1
|
Hao S, Guo S, Chen S, Wang H, Chen Q, Zhou X, Liu L, Zhang A, Sun H, Zhang R, Wang J. Development and performance validation of an affordable and portable high-resolution darkfield polarization-sensitive multispectral imaging microscope for the assessment of radiation dermatitis and fibrosis. BIOMEDICAL OPTICS EXPRESS 2025; 16:320-333. [PMID: 39816154 PMCID: PMC11729282 DOI: 10.1364/boe.546226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Radiation therapy (RT) is widely used for cancer treatment but is found with side effects of radiation dermatitis and fibrosis thereby calling for timely assessment. Nevertheless, current clinical assessment methods are found to be subjective, prone to bias, and accompanied by variability. There is, therefore, an unmet clinical need to explore a new assessment technique, ideally portable and affordable, making it accessible to less developed regions too. We developed an affordable (16764 CNY) and portable high-resolution ((3.91 μm) darkfield polarization-sensitive multispectral imaging (PS-MSI) microscope. The implementation of the Monte Carlo simulation on the PS multi spectra allows the quantitative analysis of physiological parameters (i.e., blood volume fraction (BVF) and oxygen saturation of hemoglobin) at different skin layers for the dermatitis assessment. Further derivation of the degree of linear polarization (DOLP) reflects randomly distributed collagen fibers associated with fibrosis for the fibrosis assessment. PS-MSI microscope developed revealed a significant decrease (p < 0.001, analysis of variance, ANOVA) in the DOLP associated with fibrosis like scar tissue, and significant (p < 0.001, ANOVA) increases in BVF and oxygen saturation of hemoglobin accompanying artificially induced dermatitis. One-dimensional convolutional neural network implemented on the DOLP and multiple spectra achieved accuracies of 96% and 92.2%, respectively, for the classification of the artificially induced skin dermatitis and fibrosis like scar, demonstrating the potential of the affordable PS-MSI microscope developed for objective, unbiased and consistent assessment of radiation dermatitis and fibrosis in the clinics.
Collapse
Affiliation(s)
- Shicheng Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Sisi Guo
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuyu Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Qian Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Xudong Zhou
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Lihui Liu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Aijun Zhang
- Department of Endoscopy, Qilu Hospital of Shandong University, Qingdao, Shandong 250012, China
| | - Hui Sun
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing 100049, China
| | - Ruoyu Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jianfeng Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Jena 07745, Germany
| |
Collapse
|
2
|
Okawa KS, Okawa S, Sasa H, Ishihara M. Clinical application of photoacoustic imaging for cervical precursor lesion detection. J Med Ultrason (2001) 2025; 52:119-129. [PMID: 39361106 DOI: 10.1007/s10396-024-01501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 08/29/2024] [Indexed: 02/06/2025]
Abstract
PURPOSE Early diagnosis of a precursor lesion in the uterine cervix is an essential factor in uterine cervical cancer prevention. Although colposcopy is an established procedure for detecting high-risk patients, its accuracy and reproducibility are relatively low. Some supportive or alternative techniques to improve the early diagnosis of a precursor lesion have been studied, and correct diagnosis with high reliability using a minimally invasive, cost-effective technique has been pursued. This study aimed to examine the possibility of using photoacoustic (PA) imaging as a supportive technique to improve the accuracy of early diagnosis of cervical precursor lesions. METHODS A PA imaging system for microvessels was used to detect angiogenesis in severe lesions. A total of 21 patients who underwent surgical treatment and 114 outpatients who visited our colposcopy clinic were examined. A retrospective evaluation of PA images was performed as follows: (i) pathological assessment of the specific PA findings and (ii) retrospective evaluation of the severe lesion detection rate through PA. RESULTS PA image evaluation and pathological findings showed dense angiogenesis in a severe precursor lesion appearing as a "hot spot" in the PA image. A comparison with colposcopy findings was performed for accuracy evaluation, and the detection rate of severe lesions using PA was relatively high (positive predictive value, 84.5%; negative predictive value, 82.1%). CONCLUSION Our results indicate the possibility of using PA imaging for early diagnosis of severe cervical precursor lesions. With its ability to yield quantitative information, PA imaging can improve ultrasound diagnosis.
Collapse
Affiliation(s)
- Kiguna Sei Okawa
- Department of Obstetrics and Gynecology, Seirei Hamamatsu General Hospital, 2-1212 Sumiyoshi, Chuo-ku, Hamamatsu, Shizuoka, Japan.
| | - Shinpei Okawa
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
- Biomedical Instrumentation Laboratory, Research and Development in Photonics Technology, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1- 20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, Japan
| | - Hidenori Sasa
- Department of Obstetrics and Gynecology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| |
Collapse
|
3
|
Glowa C, Bendinger AL, Euler-Lange R, Peschke P, Brons S, Debus J, Karger CP. Irradiation with Carbon Ions Effectively Counteracts Hypoxia-related Radioresistance in a Rat Prostate Carcinoma. Int J Radiat Oncol Biol Phys 2024; 120:875-883. [PMID: 38750905 DOI: 10.1016/j.ijrobp.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Hypoxia in tumors is associated with increased malignancy and resistance to conventional photon radiation therapy. This study investigated the potential of particle therapy to counteract radioresistance in syngeneic rat prostate carcinoma. METHODS AND MATERIALS Subcutaneously transplanted R3327-HI tumors were irradiated with photons or carbon ions under acute hypoxic conditions, induced by clamping the tumor-supplying artery 10 min before and during irradiation. Dose-response curves were determined for the endpoint "local tumor control within 300 days" and compared with previously published data acquired under oxic conditions. Doses at 50% tumor control probability (TCD50) were used to quantify hypoxia-induced radioresistance relative to that under oxic conditions and also to quantify the increased effectiveness of carbon ions under oxic and hypoxic conditions relative to photons. RESULTS Compared with those under oxic conditions, TCD50 values under hypoxic conditions increased by a factor of 1.53 ± 0.08 for photons and by a factor of 1.28 ± 0.06 for carbon ions (oxygen enhancement ratio). Compared with those for photons, TCD50 values for carbon ions decreased by a factor of 2.08 ± 0.13 under oxic conditions and by a factor of 2.49 ± 0.08 under hypoxic conditions (relative biological effectiveness). While the slope of the photon dose-response curves increased when changing from oxic to hypoxic conditions, the slopes were steeper and remained unchanged for carbon ions. CONCLUSIONS The reduced oxygen enhancement ratio of carbon ions indicated that the required dose increase in hypoxic tumors was 17% lower for carbon ions than for photons. Additionally, carbon ions reduced the effect of intertumor heterogeneity on the radiation response. Therefore, carbon ions may confer a significant advantage for the treatment of hypoxic tumors that are highly resistant to conventional photon radiation therapy.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Alina L Bendinger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; University of Heidelberg, Faculty of Biosciences, Heidelberg, Germany
| | - Rosemarie Euler-Lange
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Department of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Stephan Brons
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
| |
Collapse
|
4
|
Dai T, Rich LJ, Seshadri M, Dasgupta S. Protocol to detect and quantify tumor hypoxia in mice using photoacoustic imaging. STAR Protoc 2024; 5:102993. [PMID: 38568814 PMCID: PMC10999710 DOI: 10.1016/j.xpro.2024.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Photoacoustic imaging (PAI) with co-registered ultrasound (US) is a hybrid non-invasive imaging modality that enables visualization and quantification of tumor hypoxia in live animals. Here, using a breast tumor xenograft model as an example, we present a stepwise protocol describing animal preparation, positioning, instrument setup, and US-PAI image acquisition procedures. This protocol also guides through detailed data analysis, explains functional readouts obtained from PAI, and discusses the potential application of the technology to study the hypoxic tumor microenvironment. For complete details on the use and execution of this protocol, please refer to Dai et al.1.
Collapse
Affiliation(s)
- Tao Dai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Laurie J Rich
- FUJIFILM VisualSonics, Inc, Toronto, ON, Canada; Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
5
|
Tajaldeen A, Alrashidi M, Alsaadi MJ, Alghamdi SS, Alshammari H, Alsleem H, Jafer M, Aljondi R, Alqahtani S, Alotaibi A, Alzandi AM, Alahmari AM. Photoacoustic imaging in prostate cancer: A new paradigm for diagnosis and management. Photodiagnosis Photodyn Ther 2024; 47:104225. [PMID: 38821240 DOI: 10.1016/j.pdpdt.2024.104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
The global health issue of prostate cancer (PCa) requires better diagnosis and treatment. Photoacoustic imaging (PAI) may change PCa management. This review examines PAI's principles, diagnostic role, and therapeutic guidance. PAI uses optical light excitation and ultrasonic detection for high-resolution functional and molecular imaging. PAI uses endogenous and exogenous contrast agents to distinguish cancerous and benign prostate tissues with greater sensitivity and specificity than PSA testing and TRUS-guided biopsy. In addition to diagnosing, PAI can guide and monitor PCa therapy. Its real-time imaging allows precise biopsies and brachytherapy seed placement. Photoacoustic temperature imaging allows non-invasive monitoring of thermal therapies like cryotherapy, improving treatment precision and success. Transurethral illumination probes, innovative contrast agents, integration with other imaging modalities, and machine learning analysis are being developed to overcome depth and data complexity restrictions. PAI could become an essential tool for PCa diagnosis and therapeutic guidance as the field advances.
Collapse
Affiliation(s)
- Abdulrahman Tajaldeen
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia.
| | - Muteb Alrashidi
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohamed J Alsaadi
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Salem Saeed Alghamdi
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Hamed Alshammari
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haney Alsleem
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mustafa Jafer
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Rowa Aljondi
- Department of Radiologic Technology, College of Applied Medical Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Saeed Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Awatif Alotaibi
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Abdulrahman M Alzandi
- Department of Radiological Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | | |
Collapse
|
6
|
Li T, Murley GA, Liang X, Chin RL, de la Cerda J, Schuler FW, Pagel MD. Evaluations of an Early Change in Tumor Pathophysiology in Response to Radiotherapy with Oxygen Enhanced Electron Paramagnetic Resonance Imaging (OE EPRI). Mol Imaging Biol 2024; 26:448-458. [PMID: 38869818 PMCID: PMC11830149 DOI: 10.1007/s11307-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Electron Paramagnetic Resonance Imaging (EPRI) can image the partial pressure of oxygen (pO2) within in vivo tumor models. We sought to develop Oxygen Enhanced (OE) EPRI that measures tumor pO2 with breathing gases of 21% O2 (pO221%) and 100% O2 (pO2100%), and the differences in pO2 between breathing gases (ΔpO2). We applied OE EPRI to study the early change in tumor pathophysiology in response to radiotherapy in two tumor models of pancreatic cancer. PROCEDURES We developed a protocol that intraperitoneally administered OX071, a trityl radical contrast agent, and then acquired anatomical MR images to localize the tumor. Subsequently, we acquired two pO221% and two pO2100% maps using the T1 relaxation time of OX071 measured with EPRI and a R1-pO2 calibration of OX071. We studied 4T1 flank tumor model to evaluate the repeatability of OE EPRI. We then applied OE EPRI to study COLO 357 and Su.86.86 flank tumor models treated with 10 Gy radiotherapy. RESULTS The repeatability of mean pO2 for individual tumors was ± 2.6 Torr between successive scans when breathing 21% O2 or 100% O2, representing a precision of 9.6%. Tumor pO221% and pO2100% decreased after radiotherapy for both models, although the decreases were not significant or only moderately significant, and the effect sizes were modest. For comparison, ΔpO2 showed a large, highly significant decrease after radiotherapy, and the effect size was large. MANOVA and analyses of the HF10 hypoxia fraction provided similar results. CONCLUSIONS EPRI can evaluate tumor pO2 with outstanding precision relative to other imaging modalities. The change in ΔpO2 before vs. after treatment was the best parameter for measuring the early change in tumor pathophysiology in response to radiotherapy. Our studies have established ΔpO2 from OE EPRI as a new parameter, and have established that OE EPRI is a valuable new methodology for molecular imaging.
Collapse
Affiliation(s)
- Tianzhe Li
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, 68105, USA
| | - Grace A Murley
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Xiaofei Liang
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Renee L Chin
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Jorge de la Cerda
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - F William Schuler
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark D Pagel
- Department of Cancer Systems Imaging, UT MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Medical Physics, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
7
|
Liu H, Wang M, Ji F, Jiang Y, Yang M. Mini review of photoacoustic clinical imaging: a noninvasive tool for disease diagnosis and treatment evaluation. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11522. [PMID: 38230369 PMCID: PMC10790789 DOI: 10.1117/1.jbo.29.s1.s11522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Significance Photoacoustic (PA) imaging is an imaging modality that integrates anatomical, functional, metabolic, and histologic insights. It has been a hot topic of medical research and draws extensive attention. Aim This review aims to explore the applications of PA clinical imaging in human diseases, highlighting recent advancements. Approach A systemic survey of the literature concerning the clinical utility of PA imaging was conducted, with a particular focus on its application in tumors, autoimmune diseases, inflammatory conditions, and endocrine disorders. Results PA imaging is emerging as a valuable tool for human disease investigation. Information provided by PA imaging can be used for diagnosis, grading, and prognosis in multiple types of tumors including breast tumors, ovarian neoplasms, thyroid nodules, and cutaneous malignancies. PA imaging facilitates the monitoring of disease activity in autoimmune and inflammatory diseases such as rheumatoid arthritis, systemic sclerosis, arteritis, and inflammatory bowel disease by capturing dynamic functional alterations. Furthermore, its unique capability of visualizing vascular structure and oxygenation levels aids in assessing diabetes mellitus comorbidities and thyroid function. Conclusions Despite extant challenges, PA imaging offers a promising noninvasive tool for precision disease diagnosis, long-term evaluation, and prognosis anticipation, making it a potentially significant imaging modality for clinical practice.
Collapse
Affiliation(s)
- Huazhen Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Ming Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Fei Ji
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Yuxin Jiang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| | - Meng Yang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Peking Union Medical College Hospital, Department of Ultrasound, Beijing, China
| |
Collapse
|
8
|
Bolookat E, Rich L, Vincent-Chong V, DeJohn C, Merzianu M, Hershberger P, Singh A, Seshadri M. Noninvasive Monitoring of Radiation-Induced Salivary Gland Vascular Injury. J Dent Res 2023; 102:412-421. [PMID: 36515317 PMCID: PMC10154916 DOI: 10.1177/00220345221138533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Xerostomia is a common side effect of radiation therapy (RT) in patients with head and neck cancer. However, limited information is available on the temporal dynamics of parenchymal and vascular changes in salivary glands following RT. To address this gap in knowledge, we conducted experimental studies in mice employing ultrasound (US) with coregistered photoacoustic imaging (PAI) to noninvasively assess the early and late changes in salivary gland size, structure, vascularity, and oxygenation dynamics following RT. Multiparametric US-PAI of salivary glands was performed in immune-deficient and immune-competent mice before and after RT along with correlative sialometry and ex vivo histologic-immunohistochemical validation. US revealed reduction in gland volume and an early increase in vascular resistance postradiation. This was accompanied by a reduction in glandular oxygen consumption on PAI. Imaging data correlated strongly with salivary secretion and histologic evidence of acinar damage. The magnitude and kinetics of radiation response were impacted by host immune status, with immunodeficient mice showing early and more pronounced vascular injury and DNA damage response compared to immunocompetent animals. Our findings demonstrate the ability of noninvasive US-PAI to monitor dynamic changes in salivary gland hemodynamics following radiation and highlight the impact of the host immune status on salivary gland radiation injury.
Collapse
Affiliation(s)
- E.R. Bolookat
- Cell Stress and Biophysical Oncology Graduate
Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Oral Oncology, Roswell Park
Comprehensive Cancer Center, Buffalo, NY, USA
| | - L.J. Rich
- Cell Stress and Biophysical Oncology Graduate
Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Fujifilm Visualsonics Corporation, Toronto,
ON, Canada
| | - V.K. Vincent-Chong
- Department of Oral Oncology, Roswell Park
Comprehensive Cancer Center, Buffalo, NY, USA
| | - C.R. DeJohn
- Cell Stress and Biophysical Oncology Graduate
Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Oral Oncology, Roswell Park
Comprehensive Cancer Center, Buffalo, NY, USA
| | - M. Merzianu
- Department of Pathology, Roswell Park
Comprehensive Cancer Center, Buffalo, NY, USA
| | - P.A. Hershberger
- Department of Pharmacology and Therapeutics,
Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - A.K. Singh
- Department of Radiation Medicine, Roswell
Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - M. Seshadri
- Cell Stress and Biophysical Oncology Graduate
Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Oral Oncology, Roswell Park
Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Radiology, University at
Buffalo–Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
9
|
Krolewski JJ, Singh S, Sha K, Jaiswal N, Turowski SG, Pan C, Rich LJ, Seshadri M, Nastiuk KL. TNF Signaling Is Required for Castration-Induced Vascular Damage Preceding Prostate Cancer Regression. Cancers (Basel) 2022; 14:cancers14246020. [PMID: 36551505 PMCID: PMC9775958 DOI: 10.3390/cancers14246020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mainstay treatment for locally advanced, recurrent, or metastatic prostate cancer (PrCa) is androgen deprivation therapy (ADT). ADT causes prostate cancers to shrink in volume, or regress, by inducing epithelial tumor cell apoptosis. In normal, non-neoplastic murine prostate, androgen deprivation via castration induces prostate gland regression that is dependent on TNF signaling. In addition to this direct mechanism of action, castration has also been implicated in an indirect mechanism of prostate epithelial cell death, which has been described as vascular regression. The initiating event is endothelial cell apoptosis and/or increased vascular permeability. This subsequently leads to reduced blood flow and perfusion, and then hypoxia, which may enhance epithelial cell apoptosis. Castration-induced vascular regression has been observed in both normal and neoplastic prostates. We used photoacoustic, power Doppler, and contrast-enhanced ultrasound imaging, and CD31 immunohistochemical staining of the microvasculature to assess vascular integrity in the period immediately following castration, enabling us to test the role of TNF signaling in vascular regression. In two mouse models of androgen-responsive prostate cancer, TNF signaling blockade using a soluble TNFR2 ligand trap reversed the functional aspects of vascular regression as well as structural changes in the microvasculature, including reduced vessel wall thickness, cross-sectional area, and vessel perimeter length. These results demonstrate that TNF signaling is required for vascular regression, most likely by inducing endothelial cell apoptosis and increasing vessel permeability. Since TNF is also the critical death receptor ligand for prostate epithelial cells, we propose that TNF is a multi-purpose, comprehensive signal within the prostate cancer microenvironment that mediates prostate cancer regression following androgen deprivation.
Collapse
Affiliation(s)
- John J. Krolewski
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Shalini Singh
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kai Sha
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Neha Jaiswal
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Steven G. Turowski
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Chunliu Pan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Laurie J. Rich
- Laboratory of Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mukund Seshadri
- Laboratory of Translational Imaging, Center for Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kent L. Nastiuk
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence: ; Tel.: +1-716-845-5771
| |
Collapse
|
10
|
Dai T, Rosario SR, Katsuta E, Dessai AS, Paterson EJ, Novickis AT, Cortes Gomez E, Zhu B, Liu S, Wang H, Abrams SI, Seshadri M, Bshara W, Dasgupta S. Hypoxic activation of PFKFB4 in breast tumor microenvironment shapes metabolic and cellular plasticity to accentuate metastatic competence. Cell Rep 2022; 41:111756. [PMID: 36476868 PMCID: PMC9807018 DOI: 10.1016/j.celrep.2022.111756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/27/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cells encounter a hostile tumor microenvironment (TME), and their adaptations to metabolic stresses determine metastatic competence. Here, we show that the metabolic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 (PFKFB4) is induced in hypoxic tumors acquiring metabolic plasticity and invasive phenotype. In mouse models of breast cancer, genetic ablation of PFKFB4 significantly delays distant organ metastasis, reducing local lymph node invasion by suppressing expression of invasive gene signature including integrin β3. Photoacoustic imaging followed by metabolomics analyses of hypoxic tumors show that PFKFB4 drives metabolic flexibility, enabling rapid detoxification of reactive oxygen species favoring survival under selective pressure. Mechanistically, hypoxic induction triggers nuclear translocation of PFKFB4 accentuating non-canonical transcriptional activation of HIF-1α, and breast cancer patients with increased nuclear PFKFB4 in their tumors are found to be significantly associated with poor prognosis. Our findings imply that PFKFB4 induction is crucial for tumor cell adaptation in the hypoxic TME that determines metastatic competence.
Collapse
Affiliation(s)
- Tao Dai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Eriko Katsuta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Abhisha Sawant Dessai
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Emily J. Paterson
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aaron T. Novickis
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Bokai Zhu
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hai Wang
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Scott I. Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Subhamoy Dasgupta
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA,Lead contact,Correspondence:
| |
Collapse
|
11
|
Wu D, Xu N, Xie Y, Shen Y, Fu Y, Liu L, Chi Z, Lu R, Xiang R, Wen Y, Yang J, Jiang H. Noninvasive optoacoustic imaging of breast tumor microvasculature in response to radiotherapy. Front Physiol 2022; 13:1044308. [PMID: 36324309 PMCID: PMC9618817 DOI: 10.3389/fphys.2022.1044308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Detailed insight into the radiation-induced changes in tumor microvasculature is crucial to maximize the efficacy of radiotherapy against breast cancer. Recent advances in imaging have enabled precise targeting of solid lesions. However, intratumoral heterogeneity makes treatment planning and monitoring more challenging. Conventional imaging cannot provide high-resolution observation and longitudinal monitoring of large-scale microvascular in response to radiotherapy directly in deep tissues. Herein, we report on an emerging non-invasive imaging assessment method of morphological and functional tumor microvasculature responses with high spatio-temporal resolution by means of optoacoustic imaging (OAI). In vivo imaging of 4T1 breast tumor response to a conventional fractionated radiotherapy at varying dose (14 × 2 Gy and 3 × 8 Gy) has been performed after 2 weeks following treatment. Remarkably, optoacoustic images can generate richful contrast for the tumor microvascular architecture. Besides, the functional status of tumor microvasculature and tumor oxygenation levels were further estimated using OAI. The results revealed the differential (size-dependent) nature of vascular responses to radiation treatments at varying doses. The vessels exhibited an decrease in their density accompanied by a decline in the number of vascular segments following irradiation, compared to the control group. The measurements further revealed an increase of tumor oxygenation levels for 14 × 2 Gy and 3 × 8 Gy irradiations. Our results suggest that OAI could be used to assess the response to radiotherapy based on changes in the functional and morphological status of tumor microvasculature, which are closely linked to the intratumor microenvironment. OAI assessment of the tumor microenvironment such as oxygenation status has the potential to be applied to precise radiotherapy strategy.
Collapse
Affiliation(s)
- Dan Wu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- *Correspondence: Dan Wu, ; Jun Yang, ; Huabei Jiang,
| | - Nan Xu
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yonghua Xie
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yang Shen
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yunlu Fu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Liang Liu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Zihui Chi
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Runyu Lu
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Renjie Xiang
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yanting Wen
- School of Optoelectric Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
- Ultrasonic Department, The Fifth People’s Hospital of Chengdu, Chengdu, China
| | - Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
- *Correspondence: Dan Wu, ; Jun Yang, ; Huabei Jiang,
| | - Huabei Jiang
- Department of Medical Engineering, University of South Florida, Tampa, FL, United States
- *Correspondence: Dan Wu, ; Jun Yang, ; Huabei Jiang,
| |
Collapse
|
12
|
Sivasubramanian M, Lo LW. Assessment of Nanoparticle-Mediated Tumor Oxygen Modulation by Photoacoustic Imaging. BIOSENSORS 2022; 12:336. [PMID: 35624636 PMCID: PMC9138624 DOI: 10.3390/bios12050336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Photoacoustic imaging (PAI) is an invaluable tool in biomedical imaging, as it provides anatomical and functional information in real time. Its ability to image at clinically relevant depths with high spatial resolution using endogenous tissues as contrast agents constitutes its major advantage. One of the most important applications of PAI is to quantify tissue oxygen saturation by measuring the differential absorption characteristics of oxy and deoxy Hb. Consequently, PAI can be utilized to monitor tumor-related hypoxia, which is a crucial factor in tumor microenvironments that has a strong influence on tumor invasiveness. Reactive oxygen species (ROS)-based therapies, such as photodynamic therapy, radiotherapy, and sonodynamic therapy, are oxygen-consuming, and tumor hypoxia is detrimental to their efficacy. Therefore, a persistent demand exists for agents that can supply oxygen to tumors for better ROS-based therapeutic outcomes. Among the various strategies, NP-mediated supplemental tumor oxygenation is especially encouraging due to its physio-chemical, tumor targeting, and theranostic properties. Here, we focus on NP-based tumor oxygenation, which includes NP as oxygen carriers and oxygen-generating strategies to alleviate hypoxia monitored by PAI. The information obtained from quantitative tumor oxygenation by PAI not only supports optimal therapeutic design but also serves as a highly effective tool to predict therapeutic outcomes.
Collapse
Affiliation(s)
| | - Leu-Wei Lo
- Department of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan;
| |
Collapse
|
13
|
Functional photoacoustic microscopy of hemodynamics: a review. Biomed Eng Lett 2022; 12:97-124. [PMID: 35529339 PMCID: PMC9046529 DOI: 10.1007/s13534-022-00220-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/19/2022] Open
Abstract
Functional blood imaging can reflect tissue metabolism and organ viability, which is important for life science and biomedical studies. However, conventional imaging modalities either cannot provide sufficient contrast or cannot support simultaneous multi-functional imaging for hemodynamics. Photoacoustic imaging, as a hybrid imaging modality, can provide sufficient optical contrast and high spatial resolution, making it a powerful tool for in vivo vascular imaging. By using the optical-acoustic confocal alignment, photoacoustic imaging can even provide subcellular insight, referred as optical-resolution photoacoustic microscopy (OR-PAM). Based on a multi-wavelength laser source and developed the calculation methods, OR-PAM can provide multi-functional hemodynamic microscopic imaging of the total hemoglobin concentration (CHb), oxygen saturation (sO2), blood flow (BF), partial oxygen pressure (pO2), oxygen extraction fraction, and metabolic rate of oxygen (MRO2). This concise review aims to systematically introduce the principles and methods to acquire various functional parameters for hemodynamics by photoacoustic microscopy in recent studies, with characteristics and advantages comparison, typical biomedical applications introduction, and future outlook discussion.
Collapse
|
14
|
Orlova A, Pavlova K, Kurnikov A, Maslennikova A, Myagcheva M, Zakharov E, Skamnitskiy D, Perekatova V, Khilov A, Kovalchuk A, Moiseev A, Turchin I, Razansky D, Subochev P. Noninvasive optoacoustic microangiography reveals dose and size dependency of radiation-induced deep tumor vasculature remodeling. Neoplasia 2022; 26:100778. [PMID: 35220045 PMCID: PMC8889238 DOI: 10.1016/j.neo.2022.100778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
Tumor microvascular responses may provide a sensitive readout indicative of radiation therapy efficacy, its time course and dose dependencies. However, direct high-resolution observation and longitudinal monitoring of large-scale microvascular remodeling in deep tissues remained challenging with the conventional microscopy approaches. We report on a non-invasive longitudinal study of morphological and functional neovascular responses by means of scanning optoacoustic (ОА) microangiography. In vivo imaging of CT26 tumor response to a single irradiation at varying dose (6, 12, and 18 Gy) has been performed over ten days following treatment. Tumor oxygenation levels were further estimated using diffuse optical spectroscopy (DOS) with a contact fiber probe. OA revealed the formation of extended vascular structures on the whole tumor scale during its proliferation, whereas only short fragmented vascular regions were identified following irradiation. On the first day post treatment, a decrease in the density of small (capillary-sized) and medium-sized vessels was revealed, accompanied by an increase in their fragmentation. Larger vessels exhibited an increase in their density accompanied by a decline in the number of vascular segments. Short-lasting response has been observed after 6 and 12 Gy irradiations, whereas 18 Gy treatment resulted in prolonged responses, up to the tenth day after irradiation. DOS measurements further revealed a delayed increase of tumor oxygenation levels for 18 Gy irradiations, commencing on the sixth day post treatment. The ameliorated oxygenation is attributed to diminished oxygen consumption by inhibited tumor cells but not to the elevation of oxygen supply. This work is the first to demonstrate the differential (size-dependent) nature of vascular responses to radiation treatments at varying doses in vivo. The OA approach thus facilitates the study of radiation-induced vascular changes in an unperturbed in vivo environment while enabling deep tissue high-resolution observations at the whole tumor scale.
Collapse
|
15
|
Lefebvre TL, Brown E, Hacker L, Else T, Oraiopoulou ME, Tomaszewski MR, Jena R, Bohndiek SE. The Potential of Photoacoustic Imaging in Radiation Oncology. Front Oncol 2022; 12:803777. [PMID: 35311156 PMCID: PMC8928467 DOI: 10.3389/fonc.2022.803777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy.
Collapse
Affiliation(s)
- Thierry L. Lefebvre
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Else
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Rajesh Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Lui KH, Li S, Lo WS, Gu Y, Wong WT. In vivo photoacoustic imaging for monitoring treatment outcome of corneal neovascularization with metformin eye drops. BIOMEDICAL OPTICS EXPRESS 2021; 12:3597-3606. [PMID: 34221681 PMCID: PMC8221937 DOI: 10.1364/boe.423982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 05/25/2023]
Abstract
Corneal neovascularization (CNV) compromises corneal avascularity and visual acuity. Current clinical visualization approaches are subjective and unable to provide molecular information. Photoacoustic (PA) imaging offers an objective and non-invasive way for angiogenesis investigation through hemodynamic and oxygen saturation level (sO2) quantification. Here, we demonstrate the utility of PA and slit lamp microscope for in vivo rat CNV model. PA images revealed untreated corneas exhibited higher sO2 level than treatment groups. The PA results complement with the color image obtained with slit lamp. These data suggest PA could offer an objective and non-invasive method for monitoring CNV progression and treatment outcome through the sO2 quantification.
Collapse
Affiliation(s)
- Kwok-Ho Lui
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- These authors contributed equally
| | - Shiying Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- These authors contributed equally
| | - Wai-sum Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yanjuan Gu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
18
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
19
|
Keša P, Pokorná E, Grajciarová M, Tonar Z, Vočková P, Trochet P, Kopeček M, Jakša R, Šefc L, Klener P. Quantitative In Vivo Monitoring of Hypoxia and Vascularization of Patient-Derived Murine Xenografts of Mantle Cell Lymphoma Using Photoacoustic and Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1099-1107. [PMID: 33455807 DOI: 10.1016/j.ultrasmedbio.2020.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 12/13/2020] [Indexed: 05/16/2023]
Abstract
Tumor oxygenation and vascularization are important parameters that determine the aggressiveness of the tumor and its resistance to cancer therapies. We introduce dual-modality ultrasound and photoacoustic imaging (US-PAI) for the direct, non-invasive real-time in vivo evaluation of oxygenation and vascularization of patient-derived xenografts (PDXs) of B-cell mantle cell lymphomas. The different optical properties of oxyhemoglobin and deoxyhemoglobin make it possible to determine oxygen saturation (sO2) in tissues using PAI. High-frequency color Doppler imaging enables the visualization of blood flow with high resolution. Tumor oxygenation and vascularization were studied in vivo during the growth of three different subcutaneously implanted patient-derived xenograft (PDX) lymphomas (VFN-M1, VFN-M2 and VFN-M5 R1). Similar values of sO2 (sO2 Vital), determined from US-PAI volumetric analysis, were obtained in small and large VFN-M1 tumors ranging from 37.9 ± 2.2 to 40.5 ± 6.0 sO2 Vital (%) and 37.5 ± 4.0 to 35.7 ± 4.6 sO2 Vital (%) for small and large VFN-M2 PDXs. In contrast, the higher sO2 Vital values ranging from 57.1 ± 4.8 to 40.8 ± 5.7 sO2 Vital (%) (small to large) of VFN-M5 R1 tumors corresponds with the higher aggressiveness of that PDX model. The different tumor percentage vascularization (assessed as micro-vessel areas) of VFN-M1, VFN-M2 and VFN-M5 R1 obtained by color Doppler (2.8 ± 0.1%, 3.8 ± 0.8% and 10.3 ± 2.7%) in large-stage tumors clearly corresponds with their diverse growth and aggressiveness. The data obtained by color Doppler were validated by histology. In conclusion, US-PAI rapidly and accurately provided relevant and reproducible information on tissue oxygenation in PDX tumors in real time without the need for a contrast agent.
Collapse
Affiliation(s)
- Peter Keša
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Eva Pokorná
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Grajciarová
- Department of Histology and Embryology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Petra Vočková
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic; First Department of Medicine-Hematology, University General Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | - Radek Jakša
- Institute of Pathology, University General Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Luděk Šefc
- Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic; First Department of Medicine-Hematology, University General Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
Dantuma M, Kruitwagen S, Ortega-Julia J, Pompe van Meerdervoort RP, Manohar S. Tunable blood oxygenation in the vascular anatomy of a semi-anthropomorphic photoacoustic breast phantom. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200370RR. [PMID: 33728828 PMCID: PMC7961914 DOI: 10.1117/1.jbo.26.3.036003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/19/2021] [Indexed: 05/21/2023]
Abstract
SIGNIFICANCE Recovering accurate oxygenation estimations in the breast with quantitative photoacoustic tomography (QPAT) is not straightforward. Accurate light fluence models are required, but the unknown ground truth of the breast makes it difficult to validate them. Phantoms are often used for the validation, but most reported phantoms have a simple architecture. Fluence models developed in these simplistic objects are not accurate for application on the complex tissues of the breast. AIM We present a sophisticated breast phantom platform for photoacoustic (PA) and ultrasound (US) imaging in general, and specifically for QPAT. The breast phantom is semi-anthropomorphic in distribution of optical and acoustic properties and contains wall-less channels with blood. APPROACH 3D printing approaches are used to develop the solid 3D breast phantom from custom polyvinyl chloride plastisol formulations and additives for replicating the tissue optical and acoustic properties. A flow circuit was developed to flush the channels with bovine blood with a controlled oxygen saturation level. To showcase the phantom's functionality, PA measurements were performed on the phantom with two oxygenation levels. Image reconstructions with and without fluence compensation from Monte Carlo simulations were analyzed for the accuracy of oxygen saturation estimations. RESULTS We present design aspects of the phantom, demonstrate how it is developed, and present its breast-like appearance in PA and US imaging. The oxygen saturations were estimated in two regions of interest with and without using the fluence models. The fluence compensation positively influenced the SO2 estimations in all cases and confirmed that highly accurate fluence models are required to minimize estimation errors. CONCLUSIONS This phantom allows studies to be performed in PA in carefully controlled laboratory settings to validate approaches to recover both qualitative and quantitative features sought after in in-vivo studies. We believe that testing with phantoms of this complexity can streamline the transition of new PA technologies from the laboratory to studies in the clinic.
Collapse
Affiliation(s)
- Maura Dantuma
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
- Address all correspondence to Maura Dantuma,
| | - Saskia Kruitwagen
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
- Medisch Spectrum Twente, Enschede, The Netherlands
| | - Javier Ortega-Julia
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
| | | | - Srirang Manohar
- University of Twente, Multi-Modality Medical Imaging, Techmed Centre, Enschede, The Netherlands
| |
Collapse
|
21
|
Dadgar S, Troncoso JR, Siegel ER, Curry NM, Griffin RJ, Dings RPM, Rajaram N. Spectroscopic investigation of radiation-induced reoxygenation in radiation-resistant tumors. Neoplasia 2021; 23:49-57. [PMID: 33220616 PMCID: PMC7683290 DOI: 10.1016/j.neo.2020.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Fractionated radiation therapy is believed to reoxygenate and subsequently radiosensitize surviving hypoxic cancer cells. Measuring tumor reoxygenation between radiation fractions could conceivably provide an early biomarker of treatment response. However, the relationship between tumor reoxygenation and local control is not well understood. We used noninvasive optical fiber-based diffuse reflectance spectroscopy to monitor radiation-induced changes in hemoglobin oxygen saturation (sO2) in tumor xenografts grown from two head and neck squamous cell carcinoma cell lines - UM-SCC-22B and UM-SCC-47. Tumors were treated with 4 doses of 2 Gy over 2 consecutive weeks and diffuse reflectance spectra were acquired every day during the 2-week period. There was a statistically significant increase in sO2 in the treatment-responsive UM-SCC-22B tumors immediately following radiation. This reoxygenation trend was due to an increase in oxygenated hemoglobin (HbO2) and disappeared over the next 48 h as sO2 returned to preradiation baseline values. Conversely, sO2 in the relatively radiation-resistant UM-SCC-47 tumors increased after every dose of radiation and was driven by a significant decrease in deoxygenated hemoglobin (dHb). Immunohistochemical analysis revealed significantly elevated expression of hypoxia-inducible factor (HIF-1) in the UM-SCC-47 tumors prior to radiation and up to 48 h postradiation compared with the UM-SCC-22B tumors. Our observation of a decrease in dHb, a corresponding increase in sO2, as well as greater HIF-1α expression only in UM-SCC-47 tumors strongly suggests that the reoxygenation within these tumors is due to a decrease in oxygen consumption in the cancer cells, which could potentially play a role in promoting radiation resistance.
Collapse
Affiliation(s)
- Sina Dadgar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | | | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Natalie M Curry
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
22
|
Hysi E, Fadhel MN, Wang Y, Sebastian JA, Giles A, Czarnota GJ, Exner AA, Kolios MC. Photoacoustic imaging biomarkers for monitoring biophysical changes during nanobubble-mediated radiation treatment. PHOTOACOUSTICS 2020; 20:100201. [PMID: 32775198 PMCID: PMC7393572 DOI: 10.1016/j.pacs.2020.100201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 05/04/2023]
Abstract
The development of novel anticancer therapies warrants the parallel development of biomarkers that can quantify their effectiveness. Photoacoustic imaging has the potential to measure changes in tumor vasculature during treatment. Establishing the accuracy of imaging biomarkers requires direct comparisons with gold histological standards. In this work, we explore whether a new class of submicron, vascular disrupting, ultrasonically stimulated nanobubbles enhance radiation therapy. In vivo experiments were conducted on mice bearing prostate cancer tumors. Combined nanobubble plus radiation treatments were compared against conventional microbubbles and radiation alone (single 8 Gy fraction). Acoustic resolution photoacoustic imaging was used to monitor the effects of the treatments 2- and 24-hs post-administration. Histological examination provided metrics of tumor vascularity and tumoral cell death, both of which were compared to photoacoustic-derived biomarkers. Photoacoustic metrics of oxygen saturation reveal a 20 % decrease in oxygenation within 24 h post-treatment. The spectral slope metric could separate the response of the nanobubble treatments from the microbubble counterparts. This study shows that histopathological assessment correlated well with photoacoustic biomarkers of treatment response.
Collapse
Affiliation(s)
- Eno Hysi
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Muhannad N. Fadhel
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Yanjie Wang
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Joseph A. Sebastian
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| | - Anoja Giles
- Deparment of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Gregory J. Czarnota
- Deparment of Radiation Oncology, Sunnybrook Health Sciences Center, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Deparment of Medical Biophysics, University of Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Canada
| | - Agata A. Exner
- Department of Radiology, Case Western Reserve University, Cleveland, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, United States
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, Canada
- Insitute for Biomedical Engineering, Science and Technology, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|
23
|
Schuch LF, Silveira FM, Wagner VP, Borgato GB, Rocha GZ, Castilho RM, Vargas PA, Martins MD. Head and neck cancer patient-derived xenograft models - A systematic review. Crit Rev Oncol Hematol 2020; 155:103087. [PMID: 32992152 DOI: 10.1016/j.critrevonc.2020.103087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) involve the direct surgical transfer of fresh human tumor samples to immunodeficient mice. This systematic review aimed to identify publications of head and neck cancer PDX (HNC-PDX) models, describing the main methodological characteristics and outcomes. METHODS An electronic search was undertaken in four databases, including publications having used HNC-PDX. Data were analyzed descriptively. RESULTS 63 articles were yielded. The nude mouse was one most commonly animal model used (38.8 %), and squamous cell carcinoma accounted for the majority of HNC-PDX (80.6 %). Tumors were mostly implanted in the flank (86.3 %), and the latency period ranged from 30 to 401 days. The successful rate ranged from 17 % to 100 %. Different drugs and pathways were identified. CONCLUSION HNC-PDX appears to significantly recapitulate the morphology of the original HNC and represents a valuable method in translational research for the assessment of the in vivo effect of novel therapies for HNC.
Collapse
Affiliation(s)
- Lauren F Schuch
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Felipe M Silveira
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Vivian P Wagner
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Gabriell B Borgato
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Guilherme Z Rocha
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109-1078, United States; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Pablo A Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil
| | - Manoela D Martins
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade de Campinas, Piracicaba, SP, Brazil; Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Hai P, Qu Y, Li Y, Zhu L, Shmuylovich L, Cornelius LA, Wang LV. Label-free high-throughput photoacoustic tomography of suspected circulating melanoma tumor cells in patients in vivo. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-17. [PMID: 32170857 PMCID: PMC7069252 DOI: 10.1117/1.jbo.25.3.036002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Detection and characterization of circulating tumor cells (CTCs), a key determinant of metastasis, are critical for determining risk of disease progression, understanding metastatic pathways, and facilitating early clinical intervention. AIM We aim to demonstrate label-free imaging of suspected melanoma CTCs. APPROACH We use a linear-array-based photoacoustic tomography system (LA-PAT) to detect melanoma CTCs, quantify their contrast-to-noise ratios (CNRs), and measure their flow velocities in most of the superficial veins in humans. RESULTS With LA-PAT, we successfully imaged suspected melanoma CTCs in patients in vivo, with a CNR >9. CTCs were detected in 3 of 16 patients with stage III or IV melanoma. Among the three CTC-positive patients, two had disease progression; among the 13 CTC-negative patients, 4 showed disease progression. CONCLUSIONS We suggest that LA-PAT can detect suspected melanoma CTCs in patients in vivo and has potential clinical applications for disease monitoring in melanoma.
Collapse
Affiliation(s)
- Pengfei Hai
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Yuan Qu
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Yang Li
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Liren Zhu
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Leonid Shmuylovich
- Washington University School of Medicine, Division of Dermatology, St. Louis, Missouri, United States
| | - Lynn A. Cornelius
- Washington University School of Medicine, Division of Dermatology, St. Louis, Missouri, United States
- Address all correspondence to Lynn A. Cornelius, E-mail: ; Lihong V. Wang, E-mail:
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
- Address all correspondence to Lynn A. Cornelius, E-mail: ; Lihong V. Wang, E-mail:
| |
Collapse
|
25
|
Li Q, Dong H, Yang G, Song Y, Mou Y, Ni Y. Mouse Tumor-Bearing Models as Preclinical Study Platforms for Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:212. [PMID: 32158692 PMCID: PMC7052016 DOI: 10.3389/fonc.2020.00212] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022] Open
Abstract
Preclinical animal models of oral squamous cell carcinoma (OSCC) have been extensively studied in recent years. Investigating the pathogenesis and potential therapeutic strategies of OSCC is required to further progress in this field, and a suitable research animal model that reflects the intricacies of cancer biology is crucial. Of the animal models established for the study of cancers, mouse tumor-bearing models are among the most popular and widely deployed for their high fertility, low cost, and molecular and physiological similarity to humans, as well as the ease of rearing experimental mice. Currently, the different methods of establishing OSCC mouse models can be divided into three categories: chemical carcinogen-induced, transplanted and genetically engineered mouse models. Each of these methods has unique advantages and limitations, and the appropriate application of these techniques in OSCC research deserves our attention. Therefore, this review comprehensively investigates and summarizes the tumorigenesis mechanisms, characteristics, establishment methods, and current applications of OSCC mouse models in published papers. The objective of this review is to provide foundations and considerations for choosing suitable model establishment methods to study the relevant pathogenesis, early diagnosis, and clinical treatment of OSCC.
Collapse
Affiliation(s)
- Qiang Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxian Song
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongbin Mou
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Yongbin Mou
| | - Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- Yanhong Ni
| |
Collapse
|
26
|
Johnson SP, Ogunlade O, Lythgoe MF, Beard P, Pedley RB. Longitudinal Photoacoustic Imaging of the Pharmacodynamic Effect of Vascular Targeted Therapy on Tumors. Clin Cancer Res 2019; 25:7436-7447. [PMID: 31551349 PMCID: PMC7611302 DOI: 10.1158/1078-0432.ccr-19-0360] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/29/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Photoacoustic imaging (PAI) is a novel noninvasive and nonionizing imaging technique that allows longitudinal imaging of tumor vasculature in vivo and monitoring of response to therapy, especially for vascular targeted chemotherapy agents. In this study, we used a novel high-resolution all-optical PAI scanner to observe the pharmacodynamic response to the vascular-disrupting agent OXi4503. EXPERIMENTAL DESIGN Two models of colorectal carcinoma (SW1222 and LS174T) that possess differing pathophysiologic vascularization were established as subcutaneous tumors in mice. Monitoring of response was performed over a 16-day "regrowth" period following treatment at 40 mg/kg, and at day 2 for a "dose response" study at 40 mg/kg, 10 mg/kg, 1 mg/kg, and sham dose. RESULTS Qualitative and quantitative changes in PA signal are observed, with an initial decrease followed by a plateau and subsequent return of signal indicating regrowth. Both tumor types exhibited a decrease in signal; however, the more vascularized SW1222 tumors show greater response to treatment. Decreasing the dose of OXi4503 led to a decrease in PA signal intensity of 60%, 52%, and 20% in SW1222 tumors and 30%, 26%, and 4% for LS174T tumors. CONCLUSIONS We have shown for the first time that PAI can observe the pharmacodynamic response of tumor vasculature to drug treatment both longitudinally and at different dose levels. Assessment of differing response to treatment based on vascular pathophysiologic differences among patients has the potential to provide personalized drug therapy; we have demonstrated that PAI, which is clinically translatable, could be a powerful tool for this purpose.
Collapse
Affiliation(s)
- S Peter Johnson
- UCL Cancer Institute, University College London, London, United Kingdom.
| | - Olumide Ogunlade
- UCL Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom
| | - Paul Beard
- UCL Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - R Barbara Pedley
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
27
|
Basij M, Yan Y, Alshahrani SS, Helmi H, Burton TK, Burmeister JW, Dominello MM, Winer IS, Mehrmohammadi M. Miniaturized phased-array ultrasound and photoacoustic endoscopic imaging system. PHOTOACOUSTICS 2019; 15:100139. [PMID: 31388487 PMCID: PMC6677929 DOI: 10.1016/j.pacs.2019.100139] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/10/2019] [Accepted: 06/17/2019] [Indexed: 05/04/2023]
Abstract
Visualization and detection of early-stage gynecological malignancies represents a challenge for imaging due to limiting factors including tissue accessibility, device ease of use, and accuracy of imaging modalities. In this work, we introduce a miniaturized phased-array ultrasound and photoacoustic endoscopic probe which is capable of providing structural, functional, and molecular data for the characterization of gynecologic disease. The proposed probe consists of a 64-element ultrasound phased-array transducer coupled to a fiber-optic light delivery system for co-registered ultrasound and photoacoustic imaging. The fabricated US and PA imaging endoscope's diameter is 7.5 mm, allowing for potential passage through the cervical canal and thus an intimate contact with gynecological tissues such as the cervical canal and uterus. The developed endoscopic probe was tested and characterized in a set of tissue-mimicking phantoms. US and PA resolutions were measured experimentally using 200 μm diameter wires, resulting in apparent axial and lateral diameters of 289 μm and 299 μm for US, and 308 μm and 378 μm for PA, respectively. The probe's abilities to operate in both discrete and integrated illumination/acquisition were tested in gelatin phantoms with embedded optical absorbers with the results demonstrating the ability to acquire volumetric dual-modal US and PA images.
Collapse
Affiliation(s)
- Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | | | - Hamid Helmi
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Timothy K. Burton
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Jay W. Burmeister
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Michael M. Dominello
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Ira S. Winer
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
28
|
Zheng X, Cui L, Chen M, Soto LA, Graves EE, Rao J. A Near-Infrared Phosphorescent Nanoprobe Enables Quantitative, Longitudinal Imaging of Tumor Hypoxia Dynamics during Radiotherapy. Cancer Res 2019; 79:4787-4797. [PMID: 31311808 DOI: 10.1158/0008-5472.can-19-0530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/21/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022]
Abstract
Hypoxia plays a key role in tumor resistance to radiotherapy. It is important to study hypoxia dynamics during radiotherapy to improve treatment planning and prognosis. Here, we describe a luminescent nanoprobe, composed of a fluorescent semiconducting polymer and palladium complex, for quantitative longitudinal imaging of tumor hypoxia dynamics during radiotherapy. The nanoprobe was designed to provide high sensitivity and reversible response for the subtle change in hypoxia over a narrow range (0-30 mmHg O2), which spans the oxygen range where tumors have limited radiosensitivity. Following intravenous administration, the nanoprobe efficiently accumulated in and distributed across the tumor, including the hypoxic region. The ratio between emissions at 700 and 800 nm provided quantitative mapping of hypoxia across the entire tumor. The nanoprobe was used to image tumor hypoxia dynamics over 7 days during fractionated radiotherapy and revealed that high fractional dose (10 Gy) was more effective in improving tumor reoxygenation than low dose (2 Gy), and the effect tended to persist longer in smaller or more radiosensitive tumors. Our results also indicated the importance of the reoxygenation efficiency of the first fraction in the prediction of the radiation treatment outcome. In summary, this work has established a new nanoprobe for highly sensitive, quantitative, and longitudinal imaging of tumor hypoxia dynamics following radiotherapy, and demonstrated its value for assessing the efficacy of radiotherapy and radiation treatment planning. SIGNIFICANCE: This study presents a novel nanoagent for the visualization and quantification of tumor hypoxia.
Collapse
Affiliation(s)
- Xianchuang Zheng
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, California
| | - Liyang Cui
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, California
| | - Min Chen
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, California
| | - Luis A Soto
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, California
| | - Edward E Graves
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, California
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Stanford, California.
| |
Collapse
|
29
|
Brown E, Brunker J, Bohndiek SE. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis Model Mech 2019; 12:dmm039636. [PMID: 31337635 PMCID: PMC6679374 DOI: 10.1242/dmm.039636] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment (TME) is a complex cellular ecosystem subjected to chemical and physical signals that play a role in shaping tumour heterogeneity, invasion and metastasis. Studying the roles of the TME in cancer progression would strongly benefit from non-invasive visualisation of the tumour as a whole organ in vivo, both preclinically in mouse models of the disease, as well as in patient tumours. Although imaging techniques exist that can probe different facets of the TME, they face several limitations, including limited spatial resolution, extended scan times and poor specificity from confounding signals. Photoacoustic imaging (PAI) is an emerging modality, currently in clinical trials, that has the potential to overcome these limitations. Here, we review the biological properties of the TME and potential of existing imaging methods that have been developed to analyse these properties non-invasively. We then introduce PAI and explore the preclinical and clinical evidence that support its use in probing multiple features of the TME simultaneously, including blood vessel architecture, blood oxygenation, acidity, extracellular matrix deposition, lipid concentration and immune cell infiltration. Finally, we highlight the future prospects and outstanding challenges in the application of PAI as a tool in cancer research and as part of a clinical oncologist's arsenal.
Collapse
Affiliation(s)
- Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Joanna Brunker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
30
|
Yoon H, Zhu YI, Yarmoska SK, Emelianov SY. Design and Demonstration of a Configurable Imaging Platform for Combined Laser, Ultrasound, and Elasticity Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1622-1632. [PMID: 30596572 PMCID: PMC7286075 DOI: 10.1109/tmi.2018.2889736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This paper introduces a configurable combined laser, ultrasound, and elasticity (CLUE) imaging platform. The CLUE platform enables imaging sequences capable of simultaneously providing quantitative acoustic, optical, and mechanical contrast for comprehensive diagnosis and monitoring of complex diseases, such as cancer. The CLUE imaging platform was developed on a Verasonics ultrasound scanner integrated with a pulsed laser, and it was designed to be modular and scalable to allow researchers to create their own specific imaging sequences efficiently. The CLUE imaging platform and sequence were demonstrated in a tissue-mimicking phantom containing a stiff inclusion labeled with optically-activated nanodroplets and in an ex vivo mouse spleen. We have shown that CLUE imaging can simultaneously capture multi-functional imaging signals providing quantitative information on tissue.
Collapse
|
31
|
Hysi E, Fadhel MN, Moore MJ, Zalev J, Strohm EM, Kolios MC. Insights into photoacoustic speckle and applications in tumor characterization. PHOTOACOUSTICS 2019; 14:37-48. [PMID: 31080733 PMCID: PMC6505056 DOI: 10.1016/j.pacs.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 05/20/2023]
Abstract
In ultrasound imaging, fully-developed speckle arises from the spatiotemporal superposition of pressure waves backscattered by randomly distributed scatterers. Speckle appearance is affected by the imaging system characteristics (lateral and axial resolution) and the random-like nature of the underlying tissue structure. In this work, we examine speckle formation in acoustic-resolution photoacoustic (PA) imaging using simulations and experiments. Numerical and physical phantoms were constructed to demonstrate that PA speckle carries information related to unresolved absorber structure in a manner similar to ultrasound speckle and unresolved scattering structures. A fractal-based model of the tumor vasculature was used to study PA speckle from unresolved cylindrical vessels. We show that speckle characteristics and the frequency content of PA signals can be used to monitor changes in average vessel size, linked to tumor growth. Experimental validation on murine tumors demonstrates that PA speckle can be utilized to characterize the unresolved vasculature in acoustic-resolution photoacoustic imaging.
Collapse
Affiliation(s)
- Eno Hysi
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, ON, Canada
| | - Muhannad N. Fadhel
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, ON, Canada
| | - Michael J. Moore
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, ON, Canada
| | - Jason Zalev
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, ON, Canada
| | - Eric M. Strohm
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Michael C. Kolios
- Department of Physics, Ryerson University, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, ON, Canada
- Corresponding author.
| |
Collapse
|
32
|
Van Nest SJ, Nicholson LM, Pavey N, Hindi MN, Brolo AG, Jirasek A, Lum JJ. Raman spectroscopy detects metabolic signatures of radiation response and hypoxic fluctuations in non-small cell lung cancer. BMC Cancer 2019; 19:474. [PMID: 31109312 PMCID: PMC6528330 DOI: 10.1186/s12885-019-5686-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/08/2019] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Radiation therapy is a standard form of treating non-small cell lung cancer, however, local recurrence is a major issue with this type of treatment. A better understanding of the metabolic response to radiation therapy may provide insight into improved approaches for local tumour control. Cyclic hypoxia is a well-established determinant that influences radiation response, though its impact on other metabolic pathways that control radiosensitivity remains unclear. METHODS We used an established Raman spectroscopic (RS) technique in combination with immunofluorescence staining to measure radiation-induced metabolic responses in human non-small cell lung cancer (NSCLC) tumour xenografts. Tumours were established in NOD.CB17-Prkdcscid/J mice, and were exposed to radiation doses of 15 Gy or left untreated. Tumours were harvested at 2 h, 1, 3 and 10 days post irradiation. RESULTS We report that xenografted NSCLC tumours demonstrate rapid and stable metabolic changes, following exposure to 15 Gy radiation doses, which can be measured by RS and are dictated by the extent of local tissue oxygenation. In particular, fluctuations in tissue glycogen content were observed as early as 2 h and as late as 10 days post irradiation. Metabolically, this signature was correlated to the extent of tumour regression. Immunofluorescence staining for γ-H2AX, pimonidazole and carbonic anhydrase IX (CAIX) correlated with RS-identified metabolic changes in hypoxia and reoxygenation following radiation exposure. CONCLUSION Our results indicate that RS can identify sequential changes in hypoxia and tumour reoxygenation in NSCLC, that play crucial roles in radiosensitivity.
Collapse
Affiliation(s)
- Samantha J. Van Nest
- Department of Physics and Astronomy, University of Victoria, PO BOX 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
| | - Leah M. Nicholson
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
| | - Nils Pavey
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
| | - Mathew N. Hindi
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
| | - Alexandre G. Brolo
- Department of Chemistry, University of Victoria, PO BOX 3065, Victoria, BC V8W 3V6 Canada
| | - Andrew Jirasek
- Department of Physics, I.K. Barber School of Arts and Sciences, University of British Columbia-Okanagan, 3187 University Way, Kelowna, BC V1V 1V7 Canada
| | - Julian J. Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, BC V8R 6V5 Canada
- Department of Biochemistry and Microbiology, University of Victoria, PO BOX 1700 STN CSC, Victoria, BC V8W 2Y2 Canada
| |
Collapse
|
33
|
Gargiulo S, Albanese S, Mancini M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5080267. [PMID: 31182936 PMCID: PMC6515147 DOI: 10.1155/2019/5080267] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
The optical imaging plays an increasing role in preclinical studies, particularly in cancer biology. The combined ultrasound and optical imaging, named photoacoustic imaging (PAI), is an emerging hybrid technique for real-time molecular imaging in preclinical research and recently expanding into clinical setting. PAI can be performed using endogenous contrast, particularly from oxygenated and deoxygenated hemoglobin and melanin, or exogenous contrast agents, sometimes targeted for specific biomarkers, providing comprehensive morphofunctional and molecular information on tumor microenvironment. Overall, PAI has revealed notable opportunities to improve knowledge on tumor pathophysiology and on the biological mechanisms underlying therapy. The aim of this review is to introduce the principles of PAI and to provide a brief overview of current PAI applications in preclinical research, highlighting also on recent advances in clinical translation for cancer diagnosis, staging, and therapy.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Sandra Albanese
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Marcello Mancini
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| |
Collapse
|
34
|
Orlova AG, Maslennikova AV, Golubiatnikov GY, Suryakova AS, Kirillin MY, Kurakina DA, Kalganova TI, Volovetsky AB, Turchin IV. Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation. Biomed Phys Eng Express 2019; 5. [PMID: 34247150 DOI: 10.1088/2057-1976/ab0b19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/27/2019] [Indexed: 01/09/2023]
Abstract
Modern radiation therapy of malignant tumors requires careful selection of conditions that can improve the effectiveness of the treatment. The study of the dynamics and mechanisms of tumor reoxygenation after radiation therapy makes it possible to select the regimens for optimizing the ongoing treatment. Diffuse optical spectroscopy (DOS) is among the methods used for non-invasive assessment of tissue oxygenation. In this work DOS was used forin vivoregistration of changes in oxygenation level of an experimental rat tumor after single-dose irradiation at a dose of 10 Gy and investigation of their possible mechanisms. It was demonstrated that in 24 h after treatment, tumor oxygenation increases, which is mainly due to an increase in the oxygen supply to the tissues. DOS is demonstrated to be efficient for study of changes in blood flow parameters when monitoring tumor response to therapy.
Collapse
Affiliation(s)
- A G Orlova
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A V Maslennikova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - G Yu Golubiatnikov
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A S Suryakova
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - M Yu Kirillin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - D A Kurakina
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - T I Kalganova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Clinical Laboratory, N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - A B Volovetsky
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - I V Turchin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
35
|
Orlova A, Sirotkina M, Smolina E, Elagin V, Kovalchuk A, Turchin I, Subochev P. Raster-scan optoacoustic angiography of blood vessel development in colon cancer models. PHOTOACOUSTICS 2019; 13:25-32. [PMID: 30555784 PMCID: PMC6275215 DOI: 10.1016/j.pacs.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/19/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.
Collapse
Affiliation(s)
- Anna Orlova
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
- Corresponding author.
| | - Marina Sirotkina
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Ekaterina Smolina
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Vadim Elagin
- Privolzhsky Medical Research University, 10/1 Minin & Pozharsky sq., Nizhny Novgorod 603950, Russia
| | - Andrey Kovalchuk
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Ilya Turchin
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| | - Pavel Subochev
- Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Str., Nizhny Novgorod 603950, Russia
| |
Collapse
|
36
|
Martinho Costa M, Shah A, Rivens I, Box C, O’Shea T, Papaevangelou E, Bamber J, ter Haar G. Quantitative photoacoustic imaging study of tumours in vivo: Baseline variations in quantitative measurements. PHOTOACOUSTICS 2019; 13:53-65. [PMID: 30581729 PMCID: PMC6297191 DOI: 10.1016/j.pacs.2018.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 05/14/2023]
Abstract
Photoacoustic imaging (PAI) provides information on haemoglobin levels and blood oxygenation (sO2). To facilitate assessment of the variability in sO2 and haemoglobin in tumours, for example in response to therapies, the baseline variability of these parameters was evaluated in subcutaneous head and neck tumours in mice, using a PAI system (MSOTinVision-256TF). Tumours of anaesthetized animals (midazolam-fentanyl-medetomidine) were imaged for 75 min, in varying positions, and repeatedly over 6 days. An increasing linear trend for average tumoural haemoglobin and blood sO2 was observed, when imaging over 75 min. There were no significant differences in these temporal trends, when repositioning tumours. A negative correlation was found between the percent decrease in blood sO2 over 6 days and tumour growth rate. This paper shows the potential of PAI to provide baseline data for assessing the significance of intra- and inter-tumoural variations that may eventually have value for predicting and/or monitoring cancer treatment response.
Collapse
Affiliation(s)
- Márcia Martinho Costa
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Anant Shah
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Ian Rivens
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Carol Box
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Tuathan O’Shea
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Efthymia Papaevangelou
- School of Immunology and Microbial Sciences, Guy’s Hospital, King’s College London, London, SE1 9RT, United Kingdom
| | - Jeffrey Bamber
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| | - Gail ter Haar
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London, SM2 5PT, United Kingdom
| |
Collapse
|
37
|
Emerging Functional Imaging Biomarkers of Tumour Responses to Radiotherapy. Cancers (Basel) 2019; 11:cancers11020131. [PMID: 30678055 PMCID: PMC6407112 DOI: 10.3390/cancers11020131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/11/2022] Open
Abstract
Tumour responses to radiotherapy are currently primarily assessed by changes in size. Imaging permits non-invasive, whole-body assessment of tumour burden and guides treatment options for most tumours. However, in most tumours, changes in size are slow to manifest and can sometimes be difficult to interpret or misleading, potentially leading to prolonged durations of ineffective treatment and delays in changing therapy. Functional imaging techniques that monitor biological processes have the potential to detect tumour responses to treatment earlier and refine treatment options based on tumour biology rather than solely on size and staging. By considering the biological effects of radiotherapy, this review focusses on emerging functional imaging techniques with the potential to augment morphological imaging and serve as biomarkers of early response to radiotherapy.
Collapse
|
38
|
Lee CH, Folz J, Tan JWY, Jo J, Wang X, Kopelman R. Chemical Imaging in Vivo: Photoacoustic-Based 4-Dimensional Chemical Analysis. Anal Chem 2019; 91:2561-2569. [DOI: 10.1021/acs.analchem.8b04797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chang H. Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeff Folz
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joel W. Y. Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Raoul Kopelman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Yang Z, Chen Q, Chen J, Dong Z, Zhang R, Liu J, Liu Z. Tumor-pH-Responsive Dissociable Albumin-Tamoxifen Nanocomplexes Enabling Efficient Tumor Penetration and Hypoxia Relief for Enhanced Cancer Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803262. [PMID: 30307701 DOI: 10.1002/smll.201803262] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/23/2018] [Indexed: 05/06/2023]
Abstract
Despite the promises of applying nano-photosensitizers (nano-PSs) for photodynamic therapy (PDT) against cancer, severe tumor hypoxia and limited tumor penetration of nano-PSs would lead to nonoptimized therapeutic outcomes of PDT. Therefore, herein a biocompatible nano-PS is prepared by using tamoxifen (TAM), an anti-estrogen compound, to induce self-assembly of chlorin e6 (Ce6) modified human serum albumin (HSA). The formed HSA-Ce6/TAM nanocomplexes, which are stable under neutral pH with a diameter of ≈130 nm, would be dissociated into individual HSA-Ce6 and TAM molecules under the acidic tumor microenvironment, owing to the pH responsive transition of TAM from hydrophobic to hydrophilic. Upon systemic administration, such HSA-Ce6/TAM nanoparticles exhibit prolonged blood circulation and high accumulation in the tumor, where it would undergo rapid pH responsive dissociation to enable obviously enhanced intratumoral penetration of HSA-Ce6. Furthermore, utilizing the ability of TAM in reducing the oxygen consumption of cancer cells, it is found that HSA-Ce6/TAM after systemic administration could efficiently attenuate the tumor hypoxia status. Those effects acting together lead to remarkably enhanced PDT treatment. This work presents a rather simple approach to fabricate smart nano-PSs with multiple functions integrated into a single system via self-assembly of all-biocompatible components, promising for the next generation cancer PDT.
Collapse
Affiliation(s)
- Zhijuan Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jiawen Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Rui Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Jingjing Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
40
|
Balasundaram G, Ding L, Li X, Attia ABE, Dean-Ben XL, Ho CJH, Chandrasekharan P, Tay HC, Lim HQ, Ong CB, Mason RP, Razansky D, Olivo M. Noninvasive Anatomical and Functional Imaging of Orthotopic Glioblastoma Development and Therapy using Multispectral Optoacoustic Tomography. Transl Oncol 2018; 11:1251-1258. [PMID: 30103155 PMCID: PMC6092474 DOI: 10.1016/j.tranon.2018.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 01/13/2023] Open
Abstract
PURPOSE Here we demonstrate the potential of multispectral optoacoustic tomography (MSOT), a new non-invasive structural and functional imaging modality, to track the growth and changes in blood oxygen saturation (sO2) in orthotopic glioblastoma (GBMs) and the surrounding brain tissues upon administration of a vascular disruptive agent (VDA). METHODS Nude mice injected with U87MG tumor cells were longitudinally monitored for the development of orthotopic GBMs up to 15 days and observed for changes in sO2 upon administration of combretastatin A4 phosphate (CA4P, 30 mg/kg), an FDA approved VDA for treating solid tumors. We employed a newly-developed non-negative constrained approach for combined MSOT image reconstruction and unmixing in order to quantitatively map sO2 in whole mouse brains. RESULTS Upon longitudinal monitoring, tumors could be detected in mouse brains using single-wavelength data as early as 6 days post tumor cell inoculation. Fifteen days post-inoculation, tumors had higher sO2 of 63 ± 11% (n = 5, P < .05) against 48 ± 7% in the corresponding contralateral brain, indicating their hyperoxic status. In a different set of animals, 42 days post-inoculation, tumors had lower sO2 of 42 ± 5% against 49 ± 4% (n = 3, P < .05) in the contralateral side, indicating their hypoxic status. Upon CA4P administration, sO2 in 15 days post-inoculation tumors dropped from 61 ± 9% to 36 ± 1% (n = 4, P < .01) within one hour, then reverted to pre CA4P treatment values (63 ± 6%) and remained constant until the last observation time point of 6 hours. CONCLUSION With the help of advanced post processing algorithms, MSOT was capable of monitoring the tumor growth and assessing hemodynamic changes upon administration of VDAs in orthotopic GBMs.
Collapse
Affiliation(s)
- Ghayathri Balasundaram
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Lu Ding
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Xiuting Li
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Amalina Binte Ebrahim Attia
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Xose Luis Dean-Ben
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Chris Jun Hui Ho
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Prashant Chandrasekharan
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Hui Chien Tay
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Hann Qian Lim
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667
| | - Chee Bing Ong
- Advanced Molecular Pathology Lab (AMPL), Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos building, Singapore 138673
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel Razansky
- Institute for Biological and Medical Imaging, Technical University of Munich and Helmholtz Center Munich, Munich, Germany.
| | - Malini Olivo
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios, Singapore 138667.
| |
Collapse
|
41
|
Mukaddim RA, Rodgers A, Hacker TA, Heinmiller A, Varghese T. Real-Time in Vivo Photoacoustic Imaging in the Assessment of Myocardial Dynamics in Murine Model of Myocardial Ischemia. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2155-2164. [PMID: 30064849 PMCID: PMC6135705 DOI: 10.1016/j.ultrasmedbio.2018.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/06/2018] [Accepted: 05/24/2018] [Indexed: 05/03/2023]
Abstract
Photoacoustic imaging (PAI) is an evolving real-time imaging modality that combines the higher contrast of optical imaging with the higher spatial resolution of ultrasound imaging. We utilized dual-wavelength PAI for the diagnosis and monitoring of myocardial ischemia by assessing variations in blood oxygen saturation estimated in a murine model. The use of high-frequency ultrasound in conjunction with PAI enabled imaging of anatomic and functional changes associated with ischemia. Myocardial ischemia was established in eight mice by ligating the left anterior descending artery (LAD). Longitudinal results reveal that PAI is sensitive to acute myocardial ischemia, with a rapid decline in blood oxygen saturation (p ˂ 0.001) observed after LAD ligation (30 min: 33.05 ± 6.80%, 80 min: 36.59 ± 5.22%, 120 min: 36.70 ± 9.46%, 24 h: 40.55 ± 13.04%) compared with baseline (87.83 ± 5.73%). Variation in blood oxygen saturation was found to be linearly correlated with ejection fraction (%), fractional shortening (%) and stroke volume (µL), with Pearson's correlation coefficient values of 0.66, 0.67 and 0.77, respectively (p ˂ 0.001). Our results indicate that PAI has the potential for real-time diagnosis and monitoring of acute myocardial ischemia.
Collapse
Affiliation(s)
- Rashid Al Mukaddim
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Allison Rodgers
- Section of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Timothy A Hacker
- Section of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | - Tomy Varghese
- Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|
42
|
Yoon H, Emelianov SY. Combined Multiwavelength Photoacoustic and Plane-Wave Ultrasound Imaging for Probing Dynamic Phase-Change Contrast Agents. IEEE Trans Biomed Eng 2018; 66:595-598. [PMID: 29993455 DOI: 10.1109/tbme.2018.2849077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The purpose of this study was to introduce combined multiwavelength photoacoustic (PA) and plane-wave ultrasound (US) imaging referred to as mwPA/pwUS imaging capable of probing the rapid dynamic behavior of optically activated phase-change contrast agents. METHODS A dedicated mwPA/pwUS imaging sequence was developed based on a programmable US system synchronized with a tunable laser to irradiate tissue with laser pulses at desired optical wavelengths and to acquire post laser pulse PA images followed by ultrafast plane-wave US images. To evaluate the mwPA/pwUS imaging, a capillary filled with optically responsive perfluorohexane nanodroplets (PFHnDs) containing a dye with the peak absorption at 760 nm was imaged with optical wavelengths ranging from 700 to 940 nm. The differences between post-laser ultrafast US images [i.e., differential US (ΔUS)] were taken to visualize the recondensation dynamics of PFHnDs at each wavelength. RESULTS The PA images of PFHnDs showed higher contrast near 760 nm wavelength, corresponding to the peak absorption of the dye encapsulated in the PFHnDs. Moreover, the ΔUS signals immediately after 760-nm pulsed laser irradiation were also high due to the increased US contrast associated with vaporized PFHnDs. CONCLUSION The mwPA/pwUS imaging allowed for the US-based optical spectroscopic characterization of PFHnDs and their dynamics. SIGNIFICANCE The introduced mwPA/pwUS imaging sequence can be used in various clinical applications where both spectroscopic PA imaging of endogenous and/or exogenous chromophores and ultrafast US imaging of phase-change nanodroplets are desired.
Collapse
|
43
|
Greening GJ, Miller KP, Spainhour CR, Cato MD, Muldoon TJ. Effects of isoflurane anesthesia on physiological parameters in murine subcutaneous tumor allografts measured via diffuse reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2018; 9:2871-2886. [PMID: 30258696 PMCID: PMC6154201 DOI: 10.1364/boe.9.002871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 05/03/2023]
Abstract
Diffuse reflectance spectroscopy (DRS) has been used in murine studies to quantify tumor perfusion and therapeutic response. These studies frequently use inhaled isoflurane anesthesia, which depresses the respiration rate and results in the desaturation of arterial oxygen saturation, potentially affecting tissue physiological parameters. However, there have been no controlled studies quantifying the effect of isoflurane anesthesia on DRS-derived physiological parameters of murine tissue. The goal of this study was to perform DRS on Balb/c mouse (n = 10) tissue under various anesthesia conditions to quantify effects on tissue physiological parameters, including total hemoglobin concentration, tissue oxygen saturation, oxyhemoglobin and reduced scattering coefficient. Two independent variables were manipulated including metabolic gas type (pure oxygen vs. medical air) and isoflurane concentration (1.5 to 4.0%). The 1.5% isoflurane and 1 L/min oxygen condition most closely mimicked a no-anesthesia condition with oxyhemoglobin concentration within 89% ± 19% of control. The time-dependent effects of isoflurane anesthesia were tested, revealing that anesthetic induction with 4.0% isoflurane can affect DRS-derived physiological parameters up to 20 minutes post-induction. Finally, spectroscopy with and without isoflurane anesthesia was compared for colon tumor Balb/c-CT26 allografts (n = 5) as a representative model of subcutaneous murine tumor allografts. Overall, isoflurane anesthesia yielded experimentally-induced depressed oxyhemoglobin, and this depression was both concentration and time dependent. Investigators should understand the dynamic effects of isoflurane on tissue physiological parameters measured by DRS. These results may guide investigators in eliminating, limiting, or managing anesthesia-induced physiological changes in DRS studies in mouse models.
Collapse
Affiliation(s)
- Gage J. Greening
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kathryn P. Miller
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Caroline R. Spainhour
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Mattison D. Cato
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Timothy J. Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
44
|
Vincent-Chong VK, DeJong H, Rich LJ, Patti A, Merzianu M, Hershberger PA, Seshadri M. Impact of Age on Disease Progression and Microenvironment in Oral Cancer. J Dent Res 2018; 97:1268-1276. [PMID: 29750890 DOI: 10.1177/0022034518775736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite the recognized link between aging and cancer, most preclinical studies in experimental tumor models are conducted with 6- to 8-wk-old rodents. The goal of the present study was to examine the impact of age on tumor incidence, growth, and microenvironmental characteristics in mouse models of head and neck squamous cell carcinoma (HNSCC). Experimental studies were conducted with the 4-nitroquinoline-oxide (4NQO) oral carcinogenesis model and orthotopic FaDu HNSCC xenografts, established in young (7 to 12 wk of age) and old (65 to 70 wk of age) female C57BL/6 mice ( n = 44; 4NQO model) and severe combined immunodeficient mice ( n = 13; HNSCC xenografts). Noninvasive whole body magnetic resonance imaging revealed increased subcutaneous and visceral fat in aging animals of both strains. On histologic examination, a higher incidence ( P < 0.001) of severe dysplasia/invasive squamous cell carcinoma was observed in old mice (92%) as compared with young mice (69%). Old C57BL/6 mice exposed to 4NQO exhibited increased incidence of oral and extraoral (peritoneal masses) neoplasms (42%) versus their young counterparts ( P < 0.05). The incidence of extraoral neoplasms was significantly lower (16%) in the younger cohort. Interestingly, no difference in growth rate and oxygen saturation was observed between orthotopic FaDu xenografts established in old and young severe combined immunodeficient mice. Our observations suggest that host age may have an impact on the growth kinetics and progression of HNSCC in the immunocompetent 4NQO model. Further investigation into the impact of aging on tumor response to preventive and therapeutic intervention is warranted.
Collapse
Affiliation(s)
- V K Vincent-Chong
- 1 Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - H DeJong
- 1 Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - L J Rich
- 1 Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - A Patti
- 2 Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - M Merzianu
- 3 Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - P A Hershberger
- 4 Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - M Seshadri
- 1 Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,4 Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
45
|
Verma A, Rich LJ, Vincent-Chong VK, Seshadri M. Visualizing the effects of metformin on tumor growth, vascularity, and metabolism in head and neck cancer. J Oral Pathol Med 2018; 47:484-491. [PMID: 29573032 DOI: 10.1111/jop.12705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The antidiabetic drug metformin (Met) is believed to inhibit tumor proliferation by altering the metabolism of cancer cells. In this study, we examined the effects of Met on tumor oxygenation, metabolism, and growth in head and neck squamous cell carcinoma (HNSCC) using non-invasive multimodal imaging. MATERIALS AND METHODS Severe combined immunodeficient (SCID) mice bearing orthotopic FaDu HNSCC xenografts were treated with Met (200 mg/kg, ip) once daily for 5 days. Tumor oxygen saturation (%sO2 ) and hemoglobin concentration (HbT) were measured using photoacoustic imaging (PAI). Fluorescence imaging was employed to measure intratumoral uptake of 2-deoxyglucosone (2-DG) following Met treatment while magnetic resonance imaging (MRI) was utilized to measure tumor volume. Correlative immunostaining of tumor sections for markers of proliferation (Ki67) and vascularity (CD31) was also performed. RESULTS At 5 days post-Met treatment, PAI revealed a significant increase (P < .05) in %sO2 and HbT levels in treated tumors compared to untreated controls. Fluorescence imaging at this time point revealed a 46% decrease in mean 2-DG uptake compared to controls. No changes in hemodynamic parameters were observed in mouse salivary gland tissue. A significant decrease in Ki-67 staining (P < .001) and MR-based tumor volume was also observed in Met-treated tumors compared to controls with no change in CD31 + vessel count following Met therapy. CONCLUSION Our results provide, for the first time, direct in vivo evidence of Met-induced changes in tumor microenvironmental parameters in HNSCC xenografts. Our findings highlight the utility of multimodal functional imaging for non-invasive mapping of the effects of Met in HNSCC.
Collapse
Affiliation(s)
- Aparajita Verma
- Department of Oral Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Laurie J Rich
- Department of Oral Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Mukund Seshadri
- Department of Oral Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
46
|
Rich LJ, Miller A, Singh AK, Seshadri M. Photoacoustic Imaging as an Early Biomarker of Radio Therapeutic Efficacy in Head and Neck Cancer. Theranostics 2018; 8:2064-2078. [PMID: 29721063 PMCID: PMC5928871 DOI: 10.7150/thno.21708] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
The negative impact of tumor hypoxia on radiotherapeutic efficacy is well recognized. However, an easy to use, reliable imaging method for assessment of tumor oxygenation in routine clinical practice remains elusive. Photoacoustic imaging (PAI) is a relatively new imaging technique that utilizes a combination of light and ultrasound (US) to enable functional imaging of tumor hemodynamic characteristics in vivo. Several clinical trials are currently evaluating the utility of PAI in cancer detection for breast, thyroid, and prostate cancer. Here, we evaluated the potential of PAI for rapid, label-free, non-invasive quantification of tumor oxygenation as a biomarker of radiation response in head and neck cancer. Methods: Studies were performed human papilloma virus- positive (HPV+) and -negative (HPV-) patient-derived xenograft (PDX) models of head and neck squamous cell carcinoma (HNSCC). PAI was utilized for longitudinal assessment of tumor hemodynamics (oxygenation saturation and hemoglobin concentration) before, during and after fractionated radiation therapy (fRT). Imaging datasets were correlated with histologic measures of vascularity (CD31), DNA damage (phosphorylated γH2AX) and statistical modeling of tumor growth. Results: A differential response to fRT was observed between HPV+ and HPV- xenografts. Temporal changes in tumor hemodynamics (oxygen saturation and hemoglobin concentration) measured by PAI showed significant association with treatment outcomes. PAI-based changes in oxygen saturation were detected within days after initiation of fRT prior to detectable change in tumor volume, highlighting the potential of PAI to serve as an early biomarker of therapeutic efficacy. Consistent with PAI results, immunohistochemical staining of vascularity (CD31) and DNA damage (phosphorylated γH2AX) revealed distinct patterns of response in HPV+ and HPV- xenografts. Conclusion: Collectively, our observations demonstrate the utility of PAI for temporal mapping of tumor hemodynamics and the value of PAI read-outs as surrogate measures of radiation response in HNSCC.
Collapse
Affiliation(s)
- Laurie. J. Rich
- Laboratory for Translational Imaging, Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, New York 14263
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Austin Miller
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Anurag K. Singh
- Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263
| | - Mukund Seshadri
- Laboratory for Translational Imaging, Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, New York 14263
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
- Department of Dentistry and Maxillofacial Prosthetics, Roswell Park Cancer Institute, Buffalo, New York 14263
| |
Collapse
|
47
|
Bendinger AL, Glowa C, Peter J, Karger CP. Photoacoustic imaging to assess pixel-based sO2 distributions in experimental prostate tumors. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-11. [PMID: 29560625 DOI: 10.1117/1.jbo.23.3.036009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
A protocol for photoacoustic imaging (PAI) has been developed to assess pixel-based oxygen saturation (sO2) distributions of experimental tumor models. The protocol was applied to evaluate the dependence of PAI results on measurement settings, reproducibility of PAI, and for the characterization of the oxygenation status of experimental prostate tumor sublines (Dunning R3327-H, -HI, -AT1) implanted subcutaneously in male Copenhagen rats. The three-dimensional (3-D) PA data employing two wavelengths were used to estimate sO2 distributions. If the PA signal was sufficiently strong, the distributions were independent from signal gain, threshold, and positioning of animals. Reproducibility of sO2 distributions with respect to shape and median values was demonstrated over several days. The three tumor sublines were characterized by the shapes of their sO2 distributions and their temporal response after external changes of the oxygen supply (100% O2 or air breathing and clamping of tumor-supplying artery). The established protocol showed to be suitable for detecting temporal changes in tumor oxygenation as well as differences in oxygenation between tumor sublines. PA results were in accordance with histology for hypoxia, perfusion, and vasculature. The presented protocol for the assessment of pixel-based sO2 distributions provides more detailed information as compared to conventional region-of-interest-based analysis of PAI, especially with respect to the detection of temporal changes and tumor heterogeneity.
Collapse
Affiliation(s)
- Alina L Bendinger
- German Cancer Research Center, Department of Medical Physics in Radiology, Heidelberg, Germany
- University of Heidelberg, Faculty of Biosciences, Heidelberg, Germany
| | - Christin Glowa
- German Cancer Research Center, Department of Medical Physics in Radiation Oncology, Heidelberg, Germany
- University Hospital Heidelberg, Department of Radiation Oncology and Radiotherapy, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, Hei, Germany
| | - Jörg Peter
- German Cancer Research Center, Department of Medical Physics in Radiology, Heidelberg, Germany
| | - Christian P Karger
- German Cancer Research Center, Department of Medical Physics in Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology, National Center for Radiation Research in Oncology, Hei, Germany
| |
Collapse
|
48
|
|
49
|
Daecher A, Stanczak M, Liu JB, Zhang J, Du S, Forsberg F, Leeper DB, Eisenbrey JR. Localized microbubble cavitation-based antivascular therapy for improving HCC treatment response to radiotherapy. Cancer Lett 2017; 411:100-105. [PMID: 28969964 DOI: 10.1016/j.canlet.2017.09.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 01/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide and the fastest growing malignancy in the United States. With a 5-year survival rate below 12%, effective therapies for HCC are needed. Current treatments for HCC include microwave and radiofrequency ablation, high intensity focused ultrasound, liver transplant, surgical resection, and localized embolizations. However, each of these approaches has some limitation, making it imperative to develop improved methods for sensitizing tumors prior to therapy. We hypothesized that the use of ultrasound-triggered microbubble destruction (UTMD), which sensitizes tumors to radiotherapy by inducing vascular endothelial cell apoptosis, will selectively sensitize malignant tissue to radiotherapy and improve outcomes. To test this, 18 nude rats were inoculated in the right liver lobe with Hu7.5 HCC cells and after tumor formation, received 5 Gy radiotherapy, UTMD, or UTMD prior to radiotherapy. Compared to radiotherapy alone, there was a 170% reduction in tumor growth 7 days post treatment and a 3.2X improvement in median survival time when radiotherapy was combined with UTMD. These results indicate that UTMD is an effective adjunct when combined with radiotherapy to treat HCC.
Collapse
Affiliation(s)
- Annemarie Daecher
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Maria Stanczak
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ji-Bin Liu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jie Zhang
- Tianjin Medical University General Hospital, Heping District, Tianjin 300052, China
| | - Shisuo Du
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Flemming Forsberg
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dennis B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John R Eisenbrey
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
50
|
Mitcham T, Taghavi H, Long J, Wood C, Fuentes D, Stefan W, Ward J, Bouchard R. Photoacoustic-based sO 2 estimation through excised bovine prostate tissue with interstitial light delivery. PHOTOACOUSTICS 2017; 7:47-56. [PMID: 28794990 PMCID: PMC5540703 DOI: 10.1016/j.pacs.2017.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 05/08/2023]
Abstract
Photoacoustic (PA) imaging is capable of probing blood oxygen saturation (sO2), which has been shown to correlate with tissue hypoxia, a promising cancer biomarker. However, wavelength-dependent local fluence changes can compromise sO2 estimation accuracy in tissue. This work investigates using PA imaging with interstitial irradiation and local fluence correction to assess precision and accuracy of sO2 estimation of blood samples through ex vivo bovine prostate tissue ranging from 14% to 100% sO2. Study results for bovine blood samples at distances up to 20 mm from the irradiation source show that local fluence correction improved average sO2 estimation error from 16.8% to 3.2% and maintained an average precision of 2.3% when compared to matched CO-oximeter sO2 measurements. This work demonstrates the potential for future clinical translation of using fluence-corrected and interstitially driven PA imaging to accurately and precisely assess sO2 at depth in tissue with high resolution.
Collapse
Affiliation(s)
- Trevor Mitcham
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Houra Taghavi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - James Long
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cayla Wood
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Wolfgang Stefan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard Bouchard
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Corresponding author at: Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|