Spheroids form by self-assembly of cells. Hence, the control of homogeneity of spheroids in terms of size, shape, and density is challenging. We developed surface-optimized polydimethylsiloxane (PDMS) biochip platforms for uniform spheroid formation on-chip. These biochips were surface modified with 10% bovine serum albumin (BSA) to effectively suppress cell adhesion on the PDMS surface. These surface-optimized platforms facilitate cell self-aggregations to produce homogenous non-scaffold-based spheroids. We produced uniform spheroids on these biochips using six different established human cell lines and a co-culture model. Here, we observe that the concentration of the BSA is important in blocking cell adhesion to the PDMS surfaces. Biochips treated with 3% BSA demonstrated cell repellent properties similar to the bare PDMS surfaces. This work highlights the importance of surface modification on spheroid production on PDMS-based microfluidic devices.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (N.A.); (M.S.)
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Mohamad Sawan
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (N.A.); (M.S.)
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, Westlake Institute for Advanced Study, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (N.A.); (M.S.)
- The Research Center for High Performance Polymer and Composite Systems, Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Derek H. Rosenzweig
- Department of Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| |
Collapse
|
46
|
Azizipour N, Avazpour R, Weber MH, Sawan M, Ajji A, Rosenzweig DH. Uniform Tumor Spheroids on Surface-Optimized Microfluidic Biochips for Reproducible Drug Screening and Personalized Medicine. MICROMACHINES 2022; 13:587. [PMID: 35457892 PMCID: PMC9028696 DOI: 10.3390/mi13040587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023]
Abstract
Spheroids are recognized for resembling the important characteristics of natural tumors in cancer research. However, the lack of controllability of the spheroid size, form, and density in conventional spheroid culture methods reduces the reproducibility and precision of bioassay results and the assessment of drug-dose responses in spheroids. Nonetheless, the accurate prediction of cellular responses to drug compounds is crucial for developing new efficient therapeutic agents and optimizing existing therapeutic strategies for personalized medicine. We developed a surface-optimized PDMS microfluidic biochip to produce uniform and homogenous multicellular spheroids in a reproducible manner. This platform is surface optimized with 10% bovine serum albumin (BSA) to provide cell-repellent properties. Therefore, weak cell-surface interactions lead to the promotion of cell self-aggregations and the production of compact and uniform spheroids. We used a lung cancer cell line (A549), a co-culture model of lung cancer cells (A549) with (primary human osteoblasts, and patient-derived spine metastases cells (BML, bone metastasis secondary to lung). We observed that the behavior of cells cultured in three-dimensional (3D) spheroids within this biochip platform more closely reflects in vivo-like cellular responses to a chemotherapeutic drug, Doxorubicin, rather than on 24-well plates (two-dimensional (2D) model). It was also observed that the co-culture and patient-derived spheroids exhibited resistance to anti-cancer drugs more than the mono-culture spheroids. The repeatability of drug test results in this optimized platform is the hallmark of the reproducibility of uniform spheroids on a chip. This surface-optimized biochip can be a reliable platform to generate homogenous and uniform spheroids to study and monitor the tumor microenvironment and for drug screening.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Michael H Weber
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| | - Mohamad Sawan
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, School of Engineering, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
- NSERC-Industry Chair, CREPEC, Chemical Engineering Department, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada
| | - Derek H Rosenzweig
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montréal, QC H3G 1A4, Canada
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montréal, QC H3H 2R9, Canada
| |
Collapse
|
47
|
Siao YJ, Peng CC, Tung YC, Chen YF. Comparison of Hydrogen Peroxide Secretion From Living Cells Cultured in Different Formats Using Hydrogel-Based LSPR Substrates. Front Bioeng Biotechnol 2022; 10:869184. [PMID: 35464720 PMCID: PMC9031350 DOI: 10.3389/fbioe.2022.869184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Reactive oxygen species (ROS), a number of reactive molecules and free radicals derived from molecular oxygen, are generated as by-products during mitochondrial electron transport within cells. Physiologically, cells are capable of metabolizing the ROS exploiting specific mechanisms. However, if excessive ROS accumulate inside the cells, it will cause the cells apoptosis or necrosis. Hydrogen peroxide (H2O2) is one of the essential ROS often participating in chemical reactions in organisms and regulating homeostasis in the body. Therefore, rapid and sensitive detection of H2O2 is a significant task in cell biology research. Furthermore, it has been found that cells cultured in different formats can result in different cellular responses and biological activities. In order to investigate the H2O2 secretion from the cells cultured in different formats, a hydrogel-based substrate is exploited to separate relatively large molecular (e.g., proteins) for direct measurement of H2O2 secreted from living cells in complete cell culture medium containing serum. The substrate takes advantage of the localized surface plasmon resonance (LSPR) method based on enzyme immunoprecipitation. In addition, the H2O2 secreted from the cells cultured in different dimensions (suspension of single cells and three-dimensional cell spheroids) treated with identical drugs is measured and compared. The spheroid samples can be prepared with ample amount using a designed microfluidic device with precise control of size. The results show that the H2O2 secretion from the cells are great affected by their culture formats.
Collapse
Affiliation(s)
- Yang-Jyun Siao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Chung Peng
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Chung Tung
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- *Correspondence: Yi-Chung Tung, ; Yih-Fan Chen,
| | - Yih-Fan Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- *Correspondence: Yi-Chung Tung, ; Yih-Fan Chen,
| |
Collapse
|
48
|
Zhao P, Wang J, Chen C, Wang J, Liu G, Nandakumar K, Li Y, Wang L. Microfluidic Applications in Drug Development: Fabrication of Drug Carriers and Drug Toxicity Screening. MICROMACHINES 2022; 13:200. [PMID: 35208324 PMCID: PMC8877367 DOI: 10.3390/mi13020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 01/09/2023]
Abstract
Microfluidic technology has been highly useful in nanovolume sample preparation, separation, synthesis, purification, detection and assay, which are advantageous in drug development. This review highlights the recent developments and trends in microfluidic applications in two areas of drug development. First, we focus on how microfluidics has been developed as a facile tool for the fabrication of drug carriers including microparticles and nanoparticles. Second, we discuss how microfluidic chips could be used as an independent platform or integrated with other technologies in drug toxicity screening. Challenges and future perspectives of microfluidic applications in drug development have also been provided considering the present technological limitations.
Collapse
Affiliation(s)
- Pei Zhao
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jianchun Wang
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chengmin Chen
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jianmei Wang
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Guangxia Liu
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Krishnaswamy Nandakumar
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yan Li
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (P.Z.); (J.W.); (C.C.); (J.W.); (G.L.); (K.N.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Liqiu Wang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
49
|
Maurya R, Gohil N, Bhattacharjee G, Alzahrani KJ, Ramakrishna S, Singh V. Microfluidics for single cell analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:203-215. [PMID: 35033285 DOI: 10.1016/bs.pmbts.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cells have several internal molecules that are present in low amounts and any fluctuation in its number drives a change in cell behavior. These molecules present inside the cells are continuously fluctuating, thus producing noises in the intrinsic environment and thereby directly affecting the cellular behavior. Single-cell analysis using microfluidics is an important tool for monitoring cell behavior by analyzing internal molecules. Several gene circuits have been designed for this purpose that are labeled with fluorescence encoding genes for monitoring cell dynamics and behavior. We discuss herewith designed and fabricated microfluidics devices that are used for trapping and tracking cells under controlled environmental conditions. This chapter highlights microfluidics chip for monitoring cells to promote their basic understanding.
Collapse
Affiliation(s)
- Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
50
|
Biophysical and Biomechanical Effect of Low Intensity US Treatments on Pancreatic Adenocarcinoma 3D Cultures. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current developments in medical technology have focused on therapeutic treatments that selectively and effectively address specific pathological areas, minimizing side effects on healthy tissues. In this regard, many procedures have been developed to provide non-invasive therapy, for example therapeutic ultrasound (US). In the medical field, in particular in cancer research, it has been observed how ultrasounds can cause cell death and inhibit cell proliferation of cancer cells, while preserving healthy ones with almost negligible side effects. Various studies have shown that low intensity pulse ultrasound (LIPUS) and low intensity continuous ultrasound (LICUS) regulate the proliferation, cell differentiation and cavitation phenomena. Nowadays, there are poorly known aspects of low intensity US treatment, in terms of biophysical and biomechanical effects on target cells. The aim of this study is to set up an innovative apparatus for US treatment of pancreatic ductal adenocarcinoma (PDAC) cells, monitoring parameters such as acoustic intensity, acoustic pressure, stimulation frequency and treatment protocol. To this purpose, we have developed a custom-made set up for the US stimulation at 1.2 and 3 MHz of tridimensional (3D) cultures of PDAC cells (PANC-1, Mia Paca-2 and BxPc3 cells). Images of the 3D cultures were acquired, and the Calcein/PI assay was applied to detect US-induced cell death. Overall, the setup we have presented paves the way to an innovative protocol for tumor treatment. The system can be used either alone or in combination with small molecules or recombinant antibodies in order to propose a novel combined therapeutic approach.
Collapse
|