1
|
Chen H, Shi X, Liu N, Jiang Z, Ma C, Luo G, Liu S, Wei X, Liu Y, Ming D. Photobiomodulation therapy mitigates depressive-like behaviors by remodeling synaptic links and mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112998. [PMID: 39096719 DOI: 10.1016/j.jphotobiol.2024.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Depression, a multifactorial mental disorder, characterized by cognitive slowing, anxiety, and impaired cognitive function, imposes a significant burden on public health. Photobiomodulation (PBM), involving exposure to sunlight or artificial light at a specific intensity and wavelength for a determined duration, influences brain activity, functional connectivity, and plasticity. It is recognized for its therapeutic efficacy in treating depression, yet its molecular and cellular underpinnings remain obscure. Here, we investigated the impact of PBM with 468 nm light on depression-like behavior and neuronal damage in the chronic unpredictable mild stress (CUMS) murine model, a commonly employed animal model for studying depression. Our results demonstrate that PBM treatment ameliorated behavioral deficits, inhibited neuroinflammation and apoptosis, and notably rejuvenates the hippocampal synaptic function in depressed mice, which may be mainly attributed to the up-regulation of brain-derived neurotrophic factor signaling pathways. In addition, in vitro experiments with a corticosterone-induced hippocampal neuron injury model demonstrate reduced oxidative stress and improved mitochondrial function, further validating the therapeutic potential of PBM. In summary, these findings suggest PBM as a promising, non-invasive treatment for depression, offering insights into its biological mechanisms and potential for clinical application.
Collapse
Affiliation(s)
- Hongli Chen
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xinyu Shi
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Na Liu
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Zhongdi Jiang
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Chunyan Ma
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Guoshuai Luo
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Biomedical Engineering Department, Peking University, Beijing 100191, China.
| | - Yi Liu
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Słyk Ż, Stachowiak N, Małecki M. Recombinant Adeno-Associated Virus Vectors for Gene Therapy of the Central Nervous System: Delivery Routes and Clinical Aspects. Biomedicines 2024; 12:1523. [PMID: 39062095 PMCID: PMC11274884 DOI: 10.3390/biomedicines12071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The Central Nervous System (CNS) is vulnerable to a range of diseases, including neurodegenerative and oncological conditions, which present significant treatment challenges. The blood-brain barrier (BBB) restricts molecule penetration, complicating the achievement of therapeutic concentrations in the CNS following systemic administration. Gene therapy using recombinant adeno-associated virus (rAAV) vectors emerges as a promising strategy for treating CNS diseases, demonstrated by the registration of six gene therapy products in the past six years and 87 ongoing clinical trials. This review explores the implementation of rAAV vectors in CNS disease treatment, emphasizing AAV biology and vector engineering. Various administration methods-such as intravenous, intrathecal, and intraparenchymal routes-and experimental approaches like intranasal and intramuscular administration are evaluated, discussing their advantages and limitations in different CNS contexts. Additionally, the review underscores the importance of optimizing therapeutic efficacy through the pharmacokinetics (PK) and pharmacodynamics (PD) of rAAV vectors. A comprehensive analysis of clinical trials reveals successes and challenges, including barriers to commercialization. This review provides insights into therapeutic strategies using rAAV vectors in neurological diseases and identifies areas requiring further research, particularly in optimizing rAAV PK/PD.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Natalia Stachowiak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
3
|
Deng L, Chu Z, Liu P, Li B, Lei G, Li S, Ma Y, Dang Y. Effects of brain-derived neurotrophic factor and adeno-associated viral vector on morphine-induced condition through target concentration changes in the ventral tegmental area and nucleus accumbens. Behav Brain Res 2023; 445:114385. [PMID: 36889465 DOI: 10.1016/j.bbr.2023.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Morphine remains the standard analgesic for severe pain. However, the clinical use of morphine is limited by the innate tendency of opiates to become addictive. Brain-derived neurotrophic factor (BDNF) is a growth factor that is protective against many mental disorders. This study aimed to evaluate the protective function of BDNF on morphine addiction based on the behavioural sensitisation (BS) model and assess potential changes in downstream molecular tropomyosin-related kinase receptor B (TrkB) and cyclic adenosine monophosphate response element binding protein (CREB) expression caused by overexpression of BDNF. We divided 64 male C57BL/6 J mice into saline, morphine, morphine plus adeno-associated viral vector (AAV), and morphine plus BDNF groups. After administering the treatments, behavioural tests were conducted during the development and expression phases of BS, followed by a western blot analysis. All data were analysed by one- or two-way analysis of variance. The overexpression of BDNF in the ventral tegmental area (VTA) caused by BDNF-AAV injection decreased the total distance of locomotion in mice who underwent morphine-induced BS and increased the concentrations of BDNF, TrkB, and CREB in the VTA and nucleus accumbens (NAc). BDNF exerts protective effects against morphine-induced BS by altering target gene expression in the VTA and NAc.
Collapse
Affiliation(s)
- Lisha Deng
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China; College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zheng Chu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Liu
- Department of Pharmacology and Toxicology, Institute of Basic Medicine Science, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Baijia Li
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shaofu Li
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongkang Ma
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Dhama K, Dhawan M, Tiwari R, Emran TB, Mitra S, Rabaan AA, Alhumaid S, Alawi ZA, Al Mutair A. COVID-19 intranasal vaccines: current progress, advantages, prospects, and challenges. Hum Vaccin Immunother 2022; 18:2045853. [PMID: 35258416 PMCID: PMC8935456 DOI: 10.1080/21645515.2022.2045853] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
Multiple vaccines have recently been developed, and almost all the countries are presently vaccinating their population to tackle the COVID-19 pandemic. Most of the COVID-19 vaccines in use are administered via intramuscular (IM) injection, eliciting protective humor and cellular immunity. COVID-19 intranasal (IN) vaccines are also being developed that have shown promising ability to induce a significant amount of antibody-mediated immune response and a robust cell-mediated immunity as well as hold the added ability to stimulate protective mucosal immunity along with the additional advantage of the ease of administration as compared to IM injected vaccines. By inducing secretory IgA antibody responses specifically in the nasal compartment, the intranasal SARS-CoV-2 vaccine can prevent virus infection, replication, shedding, and disease development, as well as possibly limits virus transmission. This article highlights the current progress, advantages, prospects, and challenges in developing intranasal COVID-19 vaccines for countering the ongoing pandemic.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Talha Bin Emran
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| |
Collapse
|
5
|
Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells 2022; 11:3629. [PMID: 36429060 PMCID: PMC9688574 DOI: 10.3390/cells11223629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.
Collapse
Affiliation(s)
- Meenakshi Bose
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Farias Quipildor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Zhou K, Han J, Wang Y, Zhang Y, Zhu C. Routes of administration for adeno-associated viruses carrying gene therapies for brain diseases. Front Mol Neurosci 2022; 15:988914. [PMID: 36385771 PMCID: PMC9643316 DOI: 10.3389/fnmol.2022.988914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 08/27/2023] Open
Abstract
Gene therapy is a powerful tool to treat various central nervous system (CNS) diseases ranging from monogenetic diseases to neurodegenerative disorders. Adeno-associated viruses (AAVs) have been widely used as the delivery vehicles for CNS gene therapies due to their safety, CNS tropism, and long-term therapeutic effect. However, several factors, including their ability to cross the blood-brain barrier, the efficiency of transduction, their immunotoxicity, loading capacity, the choice of serotype, and peripheral off-target effects should be carefully considered when designing an optimal AAV delivery strategy for a specific disease. In addition, distinct routes of administration may affect the efficiency and safety of AAV-delivered gene therapies. In this review, we summarize different administration routes of gene therapies delivered by AAVs to the brain in mice and rats. Updated knowledge regarding AAV-delivered gene therapies may facilitate the selection from various administration routes for specific disease models in future research.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Department of Hematology and Oncology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Zhengzhou Key Laboratory of Pediatric Neurobehavior, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Centre for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Intranasal application of adeno-associated viruses: a systematic review. Transl Res 2022; 248:87-110. [PMID: 35597541 DOI: 10.1016/j.trsl.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/13/2023]
Abstract
Adeno-associated viruses (AAVs) represent some of the most commonly employed vectors for targeted gene delivery and their extensive study has resulted in the approval of multiple gene therapies to treat human diseases. The intranasal route of vector application in gene therapy offers several advantages over traditional ways of administration. In addition to targeting local tissue like the olfactory epithelium, it provides minimally invasive access to various organ systems, including the central nervous system and the respiratory tract. Through a systematic literature review, a total of 53 articles that investigated the intranasal application of AAVs were identified, included, and summarized in this manuscript. Within these studies, AAV-based gene therapy was mainly investigated for its application in various infectious, pulmonary, or neurologic and/or psychiatric diseases. This review gives a comprehensive overview of the current technological state of the art regarding the intranasal application of AAVs for gene transfer and discusses remaining hurdles, which still have to be resolved before this approach can effectively be implemented in the routine clinical setting.
Collapse
|
8
|
Nitschke F, Montalbano AP. Novel Cross-Correction-Enabled Gene Therapy for CDKL5-Deficiency Disorder. Neurotherapeutics 2022; 19:1878-1882. [PMID: 36266502 PMCID: PMC9722985 DOI: 10.1007/s13311-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Felix Nitschke
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Alina P Montalbano
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Application of Intranasal Administration in the Delivery of Antidepressant Active Ingredients. Pharmaceutics 2022; 14:pharmaceutics14102070. [PMID: 36297505 PMCID: PMC9611373 DOI: 10.3390/pharmaceutics14102070] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
As a mental disease in modern society, depression shows an increasing occurrence, with low cure rate and high recurrence rate. It has become the most disabling disease in the world. At present, the treatment of depression is mainly based on drug therapy combined with psychological therapy, physical therapy, and other adjuvant therapy methods. Antidepressants are primarily administered peripherally (oral and intravenous) and have a slow onset of action. Antidepressant active ingredients, such as neuropeptides, natural active ingredients, and some chemical agents, are limited by factors such as the blood–brain barrier (BBB), first-pass metabolism, and extensive adverse effects caused by systemic administration. The potential anatomical link between the non-invasive nose–brain pathway and the lesion site of depression may provide a more attractive option for the delivery of antidepressant active ingredients. The purpose of this article is to describe the specific link between intranasal administration and depression, the challenges of intranasal administration, as well as studies of intranasal administration of antidepressant active ingredients.
Collapse
|
10
|
Kutchy NA, Ma R, Liu Y, Buch S, Hu G. Extracellular Vesicle-Mediated Delivery of Ultrasmall Superparamagnetic Iron Oxide Nanoparticles to Mice Brain. Front Pharmacol 2022; 13:819516. [PMID: 35462907 PMCID: PMC9022024 DOI: 10.3389/fphar.2022.819516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are small lipid membrane-bound vesicles that can pass the blood–brain barrier. Therefore, EVs could be used for the delivery of therapeutics to the brain. Herein, we investigated the biodistribution of intranasal perfusion of ultrasmall superparamagnetic iron oxide (USPIO)-labeled astrocyte-derived EVs (ADEVs) in mice. We used Western blotting, transmission electron microscopy (TEM), and nanoparticle uptake assay to characterize ADEVs. In addition, intranasal perfusion coupled with magnetic resonance imaging (MRI) was employed to determine the distribution of USPIO-labeled ADEVs in mice. Our results showed the uptake of USPIO by mouse astrocytes and ADEVs. In addition, we confirmed the biodistribution of ADEVs in the brain and other internal organs, including the kidneys, liver, and spleen. Our results suggest that USPIO did not affect mouse astrocyte cell survivability and EV release. Therefore, intranasal delivery of therapeutic loaded EVs could be used for the treatment of various brain disorders.
Collapse
Affiliation(s)
- Naseer A. Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anatomy, Physiology, and Pharmacology, School of Veterinary Medicine, St. George’s University, St. George’s, Grenada
| | - Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Guoku Hu,
| |
Collapse
|
11
|
Clathrin-nanoparticles deliver BDNF to hippocampus and enhance neurogenesis, synaptogenesis and cognition in HIV/neuroAIDS mouse model. Commun Biol 2022; 5:236. [PMID: 35301411 PMCID: PMC8931075 DOI: 10.1038/s42003-022-03177-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) promotes the growth, differentiation, maintenance and survival of neurons. These attributes make BDNF a potentially powerful therapeutic agent. However, its charge, instability in blood, and poor blood brain barrier (BBB) penetrability have impeded its development. Here, we show that engineered clathrin triskelia (CT) conjugated to BDNF (BDNF-CT) and delivered intranasally increased hippocampal BDNF concentrations 400-fold above that achieved previously with intranasal BDNF alone. We also show that BDNF-CT targeted Tropomyosin receptor kinase B (TrkB) and increased TrkB expression and downstream signaling in iTat mouse brains. Mice were induced to conditionally express neurotoxic HIV Transactivator-of-Transcription (Tat) protein that decreases BDNF. Down-regulation of BDNF is correlated with increased severity of HIV/neuroAIDS. BDNF-CT enhanced neurorestorative effects in the hippocampus including newborn cell proliferation and survival, granule cell neurogenesis, synaptogenesis and increased dendritic integrity. BDNF-CT exerted cognitive-enhancing effects by reducing Tat-induced learning and memory deficits. These results show that CT bionanoparticles efficiently deliver BDNF to the brain, making them potentially powerful tools in regenerative medicine.
Collapse
|
12
|
Wang YL, Chio CC, Kuo SC, Yeh CH, Ma JT, Liu WP, Lin MT, Lin KC, Chang CP. Exercise Rehabilitation and/or Astragaloside Attenuate Amyloid-beta Pathology by Reversing BDNF/TrkB Signaling Deficits and Mitochondrial Dysfunction. Mol Neurobiol 2022; 59:3091-3109. [PMID: 35262870 DOI: 10.1007/s12035-022-02728-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
We aim to investigate the mechanisms underlying the beneficial effects of exercise rehabilitation (ER) and/or astragaloside (AST) in counteracting amyloid-beta (Aβ) pathology. Aβ oligomers were microinjected into the bilateral ventricles to induce Aβ neuropathology in rats. Neurobehavioral functions were evaluated. Cortical and hippocampal expressions of both BDNF/TrkB and cathepsin D were determined by the western blotting method. The rat primary cultured cortical neurons were incubated with BDNF and/or AST and ANA12 followed by exposure to aggregated Aβ for 24 h. In vivo results showed that ER and/or AST reversed neurobehavioral disorders, downregulation of cortical and hippocampal expression of both BDNF/TrkB and cathepsin D, neural pathology, Aβ accumulation, and altered microglial polarization caused by Aβ. In vitro studies also confirmed that topical application of BDNF and/or AST reversed the Aβ-induced cytotoxicity, apoptosis, mitochondrial distress, and synaptotoxicity and decreased expression of p-TrkB, p-Akt, p-GSK3β, and β-catenin in rat cortical neurons. The beneficial effects of combined ER (or BDNF) and AST therapy in vivo and in vitro were superior to ER (or BDNF) or AST alone. Furthermore, we observed that any gains from ER (or BDNF) and/or AST could be significantly eliminated by ANA-12, a potent BDNF/TrkB antagonist. These results indicate that whereas ER (or BDNF) and/or AST attenuate Aβ pathology by reversing BDNF/TrkB signaling deficits and mitochondrial dysfunction, combining these two potentiates each other's therapeutic effects. In particular, AST can be an alternative therapy to replace ER.
Collapse
Affiliation(s)
- Yu-Ling Wang
- Department of Physical Medicine and Rehabilitation, Chi-Mei Medical Center, Tainan, Taiwan.,Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chung-Ching Chio
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Shu-Chun Kuo
- Department of Ophthalmology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chao-Hung Yeh
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Jui-Ti Ma
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan
| | - Wen-Pin Liu
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan
| | - Kao-Chang Lin
- Department of Holistic Care, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan. .,Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan.
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd, Yongkang District, Tainan City 710, Taiwan.
| |
Collapse
|
13
|
A novel knockout mouse model of the noncoding antisense Brain-Derived Neurotrophic Factor ( Bdnf) gene displays increased endogenous Bdnf protein and improved memory function following exercise. Heliyon 2021; 7:e07570. [PMID: 34377851 PMCID: PMC8327352 DOI: 10.1016/j.heliyon.2021.e07570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/10/2021] [Accepted: 07/10/2021] [Indexed: 11/26/2022] Open
Abstract
Brain-derived neurotrophic factor (Bdnf) expression is tightly controlled at the transcriptional and post-transcriptional levels. Previously, we showed that inhibition of noncoding Bdnf antisense (Bdnf-AS) RNA upregulates Bdnf protein. Here, we generated a Bdnf-antisense knockout (Bdnf-AS KO) mouse model by deleting 6 kilobases upstream of Bdnf-AS. After verifying suppression of Bdnf-AS, baseline behavioral tests indicated no significant difference in knockout and wild type mice, except for enhanced cognitive function in the knockout mice in the Y-maze. Following acute involuntary exercise, Bdnf-AS KO mice were re-assessed and a significant increase in Bdnf mRNA and protein were observed. Following long-term involuntary exercise, we observed a significant increase in nonspatial and spatial memory in novel object recognition and Barnes maze tests in young and aged Bdnf-AS KO mice. Our data provides evidence for the beneficial effects of endogenous Bdnf upregulation and the synergistic effect of Bdnf-AS knockout on exercise and memory retention.
Collapse
|
14
|
Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2: Synergistic or alternative to intramuscular vaccines? Int J Pharm 2021; 603:120686. [PMID: 33964339 PMCID: PMC8099545 DOI: 10.1016/j.ijpharm.2021.120686] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
It is striking that all marketed SARS-CoV-2 vaccines are developed for intramuscular administration designed to produce humoral and cell mediated immune responses, preventing viremia and the COVID-19 syndrome. They have a high degree of efficacy in humans (70-95%) depending on the type of vaccine. However, little protection is provided against viral replication and shedding in the upper airways due to the lack of a local sIgA immune response, indicating a risk of transmission of virus from vaccinated individuals. A range of novel nasal COVID-19 vaccines are in development and preclinical results in non-human primates have shown a promising prevention of replication and shedding of virus due to the induction of mucosal immune response (sIgA) in upper and lower respiratory tracts as well as robust systemic and humoral immune responses. Whether these results will translate to humans remains to be clarified. An IM prime followed by an IN booster vaccination would likely result in a better well-rounded immune response, including prevention (or strong reduction) in viral replication in the upper and lower respiratory tracts.
Collapse
Affiliation(s)
- Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino (PU), Italy
| | - Lisbeth Illum
- IDentity, 19 Cavendish Crescent North, The Park, Nottingham, NG71BA, United Kingdom.
| |
Collapse
|
15
|
Liu F, Dong YY, Lei G, Zhou Y, Liu P, Dang YH. HINT1 Is Involved in the Chronic Mild Stress Elicited Oxidative Stress and Apoptosis Through the PKC ε/ALDH-2/4HNE Pathway in Prefrontal Cortex of Rats. Front Behav Neurosci 2021; 15:690344. [PMID: 34177485 PMCID: PMC8219906 DOI: 10.3389/fnbeh.2021.690344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
Major depressive disorder (MDD) is a severe, highly heterogeneous, and life-threatening psychiatric disease which affects up to 21% of the population worldwide. A new hypothesis suggests that the mitochondrial dysfunction causing oxidative stress (OS) and dysregulation of apoptosis in brain might be one of the key pathophysiological factors in MDD. Histidine triad nucleotide binding protein 1 (HINT1), which was first supposed to be protein kinase C (PKC) inhibitor, has been gradually demonstrated to be involved in diverse neuropsychiatric diseases. It still remains elusive that how HINT1 involves in depression. The present study utilized a rat model exposed to chronic mild stress (CMS) to explore the involvement of HINT1 in depression. Face validity, construct validity and predictive validity of CMS model were comprehensive evaluated in this study. Behavioral tests including sucrose preference test, open field test, and elevated plus maze and forced swimming test revealed that stressed rats displayed elevated level of anxiety and depression compared with the controls. CMS rats showed a significant decrease of superoxide dismutase, and a marked increase malondialdehyde levels in prefrontal cortex (PFC). We also found the CMS rats had elevated expression of HINT1, decreased levels of phosphorylated-PKC ε and aldehyde dehydrogenase-two (ALDH-2), and accumulated 4-hydroxynonenal (4HNE) in PFC. Moreover, CMS increased the levels of cleaved caspase-3 and Bax, and decreased the level of Bcl-2 in PFC. The alterations in behavior and molecule were prevented by antidepressant venlafaxine. These results demonstrated that HINT1 was involved in the CMS elicited OS and apoptosis in PFC, probably through the PKC ε/ALDH-2/4HNE pathway. The results suggest that the suppression of HINT1 might have potential as a novel therapeutic strategy for depression.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ying-Ying Dong
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuan Zhou
- Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
16
|
D'Souza A, Dave KM, Stetler RA, S. Manickam D. Targeting the blood-brain barrier for the delivery of stroke therapies. Adv Drug Deliv Rev 2021; 171:332-351. [PMID: 33497734 DOI: 10.1016/j.addr.2021.01.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
A variety of neuroprotectants have shown promise in treating ischemic stroke, yet their delivery to the brain remains a challenge. The endothelial cells lining the blood-brain barrier (BBB) are emerging as a dynamic factor in the response to neurological injury and disease, and the endothelial-neuronal matrix coupling is fundamentally neuroprotective. In this review, we discuss approaches that target the endothelium for drug delivery both across the BBB and to the BBB as a viable strategy to facilitate neuroprotective effects, using the example of brain-derived neurotrophic factor (BDNF). We highlight the advances in cell-derived extracellular vesicles (EVs) used for CNS targeting and drug delivery. We also discuss the potential of engineered EVs as a potent strategy to deliver BDNF or other drug candidates to the ischemic brain, particularly when coupled with internal components like mitochondria that may increase cellular energetics in injured endothelial cells.
Collapse
|
17
|
Eftimiadi G, Soligo M, Manni L, Di Giuda D, Calcagni ML, Chiaretti A. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen Res 2021; 16:1740-1750. [PMID: 33510063 PMCID: PMC8328750 DOI: 10.4103/1673-5374.306062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor is one of the best-described neurotrophins and has advanced to clinical trials for treatment of ocular and brain diseases due to its trophic and regenerative properties. Prior trials over the past few decades have produced conflicting results, which have principally been ascribed to adverse effects of systemic nerve growth factor administration, together with poor penetrance of the blood-brain barrier that impairs drug delivery. Contrastingly, recent studies have revealed that topical ocular and intranasal nerve growth factor administration are safe and effective, suggesting that topical nerve growth factor delivery is a potential alternative to both systemic and invasive intracerebral delivery. The therapeutic effects of local nerve growth factor delivery have been extensively investigated for different ophthalmic diseases, including neurotrophic keratitis, glaucoma, retinitis pigmentosa, and dry eye disease. Further, promising pharmacologic effects were reported in an optic glioma model, which indicated that topically administered nerve growth factor diffused far beyond where it was topically applied. These findings support the therapeutic potential of delivering topical nerve growth factor preparations intranasally for acquired and degenerative brain disorders. Preliminary clinical findings in both traumatic and non-traumatic acquired brain injuries are encouraging, especially in pediatric patients, and clinical trials are ongoing. The present review will focus on the therapeutic effects of both ocular and intranasal nerve growth factor delivery for diseases of the brain and eye.
Collapse
Affiliation(s)
- Gemma Eftimiadi
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Lucia Calcagni
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
18
|
Rhea EM, Logsdon AF, Banks WA, Erickson ME. Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics 2020; 12:pharmaceutics12111120. [PMID: 33233734 PMCID: PMC7699866 DOI: 10.3390/pharmaceutics12111120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
This review highlights the pre-clinical and clinical work performed to use intranasal delivery of various compounds from growth factors to stem cells to reduce neuroimmune interactions. We introduce the concept of intranasal (IN) delivery and the variations of this delivery method based on the model used (i.e., rodents, non-human primates, and humans). We summarize the literature available on IN delivery of growth factors, vitamins and metabolites, cytokines, immunosuppressants, exosomes, and lastly stem cells. We focus on the improvement of neuroimmune interactions, such as the activation of resident central nervous system (CNS) immune cells, expression or release of cytokines, and detrimental effects of signaling processes. We highlight common diseases that are linked to dysregulations in neuroimmune interactions, such as Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and traumatic brain injury.
Collapse
Affiliation(s)
- Elizabeth M. Rhea
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Correspondence: ; Tel.: +1-206-764-2938
| | - Aric F. Logsdon
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A. Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Michelle E. Erickson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA; (A.F.L.); (W.A.B.); (M.E.E.)
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Zorkina Y, Abramova O, Ushakova V, Morozova A, Zubkov E, Valikhov M, Melnikov P, Majouga A, Chekhonin V. Nano Carrier Drug Delivery Systems for the Treatment of Neuropsychiatric Disorders: Advantages and Limitations. Molecules 2020; 25:E5294. [PMID: 33202839 PMCID: PMC7697162 DOI: 10.3390/molecules25225294] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer's disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer's disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction.
Collapse
Affiliation(s)
- Yana Zorkina
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Olga Abramova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Valeriya Ushakova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Healthcare Department, Mental-Health Clinic No. 1 Named after N.A. Alexeev of Moscow, 117152 Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Marat Valikhov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Pavel Melnikov
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
| | - Alexander Majouga
- D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.A.); (V.U.); (A.M.); (E.Z.); (M.V.); (P.M.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
20
|
Miranda-Lourenço C, Ribeiro-Rodrigues L, Fonseca-Gomes J, Tanqueiro SR, Belo RF, Ferreira CB, Rei N, Ferreira-Manso M, de Almeida-Borlido C, Costa-Coelho T, Freitas CF, Zavalko S, Mouro FM, Sebastião AM, Xapelli S, Rodrigues TM, Diógenes MJ. Challenges of BDNF-based therapies: From common to rare diseases. Pharmacol Res 2020; 162:105281. [PMID: 33161136 DOI: 10.1016/j.phrs.2020.105281] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Neurotrophins are a well-known family of neurotrophic factors that play an important role both in the central and peripheral nervous systems, where they modulate neuronal survival, development, function and plasticity. Brain-derived neurotrophic factor (BDNF) possesses diverse biological functions which are mediated by the activation of two main classes of receptors, the tropomyosin-related kinase (Trk) B and the p75 neurotrophin receptor (p75NTR). The therapeutic potential of BDNF has drawn attention since dysregulation of its signalling cascades has been suggested to underlie the pathogenesis of both common and rare diseases. Multiple strategies targeting this neurotrophin have been tested; most have found obstacles that ultimately hampered their effectiveness. This review focuses on the involvement of BDNF and its receptors in the pathophysiology of Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Rett Syndrome (RTT). We describe the known mechanisms leading to the impairment of BDNF/TrkB signalling in these disorders. Such mechanistic insight highlights how BDNF signalling compromise can take various shapes, nearly disease-specific. Therefore, BDNF-based therapeutic strategies must be specifically tailored and are more likely to succeed if a combination of resources is employed.
Collapse
Affiliation(s)
- Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Rita F Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina B Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mafalda Ferreira-Manso
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Carolina de Almeida-Borlido
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Tiago Costa-Coelho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Céline Felicidade Freitas
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Svitlana Zavalko
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Francisco M Mouro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Tiago M Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Institute of Molecular and Clinical Ophthalmology Basel (IOB), Mittlere Strasse 91, 4031 Basel, Switzerland
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
21
|
Mathiesen SN, Lock JL, Schoderboeck L, Abraham WC, Hughes SM. CNS Transduction Benefits of AAV-PHP.eB over AAV9 Are Dependent on Administration Route and Mouse Strain. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:447-458. [PMID: 33294493 PMCID: PMC7683292 DOI: 10.1016/j.omtm.2020.10.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/06/2020] [Indexed: 11/18/2022]
Abstract
Adeno-associated viral (AAV) vectors are attractive tools for central nervous system (CNS) gene therapy because some vectors can cross the blood-brain barrier (BBB), allowing them to be used as minimally invasive treatments. A novel AAV vector recently evolved in vivo, AAV-PHP.eB, has been reported to cross the BBB more effectively than the existing gold standard AAV9, but not under all conditions. Here, we compared the efficacy of single-stranded AAV-PHP.eB and AAV9 in targeting mouse CNS and peripheral tissues after administration via various routes, in two different mouse strains (C57BL/6J and B6C3), and after packaging AAV-PHP.eB with a self-complementary genome. We found that AAV-PHP.eB produced higher CNS transduction than AAV9 after intravenous injection, but only in C57BL/6J and not in B6C3 mice. AAV-PHP.eB and AAV9 produced similar CNS transduction when the administration route did not require the vectors to cross the BBB. Packaging AAV-PHP.eB with a self-complementary genome increased overall CNS transduction, but at the expense of strong neuronal tropism. AAV-PHP.eB resulted in less transduction of liver tissue than AAV9 under all conditions. Taken together, these results suggest the potential for AAV-PHP.eB as a vector for CNS gene therapy applications, but consideration will be required for translation beyond mouse models.
Collapse
Affiliation(s)
- Sophie N Mathiesen
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin 9016, New Zealand.,Department of Psychology, Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin 9016, New Zealand
| | - Jasmine L Lock
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin 9016, New Zealand
| | - Lucia Schoderboeck
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin 9016, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin 9016, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
22
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
23
|
Sultan MT, Choi BY, Ajiteru O, Hong DK, Lee SM, Kim HJ, Ryu JS, Lee JS, Hong H, Lee YJ, Lee H, Suh YJ, Lee OJ, Kim SH, Suh SW, Park CH. Reinforced-hydrogel encapsulated hMSCs towards brain injury treatment by trans-septal approach. Biomaterials 2020; 266:120413. [PMID: 33038593 DOI: 10.1016/j.biomaterials.2020.120413] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Encapsulated stem cells in various biomaterials have become a potentially promising cell transplantation strategy in the treatment of various neurologic disorders. However, there is no ideal cell delivery material and method for clinical application in brain diseases. Here we show silk fibroin (SF)-based hydrogel encapsulated engineered human mesenchymal stem cells (hMSCs) to overproduce brain-derived neurotrophic factor (BDNF) (BDNF-hMSC) is an effective approach to treat brain injury through trans-septal cell transplantation in the rat model. In this study, we observed SF induced sustained BDNF production by BDNF-hMSC both in 2D (9.367 ± 1.969 ng/ml) and 3D (7.319 ± 0.1025 ng/ml) culture conditions for 3 days. Through immunohistochemistry using α-tubulin, BDNF-hMSCs showed a significant increased average neurite length of co-cultured neuro 2a (N2a) cells, suggested that BDNF-hMSCs induced neurogenesis in vitro. Encapsulated BDNF-hMSC, pre-labeled with the red fluorescent dye PKH-26, exhibited intense fluorescence up to 14 days trans-septal transplantation, indicated excellent viability of the transplanted cells. Compared to the vehicle-treated, encapsulated BDNF- hMSC demonstrated significantly increased BDNF level both in the sham-operated and injured hippocampus (Hip) through immunoblot analysis after 7 days implantation. Transplantation of the encapsulated BDNF-hMSC promoted neurological functional recovery via significantly reduced neuronal death in the Hip 7 days post-injury. Using magnetic resonance imaging (MRI) analysis, we demonstrated that encapsulated BDNF-hMSC reduced lesion area significantly at 14 and 21 days in the damaged brain following trans-septal implantation. This stem cell transplantation approach represents a critical set up towards brain injury treatment for clinical application.
Collapse
Affiliation(s)
- Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Soon Min Lee
- SL BiGen, Inc. SL BIGEN Research Hall, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Hyo-Jin Kim
- SL BiGen, Inc. SL BIGEN Research Hall, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jun Sun Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Heesun Hong
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ye Ji Suh
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea.
| |
Collapse
|
24
|
Qi B, Yang Y, Cheng Y, Sun D, Wang X, Khanna R, Ju W. Nasal delivery of a CRMP2-derived CBD3 adenovirus improves cognitive function and pathology in APP/PS1 transgenic mice. Mol Brain 2020; 13:58. [PMID: 32272942 PMCID: PMC7144060 DOI: 10.1186/s13041-020-00596-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium dysregulation is a key pathological event in Alzheimer's disease (AD). In studying approaches to mitigate this calcium overload, we identified the collapsin response mediator protein 2 (CRMP2), an axonal guidance protein that participates in synapse dynamics by interacting with and regulating activity of N-methyl-D-aspartate receptors (NMDARs). We further identified a 15 amino acid peptide from CRMP2 (designated CBD3, for calcium-binding domain 3), that reduced NMDAR-mediated Ca2+ influx in cultured neurons and post-synaptic NMDAR-mediated currents in cortical slices. Whether targeting CRMP2 could be therapeutically beneficial in AD is unknown. Here, using CBD3, we tested the utility of this approach. Employing the APP/PS1 mouse model of AD which demonstrates robust pathophysiology including Aβ1-42 deposition, altered tau levels, and diminished cognitive functions, we asked if overexpression of CBD3 could rescue these events. CBD3 was engineered into an adeno-associated vector and nasally delivered into APP/PS1 mice and then biochemical (immunohistochemistry, immunoblotting), cellular (TUNEL apoptosis assays), and behavioral (Morris water maze test) assessments were performed. APP/PS1 mice administered adeno-associated virus (AAV, serotype 2) harboring CBD3 demonstrated: (i) reduced levels of Aβ1-42 and phosphorylated-tau (a marker of AD progression), (ii) reduced apoptosis in the hippocampus, and (iii) reduced cognitive decline compared with APP/PS1 mice or APP/PS1 administered a control virus. These results provide an instructive example of utilizing a peptide-based approach to unravel protein-protein interactions that are necessary for AD pathology and demonstrate the therapeutic potential of CRMP2 as a novel protein player in AD.
Collapse
Affiliation(s)
- Baochang Qi
- Department of Orthopedic Traumatology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yu Yang
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China
| | - Yingying Cheng
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China
| | - Di Sun
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xu Wang
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, 85718, USA.
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Weina Ju
- Department of Neurology and neuroscience center, The First Hospital of Jilin University, No.1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
25
|
Taylor RE, Zahid M. Cell Penetrating Peptides, Novel Vectors for Gene Therapy. Pharmaceutics 2020; 12:E225. [PMID: 32138146 PMCID: PMC7150854 DOI: 10.3390/pharmaceutics12030225] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Cell penetrating peptides (CPPs), also known as protein transduction domains (PTDs), first identified ~25 years ago, are small, 6-30 amino acid long, synthetic, or naturally occurring peptides, able to carry variety of cargoes across the cellular membranes in an intact, functional form. Since their initial description and characterization, the field of cell penetrating peptides as vectors has exploded. The cargoes they can deliver range from other small peptides, full-length proteins, nucleic acids including RNA and DNA, liposomes, nanoparticles, and viral particles as well as radioisotopes and other fluorescent probes for imaging purposes. In this review, we will focus briefly on their history, classification system, and mechanism of transduction followed by a summary of the existing literature on use of CPPs as gene delivery vectors either in the form of modified viruses, plasmid DNA, small interfering RNA, oligonucleotides, full-length genes, DNA origami or peptide nucleic acids.
Collapse
Affiliation(s)
- Rebecca E. Taylor
- Mechanical Engineering, Biomedical Engineering and Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| |
Collapse
|
26
|
Chen C, Dong Y, Liu F, Gao C, Ji C, Dang Y, Ma X, Liu Y. A Study of Antidepressant Effect and Mechanism on Intranasal Delivery of BDNF-HA2TAT/AAV to Rats with Post-Stroke Depression. Neuropsychiatr Dis Treat 2020; 16:637-649. [PMID: 32184603 PMCID: PMC7061423 DOI: 10.2147/ndt.s227598] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
AIM Post-stroke depression (PSD) is one of the most frequent neuropsychiatric disorders associated with stroke characterized by depression. The neuroplasticity hypothesis postulates that loss of brain-derived neurotrophic factor (BDNF) plays a major role in pathophysiology of PSD, and restoration of it may represent a critical mechanism underlying antidepressant efficacy. METHODS In previous studies, we designed a new fusion gene, HA2TAT-BDNF, and cloned it into adenovirus associated virus (AAV) to construct the BDNF-HA2TAT/AAV for the delivery of BDNF to central nervous system (CNS) via nose-brain pathway. In this study, we used it to explore the antidepressant effects on PSD rats through behavioral and various histological methods, and try to find out its specific mechanism. RESULTS Compared with the control group, the PSD+AAV group showed decreased sucrose consumption percentage in the sucrose preference test (SPT) (P < 0.001) and prolonged immobility in the forced swimming test (FST) (P=0.000). However, the nasal administration of BDNF-HA2TAT/AAV reversed results of these two behavioral tests (P>0.05, P >0.05), showing an adequate antidepressant effect. Compared with the control group, the concentrations of BDNF mRNA and protein in the hippocampus (P< 0.05, P < 0.01) and prefrontal cortex (P < 0.01, P < 0.01) of PSD rats both decreased. Increased BDNF mRNA and protein expression was observed in the prefrontal cortex (P > 0.05, P < 0.05), without notable change in the hippocampus (P < 0.05, P < 0.001) of PSD+BDNF rats. CONCLUSION These results suggest that BDNF reductions in the prefrontal cortex and hippocampus are associated with the development of post-stroke depression, and that increased levels of BDNF in the prefrontal cortex could be used as a therapeutic target to treat PSD. However, the exact mechanism of BDNF action remains unclear in this regard, hindering the wider application of our method. We expect that our research could facilitate the exploration of pathogenesis and the new treatment method of PSD.
Collapse
Affiliation(s)
- Ce Chen
- Department of Psychiatry, First Affiliated Hospital of Medical College Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yingying Dong
- Department of Psychiatry, First Affiliated Hospital of Medical College Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Fei Liu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, People's Republic of China
| | - Chengge Gao
- Department of Psychiatry, First Affiliated Hospital of Medical College Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Cui Ji
- The Hospital of Xidian University, Xi'an 710071, Shaanxi, People's Republic of China
| | - Yonghui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xiancang Ma
- Department of Psychiatry, First Affiliated Hospital of Medical College Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yong Liu
- The Institute of Neurobiology, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| |
Collapse
|
27
|
Giarratana AO, Teng S, Reddi S, Zheng C, Adler D, Thakker-Varia S, Alder J. BDNF Val66Met Genetic Polymorphism Results in Poor Recovery Following Repeated Mild Traumatic Brain Injury in a Mouse Model and Treatment With AAV-BDNF Improves Outcomes. Front Neurol 2019; 10:1175. [PMID: 31787925 PMCID: PMC6854037 DOI: 10.3389/fneur.2019.01175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 01/23/2023] Open
Abstract
Clinicians have long noticed that some Traumatic Brain Injury (TBI) patients have worse symptoms and take a longer time to recover than others, for reasons unexplained by known factors. Identifying what makes some individuals more susceptible is critical to understanding the underlying mechanisms through which TBI causes deleterious effects. We have sought to determine the effect of a single nucleotide polymorphism (SNP) in Brain-derived neurotrophic factor (BDNF) at amino acid 66 (rs6265) on recovery after TBI. There is controversy from human studies as to whether the BDNF Val66Val or Val66Met allele is the risk factor for worse outcomes after brain trauma. We therefore investigated cellular and behavioral outcomes in genetically engineered mice following repeated mild TBI (rmTBI) using a lateral fluid percussion (LFP) injury model. We found that relative to injured Val66Val carriers, injured Val66Met carriers had a larger inflammation volume and increased levels of neurodegeneration, apoptosis, p-tau, activated microglia, and gliosis in the cortex and/or hippocampus at 1 and/or 21 days post-injury (DPI). We therefore concluded that the Val66Met genetic polymorphism is a risk factor for poor outcomes after rmTBI. In order to determine the mechanism for these differences, we investigated levels of the apoptotic-inducing pro BDNF and survival-inducing mature BDNF isoforms and found that Met carriers had less total BDNF in the cortex and a higher pro/mature ratio of BDNF in the hippocampus. We then developed a personalized approach to treating genetically susceptible individuals by overexpressing wildtype BDNF in injured Val66Met mice using an AAV-BDNF virus. This intervention improved cellular, motor, and cognitive behavior outcomes at 21 DPI and increased levels of mature BDNF and phosphorylation of mature BDNF's receptor trkB. This study lays the groundwork for further investigation into the genetics that play a role in the extent of injury after rmTBI and highlights how personalized therapeutics may be targeted for recovery in susceptible individuals.
Collapse
Affiliation(s)
- Anna O Giarratana
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Sahithi Reddi
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Cynthia Zheng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Derek Adler
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Smita Thakker-Varia
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| |
Collapse
|
28
|
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front Cell Neurosci 2019; 13:363. [PMID: 31440144 PMCID: PMC6692714 DOI: 10.3389/fncel.2019.00363] [Citation(s) in RCA: 835] [Impact Index Per Article: 139.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) is a key molecule involved in plastic changes related to learning and memory. The expression of BDNF is highly regulated, and can lead to great variability in BDNF levels in healthy subjects. Changes in BDNF expression are associated with both normal and pathological aging and also psychiatric disease, in particular in structures important for memory processes such as the hippocampus and parahippocampal areas. Some interventions like exercise or antidepressant administration enhance the expression of BDNF in normal and pathological conditions. In this review, we will describe studies from rodents and humans to bring together research on how BDNF expression is regulated, how this expression changes in the pathological brain and also exciting work on how interventions known to enhance this neurotrophin could have clinical relevance. We propose that, although BDNF may not be a valid biomarker for neurodegenerative/neuropsychiatric diseases because of its disregulation common to many pathological conditions, it could be thought of as a marker that specifically relates to the occurrence and/or progression of the mnemonic symptoms that are common to many pathological conditions.
Collapse
Affiliation(s)
- Magdalena Miranda
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Juan Facundo Morici
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - María Belén Zanoni
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Laboratory of Memory Research and Molecular Cognition, Institute for Cognitive and Translational Neuroscience, Instituto de Neurología Cognitiva, CONICET, Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
29
|
Nafian F, Rasaee MJ, Yazdani S, Daftarian N, Soheili ZS, Kamali Doust Azad B. Peptide selected by phage display increases survival of SH-SY5Y neurons comparable to brain-derived neurotrophic factor. J Cell Biochem 2019; 120:7612-7622. [PMID: 30387183 DOI: 10.1002/jcb.28036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a well-known neuroprotectant and a potent therapeutic candidate for neurodegenerative diseases. However, there are several clinical concerns about its therapeutic applications. In the current study, we designed and developed BDNF-mimicking small peptides as an alternative to circumvent these problems. A phage-displayed peptide library was screened using BDNF receptor (neurotrophic tyrosine kinase receptor type2 [NTRK2]) and evaluated by ELISA. The peptide sequences showed similarity to loop2 of BDNF, they were recognized as discontinuous epitopes though. Interestingly, in silico molecular docking showed strong interactions between the peptide three-dimensional models and the surface residues of the NTRK2 protein at the IgC2 domain. A consensus peptide sequence was then synthesized to generate a mimetic construct (named as RNYK). The affinity binding and function of this construct was confirmed by testing against the native structure of NTRK2 in SH-SY5Y cells in vitro using flow-cytometry and MTT assays, respectively. RNYK at 5 ng/mL prevented neuronal degeneration of all- trans-retinoic acid-treated SH-SY5Y with equal efficacy to or even better than BDNF at 50 ng/mL.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahin Yazdani
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narsis Daftarian
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Babak Kamali Doust Azad
- Department of Electronics, School of Electrical and Computer Engineering, Tehran University, Tehran, Iran
| |
Collapse
|
30
|
Eremenko E, Mittal K, Berner O, Kamenetsky N, Nemirovsky A, Elyahu Y, Monsonego A. BDNF-producing, amyloid β-specific CD4 T cells as targeted drug-delivery vehicles in Alzheimer's disease. EBioMedicine 2019; 43:424-434. [PMID: 31085101 PMCID: PMC6557914 DOI: 10.1016/j.ebiom.2019.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The delivery of therapeutic proteins to selected sites within the central nervous system (CNS) parenchyma is a major challenge in the treatment of various neurodegenerative disorders. As brain-derived neurotrophic factor (BDNF) is reduced in the brain of people with Alzheimer's disease (AD) and its administration has shown promising therapeutic effects in mouse model of the disease, we generated a novel platform for T cell-based BDNF delivery into the brain parenchyma. METHODS We generated amyloid beta-protein (Aβ)-specific CD4 T cells (Aβ-T cells), genetically engineered to express BDNF, and injected them intracerebroventricularly into the 5XFAD mouse model of AD. FINDINGS The BDNF-secreting Aβ-T cells migrated efficiently to amyloid plaques, where they significantly increased the levels of BDNF, its receptor TrkB, and various synaptic proteins known to be reduced in AD. Furthermore, the injected mice demonstrated reduced levels of beta-secretase 1 (BACE1)-a protease essential in the cleavage process of the amyloid precursor protein-and ameliorated amyloid pathology and inflammation within the brain parenchyma. INTERPRETATION A T cell-based delivery of proteins into the brain can serve as a platform to modulate neurotoxic inflammation and to promote neuronal repair in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ekaterina Eremenko
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Kritika Mittal
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Omer Berner
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nikita Kamenetsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Nemirovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yehezqel Elyahu
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Alon Monsonego
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
31
|
Vahid-Ansari F, Zhang M, Zahrai A, Albert PR. Overcoming Resistance to Selective Serotonin Reuptake Inhibitors: Targeting Serotonin, Serotonin-1A Receptors and Adult Neuroplasticity. Front Neurosci 2019; 13:404. [PMID: 31114473 PMCID: PMC6502905 DOI: 10.3389/fnins.2019.00404] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is the most prevalent mental illness contributing to global disease burden. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are the first-line treatment for MDD, but are only fully effective in 30% of patients and require weeks before improvement may be seen. About 30% of SSRI-resistant patients may respond to augmentation or switching to another antidepressant, often selected by trial and error. Hence a better understanding of the causes of SSRI resistance is needed to provide models for optimizing treatment. Since SSRIs enhance 5-HT, in this review we discuss new findings on the circuitry, development and function of the 5-HT system in modulating behavior, and on how 5-HT neuronal activity is regulated. We focus on the 5-HT1A autoreceptor, which controls 5-HT activity, and the 5-HT1A heteroreceptor that mediates 5-HT actions. A series of mice models now implicate increased levels of 5-HT1A autoreceptors in SSRI resistance, and the requirement of hippocampal 5-HT1A heteroreceptor for neurogenic and behavioral response to SSRIs. We also present clinical data that show promise for identifying biomarkers of 5-HT activity, 5-HT1A regulation and regional changes in brain activity in MDD patients that may provide biomarkers for tailored interventions to overcome or bypass resistance to SSRI treatment. We identify a series of potential strategies including inhibiting 5-HT auto-inhibition, stimulating 5-HT1A heteroreceptors, other monoamine systems, or cortical stimulation to overcome SSRI resistance.
Collapse
Affiliation(s)
| | | | | | - Paul R. Albert
- Brain and Mind Research Institute, Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
32
|
Lin Q, Wang DG, Zhang ZQ, Liu DP. Applications of Virus Vector-Mediated Gene Therapy in China. Hum Gene Ther 2019; 29:98-109. [PMID: 29284296 DOI: 10.1089/hum.2017.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the increased safety and efficiency of virus vectors, virus vector-mediated gene therapy is now widely used for various diseases, including monogenic diseases, complex disorders, and infectious diseases. Recent gene therapy trials have shown significant therapeutic benefits, and Chinese researchers have contributed significantly to this progress. This review highlights disease applications and strategies for virus vector-mediated gene therapy in preclinical studies and clinical trials in China.
Collapse
Affiliation(s)
- Qiong Lin
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng-Gao Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhu-Qin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Hudry E, Vandenberghe LH. Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron 2019; 101:839-862. [PMID: 30844402 PMCID: PMC11804970 DOI: 10.1016/j.neuron.2019.02.017] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Gene transfer has long been a compelling yet elusive therapeutic modality. First mainly considered for rare inherited disorders, gene therapy may open treatment opportunities for more challenging and complex diseases such as Alzheimer's or Parkinson's disease. Today, examples of striking clinical proof of concept, the first gene therapy drugs coming onto the market, and the emergence of powerful new molecular tools have broadened the number of avenues to target neurological disorders but have also highlighted safety concerns and technology gaps. The vector of choice for many nervous system targets currently is the adeno-associated viral (AAV) vector due to its desirable safety profile and strong neuronal tropism. In aggregate, the clinical success, the preclinical potential, and the technological innovation have made therapeutic AAV drug development a reality, particularly for nervous system disorders. Here, we discuss the rationale, opportunities, limitations, and progress in clinical AAV gene therapy.
Collapse
Affiliation(s)
- Eloise Hudry
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, USA.
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Harvard Program in Therapeutic Science, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
34
|
Antidepressant effect of recombinant NT4-NAP/AAV on social isolated mice through intranasal route. Oncotarget 2018; 8:10103-10113. [PMID: 28052034 PMCID: PMC5354645 DOI: 10.18632/oncotarget.14356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/13/2016] [Indexed: 12/26/2022] Open
Abstract
The purpose of the present study was to observe the depression-like behavior induced by social isolation; detect the antidepressant effect of a recombinant adeno-associated virus (AAV) expressing NAP on social isolation mice by intranasal delivery. After construction of NT4-NAP/AAV, expression of NAP was confirmed in vitro. 3-week-old C57/BL mice were bred individually in cages as social isolation-rearing. Six weeks later, the first subset of mice underwent behavioral tests and western blot; the second was for enzyme-linked immunosorbent assay. NT4-NAP/AAV was delivered quaque die by nasal administration for consecutive 10 days before behavioral test. Several depression-like behaviors were observed in social isolation mice, including decreased relative sucrose preference, longer immobility time in forced swimming test, lower plasma corticosterone and decreased brain-derived neurotrophic factor in hippocampus. Thus, social isolation procedure appears to be an animal model of depression with good face and construct validity. What's more, the antidepressant effect in social isolation-rearing mice was observed after intranasal administration of NT4-NAP/AAV, suggesting that this might be a promising therapeutic strategy for depressive disorder.
Collapse
|
35
|
Ru Q, Li W, Wang X, Zhang S, Chen L, Zhang Y, Ge Y, Zu Y, Liu Y, Zheng D. Preclinical study of rAAV2-sTRAIL: pharmaceutical efficacy, biodistribution and safety in animals. Cancer Gene Ther 2017; 24:251-258. [PMID: 28429751 DOI: 10.1038/cgt.2017.12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/02/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022]
Abstract
The recombinant sTRAIL has been in clinical trial for various human malignancies. However, the half-life time of sTRAIL is very short, which might be an important factor influencing its clinical efficacy for cancer therapy. We previously reported the recombinant adeno-associated virus (AAV)-encoding sTRAIL95-281-mediated sTRAIL expression in vivo up to 8 months and suppressed tumor growth markedly in mouse xenografts. In the present study, we further evaluated the clinical potency for cancer gene therapy and the safety in mouse and non-human primates. The mouse models with HCT-116, NCI-H460 and BEL-7402 cancers were injected intraperitoneally with a single dose of 1.0 × 1011, 1.0 × 1010 and 1.0 × 109 vg of rAAV2-sTRAIL95-281 virus, respectively. The cynomolgus monkeys were injected (i.m.) with a single dose of rAAV2-sTRAIL95-281 of 1 × 1011, 3 × 1011 and 1 × 1012 vg, corresponding to 6-, 20- and 60-fold of intended use dosage for humans, respectively. The efficacy, pharmacology and toxicity of rAAV-sTRAIL in the animals were analyzed accordingly. The tumor inhibitory rates reached 44-76%, 48-52% and 55-74% in the three tumor models, respectively, and they had no influence on mouse spontaneous activity. Administration (s.c.) of a single dose of rAAV2-sTRAIL95-281 virus of 1.0 × 109 or 1.0 × 1010 vg in mice with implanted tumor led to mainly distribution in the spleen, liver, implanted tumor, blood, injected site of muscle and bone marrow. Two weeks later, there was no rAAV2-sTRAIL95-281 detected in blood and bone marrow, and it significantly decreased in other tissues and organs and then gradually cleared away in 4-12 weeks after administration. There was no rAAV2-sTRAIL accumulation in the animal's body and no influence on the body weights. Administration (i.v.) did not cause animal death, and no dose-related abnormal clinical symptoms were found in the mice. There were no abnormal tissue and organ found in all animals. Long-term toxicity test in cynomolgus monkeys did not cause rAAV2-sTRAIL95-281-related toxic and side effects, except that anti-AAV and anti-sTRAIL antibodies were generated. In conclusion, these data demonstrated that administration of rAAV2-sTRAIL95-281 in mice and in cynomolgus monkeys is safe without obvious toxic and side effects to the animals, and throw light on pharmacokinetics and safety in human clinical trials for cancer gene therapy.
Collapse
Affiliation(s)
- Q Ru
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - W Li
- National Institutes for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing, China
| | - X Wang
- National Institutes for Food and Drug Control, National Center for Safety Evaluation of Drugs, Beijing, China
| | - S Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing, China
| | - L Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Y Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Y Ge
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Y Zu
- Obio Technology (Shanghai) Corp. Ltd, Shanghai, China
| | - Y Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - D Zheng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Gourdon G, Meola G. Myotonic Dystrophies: State of the Art of New Therapeutic Developments for the CNS. Front Cell Neurosci 2017; 11:101. [PMID: 28473756 PMCID: PMC5397409 DOI: 10.3389/fncel.2017.00101] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Myotonic dystrophies are multisystemic diseases characterized not only by muscle and heart dysfunction but also by CNS alteration. They are now recognized as brain diseases affecting newborns and children for myotonic dystrophy type 1 and adults for both myotonic dystrophy type 1 and type 2. In the past two decades, much progress has been made in understanding the mechanisms underlying the DM symptoms allowing development of new molecular therapeutic tools with the ultimate aim of curing the disease. This review describes the state of the art for the characterization of CNS related symptoms, the development of molecular strategies to target the CNS as well as the available tools for screening and testing new possible treatments.
Collapse
Affiliation(s)
- Genevieve Gourdon
- Institut National de la Santé et de la Recherche Médicale UMR1163Paris, France.,Laboratory CTGDM, Institut Imagine, Université Paris Descartes-Sorbonne Paris CitéParis, France
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, Policlinico San Donato (IRCCS), University of MilanMilan, Italy
| |
Collapse
|
37
|
Tsai SJ. Role of neurotrophic factors in attention deficit hyperactivity disorder. Cytokine Growth Factor Rev 2017; 34:35-41. [DOI: 10.1016/j.cytogfr.2016.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/15/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022]
|
38
|
Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF. Glaucoma: the retina and beyond. Acta Neuropathol 2016; 132:807-826. [PMID: 27544758 PMCID: PMC5106492 DOI: 10.1007/s00401-016-1609-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/02/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Over 60 million people worldwide are diagnosed with glaucomatous optic neuropathy, which is estimated to be responsible for 8.4 million cases of irreversible blindness globally. Glaucoma is associated with characteristic damage to the optic nerve and patterns of visual field loss which principally involves the loss of retinal ganglion cells (RGCs). At present, intraocular pressure (IOP) presents the only modifiable risk factor for glaucoma, although RGC and vision loss can continue in patients despite well-controlled IOP. This, coupled with the present inability to diagnose glaucoma until relatively late in the disease process, has led to intense investigations towards the development of novel techniques for the early diagnosis of disease. This review outlines our current understanding of the potential mechanisms underlying RGC and axonal loss in glaucoma. Similarities between glaucoma and other neurodegenerative diseases of the central nervous system are drawn before an overview of recent developments in techniques for monitoring RGC health is provided, including recent progress towards the development of RGC specific contrast agents. The review concludes by discussing techniques to assess glaucomatous changes in the brain using MRI and the clinical relevance of glaucomatous-associated changes in the visual centres of the brain.
Collapse
Affiliation(s)
| | - Laura Crawley
- Western Eye Hospital, Imperial College Healthcare NHS Trust, 153-173 Marylebone Road, London, UK
| | | | - Fatimah Javaid
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK
| | - Maria Francesca Cordeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, UK.
- Western Eye Hospital, Imperial College Healthcare NHS Trust, 153-173 Marylebone Road, London, UK.
| |
Collapse
|