1
|
Gupta S, Bajwa GK, El-Sammak H, Mattonet K, Günther S, Looso M, Stainier DYR, Marín-Juez R. The transmembrane glycoprotein Gpnmb is required for the immune and fibrotic responses during zebrafish heart regeneration. Dev Biol 2025; 521:153-162. [PMID: 39983908 DOI: 10.1016/j.ydbio.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Myocardial infarction occurs when the coronary supply of oxygen and nutrients to part of the heart is interrupted. In contrast to adult mammals, adult zebrafish have a remarkable ability to regenerate their heart after cardiac injury. Several processes are involved in this regenerative response including inflammation, coronary endothelial cell proliferation and revascularization, endocardial expansion, cardiomyocyte repopulation, and transient scar formation. To identify additional regulators of zebrafish cardiac regeneration, we profiled the transcriptome of regenerating coronary endothelial cells at 7 days post cryoinjury (dpci) and observed the significant upregulation of dozens of genes including gpnmb. Gpnmb (glycoprotein non-metastatic melanoma protein B) is a transmembrane glycoprotein implicated in inflammation resolution and tissue regeneration. Transcriptomic profiling data of cryoinjured zebrafish hearts reveal that gpnmb is mostly expressed by macrophages. To investigate gpnmb function during zebrafish cardiac regeneration, we generated a full locus deletion allele. We find that after cardiac cryoinjury, animals lacking gpnmb exhibit neutrophil retention and decreased macrophage recruitment as well as reduced myofibroblast numbers. Moreover, loss of gpnmb impairs coronary endothelial cell regeneration and cardiomyocyte dedifferentiation. Transcriptomic analyses of cryoinjured gpnmb-/- hearts identified enhanced collagen gene expression and the activation of extracellular matrix (ECM) related pathways. Furthermore, gpnmb-/- hearts exhibit larger fibrotic scars revealing additional defects in cardiac regeneration. Altogether, these data indicate that gpnmb, which is mostly expressed by macrophages, modulates inflammation and ECM deposition after cardiac cryoinjury in zebrafish and further highlight the importance of these immune cells during regeneration.
Collapse
Affiliation(s)
- Savita Gupta
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Gursimran Kaur Bajwa
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, QC, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5, Montréal, QC, Canada
| | - Hadil El-Sammak
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Kenny Mattonet
- Imaging Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany; Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231, Bad Nauheim, Germany; DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany; Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Rubén Marín-Juez
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, QC, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5, Montréal, QC, Canada.
| |
Collapse
|
2
|
Belgiovine C, Digifico E, Erreni M, Putignano AR, Mannarino L, Valentino S, Grizzi F, Pasqualini F, Recordati C, Bertola L, Zucali P, Pistillo D, Paleari V, Mantovani A, D'Incalci M, Marchesi F, Allavena P. Malignant mesothelioma-associated inflammatory microenvironment promotes tumor progression via GPNMB. J Transl Med 2025; 23:454. [PMID: 40251684 PMCID: PMC12007160 DOI: 10.1186/s12967-025-06407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/20/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Tumor-Associated Macrophages (TAMs) are the main immune component of the tumor stroma with heterogeneous functional activities, predominantly suppressing the immune response and promoting tumor progression, also via secretion of different factors. Among these, GPNMB (Glycoprotein non-metastatic B) is usually associated with disease progression in several tumor types. Malignant pleural mesothelioma (MPM) a severe neoplasia with poor prognosis, is characterized by an abundancy of TAMs, testifying the presence of a long-lasting inflammation which is pathogenetic of the disease. However, the role of GPNMB in MPM is unclear. METHODS Clinical samples from patients with MPM were used to measure RNA and protein levels of GPNMB. The functional role of GPNMB in vivo was studied in an orthotopic mouse model of mesothelioma using the murine cell lines AB1 and AB22. Experiments included in vivo tumor growth in wild type and in GPNMB-deficient mice and blocking of GPNMB-induced signaling with anti-CD44 antibodies. RESULTS We show that in human and murine MPM tissues the protein GPNMB is mainly produced by infiltrating TAMs. Gpnmb RNA levels in MPM patients from TCGA are significantly associated with lower survival. Using an orthotopic mouse model of mesothelioma we observed that in GPNMB-defective mice (DBA2/J mice) unable to produce the protein, tumors formed by AB1 and AB22 mesothelioma cells grow significantly less than in GPNMB-proficient mice (DBA2/J-Gpnmb+ mice), indicating that host GPNMB is involved in tumor progression. Likewise, the ectopic expression of GPNMB in AB1 and AB22 cells causes an acceleration of tumor growth in vivo, significantly different compared to mock-transduced cells. Treatment of tumor-bearing mice with blocking anti-CD44 (a major receptor for GPNMB) results in a significant reduction of tumor growth. CONCLUSIONS Overall, these results indicate that the protein GPNMB, a product and marker gene of TAMs, is a driver of mesothelioma progression and may constitute a promising therapeutic target.
Collapse
Affiliation(s)
- Cristina Belgiovine
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano (Milan), Italy.
- Lab. Molecular Mechanisms of Innate Immunity and Nucleic Acid Sensing, Department of Biology and Biotechnology "L. Spallanzani", Via Ferrata 9, 27100, Pavia, Italy.
| | - Elisabeth Digifico
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano (Milan), Italy
| | - Marco Erreni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Unit of Advanced Optical Microscopy, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Anna Rita Putignano
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano (Milan), Italy
| | - Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Lab. Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Sonia Valentino
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano (Milan), Italy
| | - Fabio Grizzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano (Milan), Italy
| | - Fabio Pasqualini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine, University of Milan, 26900, Lodi, Italy
- Mouse and Animal Pathology Laboratory (Maplab), Fondazione UNIMI, 20139, Milan, Italy
| | - Luca Bertola
- Department of Veterinary Medicine, University of Milan, 26900, Lodi, Italy
- Mouse and Animal Pathology Laboratory (Maplab), Fondazione UNIMI, 20139, Milan, Italy
| | - Paolo Zucali
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department Oncology, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | | | | | - Alberto Mantovani
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Lab. Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano (MI), Italy
| | - Federica Marchesi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano (Milan), Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Allavena
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano (Milan), Italy
| |
Collapse
|
3
|
Ping Y, Li J, Xie L, Zhao J, Chen X, Chen D, Wang Y, Jiang C, Li X. GPNMB attenuates neuroinflammation and improves ischemic stroke via modulation of PI3K/Akt and p38 MAPK signaling pathways. Brain Res 2025; 1849:149381. [PMID: 39643105 DOI: 10.1016/j.brainres.2024.149381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Ischemic stroke is a leading cause of disability and mortality worldwide, with limited effective treatments. Neuroinflammation plays a crucial role in the progression of ischemic brain injury. Glycoprotein nonmetastatic melanoma protein B (GPNMB) has emerged as a potential regulator of inflammation, but its role and underlying mechanisms in ischemic stroke remain largely unknown. METHODS We investigated the expression profile, functional significance, and molecular pathways of GPNMB in ischemic stroke using a mouse model of middle cerebral artery occlusion (MCAO), transcriptome sequencing, and human serum samples. The effects of GPNMB knockdown on stroke outcomes, neuroinflammation, and neuronal damage were assessed in vivo. Bioinformatic analyses and experimental validation were performed to identify the downstream signaling pathways of GPNMB. RESULTS GPNMB was highly upregulated in the ischemic brain, with its expression peaking at 3-7 days post-MCAO. Serum GPNMB levels were elevated in ischemic stroke patients and correlated with stroke severity. GPNMB knockdown exacerbated stroke outcomes, neuroinflammation, and neuronal damage. Mechanistically, GPNMB positively modulated the PI3K/Akt/GSK3β pathway while negatively regulating p38 MAPK, JNK, and ERK activation. GPNMB knockdown enhanced the expression of NF-κB, a master transcriptional regulator of inflammation. CONCLUSION GPNMB is highly upregulated in the ischemic brain and confers neuroprotection against ischemic injury by modulating neuroinflammation via the PI3K/Akt and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Yukun Ping
- Clinical Medical College, Yangzhou University, Yangzhou 225009, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Jiyu Li
- Department of Orthopedic Oncology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Linlin Xie
- Clinical Medical College, Yangzhou University, Yangzhou 225009, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Jie Zhao
- Clinical Medical College, Yangzhou University, Yangzhou 225009, China; Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Xuyu Chen
- Clinical Medical College, Yangzhou University, Yangzhou 225009, China
| | - Danni Chen
- Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China
| | - Yamin Wang
- Sanquan College of Xinxiang Medical University, Xinxiang 453003, China
| | - Chao Jiang
- Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China.
| | - Xiaobo Li
- Northern Jiangsu People's Hospital Affliated to Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
4
|
Elhinnawi MA, Okita Y, Shigematsu K, Abdelaziz M, Shiratani R, Kawanishi K, Hengphasatporn K, Dang Cao TL, Shigeta Y, Kato M. GPNMB is a novel binding partner of FGFR1 that affects tumorigenic potential through AKT phosphorylation in TNBC. Cancer Sci 2025; 116:432-443. [PMID: 39609108 PMCID: PMC11786315 DOI: 10.1111/cas.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer is a heterogeneous disease and is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) is a relatively aggressive subtype of breast cancer, which is difficult to treat. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein that is overexpressed in various types of cancers, including breast cancer, especially TNBC. In this study, bioinformatic analyses revealed enhanced fibroblast growth factor receptor 1 (FGFR1) signaling in patients with invasive breast cancer, and the GPNMBhigh/FGFR1high group exhibited a lower probability of relapse-free survival (RFS) than the GPNMBlow/FGFR1low group. Additionally, we observed that GPNMB and FGFR1 were essential for sphere formation, cellular migration, and epithelial-mesenchymal transition (EMT)-like changes in TNBC cells. To explore the mutual interaction between these two molecules, we conducted in silico protein-protein docking studies and molecular dynamics simulations. The results revealed that GPNMB isoform b exhibits high binding affinity for FGFR1 isoform c (FGFR1c), which correlates with cancer aggressiveness. We also confirmed the interaction between GPNMB and FGFR1 in TNBC cells. Furthermore, our study demonstrated that GPNMB is essential for AKT phosphorylation at T308 following FGF2 stimulation, resulting in high affinity for FGFR1c. Inhibition of AKT phosphorylation substantially reduces the tumorigenic potential of TNBC cells.
Collapse
Affiliation(s)
- Manar A. Elhinnawi
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Hormones DepartmentMedical Research and Clinical Studies Institute, National Research CentreGizaEgypt
- Stem Cells Lab Center of Excellence for Advanced SciencesNational Research CentreCairoEgypt
| | - Yukari Okita
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Division of Cell Dynamics, Transborder Medical Research CenterUniversity of TsukubaIbarakiJapan
| | - Katsunobu Shigematsu
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
| | - Mohammed Abdelaziz
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Department of Pathology, Faculty of MedicineSohag UniversitySohagEgypt
| | - Rie Shiratani
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
| | - Kunio Kawanishi
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Department of Anatomy, School of MedicineShowa UniversityTokyoJapan
| | | | - Thuy Linh Dang Cao
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
| | - Yasuteru Shigeta
- Center for Computational SciencesUniversity of TsukubaIbarakiJapan
| | - Mitsuyasu Kato
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Division of Cell Dynamics, Transborder Medical Research CenterUniversity of TsukubaIbarakiJapan
| |
Collapse
|
5
|
Hu J, Meng F, Lv L, Hong F, He Q, Zhu Q, Tian T, Chang N, Zhang S, Yi Q, Qian L. GPR37-enhanced ubiquitination of ATP1A1 inhibits tumor progression and radiation resistance in esophageal squamous cell carcinoma. Cell Death Dis 2024; 15:933. [PMID: 39730361 PMCID: PMC11681203 DOI: 10.1038/s41419-024-07240-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/29/2024]
Abstract
Radiotherapy resistance is one of the main reasons for the dismal clinical outcome of patients with esophageal squamous cell carcinoma (ESCC). Therefore, clarifying the targets and molecular mechanisms of radiotherapy resistance in ESCC is of great theoretical and clinical significance to enhance the efficacy of radiotherapy. In this study, GPR37 was identified as a key factor facilitating ESCC radiosensitization. We found that GPR37 is lowly expressed in ESCC, especially in radioresistant ESCC tumors. And its insufficiency is related to the malignant characteristics and unfavorable prognosis in ESCC. Further investigation revealed that GPR37 level is inversely regulated by promoter methylation but positively regulated by ZNF750. Functionally, GPR37 could not only overcome radioresistance of ESCC, but also inhibit proliferation, migration, and invasion. Mechanistically, GPR37 interacts with the ATP1A1 protein, effectively promoting its ubiquitination-induced degradation, thereby limiting the activation of the AKT/mTOR signaling pathway. Additionally, GPR37 can be transported to recipient cells via exosomes and inhibit the malignant behavior of recipient cells. Overall, these findings suggest that GPR37-ATP1A1 axis holds potential as a therapeutic target for the management of ESCC, especially for overcoming radiation resistance.
Collapse
Affiliation(s)
- Jiaru Hu
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Fang Meng
- Department of Oncology & Hematology, Xishan People's Hospital of Wuxi City, Wuxi, 214105, China
| | - Lei Lv
- Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, China
| | - Fu Hong
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, China
| | - Qing He
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qi Zhu
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Tian Tian
- Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230001, China
| | - Na Chang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230031, China
| | - Shiqiang Zhang
- Department of Oncology & Hematology, Xishan People's Hospital of Wuxi City, Wuxi, 214105, China
| | - Qiyi Yi
- Institute of Radiation Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
6
|
Huang S, Dong W, Lin X, Bian J. Na+/K+-ATPase: ion pump, signal transducer, or cytoprotective protein, and novel biological functions. Neural Regen Res 2024; 19:2684-2697. [PMID: 38595287 PMCID: PMC11168508 DOI: 10.4103/nrr.nrr-d-23-01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 12/09/2023] [Indexed: 04/11/2024] Open
Abstract
Na+/K+-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na+ out of and two K+ into cells. Additionally, Na+/K+-ATPase participates in Ca2+-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane. Na+/K+-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells. Therefore, it is not surprising that Na+/K+-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases. However, published studies have so far only elucidated the important roles of Na+/K+-ATPase dysfunction in disease development, and we are lacking detailed mechanisms to clarify how Na+/K+-ATPase affects cell function. Our recent studies revealed that membrane loss of Na+/K+-ATPase is a key mechanism in many neurological disorders, particularly stroke and Parkinson's disease. Stabilization of plasma membrane Na+/K+-ATPase with an antibody is a novel strategy to treat these diseases. For this reason, Na+/K+-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein, participating in signal transduction such as neuronal autophagy and apoptosis, and glial cell migration. Thus, the present review attempts to summarize the novel biological functions of Na+/K+-ATPase and Na+/K+-ATPase-related pathogenesis. The potential for novel strategies to treat Na+/K+-ATPase-related brain diseases will also be discussed.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jinsong Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Clarke BE, Ziff OJ, Tyzack G, Petrić Howe M, Wang Y, Klein P, Smith CA, Hall CA, Helmy A, Howell M, Kelly G, Patani R. Human VCP mutant ALS/FTD microglia display immune and lysosomal phenotypes independently of GPNMB. Mol Neurodegener 2024; 19:90. [PMID: 39593143 PMCID: PMC11590569 DOI: 10.1186/s13024-024-00773-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Microglia play crucial roles in maintaining neuronal homeostasis but have been implicated in contributing to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the role of microglia in ALS/FTD remains incompletely understood. METHODS Here, we generated highly enriched cultures of VCP mutant microglia derived from human induced pluripotent stem cells (hiPSCs) to investigate their cell autonomous and non-cell autonomous roles in ALS pathogenesis. We used RNA-sequencing, proteomics and functional assays to study hiPSC derived VCP mutant microglia and their effects on hiPSC derived motor neurons and astrocytes. RESULTS Transcriptomic, proteomic and functional analyses revealed immune and lysosomal dysfunction in VCP mutant microglia. Stimulating healthy microglia with the inflammatory inducer lipopolysaccharide (LPS) showed partial overlap with VCP mutant microglia in their reactive transformation. LPS-stimulated VCP mutant microglia displayed differential activation of inflammatory pathways compared with LPS-stimulated healthy microglia. Conserved gene expression changes were identified between VCP mutant microglia, SOD1 mutant mice microglia, and postmortem ALS spinal cord microglial signatures, including increased expression of the transmembrane glycoprotein GPNMB. While knockdown of GPNMB affected inflammatory and phagocytosis processes in microglia, this was not sufficient to ameliorate cell autonomous phenotypes in VCP mutant microglia. Secreted factors from VCP mutant microglia were sufficient to activate the JAK-STAT pathway in hiPSC derived motor neurons and astrocytes. CONCLUSIONS VCP mutant microglia undergo cell autonomous reactive transformation involving immune and lysosomal dysfunction that partially recapitulate key phenotypes of microglia from other ALS models and post mortem tissue. These phenotypes occur independently of GPNMB. Additionally, VCP mutant microglia elicit non cell autonomous responses in motor neurons and astrocytes involving the JAK-STAT pathway.
Collapse
Affiliation(s)
- Benjamin E Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Oliver J Ziff
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| | - Giulia Tyzack
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Marija Petrić Howe
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yiran Wang
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Pierre Klein
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Claudia A Smith
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cameron A Hall
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Michael Howell
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK.
| |
Collapse
|
8
|
Yu X, Li M, Wang C, Guan X. Glycoprotein non-metastatic melanoma protein B (GPNMB): An attractive target in atherosclerosis. Biochem Biophys Res Commun 2024; 732:150386. [PMID: 39024681 DOI: 10.1016/j.bbrc.2024.150386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Atherosclerosis (AS), the leading cause of cardiovascular diseases, is heavily influenced by inflammation, lipid accumulation, autophagy, and aging. The expression of glycoprotein non-metastatic melanoma B (GPNMB) has been observed to correlate with lipid content, inflammation, and aging, progressively increasing as atherosclerosis advances through its various stages, from baseline to early and advanced phases. However, the interaction between GPNMB and AS is controversial. Knockout of GPNMB has been shown to increase atherosclerotic plaque burden in mice. Conversely, targeted elimination of GPNMB-positive cells reduced atherosclerotic burden. These seemingly contradictory findings underscore the complexity of the issue and highlight the need for further research to reconcile these discrepancies and to elucidate the precise role of GPNMB in the pathogenesis of AS.
Collapse
Affiliation(s)
- Xiaochen Yu
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Min Li
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Chao Wang
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang, Harbin, Heilongjiang, 150001, PR China.
| |
Collapse
|
9
|
Ramadoss S, Qin J, Tao B, Thomas NE, Cao E, Wu R, Sandoval DR, Piermatteo A, Grunddal KV, Ma F, Li S, Sun B, Zhou Y, Wan J, Pellegrini M, Holst B, Lusis AJ, Gordts PLSM, Deb A. Bone-marrow macrophage-derived GPNMB protein binds to orphan receptor GPR39 and plays a critical role in cardiac repair. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1356-1373. [PMID: 39455836 DOI: 10.1038/s44161-024-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein initially identified in nonmetastatic melanomas and has been associated with human heart failure; however, its role in cardiac injury and function remains unclear. Here we show that GPNMB expression is elevated in failing human and mouse hearts after myocardial infarction (MI). Lineage tracing and bone-marrow transplantation reveal that bone-marrow-derived macrophages are the main source of GPNMB in injured hearts. Using genetic loss-of-function models, we demonstrate that GPNMB deficiency leads to increased mortality, cardiac rupture and rapid post-MI left ventricular dysfunction. Conversely, increasing circulating GPNMB levels through viral delivery improves heart function after MI. Single-cell transcriptomics show that GPNMB enhances myocyte contraction and reduces fibroblast activation. Additionally, we identified GPR39 as a receptor for circulating GPNMB, with its absence negating the beneficial effects. These findings highlight a pivotal role of macrophage-derived GPNMBs in post-MI cardiac repair through GPR39 signaling.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Humans
- Macrophages/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/genetics
- Mice, Knockout
- Disease Models, Animal
- Myocytes, Cardiac/metabolism
- Male
- Mice, Inbred C57BL
- Signal Transduction
- Ventricular Function, Left
- Heart Failure/metabolism
- Heart Failure/genetics
- Female
- Mice
- Cells, Cultured
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/genetics
- Bone Marrow Transplantation
- Protein Binding
- Regeneration
- Eye Proteins
Collapse
Affiliation(s)
- Sivakumar Ramadoss
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Juan Qin
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Bo Tao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Nathan E Thomas
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
- Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | - Edward Cao
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Rimao Wu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Ann Piermatteo
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Kaare V Grunddal
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
| | - Feiyang Ma
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shen Li
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Baiming Sun
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Yonggang Zhou
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Jijun Wan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
- Department of Genetics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Philip L S M Gordts
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, USA
- Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
- UCLA Cardiovascular Theme, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California-Los Angeles, Los Angeles, CA, USA.
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California-Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA, USA.
- California Nanosystems Institute, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Huang C, Zheng Y, Ji R, Qiao L, Zhang X, Lin H, Liu F, Xu J, Li Y, Zhang Z, Yang X. GPNMB promotes peripheral nerve regeneration by activating the Erk1/2 and Akt pathways via binding Na +/K +-ATPase α1 in Schwann cells. Exp Neurol 2024; 373:114687. [PMID: 38199512 DOI: 10.1016/j.expneurol.2024.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/24/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is ubiquitously expressed and has protective effects on the central nervous system. In particular, it is also expressed in the peripheral nervous system (PNS) and upregulated after peripheral nerve injury. However, the role and underlying mechanism of GPNMB in the PNS, especially in peripheral nerve regeneration (PNR), are still unknown and need to be further investigated. In this study, recombinant human GPNMB (rhGPNMB) was injected into a sciatic nerve injury model. It was found that rhGPNMB facilitated the regeneration and functional recovery of the injured sciatic nerve in vivo. Moreover, it was also confirmed that GPNMB activated the Erk1/2 and Akt pathways via binding with Na+/K + -ATPase α1 (NKA α1) and promoted the proliferation and migration of Schwann cells (SCs) and their expression and secretion of neurotrophic factors and neural adhesion molecules in vitro. Our findings demonstrate that GPNMB facilitates PNR through activation of the Erk1/2 and Akt pathways in SCs by binding with NKA α1 and may be a novel strategy for PNR.
Collapse
Affiliation(s)
- Chao Huang
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China
| | - Yani Zheng
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China
| | - Ruijuan Ji
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China
| | - Liang Qiao
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China
| | - Xi Zhang
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China
| | - Haiyan Lin
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China
| | - Fang Liu
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China
| | - Jiajun Xu
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China
| | - Yuquan Li
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China.
| | - Zhiying Zhang
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China.
| | - Xiangqun Yang
- Department of Anatomy, Naval Medical University, #800 Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
11
|
Bianco V, Kratky D. Glycoprotein Non-Metastatic Protein B (GPNMB): The Missing Link Between Lysosomes and Obesity. Exp Clin Endocrinol Diabetes 2023; 131:639-645. [PMID: 37956971 PMCID: PMC10700020 DOI: 10.1055/a-2192-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 11/21/2023]
Abstract
As a result of an unhealthy diet and limited physical activity, obesity has become a widespread pandemic worldwide and is an important predictor for the development of cardiovascular disease. Obesity is often characterized by a pro-inflammatory environment in white adipose tissue (WAT), mainly due to increased macrophage infiltration. These immune cells boost their lipid concentrations by accumulating the content of dying adipocytes. As the lysosome is highly involved in lipid handling, the progressive lipid accumulation may result in lysosomal stress and a metabolic shift. Recent studies have identified glycoprotein non-metastatic melanoma protein B (GPNMB) as a novel marker of inflammatory diseases. GPNMB is a type I transmembrane protein on the cell surface of various cell types, such as macrophages, dendritic cells, osteoblasts, and microglia, from which it can be proteolytically cleaved into a soluble molecule. It is induced by lysosomal stress via microphthalmia-associated transcription factor and thus has been found to be upregulated in many lysosomal storage disorders. In addition, a clear connection between GPNMB and obesity was recently established. GPNMB was shown to have protective and anti-inflammatory effects in most cases, preventing the progression of obesity-related metabolic disorders. In contrast, soluble GPNMB likely has the opposite effect and promotes lipogenesis in WAT. This review aims to summarize and clarify the role of GPNMB in the progression of obesity and to highlight its potential use as a biomarker for lipid-associated disorders.
Collapse
Affiliation(s)
- Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry,
Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
12
|
Gillett DA, Wallings RL, Uriarte Huarte O, Tansey MG. Progranulin and GPNMB: interactions in endo-lysosome function and inflammation in neurodegenerative disease. J Neuroinflammation 2023; 20:286. [PMID: 38037070 PMCID: PMC10688479 DOI: 10.1186/s12974-023-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.
Collapse
Affiliation(s)
- Drew A Gillett
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Chen Y, Liu Z, Lin Z, Lu M, Fu Y, Liu G, Yu B. The effect of Staphylococcus aureus on innate and adaptive immunity and potential immunotherapy for S. aureus-induced osteomyelitis. Front Immunol 2023; 14:1219895. [PMID: 37744377 PMCID: PMC10517662 DOI: 10.3389/fimmu.2023.1219895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Osteomyelitis is a chronic inflammatory bone disease caused by infection of open fractures or post-operative implants. Particularly in patients with open fractures, the risk of osteomyelitis is greatly increased as the soft tissue damage and bacterial infection are often more severe. Staphylococcus aureus, one of the most common pathogens of osteomyelitis, disrupts the immune response through multiple mechanisms, such as biofilm formation, virulence factor secretion, and metabolic pattern alteration, which attenuates the effectiveness of antibiotics and surgical debridement toward osteomyelitis. In osteomyelitis, immune cells such as neutrophils, macrophages and T cells are activated in response to pathogenic bacteria invasion with excessive inflammatory factor secretion, immune checkpoint overexpression, and downregulation of immune pathway transcription factors, which enhances osteoclastogenesis and results in bone destruction. Therefore, the study of the mechanisms of abnormal immunity will be a new breakthrough in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Yingqi Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zixian Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Zexin Lin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Mincheng Lu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Yong Fu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
- Trauma Center, Department of Orthopaedic Trauma, The Second Affiliated Hospital of Hengyang Medical College, South China University, Hengyang, China
| | - Guanqiao Liu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Southern Medical University Nanfang Hospital, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Southern Medical University Nanfang Hospital, Guangzhou, China
| |
Collapse
|
14
|
Doroszkiewicz J, Kulczyńska-Przybik A, Dulewicz M, Borawska R, Zajkowska M, Słowik A, Mroczko B. Potential Utility of Cerebrospinal Fluid Glycoprotein Nonmetastatic Melanoma Protein B as a Neuroinflammatory Diagnostic Biomarker in Mild Cognitive Impairment and Alzheimer's Disease. J Clin Med 2023; 12:4689. [PMID: 37510803 PMCID: PMC10380476 DOI: 10.3390/jcm12144689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder characterized by the gradual loss of neurons and extracellular amyloid-peptide buildup. There is compelling evidence that the disease process depends on neuroinflammatory alterations, such as the activation of astrocytes and microglia cells. A transmembrane glycoprotein known as glycoprotein nonmetastatic melanoma protein B (GPNMB) plays a neuroprotective role during the development of neurodegeneration. To the best of our knowledge, this is the first investigation discussing the potential clinical usefulness of this protein in the AD continuum, especially in the MCI (mild cognitive impairment) stage. A total of 71 patients with AD or MCI as well as controls were enrolled in this study. The concentrations of GPNMB, YKL-40, Aβ1-42 (amyloid beta 1-42), Tau, and pTau and the Aβ1-42/1-40 ratio in the CSF (cerebrospinal fluid) were tested using immunological methods. The concentrations of both GPNMB and YKL-40 in the cerebrospinal fluid were significantly higher in patients with AD and MCI compared to the controls. Moreover, both proteins were biochemically associated with classical biomarkers of AD and were especially associated with the Aβ1-42/1-40 ratio and Tau and pTau levels in the whole study group. Elevated concentrations of GPNMB were observed in the Aβ(+) group of AD patients compared to the Aβ(-) subjects. Additionally, the diagnostic performance (AUC value) of GPNMB was higher than that of amyloid β1-42 in MCI patients compared with controls. Our study indicates that GPNMB might be a promising neuroinflammatory biomarker for the early diagnosis and prognosis of the AD continuum, with potential utility as a therapeutic target.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | | | - Maciej Dulewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Renata Borawska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University, 30-688 Cracow, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
15
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
16
|
Zhang W, Hu J, Liu R, Dai J, Yuan L, Liu Y, Chen B, Gong M, Xia F, Lou X. A Peptide-Conjugated Probe with Cleavage-Induced Morphological Change for Treatment on Tumor Cell Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207228. [PMID: 36793151 PMCID: PMC10104630 DOI: 10.1002/advs.202207228] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Despite the promising advancements of in situ forming nanoassembly for the inhibition of tumor growth and metastasis, the lack of sufficient triggering sites and hardly controlling the forming position restrict their further developments. Herein, a smart transformable peptide-conjugated probe (DMFA) with enzyme cleavage-induced morphological change is designed for treatment on the tumor cell membrane. Specifically, after self-assembling into nanoparticles and anchoring on the cell membrane with sufficient interaction sites rapidly and stably, DMFA will be efficiently cleaved into α-helix forming part (DP) and β-sheet forming part (LFA) by overexpressed matrix metalloproteinase-2. Thus, the promoted Ca2+ influx by DP-induced cell membrane breakage and decreased Na+ /K+ -ATPase activity by LFA-assembled nanofibers wrapping the cells can inhibit PI3K-Akt signaling pathway, leading to the inhibition of tumor cell growth and metastasis. This peptide-conjugated probe undergoes in situ morphological transformation on the cell membrane, exhibiting great potential in tumor therapy.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Jing‐Jing Hu
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Jun Dai
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Yiheng Liu
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Bochao Chen
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Mingxing Gong
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental GeologyEngineering Research Center of Nano‐Geomaterials of Ministry of EducationFaculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| |
Collapse
|
17
|
Zhang X, Wang Y, Dong B, Jiang Y, Liu D, Xie K, Yu Y. Expression pattern and clinical value of Key RNA methylation modification regulators in ischemic stroke. Front Genet 2022; 13:1009145. [PMID: 36263422 PMCID: PMC9574037 DOI: 10.3389/fgene.2022.1009145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke (IS) is one of the major causes of death and disability worldwide, and effective diagnosis and treatment methods are lacking. RNA methylation, a common epigenetic modification, plays an important role in disease progression. However, little is known about the role of RNA methylation modification in the regulation of IS. The aim of this study was to investigate RNA methylation modification patterns and immune infiltration characteristics in IS through bioinformatics analysis. We downloaded gene expression profiles of control and IS model rat brain tissues from the Gene Expression Omnibus database. IS profiles were divided into two subtypes based on RNA methylation regulators, and functional enrichment analyses were conducted to determine the differentially expressed genes (DEGs) between the subtypes. Weighted gene co-expression network analysis was used to explore co-expression modules and genes based on DEGs. The IS clinical diagnosis model was successfully constructed and four IS characteristic genes (GFAP, GPNMB, FKBP9, and CHMP5) were identified, which were significantly upregulated in IS samples. Characteristic genes were verified by receiver operating characteristic curve and real-time quantitative PCR analyses. The correlation between characteristic genes and infiltrating immune cells was determined by correlation analysis. Furthermore, GPNMB was screened using the protein-protein interaction network, and its regulatory network and the potential therapeutic drug chloroquine were predicted. Our finding describes the expression pattern and clinical value of key RNA methylation modification regulators in IS and novel diagnostic and therapeutic targets of IS from a new perspective.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Beibei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
| | - Dan Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Anesthesiology, Tianjin, China
- *Correspondence: Yonghao Yu,
| |
Collapse
|
18
|
Lazaratos AM, Annis MG, Siegel PM. GPNMB: a potent inducer of immunosuppression in cancer. Oncogene 2022; 41:4573-4590. [PMID: 36050467 DOI: 10.1038/s41388-022-02443-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
The immune system is comprised of both innate and adaptive immune cells, which, in the context of cancer, collectively function to eliminate tumor cells. However, tumors can actively sculpt the immune landscape to favor the establishment of an immunosuppressive microenvironment, which promotes tumor growth and progression to metastatic disease. Glycoprotein-NMB (GPNMB) is a transmembrane glycoprotein that is overexpressed in a variety of cancers. It can promote primary tumor growth and metastasis, and GPNMB expression correlates with poor prognosis and shorter recurrence-free survival in patients. There is growing evidence supporting an immunosuppressive role for GPNMB in the context of malignancy. This review provides a description of the emerging roles of GPNMB as an inducer of immunosuppression, with a particular focus on its role in mediating cancer progression by restraining pro-inflammatory innate and adaptive immune responses.
Collapse
Affiliation(s)
| | - Matthew G Annis
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada.,Department of Medicine, McGill University, Montréal, QC, Canada
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada. .,Department of Medicine, McGill University, Montréal, QC, Canada. .,Department of Biochemistry, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,Department of Oncology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
19
|
Chen G, Yan S, Zhang J, Zhang J, Deng IB, He R. The alternative 3' splice site of GPNMB may promote neuronal survival after neonatal hypoxic-ischemic encephalopathy injury. IBRAIN 2022; 8:302-313. [PMID: 37786733 PMCID: PMC10529014 DOI: 10.1002/ibra.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 10/04/2023]
Abstract
This study aimed to decipher the effect of glycoprotein nonmetastatic melanoma protein B (GPNMB) on neonatal hypoxic-ischemic encephalopathy (NHIE) and its potential molecular mechanism. The hypoxic-ischemic (HI) model was established in 7-day-old rats, and then, Zea-Longa scores and Nissl staining were performed to measure brain damage post-HI. In addition, gene sequencing was used to detect the differential expression genes (DEGs), and then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used to determine the function of DEGs. Furthermore, an oxygen-glucose deprivation (OGD) model was developed in SY5Y cells and human fetal neurons, and then, the level of GPNMB was verified by quantitative real-time polymerase chain reaction. In addition, methyl thiazolyl tetrazolium and cell counting kit-8 assays were applied after GPNMB interference. Finally, the alternative splicing of GPNMB expression was analyzed using Splice Grapher software. The results indicated that HI induced marked neurological impairment and neuron injury in rats. Also, GPNMB was the most obviously upregulated gene in DEGs. Additionally, GPNMB was upregulated significantly in SY5Y and fetal neurons after OGD, and GPNMB-si promoted an increase in cell viability and number. Moreover, we found that the GPNMB alternative splicing type was the Alternative 3' splice site, with the alternative splicing site in 143382985:143404102. Herein, GPNMB promotes a crucial regulatory mechanism with alternative splicing for neuronal survival after NHIE.
Collapse
Affiliation(s)
- Guo‐Jiao Chen
- Bioinformatics CenterKunming Medical UniversityKunmingYunnanChina
| | | | | | - Ji Zhang
- Southwest Medical UniversityLuzhouSichuanChina
| | - Isaac Bul Deng
- Center for Epogenetics and Induced Pluripotent Stem Cells, Kennedy Krieger InstituteJohns Hopkins UniversityBaltimoreUSA
| | - Rong He
- Bioinformatics CenterKunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
20
|
Zhang X, Yao Z, Xue Z, Wang S, Liu X, Hu Y, Zhang Y, Wang J, Li X, Chen A. Resibufogenin Targets the ATP1A1 Signaling Cascade to Induce G2/M Phase Arrest and Inhibit Invasion in Glioma. Front Pharmacol 2022; 13:855626. [PMID: 35656311 PMCID: PMC9152115 DOI: 10.3389/fphar.2022.855626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Resibufogenin (RB) is a major active ingredient in the traditional Chinese medicine Chansu and has garnered considerable attention for its efficacy in the treatment of cancer. However, the anticancer effects and underlying mechanisms of RB on glioblastoma (GBM) remain unknown. Here, we found that RB induced G2/M phase arrest and inhibited invasion in a primary GBM cell line, P3#GBM, and two GBM cell lines, U251 and A172. Subsequently, we demonstrated that RB-induced G2/M phase arrest occurred through downregulation of CDC25C and upregulation of p21, which was caused by activation of the MAPK/ERK pathway, and that RB inhibited GBM invasion by elevating intercellular Ca2+ to suppress the Src/FAK/Paxillin focal adhesion pathway. Intriguingly, we confirmed that upon RB binding to ATP1A1, Na+-K+-ATPase was activated as a receptor and then triggered the intracellular MAPK/ERK pathway and Ca2+-mediated Src/FAK/Paxillin focal adhesion pathway, which led to G2/M phase arrest and inhibited the invasion of GBM cells. Taken together, our findings reveal the antitumor mechanism of RB by targeting the ATP1A1 signaling cascade and two key signaling pathways and highlight the potential of RB as a new class of promising anticancer agents.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Zhong Yao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Shuai Wang
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Xuemeng Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yaotian Hu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
21
|
Suda M, Shimizu I, Katsuumi G, Hsiao CL, Yoshida Y, Matsumoto N, Yoshida Y, Katayama A, Wada J, Seki M, Suzuki Y, Okuda S, Ozaki K, Nakanishi-Matsui M, Minamino T. Glycoprotein nonmetastatic melanoma protein B regulates lysosomal integrity and lifespan of senescent cells. Sci Rep 2022; 12:6522. [PMID: 35444208 PMCID: PMC9021310 DOI: 10.1038/s41598-022-10522-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/30/2022] [Indexed: 12/31/2022] Open
Abstract
Accumulation of senescent cells in various tissues has been reported to have a pathological role in age-associated diseases. Elimination of senescent cells (senolysis) was recently reported to reversibly improve pathological aging phenotypes without increasing rates of cancer. We previously identified glycoprotein nonmetastatic melanoma protein B (GPNMB) as a seno-antigen specifically expressed by senescent human vascular endothelial cells and demonstrated that vaccination against Gpnmb eliminated Gpnmb-positive senescent cells, leading to an improvement of age-associated pathologies in mice. The aim of this study was to elucidate whether GPNMB plays a role in senescent cells. We examined the potential role of GPNMB in senescent cells by testing the effects of GPNMB depletion and overexpression in vitro and in vivo. Depletion of GPNMB from human vascular endothelial cells shortened their replicative lifespan and increased the expression of negative cell cycle regulators. Conversely, GPNMB overexpression protected these cells against stress-induced premature senescence. Depletion of Gpnmb led to impairment of vascular function and enhanced atherogenesis in mice, whereas overexpression attenuated dietary vascular dysfunction and atherogenesis. GPNMB was upregulated by lysosomal stress associated with cellular senescence and was a crucial protective factor in maintaining lysosomal integrity. GPNMB is a seno-antigen that acts as a survival factor in senescent cells, suggesting that targeting seno-antigens such as GPNMB may be a novel strategy for senolytic treatments.
Collapse
Affiliation(s)
- Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Chieh Lun Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Advanced Senotherapeautics, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| | - Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Akihiro Katayama
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Kazuyuki Ozaki
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan
| | - Mayumi Nakanishi-Matsui
- Division of Biochemistry, School of Pharmacy, Iwate Medical University, Iwate, 028-3694, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
22
|
Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers (Basel) 2022; 14:cancers14051198. [PMID: 35267507 PMCID: PMC8909490 DOI: 10.3390/cancers14051198] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Despite all the efforts and advances made in the treatment of breast cancer, this pathology continues to be one of the main causes of cancer death in women, particularly triple-negative breast cancer (TNBC), and, although to a lesser degree, HER-2 receptor-positive tumors. Chemotherapy is one of the main treatments available. However, it shows numerous limitations due to its lack of selectivity. In this sense, the selective delivery of antineoplastics to cancer cells can reduce their adverse effects and increase their efficacy. The use of active targeted nanomedicine is a good strategy to achieve this selective chemotherapy. In fact, in recent decades, several active targeted nanoformulations have been approved or reached clinical investigation with excellent results. Among all nanomedicines, antibody-drug conjugates are the most promising. Abstract Breast cancer is one of the most frequently diagnosed tumors and the second leading cause of cancer death in women worldwide. The use of nanosystems specifically targeted to tumor cells (active targeting) can be an excellent therapeutic tool to improve and optimize current chemotherapy for this type of neoplasm, since they make it possible to reduce the toxicity and, in some cases, increase the efficacy of antineoplastic drugs. Currently, there are 14 nanomedicines that have reached the clinic for the treatment of breast cancer, 4 of which are already approved (Kadcyla®, Enhertu®, Trodelvy®, and Abraxane®). Most of these nanomedicines are antibody–drug conjugates. In the case of HER-2-positive breast cancer, these conjugates (Kadcyla®, Enhertu®, Trastuzumab-duocarmycin, RC48, and HT19-MMAF) target HER-2 receptors, and incorporate maytansinoid, deruxtecan, duocarmicyn, or auristatins as antineoplastics. In TNBC these conjugates (Trodelvy®, Glembatumumab-Vedotin, Ladiratuzumab-vedotin, Cofetuzumab-pelidotin, and PF-06647263) are directed against various targets, in particular Trop-2 glycoprotein, NMB glycoprotein, Zinc transporter LIV-1, and Ephrin receptor-4, to achieve this selective accumulation, and include campthotecins, calicheamins, or auristatins as drugs. Apart from the antibody–drug conjugates, there are other active targeted nanosystems that have reached the clinic for the treatment of these tumors such as Abraxane® and Nab-rapamicyn (albumin nanoparticles entrapping placlitaxel and rapamycin respectively) and various liposomes (MM-302, C225-ILS-Dox, and MM-310) loaded with doxorubicin or docetaxel and coated with ligands targeted to Ephrin A2, EPGF, or HER-2 receptors. In this work, all these active targeted nanomedicines are discussed, analyzing their advantages and disadvantages over conventional chemotherapy as well as the challenges involved in their lab to clinical translation. In addition, examples of formulations developed and evaluated at the preclinical level are also discussed.
Collapse
|
23
|
Friend or foe for obesity: how hepatokines remodel adipose tissues and translational perspective. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Zhang H, Zhang S, Dang X, Lin L, Ren L, Song R. GPNMB plays an active role in the M1/M2 balance. Tissue Cell 2021; 74:101683. [PMID: 34800878 DOI: 10.1016/j.tice.2021.101683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/20/2022]
Abstract
The phenotypic function of macrophages varies with the local microenvironment. Macrophages play an important role in the development of periodontitis. As one of the sources of GPNMB protein, the phenotype of macrophages is affected by GPNMB expression. In this study, activated macrophages were evaluated by flow cytometry, RT-qPCR and WB, and M2a macrophages had higher GPNMB expression than M0 and M1 macrophages. On this basis, a macrophage model with overexpression of GPNMB was established, and it was observed that GPNMB overexpression promoted the secretion of anti-inflammatory factors by macrophages and inhibited the secretion of pro-inflammatory factors by M1 macrophages.
Collapse
Affiliation(s)
- Hengfang Zhang
- First Affiliated Hospital of Harbin Medical University, College of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China
| | - Shuang Zhang
- Office of International Exchange and Cooperation, Harbin Medical University, No. 157 Baojian Street, Nangang District, Harbin, 150081, China
| | - Xuan Dang
- First Affiliated Hospital of Harbin Medical University, College of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China
| | - Lexun Lin
- Department of Pathogenic Microbiology, School of Basic Medical Sciences, Harbin Medical University, No. 157 Baojian Street, Nangang District, Harbin, 150081, China
| | - Liping Ren
- First Affiliated Hospital of Harbin Medical University, College of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China
| | - Rong Song
- First Affiliated Hospital of Harbin Medical University, College of Stomatology, Harbin Medical University, No. 143 Yiman Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
25
|
GPNMB Extracellular Fragment Protects Melanocytes from Oxidative Stress by Inhibiting AKT Phosphorylation Independent of CD44. Int J Mol Sci 2021; 22:ijms221910843. [PMID: 34639184 PMCID: PMC8509362 DOI: 10.3390/ijms221910843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein that plays an important role in cancer metastasis and osteoblast differentiation. In the skin epidermis, GPNMB is mainly expressed in melanocytes and plays a critical role in melanosome formation. In our previous study, GPNMB was also found to be expressed in skin epidermal keratinocytes. In addition, decreased GPNMB expression was observed in the epidermis of lesional skin of patients with vitiligo. However, the exact role of keratinocyte-derived GPNMB and its effect on vitiligo is still unknown. In this study, we demonstrated that GPNMB expression was also decreased in rhododendrol-induced leukoderma, as seen in vitiligo. The extracellular soluble form of GPNMB (sGPNMB) was found to protect melanocytes from cytotoxicity and the impairment of melanogenesis induced by oxidative stress. Furthermore, the effect of rGPNMB was not altered by the knockdown of CD44, which is a well-known receptor of GPNMB, but accompanied by the suppressed phosphorylation of AKT but not ERK, p38, or JNK. In addition, we found that oxidative stress decreased both transcriptional GPNMB expression and sGPNMB protein expression in human keratinocytes. Our results suggest that GPNMB might provide novel insights into the mechanisms related to the pathogenesis of vitiligo and leukoderma.
Collapse
|
26
|
Brendza R, Lin H, Stark K, Foreman O, Tao J, Pierce A, Ngu H, Shen K, Easton AE, Bhangale T, Chang D, Bingol B, Friedman BA. Genetic ablation of Gpnmb does not alter synuclein-related pathology. Neurobiol Dis 2021; 159:105494. [PMID: 34464706 DOI: 10.1016/j.nbd.2021.105494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The gene GPNMB is known to play roles in phagocytosis and tissue repair, and is upregulated in microglia in many mouse models of neurodegenerative disease as well as in human patients. Nearby genomic variants are associated with both elevated Parkinson's disease (PD) risk and higher expression of this gene, suggesting that inhibiting GPNMB activity might be protective in Parkinson's disease. We tested this hypothesis in three different mouse models of neurological diseases: a remyelination model and two models of alpha-synuclein pathology. We found that Gpnmb deletion had no effect on histological, cellular, behavioral, neurochemical or gene expression phenotypes in any of these models. These data suggest that Gpnmb does not play a major role in the development of pathology or functional defects in these models and that further work is necessary to study its role in the development or progression of Parkinson's disease.
Collapse
Affiliation(s)
- Robert Brendza
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Han Lin
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Kimberly Stark
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Janet Tao
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Andrew Pierce
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Kimberle Shen
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Amy E Easton
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA, USA
| | - Diana Chang
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA, USA
| | - Baris Bingol
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA.
| | - Brad A Friedman
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
27
|
Saade M, Araujo de Souza G, Scavone C, Kinoshita PF. The Role of GPNMB in Inflammation. Front Immunol 2021; 12:674739. [PMID: 34054862 PMCID: PMC8149902 DOI: 10.3389/fimmu.2021.674739] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a response to a lesion in the tissue or infection. This process occurs in a specific manner in the central nervous system and is called neuroinflammation, which is involved in neurodegenerative diseases. GPNMB, an endogenous glycoprotein, has been recently related to inflammation and neuroinflammation. GPNMB is highly expressed in macrophages and microglia, which are cells involved with innate immune response in the periphery and the brain, respectively. Some studies have shown increased levels of GPNMB in pro-inflammatory conditions, such as LPS treatment, and in pathological conditions, such as neurodegenerative diseases and cancer. However, the role of GPNMB in inflammation is still not clear. Even though most studies suggest that GPNMB might have an anti-inflammatory role by promoting inflammation resolution, there is evidence that GPNMB could be pro-inflammatory. In this review, we gather and discuss the published evidence regarding this interaction.
Collapse
Affiliation(s)
- Marina Saade
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Giovanna Araujo de Souza
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: A key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J 2020; 34:8810-8823. [PMID: 32445534 DOI: 10.1096/fj.202000651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
The glycoprotein nonmetastatic melanoma protein B (GPNMB, also known as osteoactivin) is highly expressed in many cell types and regulates the homeostasis in various tissues. In different physiological contexts, it functions as a melanosome-associated protein, membrane-bound surface receptor, soluble ligand, or adhesion molecule. Therefore, GPNMB is involved in cell differentiation, migration, inflammation, metabolism, and neuroprotection. Because of its various involvement in different physiological conditions, GPNMB has been implicated in many diseases, including cancer, neurological disorders, and more recently immune-mediated diseases. This review summarizes the regulation and function of GPNMB in normal physiology, and discusses the involvement of GPNMB in disease conditions with a particular focus on its potential role and therapeutic implications in autoimmunity.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Zheng Y, Huang C, Yang X, Zhang Z. Altered expression of glycoprotein non‑metastatic melanoma protein B in the distal sciatic nerve following injury. Int J Mol Med 2020; 45:1909-1917. [PMID: 32236569 PMCID: PMC7169951 DOI: 10.3892/ijmm.2020.4559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Glycoprotein non‑metastatic melanoma protein B (GPNMB) exerts neuroprotective effects on amyotrophic lateral sclerosis and cerebral ischemia reperfusion injury in the central nervous system. However, the expression and function of GPNMB in the peripheral nervous system, particularly following peripheral nerve injury, remains unknown. In the present study, the mRNAs and long non‑coding RNAs of the distal sciatic nerve were profiled via microarray analysis at days 0, 1, 3, 7, 14, 21 and 28 following transection. The results revealed that the expression of GPNMB mRNA was similar to the proliferation tendency of distal acute denervated Schwann cells (SCs), the results of which were further validated by reverse transcription quantitative polymerase chain reaction, western blot analysis and immunohistochemistry. To investigate the function of GPNMB on SCs, recombinant human GPNMB (rhGPNMB) was added to cultured denervated SCs from the distal stumps of transected sciatic nerve. The proliferation, expression and secretion of neurotrophic factors (NTFs) and neural adhesion molecules (NAMs) were subsequently detected. The results demonstrated that GPNMB expression was increased in distal sciatic nerve following transection in vivo, while rhGPNMB promoted the proliferation of SCs as well as expression and secretion of NTFs and NAMs in vitro. Therefore, GPNMB could be a novel strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yani Zheng
- Department of Anatomy, Institute of Biomedical Engineering, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chao Huang
- Department of Anatomy, Institute of Biomedical Engineering, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiangqun Yang
- Department of Anatomy, Institute of Biomedical Engineering, Second Military Medical University, Shanghai 200433, P.R. China
| | - Zhiying Zhang
- Department of Anatomy, Institute of Biomedical Engineering, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
30
|
Biswas KB, Takahashi A, Mizutani Y, Takayama S, Ishitsuka A, Yang L, Yang F, Iddamalgoda A, Katayama I, Inoue S. GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci Rep 2020; 10:4930. [PMID: 32188902 PMCID: PMC7080742 DOI: 10.1038/s41598-020-61931-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
GPNMB is involved in multiple cellular functions including cell adhesion, stress protection and stem cell maintenance. In skin, melanocyte-GPNMB is suggested to mediate pigmentation through melanosome formation, but details of keratinocyte-GPNMB have yet to be well understood. We confirmed the expression of GPNMB in normal human epidermal keratinocytes (NHEKs) by reducing the expression using siRNA. A higher calcium concentration of over 1.25 mM decreased the GPNMB expression. Histological staining showed that GPNMB was expressed in the basal layer of normal skins but completely absent in vitiligo skins. The normal expression of GPNMB in nevus depigmentosus skin suggested that lack of GPNMB is characteristic of vitiligo lesional skins. IFN-γ and IL-17A, two cytokines with possible causal roles in vitiligo development, inhibited GPNMB expression in vitro. Approximately 4–8% of the total GPNMB expressed on NHEKs were released possibly by ADAM 10 as a soluble form, but the process of release was not affected by the cytokines. The suppressive effect of IFN-γ on GPNMB was partially via IFN-γ/JAK2/STAT1 signaling axis. Decreased GPNMB expression in keratinocytes may affect melanocyte maintenance or survival against oxidative stress although further studies are needed. These findings indicate a new target for vitiligo treatment, focusing on the novel role of IFN-γ and IL-17 in downregulating keratinocyte-GPNMB.
Collapse
Affiliation(s)
- Kazal Boron Biswas
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Aya Takahashi
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoru Takayama
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Asako Ishitsuka
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Lingli Yang
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Fei Yang
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Arunasiri Iddamalgoda
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Ichiro Katayama
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan.
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
31
|
Zhao GH, Qiu YQ, Yang CW, Chen IS, Chen CY, Lee SJ. The cardenolides ouabain and reevesioside A promote FGF2 secretion and subsequent FGFR1 phosphorylation via converged ERK1/2 activation. Biochem Pharmacol 2019; 172:113741. [PMID: 31812679 DOI: 10.1016/j.bcp.2019.113741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 11/16/2022]
Abstract
Na+/K+-ATPase α1 was reported to directly interact with and recruit FGF2 (fibroblast growth factor 2), a vital cell signaling protein implicated in angiogenesis, to the inner plasma membrane for subsequent secretion. Cardenolides, a class of cardiac glycosides, were reported to downregulate FGF2 secretion upon binding to Na+/K+-ATPase α1 in a cell system with ectopically expressed FGF2 and Na+/K+-ATPase α1. Herein, we disclose that the cardenolides ouabain and reevesioside A significantly enhance the secretion/release of FGF2 and the phosphorylation of FGFR1 (fibroblast growth factor receptor 1) in a time- and dose-dependent manner, in A549 carcinoma cells. A pharmacological approach was used to elucidate the pertinent upstream effectors. Only the ERK1/2 inhibitor U0126 but not the other inhibitors examined (including those inhibiting the unconventional secretion of FGF2) was able to reduce ouabain-induced FGF2 secretion and FGFR1 activation. ERK1/2 phosphorylation was increased upon ouabain treatment, a process found to be mediated through upstream effectors including ouabain-induced phosphorylated EGFR and a reduced MKP1 protein level. Therefore, at least two independent lines of upstream effectors are able to mediate ouabain-induced ERK1/2 phosphorylation and the subsequent FGF2 secretion and FGFR1 activation. These finding constitute unprecedent insights into the regulation of FGF2 secretion by cardenolides.
Collapse
Affiliation(s)
- Guan-Hao Zhao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Ya-Qi Qiu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Cheng-Wei Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Chin-Yu Chen
- Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Shiow-Ju Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan, ROC.
| |
Collapse
|
32
|
Ren F, Zhao Q, Liu B, Sun X, Tang Y, Huang H, Mei L, Yu Y, Mo H, Dong H, Zheng P, Mi Y. Transcriptome analysis reveals GPNMB as a potential therapeutic target for gastric cancer. J Cell Physiol 2019; 235:2738-2752. [PMID: 31498430 DOI: 10.1002/jcp.29177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
Gastric cancer has the fifth highest incidence of disease and is the third leading cause of cancer-associated mortality in the world. The etiology of gastric cancer is complex and needs to be fully elucidated. Thus, it is necessary to explore potential pathogenic genes and pathways that contribute to gastric cancer. Gene expression profiles of the GSE33335 and GSE54129 datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were compared and identified using R software. The DEGs were then subjected to gene set enrichment analysis and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Survival analyses based on The Cancer Genome Atlas database were used to further screen the essential DEGs. A knockdown assay was performed to determine the function of the candidate gene in gastric cancer. Finally, the association between the candidate gene and immune-related genes was investigated. We found that GPNMB serves as an essential gene, with a high expression level, and predicts a worse outcome of gastric cancer. Knockdown of GPNMB inhibited gastric cancer cell proliferation and migration. In addition, GPNMB may augment the immunosuppressive ability of gastric cancer by recruiting immunosuppressive cells and promoting immune cell exhaustion through PI3K/AKT/CCL4 signaling axis. Collectively, these data suggest that GPNMB acts as an important positive mediator of tumor progression in gastric cancer, and GPNMB could exert multimodality modulation of gastric cancer-mediated immune suppression.
Collapse
Affiliation(s)
- Feifei Ren
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Liu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangdong Sun
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youcai Tang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Sciences and Education and Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huang Huang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Mei
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Yu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Mo
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haibin Dong
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
33
|
Satoh JI, Kino Y, Yanaizu M, Ishida T, Saito Y. Microglia express GPNMB in the brains of Alzheimer's disease and Nasu-Hakola disease. Intractable Rare Dis Res 2019; 8:120-128. [PMID: 31218162 PMCID: PMC6557242 DOI: 10.5582/irdr.2019.01049] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein first identified in low-metastatic human melanoma cell lines as a regulator of tumor growth. GPNMB is widely expressed in various tissues, where it is involved in cell differentiation, migration, inflammation/anti-inflammation, tissue regeneration, and neuroprotection. GPNMB is identified in microglia of adult rat brains, neurons and astrocytes of GPNMB transgenic (Tg) mouse brains, and motor neurons of amyotrophic lateral sclerosis (ALS) patients. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder, characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by genetic mutations of either TYROBP (DAP12) or TREM2. TREM2 and DAP12 constitute a receptor/adaptor signaling complex expressed exclusively on osteoclasts, dendritic cells, macrophages, and microglia. Pathologically, the brains of NHD patients exhibit leukoencephalopathy, astrogliosis, accumulation of axonal spheroids, and remarkable activation of microglia predominantly in the white matter of frontal and temporal lobes and the basal ganglia. At present, molecular mechanisms responsible for development of leukoencephaolpathy in NHD brains remain totally unknown. Recent evidence indicates that disease-associated microglia (DAM) that cluster around amyloid plaques express high levels of GPNMB in Alzheimer's disease (AD) brains. Because microglia act as a key regulator of leukoencephalopathy in NHD brains, it is proposed that GPNMB expressed on microglia might play a protective role in progression of leukoencephalopathy possibly via active phagocytosis of myelin debris. In the present study using immunohistochemistry, we have attempted to clarify the expression of GPNMB in NHD brains, compared with AD brains. We found that microglia accumulating in the white matter express an intense GPNMB immunoreactivity in both NHD and AD brains, suggesting that the accumulation of GPNMB-immunoreactive microglia is a general phenomenon in neurodegenerative brains.
Collapse
Affiliation(s)
- Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
- Address correspondence to:Dr. Jun-ichi Satoh, Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan. E-mail:
| | - Yoshihiro Kino
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Motoaki Yanaizu
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tsuyoshi Ishida
- Department of Pathology and Laboratory Medicine, Kohnodai Hospital, NCGM, Chiba, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, NCNP, Tokyo, Japan
| |
Collapse
|
34
|
Chen L, Jiang P, Li J, Xie Z, Xu Y, Qu W, Feng F, Liu W. Periplocin promotes wound healing through the activation of Src/ERK and PI3K/Akt pathways mediated by Na/K-ATPase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:72-83. [PMID: 30668325 DOI: 10.1016/j.phymed.2018.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/01/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Periploca forrestii(PF) is mainly utilized for treatment of arthritis and traumatic injury historically. We had previously demonstrated that a fraction rich in cardiotonic steroids isolated from PF had the potential to facilitate wound healing. However, the exact material basis and mechanism of action responsible for wound healing is still unclear. Periplocin(PP) is the highest level of cardiotonic steroid included in PF. The present study aims to evaluate the efficacy of periplocin on wound healing systematically in vitro and in vivo. MATERIALS AND METHODS The L929 proliferation was determined by both MTT and EdU assay. Cell migration was tested by both scratch and transwell assay. The total amount of soluble collagen was assessed using a Sircol Collagen Assay Kit. The wound healing activity was evaluated in vivo using the excision rat models. Histopathology of the wounded skin on day 9 was studied via hematoxylin and eosin staining (HE) for general morphological observations and masson's trichrome staining for collagen deposition, respectively. The alteration in Src/ERK and PI3K/Akt pathways mediated by Na/K-ATPase was determined by western blot after the treatment with periplocin. The interaction between Na/K-ATPase and Src was tested by immunoprecipitation and immunostaining analysis. RESULTS The results revealed that periplocin could significantly boost proliferation, migration and stimulate collagen production in fibroblast L929 cells, which is dependent on activation of Src/ERK and PI3K/Akt pathways mediated by Na/K-ATPase, and thus promoting wound healing. Indeed, inhibition of Na/K-ATPase/Src complex receptor by Src specific inhibitor or knocking down the Na/K-ATPase expression would abolish the subsequent activation of Src/ERK and PI3K/Akt pathways and attenuate periplocin-induced beneficial effects on wound healing. Additionally, the wound healing activity is also confirmed in a rat excisional wound model as evidenced by increased rate of wound closure, reepithelization, formation of granulation tissue and collagen accumulation. CONCLUSIONS Collectively, we lay the rationale for traditional usage for traumatic injury, suggesting that periplocin and periploca forrestii is a promising candidate for management of chronic wounds.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Pan Jiang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jinsong Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zijian Xie
- Department of Physiology and Pharmacology, Mail Stop 1008, College of Medicine, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Yunhui Xu
- Department of Physiology and Pharmacology, Mail Stop 1008, College of Medicine, University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, USA
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China; Jiangsu Food & Pharmaceutical Science College, 4 Meicheng Donglu, Huaian 223003, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
35
|
Yan X, Xun M, Wu L, Du X, Zhang F, Zheng J. DRm217 attenuates myocardial ischemia-reperfusion injury via stabilizing plasma membrane Na + -K + -ATPase, inhibiting Na + -K + -ATPase/ROS pathway and activating PI3K/Akt and ERK1/2. Toxicol Appl Pharmacol 2018; 349:62-71. [DOI: 10.1016/j.taap.2018.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 11/17/2022]
|
36
|
Wang T, Cheng J, Wang S, Wang X, Jiang H, Yang Y, Wang Y, Zhang C, Liang W, Feng H. α-Lipoic acid attenuates oxidative stress and neurotoxicity via the ERK/Akt-dependent pathway in the mutant hSOD1 related Drosophila model and the NSC34 cell line of amyotrophic lateral sclerosis. Brain Res Bull 2018; 140:299-310. [PMID: 29842900 DOI: 10.1016/j.brainresbull.2018.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a degenerative disease with a progressive loss of motor neurons in the central nervous system (CNS). However, there are unsolved problems with the therapies for this disease. α-Lipoic acid (LA) is a natural, universal antioxidant capable of scavenging hydroxyl radicals as well as regenerating a series of antioxidant enzymes that has been widely used in clinical settings. This study aimed to evaluate the antioxidant and neuroprotective effects of LA in ALS cell and Drosophila models with mutant G85R and G93A hSOD1 genes. The biological effects of LA and the protein levels of several antioxidant factors were examined, as were those of phospho-Akt and phospho-ERK. Furthermore, specific inhibitors of the PI3K/Akt and MEK/ERK signaling pathways were used to analyze their effects on LA-induced antioxidant expression in vivo and in vitro. Evidences showed that the mutant hSOD1 resulted in the increased oxidative stress, abnormal antioxidant signaling and pathological behaviors in motor performance and survival compared with non-mutant hSOD1 models, treatment with LA improved motor activity and survival in transgenic flies, prevented NSC34 cells from mutant hSOD1 or H2O2 induced decreased antioxidant enzymes as well as increased ROS levels. In addition, LA regulated the expression levels of antioxidant proteins in a dose- and periodical time-dependent manner, which might be mediated by ERK/Akt pathway activation and independent from the mutant hSOD1 gene. Our observations suggest that LA exerts strong and positive antioxidant and neuroprotective effects through the activation of the ERK-Akt pathway in hSOD1 ALS models.
Collapse
Affiliation(s)
- Tianhang Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Jiling Cheng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Shuyu Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xudong Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Hongquan Jiang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yueqing Yang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Ying Wang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Chunting Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Weiwei Liang
- Department of Neurology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Honglin Feng
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China.
| |
Collapse
|
37
|
Neal ML, Boyle AM, Budge KM, Safadi FF, Richardson JR. The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor. J Neuroinflammation 2018. [PMID: 29519253 PMCID: PMC5842560 DOI: 10.1186/s12974-018-1100-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neuroinflammation is one of the hallmarks of neurodegenerative diseases, such as Parkinson's disease (PD). Activation of glial cells, including microglia and astrocytes, is a characteristic of the inflammatory response. Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane glycoprotein that releases a soluble signaling peptide when cleaved by ADAM10 or other extracellular proteases. GPNMB has demonstrated a neuroprotective role in animal models of ALS and ischemia. However, the mechanism of this protection has not been well established. CD44 is a receptor expressed on astrocytes that can bind GPNMB, and CD44 activation has been demonstrated to reduce NFκB activation and subsequent inflammatory responses in macrophages. GPNMB signaling has not been investigated in models of PD or specifically in astrocytes. More recently, genetic studies have linked polymorphisms in GPNMB with risk for PD. Therefore, it is important to understand the role this signaling protein plays in PD. METHODS We used data mining techniques to evaluate mRNA expression of GPNMB and its receptor CD44 in the substantia nigra of PD and control brains. Immunofluorescence and qPCR techniques were used to assess GPNMB and CD44 levels in mice treated with MPTP. In vitro experiments utilized the immortalized mouse astrocyte cell line IMA2.1 and purified primary mouse astrocytes. The effects of recombinant GPNMB on cytokine-induced astrocyte activation was determined by qPCR, immunofluorescence, and measurement of nitric oxide and reactive oxygen production. RESULTS Increased GPNMB and CD44 expression was observed in the substantia nigra of human PD brains and in GFAP-positive astrocytes in an animal model of PD. GPNMB treatment attenuated cytokine-induced levels of inducible nitric oxide synthase, nitric oxide, reactive oxygen species, and the inflammatory cytokine IL-6 in an astrocyte cell line and primary mouse astrocytes. Using primary mouse astrocytes from CD44 knockout mice, we found that the anti-inflammatory effects of GPNMB are CD44-mediated. CONCLUSIONS These results demonstrate that GPNMB may exert its neuroprotective effect through reducing astrocyte-mediated neuroinflammation in a CD44-dependent manner, providing novel mechanistic insight into the neuroprotective properties of GPNMB.
Collapse
Affiliation(s)
- Matthew L Neal
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Diseases and Aging, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Alexa M Boyle
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Diseases and Aging, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,Department of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Kevin M Budge
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Diseases and Aging, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,Department of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Fayez F Safadi
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Diseases and Aging, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, Center for Neurodegenerative Diseases and Aging, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
38
|
Puerarin Suppresses Na+-K+-ATPase-Mediated Systemic Inflammation and CD36 Expression, and Alleviates Cardiac Lipotoxicity In Vitro and In Vivo. J Cardiovasc Pharmacol 2017; 68:465-472. [PMID: 27606935 DOI: 10.1097/fjc.0000000000000431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Puerarin, a type of isoflavone, was shown to have multiple protective effects on myocardial injury. The objective of this study was to investigate the role of puerarin in the progression of lipotoxic cardiomyopathy. Primary cardiomyocytes were isolated from FATP1 transgenic (Tg) mice with lipotoxic cardiomyopathy, and various concentrations of puerarin were used to incubate with the cardiomyocytes. Our results showed low-dose puerarin (≤20 μM) treatment increased the cell viability and decreased the accumulation of free fatty acid (FFA). The data on enzyme-linked immunosorbent assay indicated that 15 μM puerarin treatment greatly increased Na-K-ATPase activity and decreased C-reactive protein secretion, thus suppressing the expression of CD36, a key contributor to the FFA accumulation. Additionally, low-dose puerarin (≤100 mg/kg body weight) administration improved Na-K-ATPase activity. Our data on serum analysis and histological detection in vivo indicated that systemic inflammation, CD36-induced lipid infiltration, and cardiomyocyte apoptosis were markedly alleviated in Tg mice injected with 90 mg/kg dose of puerarin. Finally, the uptake rates of H-palmitate and C-glucose were monitored on ex vivo working hearts that were obtained from wild-type (WT), Tg-control, and Tg-puerarin mice. Compared with WT hearts, Tg hearts displayed a significant decrease in Na/K-ATPase activity and glucose consumption rate and an increase in palmitate uptake rate and FFA accumulation. In Tg-puerarin hearts, Na/K-ATPase activity and glucose consumption rate were significantly rescued, and palmitate uptake and FFA accumulation were sharply suppressed. In conclusion, low-dose puerarin suppressed Na-K-ATPase-mediated CD36 expression and systemic inflammation and alleviated cardiac lipotoxicity in vitro and in vivo.
Collapse
|
39
|
Budge KM, Neal ML, Richardson JR, Safadi FF. Glycoprotein NMB: an Emerging Role in Neurodegenerative Disease. Mol Neurobiol 2017; 55:5167-5176. [PMID: 28856541 DOI: 10.1007/s12035-017-0707-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/01/2017] [Indexed: 12/12/2022]
Abstract
Neurodegeneration is characterized by severe neuronal loss leading to the cognitive and physical impairments that define various neurodegenerative diseases. Neuroinflammation is one hallmark of neurodegenerative diseases and can ultimately contribute to disease progression. Increased inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1β (IL-1 β), and tumor necrosis factor-α (TNF-α) are associated with Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Unfortunately, current therapeutic options lack ability to stop or effectively slow progression of these diseases and are primarily aimed at alleviating symptoms. Thus, it is crucial to discover novel treatment candidates for neurodegenerative diseases. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type-I transmembrane glycoprotein first identified in a melanoma cell line. GPNMB augments bone mineral deposition by stimulating osteoblast differentiation. Aside from its anabolic function in the bone, emerging evidence suggests that GPNMB has anti-inflammatory and reparative functions. GPNMB has also been demonstrated to be neuroprotective in an animal model of ALS, cerebral ischemia, and other disease models. Given these discoveries, GPNMB should be investigated as a potential therapeutic option for multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Kevin M Budge
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44224, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Matthew L Neal
- Department of Pharmaceutical Sciences, College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Jason R Richardson
- Department of Pharmaceutical Sciences, College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University (NEOMED), 4209 State Route 44, Rootstown, OH, 44224, USA. .,School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
40
|
Plössl K, Royer M, Bernklau S, Tavraz NN, Friedrich T, Wild J, Weber BHF, Friedrich U. Retinoschisin is linked to retinal Na/K-ATPase signaling and localization. Mol Biol Cell 2017; 28:2178-2189. [PMID: 28615319 PMCID: PMC5531734 DOI: 10.1091/mbc.e17-01-0064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/30/2023] Open
Abstract
Retinoschisin binds to the extracellular domain of Na/K-ATPase subunit β2. Retinoschisin inhibits Na/K-ATPase–associated signaling cascades and affects Na/K-ATPase localization. The retinoschisin-Na/K-ATPase complex overlaps with signaling mediators. Defective Na/K-ATPase signaling by retinoschisin deficiency may promote retinal dystrophy. Mutations in the RS1 gene cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy. We recently showed that retinoschisin, the protein encoded by RS1, regulates ERK signaling and apoptosis in retinal cells. In this study, we explored an influence of retinoschisin on the functionality of the Na/K-ATPase, its interaction partner at retinal plasma membranes. We show that retinoschisin binding requires the β2-subunit of the Na/K-ATPase, whereas the α-subunit is exchangeable. Our investigations revealed no effect of retinoschisin on Na/K-ATPase–mediated ATP hydrolysis and ion transport. However, we identified an influence of retinoschisin on Na/K-ATPase–regulated signaling cascades and Na/K-ATPase localization. In addition to the known ERK deactivation, retinoschisin treatment of retinoschisin-deficient (Rs1h-/Y) murine retinal explants decreased activation of Src, an initial transmitter in Na/K-ATPase signal transduction, and of Ca2+ signaling marker Camk2. Immunohistochemistry on murine retinae revealed an overlap of the retinoschisin–Na/K-ATPase complex with proteins involved in Na/K-ATPase signaling, such as caveolin, phospholipase C, Src, and the IP3 receptor. Finally, retinoschisin treatment altered Na/K-ATPase localization in photoreceptors of Rs1h-/Y retinae. Taken together, our results suggest a regulatory effect of retinoschisin on Na/K-ATPase signaling and localization, whereas Na/K-ATPase-dysregulation caused by retinoschisin deficiency could represent an initial step in XLRS pathogenesis.
Collapse
Affiliation(s)
- Karolina Plössl
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Melanie Royer
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Sarah Bernklau
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Neslihan N Tavraz
- Institute of Chemistry, Technical University of Berlin, 10623 Berlin, Germany
| | - Thomas Friedrich
- Institute of Chemistry, Technical University of Berlin, 10623 Berlin, Germany
| | - Jens Wild
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
41
|
Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, Kakita A, Hara H. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res 2016; 95:1647-1665. [PMID: 27935101 DOI: 10.1002/jnr.23999] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/15/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022]
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuki Nagahara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuki Ohuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Junko Ito
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, University of Niigata, Niigata, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
42
|
Glycoprotein nonmetastatic melanoma protein B (GPNMB) promotes the progression of brain glioblastoma via Na+/K+-ATPase. Biochem Biophys Res Commun 2016; 481:7-12. [DOI: 10.1016/j.bbrc.2016.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
|