1
|
Popescu RG, Dinischiotu A, Soare T, Vlase E, Marinescu GC. Nicotinamide Mononucleotide (NMN) Works in Type 2 Diabetes through Unexpected Effects in Adipose Tissue, Not by Mitochondrial Biogenesis. Int J Mol Sci 2024; 25:2594. [PMID: 38473844 DOI: 10.3390/ijms25052594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Nicotinamide mononucleotide (NMN) has emerged as a promising therapeutic intervention for age-related disorders, including type 2 diabetes. In this study, we confirmed the previously observed effects of NMN treatment on glucose uptake and investigated its underlying mechanisms in various tissues and cell lines. Through the most comprehensive proteomic analysis to date, we discovered a series of novel organ-specific effects responsible for glucose uptake as measured by the IPGTT: adipose tissue growing (suggested by increased protein synthesis and degradation and mTOR proliferation signaling upregulation). Notably, we observed the upregulation of thermogenic UCP1, promoting enhanced glucose conversion to heat in intermuscular adipose tissue while showing a surprising repressive effect on mitochondrial biogenesis in muscle and the brain. Additionally, liver and muscle cells displayed a unique response, characterized by spliceosome downregulation and concurrent upregulation of chaperones, proteasomes, and ribosomes, leading to mildly impaired and energy-inefficient protein synthesis machinery. Furthermore, our findings revealed remarkable metabolic rewiring in the brain. This involved increased production of ketone bodies, downregulation of mitochondrial OXPHOS and TCA cycle components, as well as the induction of well-known fasting-associated effects. Collectively, our data elucidate the multifaceted nature of NMN action, highlighting its organ-specific effects and their role in improving glucose uptake. These findings deepen our understanding of NMN's therapeutic potential and pave the way for novel strategies in managing metabolic disorders.
Collapse
Affiliation(s)
- Roua Gabriela Popescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Independent Research Association, 012416 Bucharest, Romania
- Blue Screen SRL, 012416 Bucharest, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Teodoru Soare
- Pathology Department, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| | - Ene Vlase
- Animals Facility Laboratory, Cantacuzino National Institute for Medico-Military Research and Development, 013821 Bucharest, Romania
| | - George Cătălin Marinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- Independent Research Association, 012416 Bucharest, Romania
- Blue Screen SRL, 012416 Bucharest, Romania
| |
Collapse
|
2
|
Aramaki M, Wu X, Liu H, Liu Y, Cho YW, Song M, Fu Y, Ng L, Forrest D. Transcriptional control of cone photoreceptor diversity by a thyroid hormone receptor. Proc Natl Acad Sci U S A 2022; 119:e2209884119. [PMID: 36454759 PMCID: PMC9894165 DOI: 10.1073/pnas.2209884119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
Cone photoreceptor diversity allows detection of wavelength information in light, the first step in color (chromatic) vision. In most mammals, cones express opsin photopigments for sensitivity to medium/long (M, "green") or short (S, "blue") wavelengths and are differentially arrayed over the retina. Cones appear early in retinal neurogenesis but little is understood of the subsequent control of diversity of these postmitotic neurons, because cone populations are sparse and, apart from opsins, poorly defined. It is also a challenge to distinguish potentially subtle differences between cell subtypes within a lineage. Therefore, we derived a Cre driver to isolate individual M and S opsin-enriched cones, which are distributed in counter-gradients over the mouse retina. Fine resolution transcriptome analyses identified expression gradients for groups of genes. The postnatal emergence of gradients indicated divergent differentiation of cone precursors during maturation. Using genetic tagging, we demonstrated a role for thyroid hormone receptor β2 (TRβ2) in control of gradient genes, many of which are enriched for TRβ2 binding sites and TRβ2-regulated open chromatin. Deletion of TRβ2 resulted in poorly distinguished cones regardless of retinal location. We suggest that TRβ2 controls a bipotential transcriptional state to promote cone diversity and the chromatic potential of the species.
Collapse
Affiliation(s)
- Michihiko Aramaki
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Xuefeng Wu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Ye Liu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Young-Wook Cho
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Mina Song
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Yulong Fu
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD20892
| |
Collapse
|
3
|
Guan Y, Wang Y, Zheng D, Xie B, Xu P, Gao G, Zhong X. Generation of an RCVRN-eGFP Reporter hiPSC Line by CRISPR/Cas9 to Monitor Photoreceptor Cell Development and Facilitate the Cell Enrichment for Transplantation. Front Cell Dev Biol 2022; 10:870441. [PMID: 35573687 PMCID: PMC9096726 DOI: 10.3389/fcell.2022.870441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cell-based cell therapies are considered to be promising treatments for retinal disorders with dysfunction or death of photoreceptors. However, the enrichment of human photoreceptors suitable for transplantation has been highly challenging so far. This study aimed to generate a photoreceptor-specific reporter human induced pluripotent stem cell (hiPSC) line using CRISPR/Cas9 genome editing, which harbored an enhanced green fluorescent protein (eGFP) sequence at the endogenous locus of the pan photoreceptor marker recoverin (RCVRN). After confirmation of successful targeting and gene stability, three-dimensional retinal organoids were induced from this reporter line. The RCVRN-eGFP reporter faithfully replicated endogenous protein expression of recoverin and revealed the developmental characteristics of photoreceptors during retinal differentiation. The RCVRN-eGFP specifically and steadily labeled photoreceptor cells from photoreceptor precursors to mature rods and cones. Additionally, abundant eGFP-positive photoreceptors were enriched by fluorescence-activated cell sorting, and their transcriptome signatures were revealed by RNA sequencing and data analysis. Moreover, potential clusters of differentiation (CD) biomarkers were extracted for the enrichment of photoreceptors for clinical applications, such as CD133 for the positive selection of photoreceptors. Altogether, the RCVRN-eGFP reporter hiPSC line was successfully established and the first global expression database of recoverin-positive photoreceptors was constructed. These achievements will provide a powerful tool for dynamically monitoring photoreceptor cell development and purification of human photoreceptors, thus facilitating photoreceptor cell therapy for advanced retinal disorders.
Collapse
|
4
|
Nazlamova L, Cassidy EJ, Sowden JC, Lotery A, Lakowski J. Generation of a Cone Photoreceptor-specific GNGT2 Reporter Line in Human Pluripotent Stem Cells. Stem Cells 2022; 40:190-203. [PMID: 35293574 DOI: 10.1093/stmcls/sxab015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/23/2021] [Indexed: 11/14/2022]
Abstract
Fluorescent reporter lines generated in human pluripotent stem cells are a highly useful tool to track, isolate, and analyze cell types and lineages in live cultures. Here, we generate the first human cone photoreceptor reporter cell line by CRISPR/Cas9 genome editing of a human embryonic stem cell (hESC) line to tag both alleles of the Guanine nucleotide-binding protein subunit gamma-T2 (GNGT2) gene with a mCherry reporter cassette. Three-dimensional optic vesicle-like structures were produced to verify reporter fidelity and track cones throughout their development in culture. The GNGT2-T2A-mCherry hESC line faithfully and robustly labels GNGT2-expressing cones throughout the entirety of their differentiation in vitro, recapitulating normal fetal expression of this gene. Our observations indicate that human cones undergo significant migratory activity during the course of differentiation in vitro. Consistent with this, our analysis of human fetal retinae from different stages of development finds positional differences of the cone population depending on their state of maturation. This novel reporter line will provide a useful tool for investigating human cone development and disease.
Collapse
Affiliation(s)
- Liliya Nazlamova
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emma-Jane Cassidy
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, University College London and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Andrew Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jörn Lakowski
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
5
|
Liu YV, Teng D, Konar GJ, Agakishiev D, Biggs-Garcia A, Harris-Bookman S, McNally MM, Garzon C, Sastry S, Singh MS. Characterization and allogeneic transplantation of a novel transgenic cone-rich donor mouse line. Exp Eye Res 2021; 210:108715. [PMID: 34343570 PMCID: PMC8429259 DOI: 10.1016/j.exer.2021.108715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/26/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Cone photoreceptor transplantation is a potential treatment for macular diseases. The optimal conditions for cone transplantation are poorly understood, partly because of the scarcity of cones in donor mice. To facilitate allogeneic cone photoreceptor transplantation studies in mice, we aimed to create and characterize a donor mouse model containing a cone-rich retina with a cone-specific enhanced green fluorescent protein (EGFP) reporter. METHODS We generated OPN1LW-EGFP/NRL-/- mice by crossing NRL-/- and OPN1LW-EGFP mice. We characterized the anatomical phenotype of OPN1LW-EGFP/NRL-/- mice using multimodal confocal scanning laser ophthalmoscopy (cSLO) imaging, immunohistology, and transmission electron microscopy. We evaluated retinal function using electroretinography (ERG), including 465 and 525 nm chromatic stimuli. Retinal sheets and cell suspensions from OPN1LW-EGFP/NRL-/- mice were transplanted subretinally into immunodeficient Rd1 mice. RESULTS OPN1LW-EGFP/NRL-/- retinas were enriched with OPN1LW-EGFP+ and S-opsin+ cone photoreceptors in a dorsal-ventral distribution gradient. Cone photoreceptors co-expressing OPNL1W-EGFP and S-opsin significantly increased in OPN1LW-EGFP/NRL-/- compared to OPN1LW-EGFP mice. Temporal dynamics of rosette formation in the OPN1LW-EGFP/NRL-/- were similar as the NRL-/- with peak formation at P15. Rosettes formed preferentially in the ventral retina. The outer retina in P35 OPN1LW-EGFP/NRL-/- was thinner than NRL-/- controls. The OPN1LW-EGFP/NRL-/- ERG response amplitudes to 465 nm stimulation were similar to, but to 535 nm stimulation were lower than, NRL-/- controls. Three months after transplantation, the suspension grafts showed greater macroscopic degradation than sheet grafts. Retinal sheet grafts from OPN1LW-EGFP/NRL-/- mice showed greater S-opsin + cone survival than suspension grafts from the same strain. CONCLUSIONS OPN1LW-EGFP/NRL-/- retinae were enriched with S-opsin+ photoreceptors. Sustained expression of EGFP facilitated the longitudinal tracking of transplanted donor cells. Transplantation of cone-rich retinal grafts harvested prior to peak rosette formation survived and differentiated into cone photoreceptor subtypes. Photoreceptor sheet transplantation may promote greater macroscopic graft integrity and S-opsin+ cone survival than cell suspension transplantation, although the mechanism underlying this observation is unclear at present. This novel cone-rich reporter mouse strain may be useful to study the influence of graft structure on cone survival.
Collapse
Affiliation(s)
- Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek Teng
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory J Konar
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dzhalal Agakishiev
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexis Biggs-Garcia
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Harris-Bookman
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minda M McNally
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catalina Garzon
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saalini Sastry
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Gurdita A, Nickerson PEB, Pokrajac NT, Ortín-Martínez A, Samuel Tsai EL, Comanita L, Yan NE, Dolati P, Tachibana N, Liu ZC, Pearson JD, Chen D, Bremner R, Wallace VA. InVision: An optimized tissue clearing approach for three-dimensional imaging and analysis of intact rodent eyes. iScience 2021; 24:102905. [PMID: 34430805 PMCID: PMC8374524 DOI: 10.1016/j.isci.2021.102905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/28/2021] [Accepted: 07/21/2021] [Indexed: 02/05/2023] Open
Abstract
The mouse eye is used to model central nervous system development, pathology, angiogenesis, tumorigenesis, and regenerative therapies. To facilitate the analysis of these processes, we developed an optimized tissue clearing and depigmentation protocol, termed InVision, that permits whole-eye fluorescent marker tissue imaging. We validated this method for the analysis of normal and degenerative retinal architecture, transgenic fluorescent reporter expression, immunostaining and three-dimensional volumetric (3DV) analysis of retinoblastoma and angiogenesis. We also used this method to characterize material transfer (MT), a recently described phenomenon of horizontal protein exchange that occurs between transplanted and recipient photoreceptors. 3D spatial distribution analysis of MT in transplanted retinas suggests that MT of cytoplasmic GFP between photoreceptors is mediated by short-range, proximity-dependent cellular interactions. The InVision protocol will allow investigators working across multiple cell biological disciplines to generate novel insights into the local cellular networks involved in cell biological processes in the eye. InVision is an optimized tissue clearing protocol for the rodent eye InVision can be used to study a wide variety of physiological processes in the eye Material transfer between transplanted and host photoreceptors is spatially correlated
Collapse
Affiliation(s)
- Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Philip E B Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Neno T Pokrajac
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Arturo Ortín-Martínez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - En Leh Samuel Tsai
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Nicole E Yan
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Parnian Dolati
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nobuhiko Tachibana
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Zhongda C Liu
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Joel D Pearson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Danian Chen
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Rod Bremner
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| |
Collapse
|
7
|
Ludwig AL, Gamm DM. Outer Retinal Cell Replacement: Putting the Pieces Together. Transl Vis Sci Technol 2021; 10:15. [PMID: 34724034 PMCID: PMC8572485 DOI: 10.1167/tvst.10.10.15] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022] Open
Abstract
Retinal degenerative diseases (RDDs) affecting photoreceptors (PRs) are one of the most prevalent sources of incurable blindness worldwide. Due to a lack of endogenous repair mechanisms, functional cell replacement of PRs and/or retinal pigmented epithelium (RPE) cells are among the most anticipated approaches for restoring vision in advanced RDD. Human pluripotent stem cell (hPSC) technologies have accelerated development of outer retinal cell therapies as they provide a theoretically unlimited source of donor cells. Human PSC-RPE replacement therapies have progressed rapidly, with several completed and ongoing clinical trials. Although potentially more promising, hPSC-PR replacement therapies are still in their infancy. A first-in-human trial of hPSC-derived neuroretinal transplantation has recently begun, but a number of questions regarding survival, reproducibility, functional integration, and mechanism of action remain. The discovery of biomaterial transfer between donor and PR cells has highlighted the need for rigorous safety and efficacy studies of PR replacement. In this review, we briefly discuss the history of neuroretinal and PR cell transplantation to identify remaining challenges and outline a stepwise approach to address specific pieces of the outer retinal cell replacement puzzle.
Collapse
Affiliation(s)
- Allison L. Ludwig
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - David M. Gamm
- Waisman Center, University of Wisconsin–Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin–Madison, Madison, WI, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
8
|
Aghaizu ND, Warre-Cornish KM, Robinson MR, Waldron PV, Maswood RN, Smith AJ, Ali RR, Pearson RA. Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina. Cell Rep 2021; 36:109461. [PMID: 34348137 PMCID: PMC8356022 DOI: 10.1016/j.celrep.2021.109461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/19/2019] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.
Collapse
Affiliation(s)
- Nozie D Aghaizu
- University College London Institute of Ophthalmology, London EC1V 9EL, UK.
| | | | - Martha R Robinson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Paul V Waldron
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea N Maswood
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Alexander J Smith
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
9
|
Priyanka PP, Yenugu S. Coiled-Coil Domain-Containing (CCDC) Proteins: Functional Roles in General and Male Reproductive Physiology. Reprod Sci 2021; 28:2725-2734. [PMID: 33942254 DOI: 10.1007/s43032-021-00595-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/10/2023]
Abstract
The coiled-coil domain-containing (CCDC) proteins have been implicated in a variety of physiological and pathological processes. Their functional roles vary from their interaction with molecular components of signaling pathways to determining the physiological functions at the cellular and organ level. Thus, they govern important functions like gametogenesis, embryonic development, hematopoiesis, angiogenesis, and ciliary development. Further, they are implicated in the pathogenesis of a large number of cancers. Polymorphisms in CCDC genes are associated with the risk of lifetime diseases. Because of their role in many biological processes, they have been extensively studied. This review concisely presents the functional role of CCDC proteins that have been studied in the last decade. Studies on CCDC proteins continue to be an active area of investigation because of their indispensable functions. However, there is ample opportunity to further understand the involvement of CCDC proteins in many more functions. It is anticipated that basing on the available literature, the functional role of CCDC proteins will be explored much further.
Collapse
Affiliation(s)
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
10
|
Cuevas E, Holder DL, Alshehri AH, Tréguier J, Lakowski J, Sowden JC. NRL -/- gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells 2021; 39:414-428. [PMID: 33400844 PMCID: PMC8438615 DOI: 10.1002/stem.3325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
Organoid cultures represent a unique tool to investigate the developmental complexity of tissues like the human retina. NRL is a transcription factor required for the specification and homeostasis of mammalian rod photoreceptors. In Nrl-deficient mice, photoreceptor precursor cells do not differentiate into rods, and instead follow a default photoreceptor specification pathway to generate S-cone-like cells. To investigate whether this genetic switch mechanism is conserved in humans, we used CRISPR/Cas9 gene editing to engineer an NRL-deficient embryonic stem cell (ESC) line (NRL-/- ), and differentiated it into retinal organoids. Retinal organoids self-organize and resemble embryonic optic vesicles (OVs) that recapitulate the natural histogenesis of rods and cone photoreceptors. NRL-/- OVs develop comparably to controls, and exhibit a laminated, organized retinal structure with markers of photoreceptor synaptogenesis. Using immunohistochemistry and quantitative polymerase chain reaction (qPCR), we observed that NRL-/- OVs do not express NRL, or other rod photoreceptor markers directly or indirectly regulated by NRL. On the contrary, they show an abnormal number of photoreceptors positive for S-OPSIN, which define a primordial subtype of cone, and overexpress other cone genes indicating a conserved molecular switch in mammals. This study represents the first evidence in a human in vitro ESC-derived organoid system that NRL is required to define rod identity, and that in its absence S-cone-like cells develop as the default photoreceptor cell type. It shows how gene edited retinal organoids provide a useful system to investigate human photoreceptor specification, relevant for efforts to generate cells for transplantation in retinal degenerative diseases.
Collapse
Affiliation(s)
- Elisa Cuevas
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Daniel L. Holder
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Ashwak H. Alshehri
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Julie Tréguier
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Jörn Lakowski
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
- Centre for Human Development, Stem Cells and RegenerationUniversity of SouthamptonSouthamptonUK
| | - Jane C. Sowden
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
11
|
Baker AEG, Cui H, Ballios BG, Ing S, Yan P, Wolfer J, Wright T, Dang M, Gan NY, Cooke MJ, Ortín-Martínez A, Wallace VA, van der Kooy D, Devenyi R, Shoichet MS. Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute. Biomaterials 2021; 271:120750. [PMID: 33725584 DOI: 10.1016/j.biomaterials.2021.120750] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
Vitreous substitutes are clinically used to maintain retinal apposition and preserve retinal function; yet the most used substitutes are gases and oils which have disadvantages including strict face-down positioning post-surgery and the need for subsequent surgical removal, respectively. We have engineered a vitreous substitute comprised of a novel hyaluronan-oxime crosslinked hydrogel. Hyaluronan, which is naturally abundant in the vitreous of the eye, is chemically modified to crosslink with poly(ethylene glycol)-tetraoxyamine via oxime chemistry to produce a vitreous substitute that has similar physical properties to the native vitreous including refractive index, density and transparency. The oxime hydrogel is cytocompatible in vitro with photoreceptors from mouse retinal explants and biocompatible in rabbit eyes as determined by histology of the inner nuclear layer and photoreceptors in the outer nuclear layer. The ocular pressure in the rabbit eyes was consistent over 56 d, demonstrating limited to no swelling. Our vitreous substitute was stable in vivo over 28 d after which it began to degrade, with approximately 50% loss by day 56. We confirmed that the implanted hydrogel did not impact retina function using electroretinography over 90 days versus eyes injected with balanced saline solution. This new oxime hydrogel provides a significant improvement over the status quo as a vitreous substitute.
Collapse
Affiliation(s)
- Alexander E G Baker
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada; Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Hong Cui
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada
| | - Brian G Ballios
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada
| | - Sonja Ing
- Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Peng Yan
- Kensington Eye Institute, 340 College St, Toronto, ON, M5T 3A9, Canada
| | - Joe Wolfer
- Toronto Animal Eye Clinic, 150 Norseman St, Etobicoke, ON, M8Z 2R4, Canada
| | - Thomas Wright
- Kensington Eye Institute, 340 College St, Toronto, ON, M5T 3A9, Canada; Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada
| | - Mickael Dang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada
| | - Nicola Y Gan
- Department of Ophthalmology, Tock Seng Hospital, National Healthcare Group Eye Institute, 11 Jln Tan Tock Seng, 308433, Singapore
| | - Michael J Cooke
- Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Arturo Ortín-Martínez
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada
| | - Valerie A Wallace
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada; Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada
| | - Robert Devenyi
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College St, Toronto, ON, L0J 1C0, Canada; Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 399 Bathurst St, Toronto, ON, M5T 2S8, Canada; Toronto Western Hospital, 399 Bathurst St, Room 6 E W 438, Toronto, ON, M5T 2S8, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON, M5S 3E5, Canada; Institute of Biomedical Engineering, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, ON, M5S 1A8, Canada.
| |
Collapse
|
12
|
Charish J, Shabanzadeh AP, Chen D, Mehlen P, Sethuramanujam S, Harada H, Bonilha VL, Awatramani G, Bremner R, Monnier PP. Neogenin neutralization prevents photoreceptor loss in inherited retinal degeneration. J Clin Invest 2020; 130:2054-2068. [PMID: 32175920 DOI: 10.1172/jci125898] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2020] [Indexed: 02/05/2023] Open
Abstract
Inherited retinal degenerations (IRDs) are characterized by the progressive loss of photoreceptors and represent one of the most prevalent causes of blindness among working-age populations. Cyclic nucleotide dysregulation is a common pathological feature linked to numerous forms of IRD, yet the precise mechanisms through which this contributes to photoreceptor death remain elusive. Here we demonstrate that cAMP induced upregulation of the dependence receptor neogenin in the retina. Neogenin levels were also elevated in both human and murine degenerating photoreceptors. We found that overexpressing neogenin in mouse photoreceptors was sufficient to induce cell death, whereas silencing neogenin in degenerating murine photoreceptors promoted survival, thus identifying a pro-death signal in IRDs. A possible treatment strategy is modeled whereby peptide neutralization of neogenin in Rd1, Rd10, and Rho P23H-knockin mice promotes rod and cone survival and rescues visual function as measured by light-evoked retinal ganglion cell recordings, scotopic/photopic electroretinogram recordings, and visual acuity tests. These results expose neogenin as a critical link between cAMP and photoreceptor death, and identify a druggable target for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Jason Charish
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada.,Department of Physiology and
| | - Alireza P Shabanzadeh
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada.,Department of Anatomy, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Danian Chen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy and.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, INSERM U1052, CNRS UMR5286, Université de Lyon, Lyon, France
| | | | - Hidekiyo Harada
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada
| | - Vera L Bonilha
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gautam Awatramani
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Rod Bremner
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology and.,Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Philippe P Monnier
- Vision Division, Krembil Research Institute, Toronto, Ontario, Canada.,Department of Physiology and.,Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
West EL, Ribeiro J, Ali RR. Development of Stem Cell Therapies for Retinal Degeneration. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035683. [PMID: 31818854 DOI: 10.1101/cshperspect.a035683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Degenerative retinal disease is the major cause of sight loss in the developed world and currently there is a lack of effective treatments. As the loss of vision is directly the result of the loss of retinal cells, effective cell replacement through stem-cell-based therapies may have the potential to treat a great number of retinal diseases whatever their underlying etiology. The eye is an ideal organ to develop cell therapies as it is immune privileged, and modern surgical techniques enable precise delivery of cells to the retina. Furthermore, a range of noninvasive diagnostic tests and high-resolution imaging techniques facilitate the evaluation of any therapeutic intervention. In this review, we evaluate the progress to date of current cell therapy strategies for retinal repair, focusing on transplantation of pluripotent stem-cell-derived retinal pigment epithelium (RPE) and photoreceptor cells.
Collapse
Affiliation(s)
- Emma L West
- Division of Molecular Therapy, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Joana Ribeiro
- Division of Molecular Therapy, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Robin R Ali
- Division of Molecular Therapy, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom.,Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
14
|
Singh MS, Park SS, Albini TA, Canto-Soler MV, Klassen H, MacLaren RE, Takahashi M, Nagiel A, Schwartz SD, Bharti K. Retinal stem cell transplantation: Balancing safety and potential. Prog Retin Eye Res 2020; 75:100779. [PMID: 31494256 PMCID: PMC7056514 DOI: 10.1016/j.preteyeres.2019.100779] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022]
Abstract
Stem cell transplantation holds great promise as a potential treatment for currently incurable retinal degenerative diseases that cause poor vision and blindness. Recently, safety data have emerged from several Phase I/II clinical trials of retinal stem cell transplantation. These clinical trials, usually run in partnership with academic institutions, are based on sound preclinical studies and are focused on patient safety. However, reports of serious adverse events arising from cell therapy in other poorly regulated centers have now emerged in the lay and scientific press. While progress in stem cell research for blindness has been greeted with great enthusiasm by patients, scientists, doctors and industry alike, these adverse events have raised concerns about the safety of retinal stem cell transplantation and whether patients are truly protected from undue harm. The aim of this review is to summarize and appraise the safety of human retinal stem cell transplantation in the context of its potential to be developed into an effective treatment for retinal degenerative diseases.
Collapse
Affiliation(s)
- Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Susanna S Park
- Department of Ophthalmology & Vision Science, University of California-Davis Eye Center, Sacramento, CA, 95817, USA
| | - Thomas A Albini
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - M Valeria Canto-Soler
- CellSight Ocular Stem Cell and Regeneration Research Program, Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Henry Klassen
- Gavin Herbert Eye Institute and Stem Cell Research Center, Irvine, CA, 92697, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford and Oxford University Eye Hospital, NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, OX3 9DU, UK
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, Center for Biosystems Dynamics Research, RIKEN, Kobe, Hyogo, 650-0047, Japan
| | - Aaron Nagiel
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA; USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90007, USA
| | - Steven D Schwartz
- Stein Eye Institute, University of California Los Angeles Geffen School of Medicine, Los Angeles, CA, 90095, USA; Edythe and Eli Broad Stem Cell Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kapil Bharti
- National Eye Institute, National Institutes of Health, Bethesda, MD, 90892, USA
| |
Collapse
|
15
|
Kallman A, Capowski EE, Wang J, Kaushik AM, Jansen AD, Edwards KL, Chen L, Berlinicke CA, Joseph Phillips M, Pierce EA, Qian J, Wang TH, Gamm DM, Zack DJ. Investigating cone photoreceptor development using patient-derived NRL null retinal organoids. Commun Biol 2020; 3:82. [PMID: 32081919 PMCID: PMC7035245 DOI: 10.1038/s42003-020-0808-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
Photoreceptor loss is a leading cause of blindness, but mechanisms underlying photoreceptor degeneration are not well understood. Treatment strategies would benefit from improved understanding of gene-expression patterns directing photoreceptor development, as many genes are implicated in both development and degeneration. Neural retina leucine zipper (NRL) is critical for rod photoreceptor genesis and degeneration, with NRL mutations known to cause enhanced S-cone syndrome and retinitis pigmentosa. While murine Nrl loss has been characterized, studies of human NRL can identify important insights for human retinal development and disease. We utilized iPSC organoid models of retinal development to molecularly define developmental alterations in a human model of NRL loss. Consistent with the function of NRL in rod fate specification, human retinal organoids lacking NRL develop S-opsin dominant photoreceptor populations. We report generation of two distinct S-opsin expressing populations in NRL null retinal organoids and identify MEF2C as a candidate regulator of cone development. Kallman et al. showed the effect of Nrl in human PSC-derived retinal organoids. Using histological and single cell transcriptomics, they identified an intermediate “cod” subpopulation in the predominant S-opsin population. Their findings provide important insights for human retinal development and degeneration.
Collapse
Affiliation(s)
- Alyssa Kallman
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Jie Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Aniruddha M Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, USA
| | - Alex D Jansen
- Waisman Center, University of Wisconsin-Madison, Madison, USA
| | | | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Boston, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - David M Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, USA. .,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, USA. .,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, USA.
| | - Donald J Zack
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, USA. .,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA. .,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA. .,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
16
|
Photoreceptor cell replacement in macular degeneration and retinitis pigmentosa: A pluripotent stem cell-based approach. Prog Retin Eye Res 2019; 71:1-25. [DOI: 10.1016/j.preteyeres.2019.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
17
|
Kaufman ML, Park KU, Goodson NB, Chew S, Bersie S, Jones KL, Lamba DA, Brzezinski JA. Transcriptional profiling of murine retinas undergoing semi-synchronous cone photoreceptor differentiation. Dev Biol 2019; 453:155-167. [PMID: 31163126 DOI: 10.1016/j.ydbio.2019.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Uncovering the gene regulatory networks that control cone photoreceptor formation has been hindered because cones only make up a few percent of the retina and form asynchronously during development. To overcome these limitations, we used a γ-secretase inhibitor, DAPT, to disrupt Notch signaling and force proliferating retinal progenitor cells to rapidly adopt neuronal identity. We treated mouse retinal explants at the peak of cone genesis with DAPT and examined tissues at several time-points by histology and bulk RNA-sequencing. We found that this treatment caused supernumerary cone formation in an overwhelmingly synchronized fashion. This analysis revealed several categorical patterns of gene expression changes over time relative to DMSO treated control explants. These were placed in the temporal context of the activation of Otx2, a transcription factor that is expressed at the onset of photoreceptor development and that is required for both rod and cone formation. One group of interest had genes, such as Mybl1, Ascl1, Neurog2, and Olig2, that became upregulated by DAPT treatment before Otx2. Two other groups showed upregulated gene expression shortly after Otx2, either transiently or permanently. This included genes such as Mybl1, Meis2, and Podxl. Our data provide a developmental timeline of the gene expression events that underlie the initial steps of cone genesis and maturation. Applying this strategy to human retinal organoid cultures was also sufficient to induce a massive increase in cone genesis. Taken together, our results provide a temporal framework that can be used to elucidate the gene regulatory logic controlling cone photoreceptor development.
Collapse
Affiliation(s)
- Michael L Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Noah B Goodson
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Shereen Chew
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Stephanie Bersie
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepak A Lamba
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
18
|
Tsai ELS, Ortin-Martinez A, Gurdita A, Comanita L, Yan N, Smiley S, Delplace V, Shoichet MS, Nickerson PEB, Wallace VA. Modeling of Photoreceptor Donor-Host Interaction Following Transplantation Reveals a Role for Crx, Müller Glia, and Rho/ROCK Signaling in Neurite Outgrowth. Stem Cells 2019; 37:529-541. [DOI: 10.1002/stem.2985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- En L. S. Tsai
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Akshay Gurdita
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Lacrimioara Comanita
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Nicole Yan
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
| | - Sheila Smiley
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Vianney Delplace
- Department of Chemical Engineering & Applied Chemistry; University of Toronto; Toronto Ontario Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied Chemistry; University of Toronto; Toronto Ontario Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Philip E. B. Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
| | - Valerie A. Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute; University Health Network; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Ontario Canada
- Department of Ophthalmology and Vision Sciences; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
19
|
Collin J, Zerti D, Queen R, Santos-Ferreira T, Bauer R, Coxhead J, Hussain R, Steel D, Mellough C, Ader M, Sernagor E, Armstrong L, Lako M. CRX Expression in Pluripotent Stem Cell-Derived Photoreceptors Marks a Transplantable Subpopulation of Early Cones. Stem Cells 2019; 37:609-622. [PMID: 30681766 PMCID: PMC6519156 DOI: 10.1002/stem.2974] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/05/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.
Collapse
Affiliation(s)
- Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Darin Zerti
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Rachel Queen
- Genomics Core Facility, Newcastle University, Newcastle, United Kingdom
| | - Tiago Santos-Ferreira
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Roman Bauer
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Jonathan Coxhead
- Genomics Core Facility, Newcastle University, Newcastle, United Kingdom
| | - Rafiqul Hussain
- Genomics Core Facility, Newcastle University, Newcastle, United Kingdom
| | - David Steel
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Carla Mellough
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Evelyne Sernagor
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Lyle Armstrong
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
20
|
Khalili S, Ballios BG, Belair-Hickey J, Donaldson L, Liu J, Coles BLK, Grisé KN, Baakdhah T, Bader GD, Wallace VA, Bernier G, Shoichet MS, van der Kooy D. Induction of rod versus cone photoreceptor-specific progenitors from retinal precursor cells. Stem Cell Res 2018; 33:215-227. [PMID: 30453152 DOI: 10.1016/j.scr.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022] Open
Abstract
During development, multipotent progenitors undergo temporally-restricted differentiation into post-mitotic retinal cells; however, the mechanisms of progenitor division that occurs during retinogenesis remain controversial. Using clonal analyses (lineage tracing and single cell cultures), we identify rod versus cone lineage-specific progenitors derived from both adult retinal stem cells and embryonic neural retinal precursors. Taurine and retinoic acid are shown to act in an instructive and lineage-restricted manner early in the progenitor lineage hierarchy to produce rod-restricted progenitors from stem cell progeny. We also identify an instructive, but lineage-independent, mechanism for the specification of cone-restricted progenitors through the suppression of multiple differentiation signaling pathways. These data indicate that exogenous signals play critical roles in directing lineage decisions and resulting in fate-restricted rod or cone photoreceptor progenitors in culture. Additional factors may be involved in governing photoreceptor fates in vivo.
Collapse
Affiliation(s)
- Saeed Khalili
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brian G Ballios
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, Ontario M5T 3A9, Canada
| | - Justin Belair-Hickey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Laura Donaldson
- Division of Ophthalmology, Department of Surgery, Faculty of Health Sciences, McMaster University, 2757 King Street East, Hamilton, Ontario L8G 4X3, Canada
| | - Jeff Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brenda L K Coles
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kenneth N Grisé
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tahani Baakdhah
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Valerie A Wallace
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, Ontario M5T 3A9, Canada; Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, 60 Leonard Ave., Rm 8KD413, Toronto, Ontario M5T 2S8, Canada
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. l'Assomption, Montréal H1T 2M4, Canada; Faculté de Médecine, Départment de Neurosciences, Université de Montréal, Montréal H3T 1J4, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
21
|
Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Prog Retin Eye Res 2018; 69:1-37. [PMID: 30445193 DOI: 10.1016/j.preteyeres.2018.11.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022]
Abstract
The mammalian retina displays no intrinsic regenerative capacities, therefore retinal degenerative diseases such as age-related macular degeneration (AMD) or retinitis pigmentosa (RP) result in a permanent loss of the light-sensing photoreceptor cells. The degeneration of photoreceptors leads to vision impairment and, in later stages, complete blindness. Several therapeutic strategies have been developed to slow down or prevent further retinal degeneration, however a definitive cure i.e. replacement of the lost photoreceptors, has not yet been established. Cell-based treatment approaches, by means of photoreceptor transplantation, have been studied in pre-clinical animal models over the last three decades. The introduction of pluripotent stem cell-derived retinal organoids represents, in principle, an unlimited source for the generation of transplantable human photoreceptors. However, safety, immunological and reproducibility-related issues regarding the use of such cells still need to be solved. Moreover, the recent finding of cytoplasmic material transfer between donor and host photoreceptors demands reinterpretation of several former transplantation studies. At the same time, material transfer between healthy donor and dysfunctional patient photoreceptors also offers a potential alternative strategy for therapeutic intervention. In this review we discuss the history and current state of photoreceptor transplantation, the techniques used to assess rescue of visual function, the prerequisites for effective transplantation as well as the main roadblocks, including safety and immune response to the graft, that need to be overcome for successful clinical translation of photoreceptor transplantation approaches.
Collapse
Affiliation(s)
- Sylvia J Gasparini
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Sílvia Llonch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Oliver Borsch
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Marius Ader
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
22
|
Angueyra JM, Kindt KS. Leveraging Zebrafish to Study Retinal Degenerations. Front Cell Dev Biol 2018; 6:110. [PMID: 30283779 PMCID: PMC6156122 DOI: 10.3389/fcell.2018.00110] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022] Open
Abstract
Retinal degenerations are a heterogeneous group of diseases characterized by death of photoreceptors and progressive loss of vision. Retinal degenerations are a major cause of blindness in developed countries (Bourne et al., 2017; De Bode, 2017) and currently have no cure. In this review, we will briefly review the latest advances in therapies for retinal degenerations, highlighting the current barriers to study and develop therapies that promote photoreceptor regeneration in mammals. In light of these barriers, we present zebrafish as a powerful model to study photoreceptor regeneration and their integration into retinal circuits after regeneration. We outline why zebrafish is well suited for these analyses and summarize the powerful tools available in zebrafish that could be used to further uncover the mechanisms underlying photoreceptor regeneration and rewiring. In particular, we highlight that it is critical to understand how rewiring occurs after regeneration and how it differs from development. Insights derived from photoreceptor regeneration and rewiring in zebrafish may provide leverage to develop therapeutic targets to treat retinal degenerations.
Collapse
Affiliation(s)
- Juan M. Angueyra
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie S. Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
23
|
Nickerson PEB, Ortin-Martinez A, Wallace VA. Material Exchange in Photoreceptor Transplantation: Updating Our Understanding of Donor/Host Communication and the Future of Cell Engraftment Science. Front Neural Circuits 2018; 12:17. [PMID: 29559897 PMCID: PMC5845679 DOI: 10.3389/fncir.2018.00017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
Considerable research effort has been invested into the transplantation of mammalian photoreceptors into healthy and degenerating mouse eyes. Several platforms of rod and cone fluorescent reporting have been central to refining the isolation, purification and transplantation of photoreceptors. The tracking of engrafted cells, including identifying the position, morphology and degree of donor cell integration post-transplant is highly dependent on the use of fluorescent protein reporters. Improvements in imaging and analysis of transplant recipients have revealed that donor cell fluorescent reporters can transfer into host tissue though a process termed material exchange (ME). This recent discovery has chaperoned a new era of interpretation when reviewing the field’s use of dissociated donor cell preparations, and has prompted scientists to re-examine how we use and interpret the information derived from fluorescence-based tracking tools. In this review, we describe the status of our understanding of ME in photoreceptor transplantation. In addition, we discuss the impact of this discovery on several aspects of historical rod and cone transplantation data, and provide insight into future standards and approaches to advance the field of cell engraftment.
Collapse
Affiliation(s)
- Philip E B Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Arturo Ortin-Martinez
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Generation of a rod-specific NRL reporter line in human pluripotent stem cells. Sci Rep 2018; 8:2370. [PMID: 29402929 PMCID: PMC5799252 DOI: 10.1038/s41598-018-20813-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022] Open
Abstract
Reporter lines generated in human pluripotent stem cells can be highly useful for the analysis of specific cell types and lineages in live cultures. We created the first human rod reporter line using CRISPR/Cas9 genome editing to replace one allele of the Neural Retina Leucine zipper (NRL) gene with an eGFP transgene in the WA09 human embryonic stem cell (hESC) line. After confirming successful targeting, three-dimensional optic vesicle structures were produced to examine reporter specificity and to track rod differentiation in culture. The NRL+/eGFP hESC line robustly and exclusively labeled the entirety of rods throughout differentiation, eventually revealing highly mature structural features. This line provides a valuable tool for studying human rod development and disease and testing therapeutic strategies for retinitis pigmentosa.
Collapse
|
25
|
Waldron PV, Di Marco F, Kruczek K, Ribeiro J, Graca AB, Hippert C, Aghaizu ND, Kalargyrou AA, Barber AC, Grimaldi G, Duran Y, Blackford SJI, Kloc M, Goh D, Zabala Aldunate E, Sampson RD, Bainbridge JWB, Smith AJ, Gonzalez-Cordero A, Sowden JC, Ali RR, Pearson RA. Transplanted Donor- or Stem Cell-Derived Cone Photoreceptors Can Both Integrate and Undergo Material Transfer in an Environment-Dependent Manner. Stem Cell Reports 2018; 10:406-421. [PMID: 29307580 PMCID: PMC5830910 DOI: 10.1016/j.stemcr.2017.12.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022] Open
Abstract
Human vision relies heavily upon cone photoreceptors, and their loss results in permanent visual impairment. Transplantation of healthy photoreceptors can restore visual function in models of inherited blindness, a process previously understood to arise by donor cell integration within the host retina. However, we and others recently demonstrated that donor rod photoreceptors engage in material transfer with host photoreceptors, leading to the host cells acquiring proteins otherwise expressed only by donor cells. We sought to determine whether stem cell- and donor-derived cones undergo integration and/or material transfer. We find that material transfer accounts for a significant proportion of rescued cells following cone transplantation into non-degenerative hosts. Strikingly, however, substantial numbers of cones integrated into the Nrl-/- and Prph2rd2/rd2, but not Nrl-/-;RPE65R91W/R91W, murine models of retinal degeneration. This confirms the occurrence of photoreceptor integration in certain models of retinal degeneration and demonstrates the importance of the host environment in determining transplantation outcome.
Collapse
Affiliation(s)
- Paul V Waldron
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Fabiana Di Marco
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Kamil Kruczek
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Joana Ribeiro
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Anna B Graca
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Claire Hippert
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Nozie D Aghaizu
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Amanda C Barber
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Giulia Grimaldi
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Yanai Duran
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Magdalena Kloc
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Eduardo Zabala Aldunate
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Robert D Sampson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Alexander J Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
26
|
Zhu J, Reynolds J, Garcia T, Cifuentes H, Chew S, Zeng X, Lamba DA. Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line. Stem Cells Transl Med 2017; 7:210-219. [PMID: 29266841 PMCID: PMC5788871 DOI: 10.1002/sctm.17-0205] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022] Open
Abstract
Retinal degeneration often results in the loss of light‐sensing photoreceptors, which leads to permanent vision loss. Generating transplantable retinal photoreceptors using human somatic cell‐derived induced pluripotent stem cells (iPSCs) holds promise to treat a variety of retinal degenerative diseases by replacing the damaged or dysfunctional native photoreceptors with healthy and functional ones. Establishment of effective methods to produce retinal cells including photoreceptors in chemically defined conditions using current Good Manufacturing Practice (cGMP)‐manufactured human iPSC lines is critical for advancing cell replacement therapy to the clinic. In this study, we used a human iPSC line (NCL‐1) derived under cGMP‐compliant conditions from CD34+ cord blood cells. The cells were differentiated into retinal cells using a small molecule‐based retinal induction protocol. We show that retinal cells including photoreceptors, retinal pigmented epithelial cells and optic cup‐like retinal organoids can be generated from the NCL‐1 iPSC line. Additionally, we show that following subretinal transplantation into immunodeficient host mouse eyes, retinal cells successfully integrated into the photoreceptor layer and developed into mature photoreceptors. This study provides strong evidence that transplantable photoreceptors can be generated from a cGMP‐manufactured human iPSC line for clinical applications. Stem Cells Translational Medicine2018;7:210–219
Collapse
Affiliation(s)
- Jie Zhu
- Buck Institute for Research on Aging, Novato, California, USA
| | - Joseph Reynolds
- Buck Institute for Research on Aging, Novato, California, USA
| | - Thelma Garcia
- Buck Institute for Research on Aging, Novato, California, USA
| | - Helen Cifuentes
- Buck Institute for Research on Aging, Novato, California, USA
| | - Shereen Chew
- Buck Institute for Research on Aging, Novato, California, USA
| | - Xianmin Zeng
- Buck Institute for Research on Aging, Novato, California, USA.,NxCell Inc, Novato, California, USA
| | | |
Collapse
|
27
|
Javed A, Cayouette M. Temporal Progression of Retinal Progenitor Cell Identity: Implications in Cell Replacement Therapies. Front Neural Circuits 2017; 11:105. [PMID: 29375321 PMCID: PMC5770695 DOI: 10.3389/fncir.2017.00105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/07/2017] [Indexed: 11/13/2022] Open
Abstract
Retinal degenerative diseases, which lead to the death of rod and cone photoreceptor cells, are the leading cause of inherited vision loss worldwide. Induced pluripotent or embryonic stem cells (iPSCs/ESCs) have been proposed as a possible source of new photoreceptors to restore vision in these conditions. The proof of concept studies carried out in mouse models of retinal degeneration over the past decade have highlighted several limitations for cell replacement in the retina, such as the low efficiency of cone photoreceptor production from stem cell cultures and the poor integration of grafted cells in the host retina. Current protocols to generate photoreceptors from stem cells are largely based on the use of extracellular factors. Although these factors are essential to induce the retinal progenitor cell (RPC) fate from iPSCs/ESCs, developmental studies have shown that RPCs alter fate output as a function of time (i.e., their temporal identity) to generate the seven major classes of retinal cell types, rather than spatial position. Surprisingly, current stem cell differentiation protocols largely ignore the intrinsic temporal identity of dividing RPCs, which we argue likely explains the low efficiency of cone production in such cultures. In this article, we briefly review the mechanisms regulating temporal identity in RPCs and discuss how they could be exploited to improve cone photoreceptor production for cell replacement therapies.
Collapse
Affiliation(s)
- Awais Javed
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montreal (IRCM), Montreal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
28
|
Gonzalez-Cordero A, Kruczek K, Naeem A, Fernando M, Kloc M, Ribeiro J, Goh D, Duran Y, Blackford SJI, Abelleira-Hervas L, Sampson RD, Shum IO, Branch MJ, Gardner PJ, Sowden JC, Bainbridge JWB, Smith AJ, West EL, Pearson RA, Ali RR. Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors. Stem Cell Reports 2017; 9:820-837. [PMID: 28844659 PMCID: PMC5599247 DOI: 10.1016/j.stemcr.2017.07.022] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration. hPSC-derived photoreceptors express markers in a pattern similar to human development 2D/3D differentiation protocol generates sufficient cones for transplantation hPSC-derived cones incorporate into the adult retina following transplantation
Collapse
Affiliation(s)
- Anai Gonzalez-Cordero
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Kamil Kruczek
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Arifa Naeem
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Milan Fernando
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Magdalena Kloc
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Joana Ribeiro
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Debbie Goh
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Yanai Duran
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Samuel J I Blackford
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Laura Abelleira-Hervas
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Robert D Sampson
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ian O Shum
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Matthew J Branch
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peter J Gardner
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - James W B Bainbridge
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Alexander J Smith
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Emma L West
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Rachael A Pearson
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Robin R Ali
- Department of Genetics, University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK.
| |
Collapse
|
29
|
Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration. Stem Cell Reports 2017; 8:1659-1674. [PMID: 28552606 PMCID: PMC5470175 DOI: 10.1016/j.stemcr.2017.04.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs). Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor β2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1−/− mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation. Cone photoreceptor precursors form efficiently in mESC retinal organoids Notch signaling limits temporal competence for cone cell differentiation Reduced retinoic acid concentrations are required for cone maturation Cones transplanted into a model of advanced retinal degeneration survive and mature
Collapse
|
30
|
Aghaizu ND, Kruczek K, Gonzalez-Cordero A, Ali RR, Pearson RA. Pluripotent stem cells and their utility in treating photoreceptor degenerations. PROGRESS IN BRAIN RESEARCH 2017; 231:191-223. [PMID: 28554397 DOI: 10.1016/bs.pbr.2017.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Age-related macular degeneration and inherited retinal degenerations represent the leading causes of blindness in industrialized countries. Despite different initiating causes, they share a common final pathophysiology, the loss of the light sensitive photoreceptors. Replacement by transplantation may offer a potential treatment strategy for both patient populations. The last decade has seen remarkable progress in our ability to generate retinal cell types, including photoreceptors, from a variety of murine and human pluripotent stem cell sources. Driven in large part by the requirement for renewable cell sources, stem cells have emerged not only as a promising source of replacement photoreceptors but also to provide in vitro systems with which to study retinal development and disease processes and to test therapeutic agents.
Collapse
Affiliation(s)
| | - Kamil Kruczek
- UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Robin R Ali
- UCL Institute of Ophthalmology, London, United Kingdom
| | | |
Collapse
|
31
|
Decembrini S, Martin C, Sennlaub F, Chemtob S, Biel M, Samardzija M, Moulin A, Behar-Cohen F, Arsenijevic Y. Cone Genesis Tracing by the Chrnb4-EGFP Mouse Line: Evidences of Cellular Material Fusion after Cone Precursor Transplantation. Mol Ther 2017; 25:634-653. [PMID: 28143742 PMCID: PMC5363218 DOI: 10.1016/j.ymthe.2016.12.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The cone function is essential to mediate high visual acuity, color vision, and daylight vision. Inherited cone dystrophies and age-related macular degeneration affect a substantial percentage of the world population. To identify and isolate the most competent cells for transplantation and integration into the retina, cone tracing during development would be an important added value. To that aim, the Chrnb4-EGFP mouse line was characterized throughout retinogenesis. It revealed a sub-population of early retinal progenitors expressing the reporter gene that is progressively restricted to mature cones during retina development. The presence of the native CHRNB4 protein was confirmed in EGFP-positive cells, and it presents a similar pattern in the human retina. Sub-retinal transplantations of distinct subpopulations of Chrnb4-EGFP-expressing cells revealed the embryonic day 15.5 high-EGFP population the most efficient cells to interact with host retinas to provoke the appearance of EGFP-positive cones in the photoreceptor layer. Importantly, transplantations into the DsRed retinas revealed material exchanges between donor and host retinas, as >80% of transplanted EGFP-positive cones also were DsRed positive. Whether this cell material fusion is of significant therapeutic advantage requires further thorough investigations. The Chrnb4-EGFP mouse line definitely opens new research perspectives in cone genesis and retina repair.
Collapse
Affiliation(s)
- Sarah Decembrini
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation asile des aveugles, 1004 Lausanne, Switzerland
| | - Catherine Martin
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation asile des aveugles, 1004 Lausanne, Switzerland
| | - Florian Sennlaub
- Sorbonne Universités, UPMC/Univ Paris 06, UMRS 968, INSERM, U968, Institut de la Vision, 75012 Paris, France
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, Hôpital Ste. Justine Research Center, Montreal, QC H3T1C5, Canada
| | - Martin Biel
- Center for Integrated Protein Science Munich CIPSM, Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 München, Germany
| | - Marijana Samardzija
- Laboratory for Retinal Cell Biology, Department of Ophthalmology, University of Zurich, 8952 Schlieren, Switzerland
| | - Alexandre Moulin
- Pathology Laboratory, Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation asile des aveugles, 1004 Lausanne, Switzerland
| | - Francine Behar-Cohen
- Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation asile des aveugles, 1004 Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, Hôpital ophtalmique Jules-Gonin, Fondation asile des aveugles, 1004 Lausanne, Switzerland.
| |
Collapse
|
32
|
Ortin-Martinez A, Tsai ELS, Nickerson PE, Bergeret M, Lu Y, Smiley S, Comanita L, Wallace VA. A Reinterpretation of Cell Transplantation: GFP Transfer From Donor to Host Photoreceptors. Stem Cells 2017; 35:932-939. [PMID: 27977075 DOI: 10.1002/stem.2552] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/14/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022]
Abstract
The utilization of fluorescent reporter transgenes to discriminate donor versus host cells has been a mainstay of photoreceptor transplantation research, the assumption being that the presence of reporter+ cells in outer nuclear layer (ONL) of transplant recipients represents the integration of donor photoreceptors. We previously reported that GFP+ cells in the ONL of cone-GFP transplanted retinas exhibited rod-like characteristics, raising the possibility that GFP signal in recipient tissue may not be a consequence of donor cell integration. To investigate the basis for this mismatch, we performed a series of transplantations using multiple transgenic donor and recipient models, and assessed cell identity using nuclear architecture, immunocytochemistry, and DNA prelabeling. Our results indicate that GFP+ cells in the ONL fail to exhibit hallmark elements of donor cells, including nuclear hetero/euchromatin architecture. Furthermore, GFP signal does not appear to be a consequence of classic donor/host cell fusion or transfating post-transplant, but is most likely due to material exchange between donor and host photoreceptors. This transfer can be mediated by rods and cones, is bidirectional between donor and host cells, requires viable photoreceptors, occurs preferentially at sites of outer limiting membrane disruption and can be detected in second-order retinal neurons and Müller glia. Collectively, these data warrant re-evaluation of the use of lineage tracing fluorescent reporters in transplantation studies involving the retina and other CNS tissues. Furthermore, the reinterpretation of previous functional rescue data, based on material exchange, rather than cell integration, may offer a novel approach to vision rescue. Stem Cells 2017;35:932-939.
Collapse
Affiliation(s)
- Arturo Ortin-Martinez
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Ontario, Canada
| | - En Leh Samuel Tsai
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology
| | - Philip E Nickerson
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Ontario, Canada
| | - Miriam Bergeret
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology
| | - Yao Lu
- Department of Laboratory Medicine and Pathobiology
| | - Sheila Smiley
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Ontario, Canada
| | - Lacrimioara Comanita
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Ontario, Canada
| | - Valerie A Wallace
- Donald K Johnson Eye Institute, Krembil Research Institute, University Health Network, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Santos-Ferreira TF, Borsch O, Ader M. Rebuilding the Missing Part-A Review on Photoreceptor Transplantation. Front Syst Neurosci 2017; 10:105. [PMID: 28105007 PMCID: PMC5214672 DOI: 10.3389/fnsys.2016.00105] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 01/13/2023] Open
Abstract
Vision represents one of the main senses for humans to interact with their environment. Our sight relies on the presence of fully functional light sensitive cells – rod and cone photoreceptors — allowing us to see under dim (rods) and bright (cones) light conditions. Photoreceptor degeneration is one of the major causes for vision impairment in industrialized countries and it is highly predominant in the population above the age of 50. Thus, with the continuous increase in life expectancy it will make retinal degeneration reach an epidemic proportion. To date, there is no cure established for photoreceptor loss, but several therapeutic approaches, spanning from neuroprotection, pharmacological drugs, gene therapy, retinal prosthesis, and cell (RPE or photoreceptor) transplantation, have been developed over the last decade with some already introduced in clinical trials. In this review, we focus on current developments in photoreceptor transplantation strategies, its major breakthroughs, current limitations and the next challenges to translate such cell-based approaches toward clinical application.
Collapse
Affiliation(s)
- Tiago F Santos-Ferreira
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden Dresden, Germany
| | - Oliver Borsch
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden Dresden, Germany
| | - Marius Ader
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden Dresden, Germany
| |
Collapse
|
34
|
Wang YJ, Cai SJ, Cui JL, Chen Y, Tang X, Li YH. Correlation between photoreceptor injury-regeneration and behavior in a zebrafish model. Neural Regen Res 2017; 12:795-803. [PMID: 28616037 PMCID: PMC5461618 DOI: 10.4103/1673-5374.206651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Direct exposure to intensive visible light can lead to solar retinopathy, including macular injury. The signs and symptoms include central scotoma, metamorphopsia, and decreased vision. However, there have been few studies examining retinal injury due to intensive light stimulation at the cellular level. Neural network arrangements and gene expression patterns in zebrafish photoreceptors are similar to those observed in humans, and photoreceptor injury in zebrafish can induce stem cell-based cellular regeneration. Therefore, the zebrafish retina is considered a useful model for studying photoreceptor injury in humans. In the current study, the central retinal photoreceptors of zebrafish were selectively ablated by stimulation with high-intensity light. Retinal injury, cell proliferation and regeneration of cones and rods were assessed at 1, 3 and 7 days post lesion with immunohistochemistry and in situ hybridization. Additionally, a light/dark box test was used to assess zebrafish behavior. The results revealed that photoreceptors were regenerated by 7 days after the light-induced injury. However, the regenerated cells showed a disrupted arrangement at the lesion site. During the injury-regeneration process, the zebrafish exhibited reduced locomotor capacity, weakened phototaxis and increased movement angular velocity. These behaviors matched the morphological changes of retinal injury and regeneration in a number of ways. This study demonstrates that the zebrafish retina has a robust capacity for regeneration. Visual impairment and stress responses following high-intensity light stimulation appear to contribute to the alteration of behaviors.
Collapse
Affiliation(s)
- Ya-Jie Wang
- Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China.,Cataract Center, Tianjin Eye Hospital, Tianjin, China
| | - Shi-Jiao Cai
- Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China
| | - Jian-Lin Cui
- Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China
| | - Yang Chen
- Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China
| | - Xin Tang
- Cataract Center, Tianjin Eye Hospital, Tianjin, China
| | - Yu-Hao Li
- Key Laboratory of Tumor Microenviroment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
35
|
Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun 2016; 7:13029. [PMID: 27701378 PMCID: PMC5059468 DOI: 10.1038/ncomms13029] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022] Open
Abstract
Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor–host nuclear or cell–cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders. Transplantation of healthy photoreceptor cells has been shown to rescue blindness. Here, the authors show that rather than donor cells integrating into the host retina, the predominant mechanism underlying this rescue involves exchange of cytoplasmic material between donor and host cells in vivo.
Collapse
|