1
|
Cavalcanti GV, de Oliveira FR, Bannitz RF, de Paula NA, Motta ACF, Rocha EM, Chiorini J, Ricz HMA, Garcia DM, Foss-Freitas MC, de Freitas LCC. Endoplasmic reticulum stress in the salivary glands of patients with primary Sjögren's syndrome, associated Sjögren's syndrome, and non-Sjögren's sicca syndrome: a comparative analysis and the influence of chloroquine. Adv Rheumatol 2025; 65:2. [PMID: 39780265 DOI: 10.1186/s42358-024-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD). This study evaluated the expression of ERS-related genes in glandular tissue of patients with primary SD (pSD), associated SD (aSD) with other autoimmune diseases, and non-Sjögren sicca syndrome (NSS). METHODS In a cross-sectional study, minor salivary gland biopsies were obtained from 44 patients with suspected SD and 13 healthy controls (HC). Patients were classified as pSD, aSD, or NSS based on clinical, serological, and histological assessment. Histopathological analysis and mRNA expression analysis of genes associated with ERS and UPR (PERK, XBP1, ATF-6, ATF-4, CANX, CALR, CHOP, and BIP) were performed on the samples. Differences between groups (pSD, aSD, NSS, and HC) were assessed. The influence of chloroquine (CQ) on the ER was also investigated. RESULTS Twenty-eight SD patients showed increased expression of PERK (p = 0.0117) and XBP1 (p = 0.0346), and reduced expression of ATF-6 (p = 0.0003) and CHOP (p = 0.0003), compared to the HC group. Increased expression of BIP (p < 0.0001), PERK (p = 0.0003), CALR (p < 0.0001), and CANX (p = 0.0111) was also observed in the SD group compared to the NSS group (n = 16). Patients receiving CQ (n = 16) showed a significant increase in ATF-6 (p = 0.0317) compared to patients not taking the medication (n = 29). CONCLUSIONS Altogether, the results suggest a greater activation of the ERS and UPR genes in patients with SD, especially in the pSD group. Antimalarial drugs, like CQ, used to treat RAD, may affect the ER function in exocrine glands.
Collapse
Affiliation(s)
- Graziela Vieira Cavalcanti
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
- Ophthalmology, Otolaryngology, Head and Neck Surgery Department, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Monte Alegre, Ribeirão Preto, SP, 14.040-900, Brazil.
| | - Fabiola Reis de Oliveira
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Rafael Ferraz Bannitz
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Natalia Aparecida de Paula
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina Fragoso Motta
- Department of Stomatology, Public Health and Forensic Dentistry, Ribeirão Preto School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Eduardo Melani Rocha
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - John Chiorini
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Hilton Marcos Alves Ricz
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Denny Marcos Garcia
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Maria Cristina Foss-Freitas
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, and Caswell Diabetes Institute, University of Michigan, Ann Arbor, MI, USA
| | - Luiz Carlos Conti de Freitas
- Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Zinnah KMA, Munna AN, Park SY. Optimizing autophagy modulation for enhanced TRAIL-mediated therapy: Unveiling the superiority of late-stage inhibition over early-stage inhibition to overcome therapy resistance in cancer. Basic Clin Pharmacol Toxicol 2025; 136:e14110. [PMID: 39668304 DOI: 10.1111/bcpt.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is a vital mechanism that eliminates large cytoplasmic components via lysosomal degradation to maintain cellular homeostasis. The role of autophagy in cancer treatment has been studied extensively. Autophagy primarily prevents tumour initiation by maintaining genomic stability and preventing cellular inflammation. However, autophagy also supports cancer cell survival and growth by providing essential nutrients for therapeutic resistance. Thus, autophagy has emerged as a promising strategy for overcoming resistance and enhancing anti-cancer therapy. Inhibiting autophagy significantly improves the sensitivity of lung, colorectal, breast, liver and prostate cancer cells to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). This review investigates the intricate interplay between autophagy modulation and TRAIL-based therapy, specifically focussing on comparing the efficacy of late-stage autophagy inhibition versus early-stage inhibition in overcoming cancer resistance. We expose the distinctive advantages of late-stage autophagy inhibition by exploring the mechanisms underlying autophagy's impact on TRAIL sensitivity. Current preclinical and clinical investigations are inspected, showing the potential of targeting late-stage autophagy for sensitizing resistant cancer cells to TRAIL-induced apoptosis. This review emphasizes the significance of optimizing autophagy modulation to enhance TRAIL-mediated therapy and overcome the challenge of treatment resistance in cancer. We offer insights and recommendations for guiding the development of potential therapeutic strategies aimed at overcoming the challenges posed by treatment-resistant cancers.
Collapse
Affiliation(s)
- Kazi Mohammad Ali Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- Faculty of Biotechnology and Genetic Engineering, Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
3
|
Ren J, Lv L, Tao X, Zhai X, Chen X, Yu H, Zhao X, Kong X, Yu Z, Dong D, Liu J. The role of CBL family ubiquitin ligases in cancer progression and therapeutic strategies. Front Pharmacol 2024; 15:1432545. [PMID: 39130630 PMCID: PMC11310040 DOI: 10.3389/fphar.2024.1432545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The CBL (Casitas B-lineage lymphoma) family, as a class of ubiquitin ligases, can regulate signal transduction and activate receptor tyrosine kinases through various tyrosine kinase-dependent pathways. There are three members of the family: c-CBL, CBL-b, and CBL-c. Numerous studies have demonstrated the important role of CBL in various cellular pathways, particularly those involved in the occurrence and progression of cancer, hematopoietic development, and regulation of T cell receptors. Therefore, the purpose of this review is to comprehensively summarize the function and regulatory role of CBL family proteins in different human tumors, as well as the progress of drug research targeting CBL family, so as to provide a broader clinical measurement strategy for the treatment of tumors.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hao Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xinya Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xin Kong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhan Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Zhang M, Li J, Liu S, Zhou F, Zhang L. UCHL5 is a putative prognostic marker in renal cell carcinoma: a study of UCHL family. MOLECULAR BIOMEDICINE 2024; 5:28. [PMID: 39034372 PMCID: PMC11265068 DOI: 10.1186/s43556-024-00192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
A macroscopic perspective is indispensable for understanding the intricate relationship between deubiquitinases and tumorigenesis. Proteomics has been proposed as a viable approach for elucidating the complex role of deubiquitylation in cellular progression. Instead of studying the function of a single ubiquitinase, research on a deubiquitinase family with similar catalytic core(s) may provide a new perspective for the pathological understanding of cancer. The Ubiquitin C-terminal hydrolase L (UCHL) family consists of four members: UCHL1, UCHL3, UCHL5, and BRAC1 associated protein-1 (BAP1), and they have been implicated in tumorigenesis and metastasis. Some members are considered hallmarks of intracranial lesions, colon cancer, chromatin remodeling, and histone stability. The present study uncovered an unknown correlation between the UCHL family and renal cancer. We discovered that UCHLs exhibit diverse regulatory effects in renal cancer, establishing connections between the renal cancer and truncated gene mutations, mitochondrial energetic metastasis, immune cell infiltration, and chromosomal stability of UCHLs family. Notably, we found that the increase of UCHL5 expression in renal cancer cells decreases the antigen processing and presentation of RCC tumor-infiltrating B cells. Further research identified that the expression of UCHL5 in RCC tumors is correlated with transport proteins, which led us to find that the abundance of UCHL5 in the blood of late-stage renal cell cancer patients is upregulated from 18 ng/L to 500 ng/L. Therefore, we propose that the abundance of UCHL5 in patients' blood can be a possible indicator of poor prognosis for renal cell cancer.
Collapse
Affiliation(s)
- Mengdi Zhang
- Life Sciences Institute, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jingxian Li
- Life Sciences Institute, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Sijia Liu
- International Biomed-X Research Center, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310058, PR China
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, PR China
| | - Long Zhang
- Life Sciences Institute, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, PR China.
| |
Collapse
|
5
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
6
|
Vunnam N, Young MC, Liao EE, Lo CH, Huber E, Been M, Thomas DD, Sachs JN. Nimesulide, a COX-2 inhibitor, sensitizes pancreatic cancer cells to TRAIL-induced apoptosis by promoting DR5 clustering †. Cancer Biol Ther 2023; 24:2176692. [PMID: 36775838 PMCID: PMC9928464 DOI: 10.1080/15384047.2023.2176692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Nimesulide is a nonsteroidal anti-inflammatory drug and a COX-2 inhibitor with antitumor and antiproliferative activities that induces apoptosis in oral, esophagus, breast, and pancreatic cancer cells. Despite being removed from the market due to hepatotoxicity, nimesulide is still an important research tool being used to develop new anticancer drugs. Multiple studies have been done to modify the nimesulide skeleton to develop more potent anticancer agents and related compounds are promising scaffolds for future development. As such, establishing a mechanism of action for nimesulide remains an important part of realizing its potential. Here, we show that nimesulide enhances TRAIL-induced apoptosis in resistant pancreatic cancer cells by promoting clustering of DR5 in the plasma membrane. In this way, nimesulide acts like a related compound, DuP-697, which sensitizes TRAIL-resistant colon cancer cells in a similar manner. Our approach applies a time-resolved FRET-based biosensor that monitors DR5 clustering and conformational states in the plasma membrane. We show that this tool can be used for future high-throughput screens to identify novel, nontoxic small molecule scaffolds to overcome TRAIL resistance in cancer cells.
Collapse
Affiliation(s)
- Nagamani Vunnam
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Malaney C Young
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Elly E Liao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Evan Huber
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - MaryJane Been
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Liu S, Liu X, Lin X, Chen H. Zinc Finger Proteins in the War on Gastric Cancer: Molecular Mechanism and Clinical Potential. Cells 2023; 12:cells12091314. [PMID: 37174714 PMCID: PMC10177130 DOI: 10.3390/cells12091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
According to the 2020 global cancer data released by the World Cancer Research Fund (WCRF) International, gastric cancer (GC) is the fifth most common cancer worldwide, with yearly increasing incidence and the second-highest fatality rate in malignancies. Despite the contemporary ambiguous molecular mechanisms in GC pathogenesis, numerous in-depth studies have demonstrated that zinc finger proteins (ZFPs) are essential for the development and progression of GC. ZFPs are a class of transcription factors with finger-like domains that bind to Zn2+ extensively and participate in gene replication, cell differentiation and tumor development. In this review, we briefly outline the roles, molecular mechanisms and the latest advances in ZFPs in GC, including eight principal aspects, such as cell proliferation, epithelial-mesenchymal transition (EMT), invasion and metastasis, inflammation and immune infiltration, apoptosis, cell cycle, DNA methylation, cancer stem cells (CSCs) and drug resistance. Intriguingly, the myeloid zinc finger 1 (MZF1) possesses reversely dual roles in GC by promoting tumor proliferation or impeding cancer progression via apoptosis. Therefore, a thorough understanding of the molecular mechanism of ZFPs on GC progression will pave the solid way for screening the potentially effective diagnostic indicators, prognostic biomarkers and therapeutic targets of GC.
Collapse
Affiliation(s)
- Shujie Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xingzhu Liu
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Xin Lin
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
8
|
Müller A, Weyerhäuser P, Berte N, Jonin F, Lyubarskyy B, Sprang B, Kantelhardt SR, Salinas G, Opitz L, Schulz-Schaeffer W, Giese A, Kim EL. Concurrent Activation of Both Survival-Promoting and Death-Inducing Signaling by Chloroquine in Glioblastoma Stem Cells: Implications for Potential Risks and Benefits of Using Chloroquine as Radiosensitizer. Cells 2023; 12:cells12091290. [PMID: 37174691 PMCID: PMC10177603 DOI: 10.3390/cells12091290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Lysosomotropic agent chloroquine was shown to sensitize non-stem glioblastoma cells to radiation in vitro with p53-dependent apoptosis implicated as one of the underlying mechanisms. The in vivo outcomes of chloroquine or its effects on glioblastoma stem cells have not been previously addressed. This study undertakes a combinatorial approach encompassing in vitro, in vivo and in silico investigations to address the relationship between chloroquine-mediated radiosensitization and p53 status in glioblastoma stem cells. Our findings reveal that chloroquine elicits antagonistic impacts on signaling pathways involved in the regulation of cell fate via both transcription-dependent and transcription-independent mechanisms. Evidence is provided that transcriptional impacts of chloroquine are primarily determined by p53 with chloroquine-mediated activation of pro-survival mevalonate and p21-DREAM pathways being the dominant response in the background of wild type p53. Non-transcriptional effects of chloroquine are conserved and converge on key cell fate regulators ATM, HIPK2 and AKT in glioblastoma stem cells irrespective of their p53 status. Our findings indicate that pro-survival responses elicited by chloroquine predominate in the context of wild type p53 and are diminished in cells with transcriptionally impaired p53. We conclude that p53 is an important determinant of the balance between pro-survival and pro-death impacts of chloroquine and propose that p53 functional status should be taken into consideration when evaluating the efficacy of glioblastoma radiosensitization by chloroquine.
Collapse
Affiliation(s)
- Andreas Müller
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Patrick Weyerhäuser
- Institute of Toxicology, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Nancy Berte
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Fitriasari Jonin
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Bogdan Lyubarskyy
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Bettina Sprang
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Sven Rainer Kantelhardt
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit (NIG), Institute for Human Genetics, University Medical Centre, 37075 Göttingen, Germany
| | - Lennart Opitz
- Functional Genomics Center Zurich, ETH Zurich, University of Zurich, 8092 Zurich, Switzerland
| | | | - Alf Giese
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| | - Ella L Kim
- Experimental Neurooncology Group, Clinic for Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany
| |
Collapse
|
9
|
Zinnah KMA, Munna AN, Seol JW, Park BY, Park SY. An Antidepressant Drug Increased TRAIL Receptor-2 Expression and Sensitized Lung Cancer Cells to TRAIL-induced Apoptosis. Anticancer Agents Med Chem 2023; 23:2225-2236. [PMID: 37859313 PMCID: PMC10788920 DOI: 10.2174/0118715206262252231004110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND TRAIL has emerged as a promising therapeutic target due to its ability to selectively induce apoptosis in cancer cells while sparing normal cells. Autophagy, a highly regulated cellular recycling mechanism, is known to play a cell survival role by providing a required environment for the cell. Recent studies suggest that autophagy plays a significant role in increasing TRAIL resistance in certain cancer cells. Thus, regulating autophagy in TRAIL-mediated cancer therapy is crucial for its role in cancer treatment. OBJECTIVE Our study explored whether the antidepressant drug desipramine could enhance the ability of TRAIL to kill cancer cells by inhibiting autophagy. METHODS The effect of desipramine on TRAIL sensitivity was examined in various lung cancer cell lines. Cell viability was measured by morphological analysis, trypan blue exclusion, and crystal violet staining. Flow cytometry analysis was carried out to measure apoptosis with annexin V-PI stained cells. Western blotting, rtPCR, and immunocytochemistry were carried out to measure autophagy and death receptor expression. TEM was carried out to detect autophagy inhibition. RESULTS Desipramine treatment increased the TRAIL sensitivity in all lung cancer cell lines. Mechanistically, desipramine treatment induced death receptor expression to increase TRAIL sensitivity. This effect was confirmed when the genetic blockade of DR5 reduced the effect of desipramine in enhanced TRAIL-mediated cell death. Further investigation revealed that desipramine treatment increased the LC3 and p62 levels, indicating the inhibition of lysosomal degradation of autophagy. Notably, TRAIL, in combination with either desipramine or the autophagy inhibitor chloroquine, exhibited enhanced cytotoxicity compared to TRAIL treatment alone. CONCLUSION Our findings revealed the potential of desipramine to induce TRAIL-mediated cell death by autophagy impairment. This discovery suggests its therapeutic potential for inducing TRAIL-mediated cell death by increasing the expression of death receptors, which is caused by impairing autophagy.
Collapse
Affiliation(s)
- Kazi Mohammad Ali Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
- Department of Animal and Fish Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Byung-Yong Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Gobong ro, Iksan, Jeonbuk, 54596, South Korea
| |
Collapse
|
10
|
Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy. Acta Pharm Sin B 2023; 13:327-343. [PMID: 36815044 PMCID: PMC9939305 DOI: 10.1016/j.apsb.2022.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Extended circulation of anticancer nanodrugs in blood stream is essential for their clinical applications. However, administered nanoparticles are rapidly sequestered and cleared by cells of the mononuclear phagocyte system (MPS). In this study, we developed a biomimetic nanosystem that is able to efficiently escape MPS and target tumor tissues. The fabricated nanoparticles (TM-CQ/NPs) were coated with fibroblast cell membrane expressing tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL). Coating with this functionalized membrane reduced the endocytosis of nanoparticles by macrophages, but increased the nanoparticle uptake in tumor cells. Importantly, this membrane coating specifically induced tumor cell apoptosis via the interaction of TRAIL and its cognate death receptors. Meanwhile, the encapsulated chloroquine (CQ) further suppressed the uptake of nanoparticles by macrophages, and synergized with TRAIL to induce tumor cell apoptosis. The vigorous antitumor efficacy in two mice tumor models confirmed our nanosystem was an effective approach to address the MPS challenge for cancer therapy. Together, our TM-CQ/NPs nanosystem provides a feasible approach to precisely target tumor tissues and improve anticancer efficacy.
Collapse
|
11
|
Tang SC, Ko JL, Lu CT, Leong PY, Ou CC, Hsu CT, Hsiao YP. Chloroquine alleviates the heat-induced to injure via autophagy and apoptosis mechanisms in skin cell and mouse models. PLoS One 2022; 17:e0272797. [PMID: 36044415 PMCID: PMC9432730 DOI: 10.1371/journal.pone.0272797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
Burns can cause cell death and irreversible tissue damage. We examined the pathway of human dermis fibroblasts cell death caused by skin burns and the roles of chloroquine in human skin keratinocytes HaCaT wound healing. Western blot assays were performed to assess expression of proteins associated with autophagy, apoptosis, and endoplasmic reticulum stress in skin cells following burns. Changes in apoptosis-related proteins were assessed using flow cytometry, and wound cell migration was examined using wound healing assays. The burn animal model was used to test whether chloroquine would promote wound healing. In human burned fibroblasts, expression of LC3B-II and Cleave-caspase-7 was increased, whereas expression of Beclin-1, p62, and Grp78 was decreased. Severe burn induced ER stress and ERK phosphorylation, but PD98059 or necrostatin-1 treatment cells did not affect expression of autophagy LC3B-II protein and can induce apoptosis. Even though added with TGF-β and FGF did not repair autophagy caused by burns. Suggesting that autophagy and apoptosis were involved in heat-injured mechanism. Recombinant Wnt3a protein can help restore expression of β-catenin which reduced following burns in keratinocytes. Wnt3a protein can promote migration of keratinocytes after burns. Interesting, chloroquine increased expression of LC3B-II protein and restored cell migration activity after 24 h of burns. Consistently, surgical dressing containing chloroquine promoted wound healing in a burn animal mode. Autophagy and Wnt/β-catenin is two signalling pathways that participate in cell repair and wound healing in human fibroblasts, keratinocytes. Surgical dressing containing chloroquine can recover wound healing in burned rats.
Collapse
Affiliation(s)
- Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pui-Ying Leong
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Ting Hsu
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
12
|
Yoon JY, Woo SM, Seo SU, Song SR, Lee SG, Kwon TK. Lucanthone, Autophagy Inhibitor, Enhances the Apoptotic Effects of TRAIL through miR-216a-5p-Mediated DR5 Upregulation and DUB3-Mediated Mcl-1 Downregulation. Int J Mol Sci 2021; 23:ijms23010017. [PMID: 35008442 PMCID: PMC8744864 DOI: 10.3390/ijms23010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
A lucanthone, one of the family of thioxanthenones, has been reported for its inhibitory effects of apurinic endonuclease-1 and autophagy. In this study, we investigated whether lucanthone could enhance tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in various cancer cells. Combined treatment with lucanthone and TRAIL significantly induced apoptosis in human renal carcinoma (Caki and ACHN), prostate carcinoma (PC3), and lung carcinoma (A549) cells. However, combined treatment did not induce apoptosis in normal mouse kidney cells (TCMK-1) and normal human skin fibroblast (HSF). Lucanthone downregulated protein expression of deubiquitinase DUB3, and a decreased expression level of DUB3 markedly led to enhance TRAIL-induced apoptosis. Ectopic expression of DUB3 inhibited combined treatment with lucanthone and TRAIL-induced apoptosis. Moreover, lucanthone increased expression level of DR5 mRNA via downregulation of miR-216a-5p. Transfection of miR-216a-5p mimics suppressed the lucanthone-induced DR5 upregulation. Taken together, these results provide the first evidence that lucanthone enhances TRAIL-induced apoptosis through DR5 upregulation by downregulation of miR-216a-5p and DUB3-dependent Mcl-1 downregulation in human renal carcinoma cells.
Collapse
Affiliation(s)
- Ji Yun Yoon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Seung Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - So Rae Song
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Seul Gi Lee
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea; (J.Y.Y.); (S.M.W.); (S.U.S.); (S.R.S.); (S.G.L.)
- Center for Forensic Pharmaceutical Science, College of Pharmacy, Keimyung University, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-258-7358
| |
Collapse
|
13
|
Zinnah KMA, Park SY. Sensitizing TRAIL‑resistant A549 lung cancer cells and enhancing TRAIL‑induced apoptosis with the antidepressant amitriptyline. Oncol Rep 2021; 46:144. [PMID: 34080659 PMCID: PMC8185507 DOI: 10.3892/or.2021.8095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with the potential to induce cancer cell-specific apoptosis with minimal toxicity to normal cells. Therefore, the resistance of certain cancer cells to TRAIL is a major concern and agents that can either enhance TRAIL capabilities or overcome TRAIL resistance are necessary for the development of cancer treatments. The present study investigated whether the antidepressant drug amitriptyline could sensitize TRAIL-resistant A549 lung cancer cells and enhance TRAIL-induced apoptosis. Antidepressants are usually prescribed to cancer patients to relieve emotional distress, such as depression or dysthymia. The present study revealed for the first time, to the best of our knowledge, that amitriptyline increased death receptor (DR) 4 and 5 expression, a requirement for TRAIL-induced cell death. Genetic inhibitors of DR4 and DR5 significantly reduced amitriptyline-enhanced TRAIL-mediated apoptosis. Additionally, the present study explored whether blocking autophagy increased DR4 and DR5 expression. Blocking autophagy flux with the final stage autophagy inhibitor chloroquine (CQ) also upregulated DR4 and DR5 expression. TRAIL in combination with amitriptyline or CQ significantly increased the expression of apoptosis-indicator proteins cleaved caspase-8 and caspase-3. The expression levels of LC3-II and p62 were significantly higher in amitriptyline-treated cells, which confirmed that amitriptyline blocks autophagy by inhibiting the fusion of autophagosomes with lysosomes. Overall, the present results contributed to understanding the mechanism responsible for the synergistic anticancer effect of amitriptyline and TRAIL and also presented a novel mechanism involved in DR4 and DR5 upregulation.
Collapse
Affiliation(s)
- K M A Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
14
|
Khawaja H, Campbell A, Roberts JZ, Javadi A, O'Reilly P, McArt D, Allen WL, Majkut J, Rehm M, Bardelli A, Di Nicolantonio F, Scott CJ, Kennedy R, Vitale N, Harrison T, Sansom OJ, Longley DB, Evergren E, Van Schaeybroeck S. RALB GTPase: a critical regulator of DR5 expression and TRAIL sensitivity in KRAS mutant colorectal cancer. Cell Death Dis 2020; 11:930. [PMID: 33122623 PMCID: PMC7596570 DOI: 10.1038/s41419-020-03131-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/07/2023]
Abstract
RAS mutant (MT) metastatic colorectal cancer (mCRC) is resistant to MEK1/2 inhibition and remains a difficult-to-treat group. Therefore, there is an unmet need for novel treatment options for RASMT mCRC. RALA and RALB GTPases function downstream of RAS and have been found to be key regulators of several cell functions implicated in KRAS-driven tumorigenesis. However, their role as regulators of the apoptotic machinery remains to be elucidated. Here, we found that inhibition of RALB expression, but not RALA, resulted in Caspase-8-dependent cell death in KRASMT CRC cells, which was not further increased following MEK1/2 inhibition. Proteomic analysis and mechanistic studies revealed that RALB depletion induced a marked upregulation of the pro-apoptotic cell surface TRAIL Death Receptor 5 (DR5) (also known as TRAIL-R2), primarily through modulating DR5 protein lysosomal degradation. Moreover, DR5 knockdown or knockout attenuated siRALB-induced apoptosis, confirming the role of the extrinsic apoptotic pathway as a regulator of siRALB-induced cell death. Importantly, TRAIL treatment resulted in the association of RALB with the death-inducing signalling complex (DISC) and targeting RALB using pharmacologic inhibition or RNAi approaches triggered a potent increase in TRAIL-induced cell death in KRASMT CRC cells. Significantly, high RALB mRNA levels were found in the poor prognostic Colorectal Cancer Intrinsic Subtypes (CRIS)-B CRC subgroup. Collectively, this study provides to our knowledge the first evidence for a role for RALB in apoptotic priming and suggests that RALB inhibition may be a promising strategy to improve response to TRAIL treatment in poor prognostic RASMT CRIS-B CRC.
Collapse
Affiliation(s)
- Hajrah Khawaja
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Jamie Z Roberts
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Arman Javadi
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Paul O'Reilly
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Darragh McArt
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Wendy L Allen
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Joanna Majkut
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, D-70569, Stuttgart, Germany
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Candiolo, TO, 10060, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, 10060, Italy
| | - Christopher J Scott
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Richard Kennedy
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Nicolas Vitale
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000, Strasbourg, France
| | - Timothy Harrison
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Daniel B Longley
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Emma Evergren
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
15
|
Dexamethasone Inhibits TRAIL-Induced Apoptosis through c-FLIP(L) Upregulation and DR5 Downregulation by GSK3β Activation in Cancer Cells. Cancers (Basel) 2020; 12:cancers12102901. [PMID: 33050333 PMCID: PMC7600459 DOI: 10.3390/cancers12102901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Dexamethasone (DEX) is commonly used as immunosuppressive and chemotherapeutic agent. The effects of DEX on cell death is different, depending on cell types and stimuli. Here, we found that DEX inhibited tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death in cancer cells. Upregulation of c-FLIP(L) and downregulation of death receptor 5 (DR5) play a critical role in anti-apoptotic effects of DEX in TRAIL-induced apoptosis. DEX upregulated c-FLIP(L) expression at the transcriptional levels through the GSK-3β signaling pathway. Furthermore, DEX also modulated protein stability of DR5 via the GSK-3β/Cbl axis-mediated ubiquitin–proteasome system. Therefore, DEX-induced GSK3β activation plays a critical role in the modulation of c-FLIP(L) and DR5. This finding suggests that DEX reduced effects of anti-cancer drugs in cancer cells. Abstract Dexamethasone (DEX), a synthetic glucocorticoid, is commonly used as immunosuppressive and chemotherapeutic agent. This study was undertaken to investigate the effects of DEX on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in cancer cells. We found that upregulation of c-FLIP(L) and downregulation of death receptor 5 (DR5; receptor for TRAIL ligand) contribute to the anti-apoptotic effect of DEX on TRAIL-induced apoptosis. DEX increased c-FLIP(L) expression at the transcriptional levels through the GSK-3β signaling pathway. The pharmacological inhibitor and catalytic mutant of GSK-3β suppressed DEX-induced upregulation of c-FLIP(L) expression. Furthermore, GSK-3β specific inhibitor markedly abolished DEX-mediated reduction of TRAIL-induced apoptosis in human renal cancer cells (Caki-1 and A498), human lung cancer cells (A549), and human breast cancer cells (MDA-MB361). In addition, DEX decreased protein stability of DR5 via GSK-3β-mediated upregulation of Cbl, an E3 ligase of DR5. Knockdown of Cbl by siRNA markedly inhibited DEX-induced DR5 downregulation. Taken together, these results suggest that DEX inhibits TRAIL-mediated apoptosis via GSK-3β-mediated DR5 downregulation and c-FLIP(L) upregulation in cancer cells.
Collapse
|
16
|
Upregulation of DR5 and Downregulation of Survivin by IITZ-01, Lysosomotropic Autophagy Inhibitor, Potentiates TRAIL-Mediated Apoptosis in Renal Cancer Cells via Ubiquitin-Proteasome Pathway. Cancers (Basel) 2020; 12:cancers12092363. [PMID: 32825566 PMCID: PMC7564912 DOI: 10.3390/cancers12092363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 01/23/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively is able to increase apoptosis in cancer cells as agent with minimum toxicity to noncancerous cells. However, all cancer cells are not sensitive to TRAIL-induced apoptosis. In this study, we showed the sub-lethal concentrations of a lysosomotropic autophagy inhibitor, IITZ-01, sensitizes cancer cells (renal, lung, and breast carcinoma) to TRAIL-induced apoptosis through DR5 upregulation and survivin downregulation through ubiquitin-proteasome pathway. Knockdown of DR5 or overexpression of survivin inhibited combined treatment with IITZ-01 and TRAIL-induced apoptosis. IITZ-01 downregulated protein expression of Cbl, ubiquitin E3 ligase, and decreased expression level of Cbl markedly led to increase DR5 protein expression and TRAIL sensitivity. Moreover, IITZ-01 decreased expression level of survivin protein via downregulation of deubiquitinase ubiquitin-specific protease 9X (USP9X) expression. Taken together, these results provide the first evidence that IITZ-01 enhances TRAIL-mediated apoptosis through DR5 stabilization by downregulation of Cbl and USP9X-dependent survivin ubiquitination and degradation in renal carcinoma cells.
Collapse
|
17
|
Zinnah KMA, Seol JW, Park SY. Inhibition of autophagy flux by sertraline attenuates TRAIL resistance in lung cancer via death receptor 5 upregulation. Int J Mol Med 2020; 46:795-805. [PMID: 32626921 PMCID: PMC7307864 DOI: 10.3892/ijmm.2020.4635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) is a potential target for cancer therapy, owing to its ability to selectively kill cancer cells without causing significant toxicity to normal cells. However, due to the lack of death receptor expression, cancer cells can become highly resistant to TRAIL. Hence, it is vital to develop agents that restore TRAIL efficacy. Sertraline is an antidepressant drug with anticancer properties. To the best of our knowledge, this is the first study to demonstrate that sertraline inhibits autophagic flux and increases the expression of death receptor 5 (DR5) on TRAIL‑resistant lung cancer cells. Inhibition of autophagy using autophagy inhibitors 3‑methyladenine and chloroquine upregulated the expression of DR5 and enhanced TRAIL‑induced apoptosis, as confirmed by the increase of pro‑apoptotic proteins caspase‑8 and caspase‑3. Silencing DR5 expression using DR5 small interfering RNA prevented sertraline‑induced TRAIL‑mediated apoptosis, indicating the role of DR5 in TRAIL‑mediated apoptosis. Overall, sertraline enhanced TRAIL‑mediated apoptosis via the downregulation of AMP‑activated protein kinase phosphorylation, resulting in the inhibition of autophagic flux, upregulation of DR5 expression, and activation of the apoptotic caspase cascade. These data suggested that sertraline could be used to sensitize human lung cancer cells to TRAIL, while also serving as a therapeutic option in cancer patients with depression.
Collapse
Affiliation(s)
- Kazi Mohammad Ali Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
- Department of Animal and Fish Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jae-Won Seol
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
- Correspondence to: Professor Sang-Youel Park, Department of Veterinary Medicine, Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan, Jeonbuk 54596, Republic of Korea, E-mail:
| |
Collapse
|
18
|
Zhang W, Kang X, Yuan B, Wang H, Zhang T, Shi M, Zheng Z, Zhang Y, Peng C, Fan X, Yang H, Shen Y, Huang Y. Nano-Structural Effects on Gene Transfection: Large, Botryoid-Shaped Nanoparticles Enhance DNA Delivery via Macropinocytosis and Effective Dissociation. Theranostics 2019; 9:1580-1598. [PMID: 31037125 PMCID: PMC6485200 DOI: 10.7150/thno.30302] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022] Open
Abstract
Effective delivery is the primary barrier against the clinical translation of gene therapy. Yet there remains too much unknown in the gene delivery mechanisms, even for the most investigated polymeric carrier (i.e., PEI). As a consequence, the conflicting results have been often seen in the literature due to the large variability in the experimental conditions and operations. Therefore, some key parameters should be identified and thus strictly controlled in the formulation process. Methods: The effect of the formulation processing parameters (e.g., concentration or mixture volume) and the resulting nanostructure properties on gene transfection have been rarely investigated. Two types of the PEI/DNA nanoparticles (NPs) were prepared in the same manner with the same dose but at different concentrations. The microstructure of the NPs and the transfection mechanisms were investigated through various microscopic methods. The therapeutic efficacy of the NPs was demonstrated in the cervical subcutaneous xenograft and peritoneal metastasis mouse models. Results: The high-concentration process (i.e., small reaction-volume) for mixture resulted in the large-sized PEI/DNA NPs that had a higher efficiency of gene transfection, compared to the small counterpart that was prepared at a low concentration. The microstructural experiments showed that the prepared small NPs were firmly condensed, whereas the large NPs were bulky and botryoid-shaped. The large NPs entered the tumor cells via the macropinocytosis pathway, and then efficiently dissociated in the cytoplasm and released DNA, thus promoting the intranuclear delivery. The enhanced in vivo therapeutic efficacy of the large NPs was demonstrated, indicating the promise for local-regional administration. Conclusion: This work provides better understanding of the effect of formulation process on nano-structural properties and gene transfection, laying a theoretical basis for rational design of the experimental process.
Collapse
Affiliation(s)
- Wenyuan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejia Kang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bo Yuan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Huiyuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingjie Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zening Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuanheng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chengyuan Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoming Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huaiyu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- East China Normal University School of Life Sciences, Shanghai 200241, China
| | - Youqing Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Hiramatsu S, Watanabe KS, Zeggar S, Asano Y, Miyawaki Y, Yamamura Y, Katsuyama E, Katsuyama T, Watanabe H, Takano-Narazaki M, Matsumoto Y, Kawabata T, Sada KE, Wada J. Regulation of Cathepsin E gene expression by the transcription factor Kaiso in MRL/lpr mice derived CD4+ T cells. Sci Rep 2019; 9:3054. [PMID: 30816218 PMCID: PMC6395770 DOI: 10.1038/s41598-019-38809-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023] Open
Abstract
Global DNA hypomethylation in CD4+ cells in systemic lupus erythematosus (SLE) was suggested to play a key role in the pathogenesis. To identify new methylation-sensitive genes, we integrated genome-wide DNA methylation and mRNA profiling data in CD4+ cells of MRL/lpr (MRL) and C57BL6/J (B6) mice. We identified Cathepsin E (Ctse), in which 13 methyl-CpGs within 583 bp region of intron 1 were hypomethylated, and Ctse mRNA upregulated in MRL compared with B6 mice. One of methyl-CpGs, mCGCG was 93.3 ± 2.05% methylated in B6 mice, while 80.0 ± 6.2% methylated and mutated to CGGG in MRL mice. Kaiso is known to bind to mCGCG and we hypothesized that it represses expression of Ctse in B6 mice. The binding of Kaiso to mCGCG site in B6 mice was reduced in MRL mice revealed by ChIP-PCR. EL4 cells treated with 5-azaC and/or Trichostatin A showed the suppression of binding of Kaiso to mCGCG motif by ChIP-PCR and the overexpression of Ctse was demonstrated by qPCR. Ctse gene silencing by siRNA in EL4 cells resulted in reduction of IL-10 secretion. The hypomethylation of mCGCG motif, reduced recruitment of Kaiso, and increased expression of Ctse and Il-10 in CD4+ cells may be involved in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Sumie Hiramatsu
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Katsue S Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Sonia Zeggar
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Yosuke Asano
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Yoshia Miyawaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Yuriko Yamamura
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Eri Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Takayuki Katsuyama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Haruki Watanabe
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Mariko Takano-Narazaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Tomoko Kawabata
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Ken-Ei Sada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, 700-8558, Japan.
| |
Collapse
|
20
|
Woo SM, Kwon TK. E3 ubiquitin ligases and deubiquitinases as modulators of TRAIL-mediated extrinsic apoptotic signaling pathway. BMB Rep 2019. [PMID: 30638181 PMCID: PMC6443324 DOI: 10.5483/bmbrep.2019.52.2.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) initiates the extrinsic apoptotic pathway through formation of the death-inducing signaling complex (DISC), followed by activation of effector caspases. TRAIL receptors are composed of death receptors (DR4 and DR5), decoy receptors (DcR1 and DcR2), and osteoprotegerin. Among them, only DRs activate apoptotic signaling by TRAIL. Since the levels of DR expressions are higher in cancer cells than in normal cells, TRAIL selectively activates apoptotic signaling pathway in cancer cells. However, multiple mechanisms, including down-regulation of DR expression and pro-apoptotic proteins, and up-regulation of anti-apoptotic proteins, make cancer cells TRAIL-resistant. Therefore, many researchers have investigated strategies to overcome TRAIL resistance. In this review, we focus on protein regulation in relation to extrinsic apoptotic signaling pathways via ubiquitination. The ubiquitin proteasome system (UPS) is an important process in control of protein degradation and stabilization, and regulates proliferation and apoptosis in cancer cells. The level of ubiquitination of proteins is determined by the balance of E3 ubiquitin ligases and deubiquitinases (DUBs), which determine protein stability. Regulation of the UPS may be an attractive target for enhancement of TRAIL-induced apoptosis. Our review provides insight to increasing sensitivity to TRAIL-mediated apoptosis through control of post-translational protein expression. [BMB Reports 2019; 52(2): 119-126].
Collapse
Affiliation(s)
- Seon Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Korea
| |
Collapse
|
21
|
Elucidation for modulation of death receptor (DR) 5 to strengthen apoptotic signals in cancer cells. Arch Pharm Res 2019; 42:88-100. [DOI: 10.1007/s12272-018-01103-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
|
22
|
Involvement of Up-Regulation of DR5 Expression and Down-Regulation of c-FLIP in Niclosamide-Mediated TRAIL Sensitization in Human Renal Carcinoma Caki Cells. Molecules 2018; 23:molecules23092264. [PMID: 30189637 PMCID: PMC6225471 DOI: 10.3390/molecules23092264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/01/2023] Open
Abstract
Niclosamide is used to treat intestinal parasite infections, as being an anthelmintic drug. Recently, several papers suggest the niclosamide inhibits multiple signaling pathways, which are highly activated and mutated in cancer. Here, niclosamide was evaluated for identifying strategies to overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance. Although niclosamide (100–200 nM) alone did not bring about cell death, combinations of niclosamide and TRAIL led to apoptotic cell death in carcinoma cells, but not in normal cells. Niclosamide markedly increased DR5 protein levels, including cell-surface DR5, and decreased c-FLIP protein levels. Down-regulation of DR5 by specific small interfering RNA (siRNA) and ectopic expression of c-FLIP markedly blocked niclosamide plus TRAIL-induced apoptosis. Our findings provide that niclosamide could overcome resistance to TRAIL through up-regulating DR5 on the cell surface and down-regulating c-FLIP in cancer cells. Taken together, niclosamide may be an attractive candidate to overcome TRAIL resistance.
Collapse
|
23
|
Jia B, Xue Y, Yan X, Li J, Wu Y, Guo R, Zhang J, Zhang L, Li Y, Liu Y, Sun L. Autophagy inhibitor chloroquine induces apoptosis of cholangiocarcinoma cells via endoplasmic reticulum stress. Oncol Lett 2018; 16:3509-3516. [PMID: 30127955 PMCID: PMC6096195 DOI: 10.3892/ol.2018.9131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
Poor prognosis and chemotherapy tolerance are the main obstacles encountered in the treatment of cholangiocarcinoma. Chloroquine (CQ), an antimalarial agent, is able to induce sustained endoplasmic reticulum (ER) stress by functioning as an autophagy inhibitor. The present study indicated that CQ had the ability to induce apoptosis in QBC939 cholangiocarcinoma cells. Furthermore, using western blotting, Hoechst staining and flow cytometry, it was demonstrated that CQ induced the apoptosis of QBC939 cholangiocarcinoma cells. Analysis by a polymerase chain reaction (PCR) array and confirmation via quantitative PCR technology indicated that the expression levels of growth arrest and DNA damage 153 [C/EBP homologous protein (CHOP)], a key molecule involved in ER stress-induced apoptosis, and its downstream death receptors were increased following CQ stimulation. It was considered that the upregulation of CHOP may mediate CQ-induced extrinsic pathways and autophagy-dependent apoptosis; therefore, the role of autophagy in cholangiocarcinoma treatment was elucidated based on the data demonstrating that CQ regulates the ER-autophagy network in tumor cells. Furthermore, it was considered that CQ may become a novel and effective strategy for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Baoxing Jia
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanan Xue
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoyu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiuling Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yao Wu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Rui Guo
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Juanjuan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lichao Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yaping Li
- Department of Dermatology, Jilin Province People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
24
|
Rasheduzzaman M, Moon JH, Lee JH, Nazim UM, Park SY. Telmisartan generates ROS-dependent upregulation of death receptor 5 to sensitize TRAIL in lung cancer via inhibition of autophagy flux. Int J Biochem Cell Biol 2018; 102:20-30. [DOI: 10.1016/j.biocel.2018.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
|
25
|
Qiao X, Wang X, Shang Y, Li Y, Chen SZ. Azithromycin enhances anticancer activity of TRAIL by inhibiting autophagy and up-regulating the protein levels of DR4/5 in colon cancer cells in vitro and in vivo. Cancer Commun (Lond) 2018; 38:43. [PMID: 29970185 PMCID: PMC6029027 DOI: 10.1186/s40880-018-0309-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Azithromycin is a member of macrolide antibiotics, and has been reported to inhibit the proliferation of cancer cells. However, the underlying mechanisms are not been fully elucidated. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively targets tumor cells without damaging healthy cells. In the present study, we examined whether azithromycin is synergistic with TRAIL, and if so, the underlying mechanisms in colon cancers. METHODS HCT-116, SW480, SW620 and DiFi cells were treated with azithromycin, purified TRAIL, or their combination. A sulforhoddamine B assay was used to examine cell survival. Apoptosis was examined using annexin V-FITC/PI staining, and autophagy was observed by acridine orange staining. Western blot analysis was used to detect protein expression levels. In mechanistic experiments, siRNAs were used to knockdown death receptors (DR4, DR5) and LC-3B. The anticancer effect of azithromycin and TRAIL was also examined in BALB/c nude mice carrying HCT-116 xenografts. RESULTS Azithromycin decreased the proliferation of HCT-116 and SW480 cells in a dose-dependent manner. Combination of azithromycin and TRAIL inhibited tumor growth in a manner that could not be explained by additive effects. Azithromycin increased the expressions of DR4, DR5, p62 and LC-3B proteins and potentiated induction of apoptosis by TRAIL. Knockdown of DR4 and DR5 with siRNAs increased cell survival rate and decreased the expression of cleaved-PARP induced by the combination of azithromycin and TRAIL. LC-3B siRNA and CQ potentiated the anti-proliferation activity of TRAIL alone, and increased the expressions of DR4 and DR5. CONCLUSION The synergistic antitumor effect of azithromycin and TRAIL mainly relies on the up-regulations of DR4 and DR5, which in turn result from LC-3B-involved autophagy inhibition.
Collapse
Affiliation(s)
- Xinran Qiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Xiaofei Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Yue Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China
| | - Shu-Zhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China.
| |
Collapse
|
26
|
Rasheduzzaman M, Park SY. Antihypertensive drug-candesartan attenuates TRAIL resistance in human lung cancer via AMPK-mediated inhibition of autophagy flux. Exp Cell Res 2018; 368:126-135. [PMID: 29694835 DOI: 10.1016/j.yexcr.2018.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 01/07/2023]
Abstract
Angiotensin II type 1 receptor blockers (ARBs) are widely used as antihypertensive drugs. Candesartan is an ARB that has also been known for its anticancer effects but the exact molecular mechanism is remaining elusive. In this research, we showed for the first time that candesartan treatment significantly sensitized human lung adenocarcinoma cells to Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by targeting TRAIL-DR5. TRAIL selectively kills cancer cells by binding to death receptors on the cell membrane, beyond the levels causing minimal toxicity in normal cells. However, some non-small-cell lung carcinoma (NSCLC) patients are resistant to TRAIL treatment in clinical trials due to inactivation of the death receptors during cytoprotective autophagy. The molecular mechanisms underlying candesartan-induced TRAIL-mediated apoptosis involved the downstream of AMPK phosphorylation resulting inhibition of autophagy flux, recruitment of death receptor 5 (DR5) and activation of apoptotic caspase cascade. Candesartan treatment also inhibits the expression of anti-apoptotic protein c-FLIP. Furthermore, blocking DR5 signaling using DR5 siRNA negatively regulated the apoptotic pathway and also induced autophagy flux, demonstrating the cytoprotective role of autophagy responsible for treatment resistance. This suggests that candesartan can be used to sensitize tumors to TRAIL treatment and may represent a useful strategy for human adenocarcinoma patients to overcome TRAIL resistance. Candesartan in combination with TRAIL also could be a novel therapeutic treatment for patients presenting both conditions of hypertension and lung cancer.
Collapse
Affiliation(s)
- Mohammad Rasheduzzaman
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
27
|
Bai ZL, Tay V, Guo SZ, Ren J, Shu MG. Silibinin Induced Human Glioblastoma Cell Apoptosis Concomitant with Autophagy through Simultaneous Inhibition of mTOR and YAP. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6165192. [PMID: 29780826 PMCID: PMC5892302 DOI: 10.1155/2018/6165192] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
Silibinin, also known as silybin, is the major flavonolignan isolated from Silybum marianum. Although previous reports demonstrated that silibinin exhibits significant tumor suppressor activities in various cancers by promoting cell apoptosis, it was also shown to trigger autophagy to counteract apoptosis induced by exogenous stresses in several types of cells. However, there is no report to address the role of silibinin induced autophagy in human A172 and SR glioblastoma cells. Our study showed that silibinin treatment not only inhibited the metabolic activities of glioblastoma cells but also promoted their apoptosis through the regulation of caspase 3 and PARP-1 in concentration- and time-dependent manners. Meanwhile, silibinin induced autophagy through upregulation of microtubule-associated protein a light chain 3- (LC3-) II. And autophagy inhibition with chloroquine, a lysosomotropic agent, significantly enhanced silibinin induced glioblastoma cell apoptosis. Moreover, silibinin dose-dependently downregulated the phosphorylation levels of mTOR at Ser-2448, p70S6K at Thr-389, and 4E-BP1 at Thr-37/46. Furthermore, the expression of YAP, the downstream effector of Hippo signal pathway, was also suppressed by silibinin. These results suggested that silibinin induced glioblastoma cell apoptosis concomitant with autophagy which might be due to simultaneous inhibition of mTOR and YAP and silibinin induced autophagy exerted a protective role against cell apoptosis in both A172 and SR cells.
Collapse
Affiliation(s)
- Zhuan-Li Bai
- Department of Plastic, Aesthetic and Maxillofacial Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Vincent Tay
- Department of Plastic, Reconstructive and Aesthetic Surgery, Singapore General Hospital, Singapore
| | - Shu-Zhong Guo
- Department of Plastic, Aesthetic and Maxillofacial Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Juan Ren
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mao-Guo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
28
|
Monma H, Iida Y, Moritani T, Okimoto T, Tanino R, Tajima Y, Harada M. Chloroquine augments TRAIL-induced apoptosis and induces G2/M phase arrest in human pancreatic cancer cells. PLoS One 2018. [PMID: 29513749 PMCID: PMC5841811 DOI: 10.1371/journal.pone.0193990] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy contributes to the treatment-resistance of many types of cancers, and chloroquine (CQ) inhibits autophagy. The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) kills cancer cells but is minimally cytotoxic to normal cells. However, because the therapeutic efficacy of TRAIL is limited, it is necessary to augment TRAIL-induced anti-tumor effects. In this study, we explored the anti-tumor effects of a combination of CQ and TRAIL on two human pancreatic cancer cell lines: TRAIL-sensitive MiaPaCa-2 cells and Panc-1 cells that are less sensitive to TRAIL. Although both CQ and TRAIL reduced cancer cell viability in a dose-dependent manner, the combination acted synergistically. CQ increased the expression level of type-II LC3B without decreasing the expression of p62, an autophagic substrate, thus indicating inhibition of autophagy. CQ did not increase the levels of death receptors on cancer cells but reduced the expression of anti-apoptotic proteins. A combination of CQ and TRAIL significantly increased cancer cell apoptosis. CQ induced cell-cycle arrest in the G2/M phase. Also, CQ increased the p21 level but reduced that of cyclin B1. A combination of CQ and TRAIL reduced the colony-forming abilities of cancer cells to extents greater than either material alone. In xenograft models, combination CQ and TRAIL therapy significantly suppressed the growth of subcutaneously established MiaPaCa-2 and Panc-1 cells, compared with the untreated or monotherapy groups. Together, the results indicate that CQ in combination with TRAIL may be useful to treat human pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyuki Monma
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Shimane, Japan
- Department of Surgery, Hygo Prefectural Kakogawa Medical Center, Hyogo, Japan
| | - Yuichi Iida
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Tamami Moritani
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Tamio Okimoto
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Ryosuke Tanino
- Division of Medical Oncology & Respiratory Medicine, Department of Internal Medicine, Shimane University Faculty of Medicine, Shimane, Japan
| | - Yoshitsugu Tajima
- Department of Digestive and General Surgery, Shimane University Faculty of Medicine, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University Faculty of Medicine, Shimane, Japan
- * E-mail:
| |
Collapse
|
29
|
YM155 sensitizes TRAIL-induced apoptosis through cathepsin S-dependent down-regulation of Mcl-1 and NF-κB-mediated down-regulation of c-FLIP expression in human renal carcinoma Caki cells. Oncotarget 2018; 7:61520-61532. [PMID: 27528031 PMCID: PMC5308669 DOI: 10.18632/oncotarget.11137] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022] Open
Abstract
YM155, a small-molecule survivin inhibitor, has been reported for its anti-cancer activity in various cancer cells. In this study, we investigated the effect of YM155 to enhance TRAIL-mediated apoptosis in human renal carcinoma cells. We found that YM155 alone had no effect on apoptosis, however, combined treatment with YM155 and TRAIL markedly induced apoptosis in human renal carcinoma cells (Caki, ACHN, and A498), breast cancer cells (MDA-MB231), and glioma cells (U251MG), but not normal cells [mesangial cell (MC) and human skin fibroblast (HSF)]. YM155 induced down-regulation of Mcl-1 expression at the post-translational levels, and the overexpression of Mcl-1 markedly inhibited YM155 plus TRAIL-induced apoptosis. Furthermore, YM155 induced down-regulation of c-FLIP mRNA expression through inhibition of NF-κB transcriptional activity. Ectopic expression of c-FLIP markedly blocked YM155-induced TRAIL sensitization. Taken together, our results suggested that YM155 sensitizes TRAIL-mediated apoptosis via down-regulation of Mcl-1 and c-FLIP expression in renal carcinoma Caki cells.
Collapse
|
30
|
Helmy SA, El-Mesery M, El-Karef A, Eissa LA, El Gayar AM. Chloroquine upregulates TRAIL/TRAILR2 expression and potentiates doxorubicin anti-tumor activity in thioacetamide-induced hepatocellular carcinoma model. Chem Biol Interact 2018; 279:84-94. [PMID: 29133031 DOI: 10.1016/j.cbi.2017.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
Impaired apoptosis and systemic toxicity of chemotherapeutic drugs make cancer treatment suboptimal. Thus, there is urgency for drug repurposing which facilitates discovery of safe and effective combination therapy. This study aimed to evaluate chloroquine's (CQ) ability to trigger TRAIL/TRAILR2 apoptotic pathway in thioacetamide (TAA)-induced hepatocellular carcinoma (HCC) either alone or in combination with doxorubicin (DOX). Moreover, its ability to attenuate DOX-induced cardiotoxicity was investigated. TAA was injected in male Sprague Dawely rats (200 mg/kg; ip; 2 times/week) for 16 weeks. After the 16th week, rats were further divided into different groups (n = 10) and treated for 7 weeks. CQ group (received CQ 25 mg/kg/day; orally), DOX group (received DOX 1 mg/kg; ip; 2 times/week) and CQ/DOX group. Liver function biomarkers, AFP, hepatic levels of MDA and GSH, serum CK-MB and LDH enzymes activity were measured. Quantitative, Real-Time PCR was used to measure TRAIL, TRAILR2, caspase-8, caspase-9, caspase-3, BCL-2 and TGF-β1 genes expression levels. Necroinflammation and fibrosis were scored by histopathological examination. CQ improved liver functions, reduced AFP level and attenuated HCC progression. CQ induced apoptosis via upregulation of TRAIL/TRAILR2, caspase-8, caspase-3 and caspase-8 genes and downregulation of BCL-2 gene. Moreover, CQ/DOX showed marked decrease in hepatic MDA level, serum CK-MB, LDH enzymes activity, as well as marked increase in hepatic GSH level. In conclusion, this work assess the in vivo efficacy of CQ/DOX combination therapy in this HCC model that not only has enhanced anti-tumor activity but it also protects against DOX-induced cardiotoxicity. Nevertheless, more studies should be performed to illustrate the molecular mechanism of CQ's cardioprotective effect.
Collapse
Affiliation(s)
- Sahar A Helmy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Laila A Eissa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
31
|
Oh YT, Deng L, Deng J, Sun SY. The proteasome deubiquitinase inhibitor b-AP15 enhances DR5 activation-induced apoptosis through stabilizing DR5. Sci Rep 2017; 7:8027. [PMID: 28808321 PMCID: PMC5556018 DOI: 10.1038/s41598-017-08424-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/07/2017] [Indexed: 01/25/2023] Open
Abstract
b-AP15 and its derivatives block proteasome deubiquitinase (DUB) activity and have been developed and tested in the clinic as potential cancer therapeutic agents. b-AP15 induces apoptosis in cancer cells, but the underlying mechanisms are largely undefined. The current study focuses on studying the modulatory effects of b-AP15 on death receptor 5 (DR5) levels and DR5 activation-induced apoptosis as well as on understanding the underlying mechanisms. Treatment with b-AP15 potently increased DR5 levels including cell surface DR5 in different cancer cell lines with limited or no effects on the levels of other related proteins including DR4, c-FLIP, FADD, and caspase-8. b-AP15 substantially slowed the degradation of DR5, suggesting that it stabilizes DR5. Moreover, b-AP15 effectively augmented apoptosis when combined with TRAIL or the DR5 agonistic antibody AMG655; these effects are DR5-dependent because DR5 deficiency abolished the ability of b-AP15 to enhance TRAIL- or AMG655-induced apoptosis. Therefore, it is clear that b-AP15, and possibly its derivatives, can stabilize DR5 and increase functional cell surface DR5 levels, resulting in enhancement of DR5 activation-induced apoptosis. Our findings suggest that b-AP15 and its derivatives may have potential in sensitizing cancer cells to DR5 activation-based cancer therapy.
Collapse
Affiliation(s)
- You-Take Oh
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Liang Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|