1
|
Rangaraj S, Agarwal A, Banerjee S. Bird's Eye View on Mycobacterium tuberculosis-HIV Coinfection: Understanding the Molecular Synergism, Challenges, and New Approaches to Therapeutics. ACS Infect Dis 2025; 11:1042-1063. [PMID: 40229972 DOI: 10.1021/acsinfecdis.4c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), is the most common secondary infection in the Human Immunodeficiency Virus (HIV) infected population, accounting for more than one-fourth of deaths in people living with HIV (PLWH). Reciprocally, HIV infection increases the susceptibility to primary TB or reactivation of latent TB by several folds. The synergistic interactions between M.tb and HIV not only potentiate their deleterious impact but also complicate the clinical management of both the diseases. M.tb-HIV coinfected patients have a high risk of failure of accurate diagnosis, treatment inefficiency for both TB and HIV, concurrent nontuberculous mycobacterial infections, other comorbidities such as diabetes mellitus, severe cytotoxicity due to drug overburden, and immune reconstitution inflammatory syndrome (IRIS). The need of the hour is to understand M.tb-HIV coinfection biology and their collective impact on the host immunocompetence and to think of out-of-the-box treatment perspectives, including host-directed therapy under the rising view of homeostatic medicines. This review aims to highlight the molecular players, both from the pathogens and host, that facilitate the synergistic interactions and host-associated proteins/enzymes regulating immunometabolism, underlining potential targets for designing and screening chemical inhibitors to reduce the burden of both pathogens concomitantly during M.tb-HIV coinfection. To appreciate the necessity of revisiting therapeutic approaches and research priorities, we provide a glimpse of anti-TB and antiretroviral drug-drug interactions, project the gaps in our understanding of coinfection biology, and also enlist some key research initiatives that will help us deal with the synergistic epidemic of M.tb-HIV coinfection.
Collapse
Affiliation(s)
- Siranjeevi Rangaraj
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Anushka Agarwal
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Sharmistha Banerjee
- Laboratory of Molecular Pathogenesis, Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
2
|
Singh PR, Nagaraja V. Epigenetic maneuvering: an emerging strategy for mycobacterial intracellular survival. Trends Microbiol 2025; 33:354-369. [PMID: 39613689 DOI: 10.1016/j.tim.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Mycobacterium tuberculosis (Mtb) has elaborated numerous mechanisms for its pathogenesis. Mtb manipulates host signaling pathways to interfere with the immune response and cell death pathways. By employing virulence factors - of which secretory proteins are emerging as significant components - it ensures successful survival in the host. In this review, we discuss advances made on the largely unexplored secretory modifiers of Mtb that alter the host epigenome to impact host pathways for the pathogen's advantage. We highlight the findings on the Mtb-encoded modification enzymes and their role in maneuvering the host machinery. We also provide pointers to the gaps that still exist in this area and approaches to address these questions for a better appreciation of the uncanny success of Mtb as an intracellular pathogen.
Collapse
Affiliation(s)
- Prakruti R Singh
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India; Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India
| | - Valakunja Nagaraja
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India; Department of Microbiology and Cell Biology, Indian Institute of Science (IISc), Bengaluru, India.
| |
Collapse
|
3
|
Abbasnia S, Hashem Asnaashari AM, Sharebiani H, Soleimanpour S, Mosavat A, Rezaee SA. Mycobacterium tuberculosis and host interactions in the manifestation of tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 36:100458. [PMID: 38983441 PMCID: PMC11231606 DOI: 10.1016/j.jctube.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The final step of epigenetic processes is changing the gene expression in a new microenvironment in the body, such as neuroendocrine changes, active infections, oncogenes, or chemical agents. The case of tuberculosis (TB) is an outcome of Mycobacterium tuberculosis (M.tb) and host interaction in the manifestation of active and latent TB or clearance. This comprehensive review explains and interprets the epigenetics findings regarding gene expressions on the host-pathogen interactions in the development and progression of tuberculosis. This review introduces novel insights into the complicated host-pathogen interactions, discusses the challengeable results, and shows the gaps in the clear understanding of M.tb behavior. Focusing on the biological phenomena of host-pathogen interactions, the epigenetic changes, and their outcomes provides a promising future for developing effective TB immunotherapies when converting gene expression toward appropriate host immune responses gradually becomes attainable. Overall, this review may shed light on the dark sides of TB pathogenesis as a life-threatening disease. Therefore, it may support effective planning and implementation of epigenetics approaches for introducing proper therapies or effective vaccines.
Collapse
Affiliation(s)
- Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Sinha A, Khosla S. Epigenetic landscape of intestinal cell line HT29 cocultured with Lacticaseibacillus. Epigenomics 2024; 16:1081-1096. [PMID: 39072448 PMCID: PMC11418294 DOI: 10.1080/17501911.2024.2377949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: To investigate the changes in epigenetic landscape of HT29 cells upon coculture with the Lacticaseibacillus.Materials & methods: Histone and m6A mRNA modifications were examined by biochemical and NGS-based methods including western blotting, colorimetric assays, ChIP-Seq and direct mRNA sequencing. LC-MS was performed to identify Lacticaseibacillus secretome.Results: In cocultured HT29 cells global enrichment of H3K9ac and H3K4me3 and depletion of H3K9me3 mark was observed; mean genic positional signals showed depletion of H3K9ac and H3K4me3 at the TSS but enrichment in the upstream region; m6A methylation was altered in mRNAs corresponding to specific gene pathways; Lacticaseibacillus HU protein interacts with histone H3.Conclusion: Lacticaseibacillus can epigenetically alter specific genetic pathways in human intestinal cells.
Collapse
Affiliation(s)
- Anunay Sinha
- Centre for DNA Fingerprinting & Diagnostics, Hyderabad, 500039, India
- Regional Centre for Biotechnology, Faridabad, 121001, India
- CSIR-Institute of Microbial Technology, Chandigarh, 160036,India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting & Diagnostics, Hyderabad, 500039, India
- CSIR-Institute of Microbial Technology, Chandigarh, 160036,India
| |
Collapse
|
5
|
Liu Z, Deligen B, Han Z, Gerile C, Da A. Integrated sequence-based genomic, transcriptomic, and methylation characterization of the susceptibility to tuberculosis in monozygous twins. Heliyon 2024; 10:e31712. [PMID: 38845983 PMCID: PMC11153169 DOI: 10.1016/j.heliyon.2024.e31712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Background Tuberculosis (TB) is a complex disease with a spectrum of outcomes for more than six decades; however, the genomic and epigenetic mechanisms underlying the highly heritable susceptibility to TB remain unclear. Methods Integrated sequence-based genomic, transcriptomic, and methylation analyses were conducted to identity the genetic factors associated with susceptibility to TB in two pairs of Mongolian monozygous twins. In this study, whole-genome sequencing was employed to analyze single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and copy number variations (CNVs). Gene expression was assessed through RNA sequencing, and methylation patterns were examined using the Illumina Infinium Methylation EPIC BeadChip. The gene-gene interaction network was analyzed using differentially expressed genes. Results Our study revealed no significant difference in SNP and InDel profiles between participants with and without TB. Genes with CNVs were involved in human immunity (human leukocyte antigen [HLA] family and interferon [IFN] pathway) and the inflammatory response. Different DNA methylation patterns and mRNA expression profiles were observed in genes participating in immunity (HLA family) and inflammatory responses (IFNA, interleukin 10 receptor [IL-10R], IL-12B, Toll-like receptor, and IL-1B). Conclusions The results of this study suggested that susceptibility to TB is associated with transcriptional and epigenetic alternations of genes involved in immune and inflammatory responses. The genes in the HLA family (HLA-A, HLA-B, and HLA-DRB1) and IFN pathway (IFN-α and IFN-γ) may play major roles in susceptibility to TB.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Batu Deligen
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Zhiqiang Han
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| | - Chaolumen Gerile
- Department of Internal Medicine, Xilinguole Meng Mongolian General Hospital, Xilinhaote, 026000, Inner Mongolia, China
| | - An Da
- Institute of Mongolian Medicine Pharmacology, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, 028007, Inner Mongolia, China
| |
Collapse
|
6
|
Zhang J, Chen J, Zhang Y, Chen L, Mo W, Yang Q, Zhang M, Liu H. Exploring TSPAN4 promoter methylation as a diagnostic biomarker for tuberculosis. Front Genet 2024; 15:1380828. [PMID: 38680421 PMCID: PMC11048481 DOI: 10.3389/fgene.2024.1380828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a persistent infectious disease threatening human health. The existing diagnostic methods still have significant shortcomings, including a low positivity rate in pathogen-based diagnoses and the inability of immunological diagnostics to detect active TB. Hence, it is urgent to develop new techniques to detect TB more accurate and earlier. This research aims to scrutinize and authenticate DNA methylation markers suitable for tuberculosis diagnosis. Concurrently, Providing a new approach for tuberculosis diagnosis. Methods Blood samples from patients with newly diagnosed tuberculosis and healthy controls (HC) were utilized in this study. Examining methylation microarray data from 40 whole blood samples (22TB + 18HC), we employed two procedures: signature gene methylated position analysis and signature region methylated position analysis to pinpoint distinctive methylated positions. Based on the screening results, diagnostic classifiers are constructed through machine learning, and validation was conducted through pyrosequencing in a separate queue (22TB + 18HC). Culminating in the development of a new tuberculosis diagnostic method via quantitative real-time methylation specific PCR (qMSP). Results The combination of the two procedures revealed a total of 10 methylated positions, all of which were located in the promoter region. These 10 signature methylated positions facilitated the construction of a diagnostic classifier, exhibiting robust diagnostic accuracy in both cross-validation and external test sets. The LDA model demonstrated the best classification performance, achieving an AUC of 0.83, specificity of 0.8, and sensitivity of 0.86 on the external test set. Furthermore, the validation of signature methylated positions through pyrosequencing demonstrated high agreement with screening outcomes. Additionally, qMSP detection of 2 potential hypomethylated positions (cg04552852 and cg12464638) exhibited promising results, yielding an AUC of 0.794, specificity of 0.720, and sensitivity of 0.816. Conclusion Our study demonstrates that the validated signature methylated positions through pyrosequencing emerge as plausible biomarkers for tuberculosis diagnosis. The specific methylation markers in the TSPAN4 gene, identified in whole blood samples, hold promise for improving tuberculosis diagnosis. This approach could significantly enhance diagnostic accuracy and speed, offering a new avenue for early detection and treatment.
Collapse
Affiliation(s)
- Jiahao Zhang
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jilong Chen
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liuchi Chen
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weiwei Mo
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qianting Yang
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, Southern University of Science and Technology, Shenzhen, China
| | - Mingxia Zhang
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, Southern University of Science and Technology, Shenzhen, China
| | - Haiying Liu
- National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Institute of Pathogen Biology and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Wrede D, Bordak M, Abraham Y, Mehedi M. Pulmonary Pathogen-Induced Epigenetic Modifications. EPIGENOMES 2023; 7:13. [PMID: 37489401 PMCID: PMC10366755 DOI: 10.3390/epigenomes7030013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Epigenetics generally involves genetic control by factors other than our own DNA sequence. Recent research has focused on delineating the mechanisms of two major epigenetic phenomena: DNA methylation and histone modification. As epigenetics involves many cellular processes, it is no surprise that it can also influence disease-associated gene expression. A direct link between respiratory infections, host cell epigenetic regulations, and chronic lung diseases is still unknown. Recent studies have revealed bacterium- or virus-induced epigenetic changes in the host cells. In this review, we focused on respiratory pathogens (viruses, bacteria, and fungi) induced epigenetic modulations (DNA methylation and histone modification) that may contribute to lung disease pathophysiology by promoting host defense or allowing pathogen persistence.
Collapse
Affiliation(s)
| | | | | | - Masfique Mehedi
- School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (D.W.); (M.B.); (Y.A.)
| |
Collapse
|
8
|
Pehrson I, Sayyab S, Das J, Idh N, Paues J, Méndez-Aranda M, Ugarte-Gil C, Lerm M. The spectrum of tuberculosis described as differential DNA methylation patterns in alveolar macrophages and alveolar T cells. Clin Epigenetics 2022; 14:175. [PMID: 36527066 PMCID: PMC9758029 DOI: 10.1186/s13148-022-01390-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Host innate immune cells have been identified as key players in the early eradication of Mycobacterium tuberculosis and in the maintenance of an anti-mycobacterial immune memory, which we and others have shown are induced through epigenetic reprogramming. Studies on human tuberculosis immunity are dominated by those using peripheral blood as surrogate markers for immunity. We aimed to investigate DNA methylation patterns in immune cells of the lung compartment by obtaining induced sputum from M. tuberculosis- exposed subjects including symptom-free subjects testing positively and negatively for latent tuberculosis as well as patients diagnosed with active tuberculosis. Alveolar macrophages and alveolar T cells were isolated from the collected sputum and DNA methylome analyses performed (Illumina Infinium Human Methylation 450 k). RESULTS Multidimensional scaling analysis revealed that DNA methylomes of cells from the tuberculosis-exposed subjects and controls appeared as separate clusters. The numerous genes that were differentially methylated between the groups were functionally connected and overlapped with previous findings of trained immunity and tuberculosis. In addition, analysis of the interferon-gamma release assay (IGRA) status of the subjects demonstrated that the IGRA status was reflected in the DNA methylome by a unique signature. CONCLUSIONS This pilot study suggests that M. tuberculosis induces epigenetic reprogramming in immune cells of the lung compartment, reflected as a specific DNA methylation pattern. The DNA methylation signature emerging from the comparison of IGRA-negative and IGRA-positive subjects revealed a spectrum of signature strength with the TB patients grouping together at one end of the spectrum, both in alveolar macrophages and T cells. DNA methylation-based biosignatures could be considered for further development towards a clinically useful tool for determining tuberculosis infection status and the level of tuberculosis exposure.
Collapse
Affiliation(s)
- Isabelle Pehrson
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| | - Shumaila Sayyab
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| | - Jyotirmoy Das
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden ,grid.5640.70000 0001 2162 9922Bioinformatics Unit (Core Facility), Linköping University, Linköping, Sweden ,grid.5640.70000 0001 2162 9922Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Nina Idh
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| | - Jakob Paues
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden ,grid.5640.70000 0001 2162 9922Division of Infectious Diseases, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Melissa Méndez-Aranda
- grid.11100.310000 0001 0673 9488Laboratorio de Investigación en Enfermedades Infecciosas, Facultad de Ciencias Y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - César Ugarte-Gil
- grid.11100.310000 0001 0673 9488School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru ,grid.11100.310000 0001 0673 9488Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Lerm
- grid.5640.70000 0001 2162 9922Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Lab 1, Floor 12, 58185 Linköping, Sweden
| |
Collapse
|
9
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
10
|
Mukiibi R, Peñaloza C, Gutierrez A, Yáñez JM, Houston RD, Robledo D. The impact of Piscirickettsia salmonis infection on genome-wide DNA methylation profile in Atlantic Salmon. Genomics 2022; 114:110503. [PMID: 36244592 DOI: 10.1016/j.ygeno.2022.110503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022]
Abstract
Salmon rickettsial septicaemia (SRS), caused by the bacteria Piscirickettsia salmonis (P. salmonis), is responsible for significant mortality in farmed Atlantic salmon in Chile. Currently there are no effective treatments or preventive measures for this disease, although genetic selection or genome engineering to increase salmon resistance to SRS are promising strategies. The accuracy and efficiency of these strategies are usually influenced by the available biological background knowledge of the disease. The aim of this study was to investigate DNA methylation changes in response to P. salmonis infection in the head kidney and liver tissue of Atlantic salmon, and the interaction between gene expression and DNA methylation in the same tissues. The head kidney and liver methylomes of 66 juvenile salmon were profiled using reduced representation bisulphite sequencing (RRBS), and compared between P. salmonis infected animals (3 and 9 days post infection) and uninfected controls, and between SRS resistant and susceptible fish. Methylation was correlated with matching RNA-Seq data from the same animals, revealing that methylation in the first exon leads to an important repression of gene expression. Head kidney methylation showed a clear response to the infection, associated with immunological processes such as actin cytoskeleton regulation, phagocytosis, endocytosis and pathogen associated pattern receptor signaling. Our results contribute to the growing understanding of the role of methylation in regulation of gene expression and response to infectious diseases and could inform the incorporation of epigenetic markers into genomic selection for disease resistant and the design of diagnostic epigenetic markers to better manage fish health in salmon aquaculture.
Collapse
Affiliation(s)
- Robert Mukiibi
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Carolina Peñaloza
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Alejandro Gutierrez
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK; Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile; Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK.
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
11
|
Secretory proteins of
Mycobacterium tuberculosis
and their roles in modulation of host immune responses: focus on therapeutic targets. FEBS J 2022; 289:4146-4171. [DOI: 10.1111/febs.16369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
|
12
|
Muhammad JS, Khan NA, Maciver SK, Alharbi AM, Alfahemi H, Siddiqui R. Epigenetic-Mediated Antimicrobial Resistance: Host versus Pathogen Epigenetic Alterations. Antibiotics (Basel) 2022; 11:809. [PMID: 35740215 PMCID: PMC9220109 DOI: 10.3390/antibiotics11060809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of antibiotics, humans have been benefiting from them by decreasing the morbidity and mortality associated with bacterial infections. However, in the past few decades, misuse of antibiotics has led to the emergence of bacterial infections resistant to multiple drugs, a significant health concern. Bacteria exposed to inappropriate levels of antibiotics lead to several genetic changes, enabling them to survive in the host and become more resistant. Despite the understanding and targeting of genetic-based biochemical changes in the bacteria, the increasing levels of antibiotic resistance are not under control. Many reports hint at the role of epigenetic modifications in the bacterial genome and host epigenetic reprogramming due to interaction with resistant pathogens. Epigenetic changes, such as the DNA-methylation-based regulation of bacterial mutation rates or bacteria-induced histone modification in human epithelial cells, facilitate its long-term survival. In this review article, epigenetic changes leading to the development of antibiotic resistance in clinically relevant bacteria are discussed. Additionally, recent lines of evidence focusing on human host epigenetic changes due to the human-pathogen interactions are presented. As genetic mechanisms cannot explain the transient nature of antimicrobial resistance, we believe that epigenetics may provide new frontiers in antimicrobial discovery.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Naveed Ahmed Khan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Sutherland K. Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School-Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK;
| | - Ahmad M. Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
13
|
Tarashi S, Zamani MS, Bahramali G, Fuso A, Vaziri F, Karimipoor M, Fateh A, Siadat SD. RNA Expression Analysis of Mycobacterial Methyltransferases Genes in Different Resistant Strains of Mycobacterium tuberculosis. IRANIAN BIOMEDICAL JOURNAL 2022; 26:240-251. [PMID: 35216515 PMCID: PMC9440689 DOI: 10.52547/ibj.26.3.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Tuberculosis infection still represents a global health issue affecting patients worldwide. Strategies for its control may be not as effective as it should be, specifically in case of resistant strains of Mycobacterium tuberculosis (M.tb.) In this regard, the role of mycobacterial methyltransferases (MTases) in TB infection can be fundamental, though it has not been broadly deciphered. METHODS Five resistant isolates of M.tb were obtained. M.tb H37Rv (ATCC 27249) was used as a reference strain. Seven putative mycobacterial MTase genes (Rv0645c, Rv2966c, Rv1988, Rv1694, Rv3919c, Rv2756c, and Rv3263) and Rv1392 as SAM synthase were selected for analysis. PCR-sequencing and qRT-PCR were performed to compare mutations and expression levels of MTases in different strains. The 2-ΔΔCt method was employed to calculate the relative expression levels of these genes. RESULTS Only two mutations were found in isoniazid resistance (INHR) strain for Rv3919c (T to G in codon 341) and Rv1392 (G to A in codon 97) genes. Overexpression of Rv0645c, Rv2756c, Rv3263, and Rv2966c was detected in all sensitive and resistant isolates. However, Rv1988 and Rv3919c decreased and Rv1694 increased in the sensitive strains. The Rv1392 expression level also decreased in INHR isolate. CONCLUSION We found a correlation between mycobacterial MTases expression and resistance to antibiotics in M.tb strains. Some MTases undeniably are virulence factors that specifically hijack the host defense mechanism. Further evaluations are needed to explore the complete impact of mycobacterial MTases within specific strains of M.tb to introduce novel diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Samira Tarashi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Wang L, Zhang W, Wu X, Liang X, Cao L, Zhai J, Yang Y, Chen Q, Liu H, Zhang J, Ding Y, Zhu F, Tang J. MIAOME: Human Microbiome Affect The Host Epigenome. Comput Struct Biotechnol J 2022; 20:2455-2463. [PMID: 35664224 PMCID: PMC9136154 DOI: 10.1016/j.csbj.2022.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023] Open
Abstract
Besides the genetic factors having tremendous influences on the regulations of the epigenome, the microenvironmental factors have recently gained extensive attention for their roles in affecting the host epigenome. There are three major types of microenvironmental factors: microbiota-derived metabolites (MDM), microbiota-derived components (MDC) and microbiota-secreted proteins (MSP). These factors can regulate host physiology by modifying host gene expression through the three highly interconnected epigenetic mechanisms (e.g. histone modifications, DNA modifications, and non-coding RNAs). However, no database was available to provide the comprehensive factors of these types. Herein, a database entitled 'Human Microbiome Affect The Host Epigenome (MIAOME)' was constructed. Based on the types of epigenetic modifications confirmed in the literature review, the MIAOME database captures 1068 (63 genus, 281 species, 707 strains, etc.) human microbes, 91 unique microbiota-derived metabolites & components (16 fatty acids, 10 bile acids, 10 phenolic compounds, 10 vitamins, 9 tryptophan metabolites, etc.) derived from 967 microbes; 50 microbes that secreted 40 proteins; 98 microbes that directly influence the host epigenetic modification, and provides 3 classifications of the epigenome, including (1) 4 types of DNA modifications, (2) 20 histone modifications and (3) 490 ncRNAs regulations, involved in 160 human diseases. All in all, MIAOME has compiled the information on the microenvironmental factors influence host epigenome through the scientific literature and biochemical databases, and allows the collective considerations among the different types of factors. It can be freely assessed without login requirement by all users at: http://miaome.idrblab.net/ttd/
Collapse
Affiliation(s)
- Lidan Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianglu Wu
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Xiao Liang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lijie Cao
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jincheng Zhai
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yiyang Yang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qiuxiao Chen
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongqing Liu
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jun Zhang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yubin Ding
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding authors at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China (J. Tang).
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding authors at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China (J. Tang).
| | - Jing Tang
- School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing 400016, China
- Corresponding authors at: School of Basic Medicine, Chongqing Medical University, Chongqing 400016, China (J. Tang).
| |
Collapse
|
15
|
Arish M, Naz F. Macrophage plasticity as a therapeutic target in tuberculosis. Eur J Immunol 2022; 52:696-704. [DOI: 10.1002/eji.202149624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/31/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Mohd Arish
- JH‐Institute of Molecular Medicine Jamia Hamdard New Delhi India
- Carter Immunology Center University of Virginia United States
| | - Farha Naz
- Centre for Interdisciplinary Research in Basic Sciences (CIRBSc) Jamia Millia Islamia New Delhi India
- Division of Infectious Disease and International Health School of Medicine University of Virginia Health System United States
| |
Collapse
|
16
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021. [PMID: 34728591 PMCID: PMC8550911 DOI: 10.1007/s12038-021-00215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
|
17
|
A differential DNA methylome signature of pulmonary immune cells from individuals converting to latent tuberculosis infection. Sci Rep 2021; 11:19418. [PMID: 34593857 PMCID: PMC8484443 DOI: 10.1038/s41598-021-98542-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, spreads via aerosols and the first encounter with the immune system is with the pulmonary-resident immune cells. The role of epigenetic regulations in the immune cells is emerging and we have previously shown that macrophages capacity to kill M. tuberculosis is reflected in the DNA methylome. The aim of this study was to investigate epigenetic modifications in alveolar macrophages and T cells in a cohort of medical students with an increased risk of TB exposure, longitudinally. DNA methylome analysis revealed that a unique DNA methylation profile was present in healthy subjects who later developed latent TB during the study. The profile was reflected in a different overall DNA methylation distribution as well as a distinct set of differentially methylated genes (DMGs). The DMGs were over-represented in pathways related to metabolic reprogramming of macrophages and T cell migration and IFN-γ production, pathways previously reported important in TB control. In conclusion, we identified a unique DNA methylation signature in individuals, with no peripheral immune response to M. tuberculosis antigen who later developed latent TB. Together the study suggests that the DNA methylation status of pulmonary immune cells can reveal who will develop latent TB infection.
Collapse
|
18
|
Stein CM, Benchek P, Bartlett J, Igo RP, Sobota RS, Chervenak K, Mayanja-Kizza H, von Reyn CF, Lahey T, Bush WS, Boom WH, Scott WK, Marsit C, Sirugo G, Williams SM. Methylome-wide Analysis Reveals Epigenetic Marks Associated With Resistance to Tuberculosis in Human Immunodeficiency Virus-Infected Individuals From East Africa. J Infect Dis 2021; 224:695-704. [PMID: 33400784 DOI: 10.1093/infdis/jiaa785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the most deadly infectious disease globally and is highly prevalent in the developing world. For individuals infected with both Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV), the risk of active TB is 10% or more annually. Previously, we identified in a genome-wide association study (GWAS) a region on chromosome 5 associated with resistance to TB, which included epigenetic marks that could influence gene regulation. We hypothesized that HIV-infected individuals exposed to Mtb who remain disease free carry epigenetic changes that strongly protect them from active TB. METHODS We conducted a methylome-wide study in HIV-infected, TB-exposed cohorts from Uganda and Tanzania and integrated data from our GWAS. RESULTS We identified 3 regions of interest that included markers that were differentially methylated between TB cases and controls with latent TB infection: chromosome 1 (RNF220, P = 4 × 10-5), chromosome 2 (between COPS8 and COL6A3, P = 2.7 × 10-5), and chromosome 5 (CEP72, P = 1.3 × 10-5). These methylation results co-localized with associated single-nucleotide polymorphisms (SNPs), methylation QTLs, and methylation × SNP interaction effects. These markers were in regions with regulatory markers for cells involved in TB immunity and/or lung. CONCLUSIONS Epigenetic regulation is a potential biologic factor underlying resistance to TB in immunocompromised individuals that can act in conjunction with genetic variants.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jacquelaine Bartlett
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rafal S Sobota
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Keith Chervenak
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Harriet Mayanja-Kizza
- Department of Medicine and Mulago Hospital, School of Medicine, Makerere University, Kampala, Uganda
| | - C Fordham von Reyn
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Timothy Lahey
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - W Henry Boom
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Carmen Marsit
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Giorgio Sirugo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Qin W, Scicluna BP, van der Poll T. The Role of Host Cell DNA Methylation in the Immune Response to Bacterial Infection. Front Immunol 2021; 12:696280. [PMID: 34394088 PMCID: PMC8358789 DOI: 10.3389/fimmu.2021.696280] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Host cells undergo complex transcriptional reprogramming upon infection. Epigenetic changes play a key role in the immune response to bacteria, among which DNA modifications that include methylation have received much attention in recent years. The extent of DNA methylation is well known to regulate gene expression. Whilst historically DNA methylation was considered to be a stable epigenetic modification, accumulating evidence indicates that DNA methylation patterns can be altered rapidly upon exposure of cells to changing environments and pathogens. Furthermore, the action of proteins regulating DNA methylation, particularly DNA methyltransferases and ten-eleven translocation methylcytosine dioxygenases, may be modulated, at least in part, by bacteria. This review discusses the principles of DNA methylation, and recent insights about the regulation of host DNA methylation during bacterial infection.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Sar P, Dalai S. CRISPR/Cas9 in epigenetics studies of health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:309-343. [PMID: 34127198 DOI: 10.1016/bs.pmbts.2021.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetics is the heritable phenotypic changes without altering the genotype. Epigenetic processes are such as histone methylation, acetylation, ubiquitination, sumoylation, phosphorylation, ADP ribosylation, DNA methylation and non-coding RNAs interactions associated with structural changes in chromatin. The change of structure is either open chromatin for "active" state or closed chromatin for "inactive" state, that regulates important biological phenomenon like chromatin condensation, gene expression, DNA repair, cellular development, differentiation and homeostasis, etc. However, dysregulation of epigenetic patterns causes diseases like cancer, diabetes, neurological disorder, infectious diseases, autoimmunity etc. Besides, the most important clinical uses of Epigenetics studies are i. identification of disease biomarkers and ii. development of their therapeutics. Epigenetic therapies include epi-drugs, combinatorial therapy, nanocarriers, plant-derived products that are being used for changing the epigenetic pattern to reverse gene expression. However, the developed epi- drugs cause off-target gene and transposable elements activation; promote mutagenesis and carcinogenesis in normal cells, are the major hurdles regarding their clinical use. Therefore, advanced epigenetic therapeutics are required to develop target-specific epigenetic modifications to reverse gene expression pattern. CRISPR-Cas9 (Clustered Regularly Interspaced Palindrome Repeats-associated protein 9) system-mediated gene activation mechanism paves new methods of target-specific epigenetic therapeutics to cure diseases. In this chapter, we discuss how CRISPR/Cas9 and dCas9 have recently been engineered for epigenome editing. Different strategies have been discussed used for epigenome editing based on their efficacy and complexity. Last but not least we have discussed the limitations, different uses of CRISPR/Cas9 and dCas9 in the area of genetic engineering.
Collapse
Affiliation(s)
- Pranati Sar
- Institute of Science, NIRMA University, Ahmedabad, India.
| | - Sarat Dalai
- Institute of Science, NIRMA University, Ahmedabad, India.
| |
Collapse
|
21
|
Chen X, Hu TY. Strategies for advanced personalized tuberculosis diagnosis: Current technologies and clinical approaches. PRECISION CLINICAL MEDICINE 2021; 4:35-44. [PMID: 33842836 PMCID: PMC8023014 DOI: 10.1093/pcmedi/pbaa041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Diagnosis of tuberculosis can be difficult as advances in molecular diagnosis approaches (especially nanoparticles combined with high-throughput mass spectrometry for detecting mycobacteria peptide) and personalized medicine result in many changes to the diagnostic framework. This review will address issues concerning novel technologies from bench to bed and new strategies for personalized tuberculosis diagnosis.
Collapse
Affiliation(s)
- Xuerong Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021; 46:94. [PMID: 34728591 PMCID: PMC8550911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 02/11/2023]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ambey Prasad Dwivedi
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anunay Sinha
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Viplove Agarwaal
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | - Anjana Kar
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Institute of Microbial Technology (IMTech), Chandigarh, India
| |
Collapse
|
23
|
Marimani M, AlOmar SY, Aldahmash B, Ahmad A, Stacey S, Duse A. Distinct epigenetic regulation in patients with multidrug-resistant TB-HIV co-infection and uninfected individuals. Mutat Res 2020; 821:111724. [PMID: 33070028 DOI: 10.1016/j.mrfmmm.2020.111724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is an airborne pathogenic microorganism that causes tuberculosis (TB). This pathogen invades lung tissues causing pulmonary infections and disseminates into other host organs. The Bacillus Calmette-Guérin (BCG) vaccine is employed to provide immune protection against TB; however, its efficacy is dependent on the age, immune status and geographic location of vaccinated individuals. Advanced diagnostic approaches such as GeneXpert MTB/RIF® and line probe assays (LPAs) have allowed rapid detection of drug-resistant, multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains. However, in sub-Saharan Africa, public and private health institutions are further burdened by the high prevalence of Human Immunodeficiency Virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS) and TB co-infections across different age groups. Epigenetic mechanisms have been widely exploited by Mtb and HIV to bypass the host's innate and adaptive immune responses, leading to microbial proliferation and disease manifestation. In the current study, we investigated the impact of epigenetic mechanisms in regulating target gene expression in healthy and patients co-infected with MDR TB-HIV.
Collapse
Affiliation(s)
- Musa Marimani
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Suliman Yousef AlOmar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Badr Aldahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; Infectious Diseases, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa.
| | - Sarah Stacey
- Division of Pulmonology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Adriano Duse
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa; Infectious Diseases, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, Johannesburg, 2193, South Africa
| |
Collapse
|
24
|
Vavougios GD, Zarogiannis SG, Krogfelt KA, Stamoulis G, Gourgoulianis KI. Epigenetic regulation of apoptosis via the PARK7 interactome in peripheral blood mononuclear cells donated by tuberculosis patients vs. healthy controls and the response to treatment: A systems biology approach. Tuberculosis (Edinb) 2020; 123:101938. [PMID: 32741527 DOI: 10.1016/j.tube.2020.101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aims of our study were to determine for the first time differentially expressed genes (DEGs) and enriched molecular pathways involving the PARK7 interactome in PBMCs donated from tuberculosis patients. METHODS Data on a previously reconstructed PARK7 interactome (Vavougios et al., 2017) from datasets GDS4966 (Case-Control) and GDS4781 (Treatment Series) were retrieved from the Gene Expression Omnibus (GEO) repository. Gene Enrichment analysis was performed via the STRING algorithm and the GeneTrail2 software. RESULTS 17 and 22 PARK7 interactores were determined as DEGs in the active TB vs HD and Treatment Series subset analyses, correspondingly, associated with significantly enriched pathways (FDR <0.05) involving p53 and PTEN mediated, stress responsive apoptosis regulation pathways. The treatment subset was characterized by the emergence of an additional layer of transcriptional regulation mediated by polycomb proteins among others, as well as TLR-mediated and cytokine survival signaling. Finally, the enrichment of a Parkinson's disease signature including PARK7 interactors was determined by its differential regulation both in the exploratory analyses (FDR = 0.024), as well as the confirmatory analyses (FDR = 1.81e-243). CONCLUSIONS Our in silico analysis revealed for the first time the role of PARK7's interactome in regulating the epigenetics of the PBMC lifecycle and Mtb symbiosis.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Neurology, Athens Naval Hospital, Deinokratous 70, 115 21, Athens, Greece; Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece.
| | - Sotirios G Zarogiannis
- Department of Pleural Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41500, Larisa, Greece
| | - Karen A Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, Roskilde University, Universitetsvej 1, 28A.1, DK-4000, Roskilde, Denmark
| | - George Stamoulis
- Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41110, Larisa, Greece
| |
Collapse
|
25
|
Chai Q, Wang L, Liu CH, Ge B. New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cell Mol Immunol 2020; 17:901-913. [PMID: 32728204 PMCID: PMC7608469 DOI: 10.1038/s41423-020-0502-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an extremely successful intracellular pathogen that causes tuberculosis (TB), which remains the leading infectious cause of human death. The early interactions between Mtb and the host innate immune system largely determine the establishment of TB infection and disease development. Upon infection, host cells detect Mtb through a set of innate immune receptors and launch a range of cellular innate immune events. However, these innate defense mechanisms are extensively modulated by Mtb to avoid host immune clearance. In this review, we describe the emerging role of cytosolic nucleic acid-sensing pathways at the host-Mtb interface and summarize recently revealed mechanisms by which Mtb circumvents host cellular innate immune strategies such as membrane trafficking and integrity, cell death and autophagy. In addition, we discuss the newly elucidated strategies by which Mtb manipulates the host molecular regulatory machinery of innate immunity, including the intranuclear regulatory machinery, the ubiquitin system, and cellular intrinsic immune components. A better understanding of innate immune evasion mechanisms adopted by Mtb will provide new insights into TB pathogenesis and contribute to the development of more effective TB vaccines and therapies.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, 100101, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 200433, Shanghai, China.
| |
Collapse
|
26
|
DiNardo AR, Rajapakshe K, Nishiguchi T, Grimm SL, Mtetwa G, Dlamini Q, Kahari J, Mahapatra S, Kay A, Maphalala G, Mace EM, Makedonas G, Cirillo JD, Netea MG, van Crevel R, Coarfa C, Mandalakas AM. DNA hypermethylation during tuberculosis dampens host immune responsiveness. J Clin Invest 2020; 130:3113-3123. [PMID: 32125282 PMCID: PMC7260034 DOI: 10.1172/jci134622] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) has coevolved with humans for millennia and developed multiple mechanisms to evade host immunity. Restoring host immunity in order to improve outcomes and potentially shorten existing therapy will require identification of the full complement by which host immunity is inhibited. Perturbation of host DNA methylation is a mechanism induced by chronic infections such as HIV, HPV, lymphocytic choriomeningitis virus (LCMV), and schistosomiasis to evade host immunity. Here, we evaluated the DNA methylation status of patients with tuberculosis (TB) and their asymptomatic household contacts and found that the patients with TB have DNA hypermethylation of the IL-2/STAT5, TNF/NF-κB, and IFN-γ signaling pathways. We performed methylation-sensitive restriction enzyme-quantitative PCR (MSRE-qPCR) and observed that multiple genes of the IL-12/IFN-γ signaling pathway (IL12B, IL12RB2, TYK2, IFNGR1, JAK1, and JAK2) were hypermethylated in patients with TB. The DNA hypermethylation of these pathways was associated with decreased immune responsiveness with decreased mitogen-induced upregulation of IFN-γ, TNF, IL-6, CXCL9, CXCL10, and IL-1β production. The DNA hypermethylation of the IL-12/IFN-γ pathway was associated with decreased IFN-γ-induced gene expression and decreased IL-12-inducible upregulation of IFN-γ. This study demonstrates that immune cells from patients with TB are characterized by DNA hypermethylation of genes critical to mycobacterial immunity resulting in decreased mycobacteria-specific and nonspecific immune responsiveness.
Collapse
Affiliation(s)
- Andrew R. DiNardo
- Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Kimal Rajapakshe
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Tomoki Nishiguchi
- Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L. Grimm
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Godwin Mtetwa
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | - Qiniso Dlamini
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | | | - Sanjana Mahapatra
- Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Kay
- Baylor-Swaziland Children’s Foundation, Mbabane, Swaziland
| | | | - Emily M. Mace
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | | | - Jeffrey D. Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cristian Coarfa
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Anna M. Mandalakas
- Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Denzer L, Schroten H, Schwerk C. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Int J Mol Sci 2020; 21:ijms21103730. [PMID: 32466312 PMCID: PMC7279228 DOI: 10.3390/ijms21103730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.
Collapse
|
28
|
Crimi E, Benincasa G, Cirri S, Mutesi R, Faenza M, Napoli C. Clinical epigenetics and multidrug-resistant bacterial infections: host remodelling in critical illness. Epigenetics 2020; 15:1021-1034. [PMID: 32290755 DOI: 10.1080/15592294.2020.1748918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The inappropriate use of antibiotics in man is driving to insurgence of pathogenic bacteria resistant to multiple drugs (MDR) representing a challenge in critical illness. The interaction of MDR bacteria with host cells can guide molecular perturbations of host transcriptional programmes involving epigenetic-sensitive mechanisms, mainly DNA methylation, histone modifications, and non-coding RNAs leading to pathogen survival. Clinical evidence of epigenetic manipulation from MDR bacteria mainly arises from Mycobacterium tuberculosis as well as Helicobacter pylori, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Legionella pneumophila infection suggesting possible biomarkers of disease. For example, DNA hypermethylation of E-cadherin (CDH1), upstream transcription factor 1/2 (USF1/2), WW domain containing oxidoreductase (WWOX), and mutL homolog 1 (MLH1) genes in gastric mucosa is correlated with malignancy suggesting useful biomarkers of early disease state. Moreover, upregulated circulating miR-361-5p, miR-889, miR-576-3p may be useful biomarkers to discriminate tuberculosis patients. Moreover, Listeria monocytogenes can indirectly induce H3 hyperacetylation leading to inflammation in human endothelial cells whereas Pseudomonas aeruginosa excretes QS 2-AA to directly induce H3 deacetylation leading to bacterial persistence in human monocytes. Remarkably, epigenetic-sensitive drugs may aid to counteract MDR in clinical setting. Trichostatin A, a histone deacetyltransferase inhibitor (HDACi), leads to AMP β-defensin 2 (HBD2) gene up-regulation in human epithelial cells suggesting a useful 'epi-therapy' for Escherichia coli-induced intestinal diseases. We update on the most current clinical studies focusing on epigenetic changes involved in bacterial-host interactions and their putative role as biomarkers or drug targets to improve precision medicine and personalized therapy in critical illness and transplantation setting.
Collapse
Affiliation(s)
- Ettore Crimi
- College of Medicine, University of Central Florida , Orlando, FL, USA.,Department of Anesthesiology and Critical Care Medicine, Ocala Health , Ocala, FL, USA
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Silvia Cirri
- Division of Anesthesiology and Intensive Care, Cardiothoracic Department, Istituto Clinico Sant'Ambrogio, Gruppo Ospedaliero San Donato , Milan, Italy
| | - Rebecca Mutesi
- College of Medicine, University of Central Florida , Orlando, FL, USA
| | - Mario Faenza
- Multidisciplinary Department of Medical and Dental Specialties, Plastic Surgery Unit, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli" , Naples, Italy.,IRCCS Foundation SDN , Naples, Italy
| |
Collapse
|
29
|
Tarashi S, Badi SA, Moshiri A, Ebrahimzadeh N, Fateh A, Vaziri F, Aazami H, Siadat SD, Fuso A. The inter-talk between Mycobacterium tuberculosis and the epigenetic mechanisms. Epigenomics 2020; 12:455-469. [PMID: 32267165 DOI: 10.2217/epi-2019-0187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
Epigenetics regulate gene function without any alteration in the DNA sequence. The epigenetics represent one of the most important regulators in different cellular processes and have initially been developed in microorganisms as a protective strategy. The evaluation of the epigenetic mechanisms is also important in achieving an efficient control strategy in tuberculosis (TB). TB is one of the most significant epidemiological concerns in human history. Despite several in vivo and in vitro studies that have evaluated different epigenetic modifications in TB, many aspects of the association between epigenetics and TB are not fully understood. The current paper is aimed at reviewing our knowledge on histone modifications and DNA methylation modifications, as well as miRNAs regulation in TB.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laboratory of Molecular Medicine, IRCCS Institute Giannina Gaslini, Genova, Italy
| | - Nayereh Ebrahimzadeh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Aazami
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Endocrinologyand Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| |
Collapse
|
30
|
Hall TJ, Vernimmen D, Browne JA, Mullen MP, Gordon SV, MacHugh DE, O’Doherty AM. Alveolar Macrophage Chromatin Is Modified to Orchestrate Host Response to Mycobacterium bovis Infection. Front Genet 2020; 10:1386. [PMID: 32117424 PMCID: PMC7020904 DOI: 10.3389/fgene.2019.01386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Bovine tuberculosis is caused by infection with Mycobacterium bovis, which can also cause disease in a range of other mammals, including humans. Alveolar macrophages are the key immune effector cells that first encounter M. bovis and how the macrophage epigenome responds to mycobacterial pathogens is currently not well understood. Here, we have used chromatin immunoprecipitation sequencing (ChIP-seq), RNA-seq and miRNA-seq to examine the effect of M. bovis infection on the bovine alveolar macrophage (bAM) epigenome. We show that H3K4me3 is more prevalent, at a genome-wide level, in chromatin from M. bovis-infected bAM compared to control non-infected bAM; this was particularly evident at the transcriptional start sites of genes that determine programmed macrophage responses to mycobacterial infection (e.g. M1/M2 macrophage polarisation). This pattern was also supported by the distribution of RNA Polymerase II (Pol II) ChIP-seq results, which highlighted significantly increased transcriptional activity at genes demarcated by permissive chromatin. Identification of these genes enabled integration of high-density genome-wide association study (GWAS) data, which revealed genomic regions associated with resilience to infection with M. bovis in cattle. Through integration of these data, we show that bAM transcriptional reprogramming occurs through differential distribution of H3K4me3 and Pol II at key immune genes. Furthermore, this subset of genes can be used to prioritise genomic variants from a relevant GWAS data set.
Collapse
Affiliation(s)
- Thomas J. Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
| | - Douglas Vernimmen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - John A. Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
| | - Michael P. Mullen
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alan M. O’Doherty
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Das J, Verma D, Gustafsson M, Lerm M. Identification of DNA methylation patterns predisposing for an efficient response to BCG vaccination in healthy BCG-naïve subjects. Epigenetics 2019; 14:589-601. [PMID: 31010371 PMCID: PMC6557603 DOI: 10.1080/15592294.2019.1603963] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/19/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
The protection against tuberculosis induced by the Bacille Calmette Guérin (BCG) vaccine is unpredictable. In our previous study, altered DNA methylation pattern in peripheral blood mononuclear cells (PBMCs) in response to BCG was observed in a subgroup of individuals, whose macrophages killed mycobacteria effectively ('responders'). These macrophages also showed production of Interleukin-1β (IL-1β) in response to mycobacterial stimuli before vaccination. Here, we hypothesized that the propensity to respond to the BCG vaccine is reflected in the DNA methylome. We mapped the differentially methylated genes (DMGs) in PBMCs isolated from responders/non-responders at the time point before vaccination aiming to identify possible predictors of BCG responsiveness. We identified 43 DMGs and subsequent bioinformatic analyses showed that these were enriched for actin-modulating pathways, predicting differences in phagocytosis. This could be validated by experiments showing that phagocytosis of mycobacteria, which is an event preceding mycobacteria-induced IL-1β production, was strongly correlated with the DMG pattern.
Collapse
Affiliation(s)
- Jyotirmoy Das
- Department of Clinical and Experimental Medicine (IKE), Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Deepti Verma
- Department of Clinical and Experimental Medicine (IKE), Division of Cell Biology (CELLB), Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Department of Physics, Chemistry and Biology (IFM) Bioinformatics (BION), Linköping University, Linköping, Sweden
| | - Maria Lerm
- Department of Clinical and Experimental Medicine (IKE), Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
32
|
O'Doherty AM, Rue-Albrecht KC, Magee DA, Ahting S, Irwin RE, Hall TJ, Browne JA, Nalpas NC, Walsh CP, Gordon SV, Wojewodzic MW, MacHugh DE. The bovine alveolar macrophage DNA methylome is resilient to infection with Mycobacterium bovis. Sci Rep 2019; 9:1510. [PMID: 30728374 PMCID: PMC6365515 DOI: 10.1038/s41598-018-37618-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is pivotal in orchestrating gene expression patterns in various mammalian biological processes. Perturbation of the bovine alveolar macrophage (bAM) transcriptome, due to Mycobacterium bovis (M. bovis) infection, has been well documented; however, the impact of this intracellular pathogen on the bAM epigenome has not been determined. Here, whole genome bisulfite sequencing (WGBS) was used to assess the effect of M. bovis infection on the bAM DNA methylome. The methylomes of bAM infected with M. bovis were compared to those of non-infected bAM 24 hours post-infection (hpi). No differences in DNA methylation (CpG or non-CpG) were observed. Analysis of DNA methylation at proximal promoter regions uncovered >250 genes harbouring intermediately methylated (IM) promoters (average methylation of 33–66%). Gene ontology analysis, focusing on genes with low, intermediate or highly methylated promoters, revealed that genes with IM promoters were enriched for immune-related GO categories; this enrichment was not observed for genes in the high or low methylation groups. Targeted analysis of genes in the IM category confirmed the WGBS observation. This study is the first in cattle examining genome-wide DNA methylation at single nucleotide resolution in an important bovine cellular host-pathogen interaction model, providing evidence for IM promoter methylation in bAM.
Collapse
Affiliation(s)
- Alan Mark O'Doherty
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| | - Kevin Christophe Rue-Albrecht
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford, OX3 7FY, UK
| | - David Andrew Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Simone Ahting
- Institute of Molecular Medicine, Trinity College Dublin, Dublin, D08 W9RT, Ireland
| | - Rachelle Elizabeth Irwin
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA, UK
| | - Thomas Jonathan Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - John Arthur Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Nicolas Claude Nalpas
- Quantitative Proteomics and Proteome Centre Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, 72076, Tübingen, Germany
| | - Colum Patrick Walsh
- Genomic Medicine Research Group, Biomedical Sciences Research Institute, Centre for Molecular Biosciences, University of Ulster, Coleraine, BT52 1SA, UK
| | - Stephen Vincent Gordon
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | | | - David Evan MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| |
Collapse
|
33
|
Pech M, Weckmann M, König IR, Franke A, Heinsen FA, Oliver B, Ricklefs I, Fuchs O, Rabe K, Hansen G, v. Mutius E, Kopp MV. Rhinovirus infections change DNA methylation and mRNA expression in children with asthma. PLoS One 2018; 13:e0205275. [PMID: 30485264 PMCID: PMC6261460 DOI: 10.1371/journal.pone.0205275] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Human rhinovirus infection (HRVI) plays an important role in asthma exacerbations and is thought to be involved in asthma development during early childhood. We hypothesized that HRVI causes differential DNA methylation and subsequently differential mRNA expression in epithelial cells of children with asthma. Primary nasal epithelial cells from children with (n = 10) and without (n = 10) asthma were cultivated up to passage two and infected with Rhinovirus-16 (RV-16). HRVI-induced genome-wide differences of DNA methylation in asthmatics (vs. controls) and resulting mRNA expression were analyzed by the HumanMethylation450 BeadChip Kit (Illumina) and RNA sequencing. These results were further verified by pyrosequencing and quantitative PCR, respectively. 471 CpGs belonging to 268 genes were identified to have HRVI-induced asthma-specifically modified DNA methylation and mRNA expression. A minimum-change criteria was applied to restrict assessment of genes with changes in DNA methylation and mRNA expression of at least 3% and least 0.1 reads/kb per million mapped reads, respectively. Using this approach we identified 16 CpGs, including HLA-B-associated transcript 3 (BAT3) and Neuraminidase 1 (NEU1), involved in host immune response against HRVI. HRVI in nasal epithelial cells leads to specific modifications of DNA methylation with altered mRNA expression in children with asthma. The HRVI-induced alterations in DNA methylation occurred in genes involved in the host immune response against viral infections and asthma pathogenesis. The findings of our pilot study may partially explain how HRVI contribute to the persistence and progression of asthma, and aid to identify possible new therapeutic targets. The promising findings of this pilot study would benefit from replication in a larger cohort.
Collapse
Affiliation(s)
- Martin Pech
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
| | - Markus Weckmann
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
| | - Inke R. König
- University of Lübeck, Institute for Medical Biometry and Statistics, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Brian Oliver
- University of Technology Sydney, and Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Isabell Ricklefs
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
| | - Oliver Fuchs
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
- Department of Pediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Klaus Rabe
- LungenClinic Grosshansdorf, Department of Pneumology, Großhansdorf, Germany, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Grosshansdorf, Germany
| | - Gesine Hansen
- Hannover Medical School, Department of Paediatric Pneumology, Allergology and Neonatology, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center of Lung Research (DZL), Hannover, Germany
| | - Erika v. Mutius
- Ludwig-Maximilians-University Munich, Dr. von Hauner Children's Hospital, Comprehensive Pneumology Center München (CPC-M), Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Matthias V. Kopp
- University Medical Center Schleswig-Holstein, Department of Pediatric Pneumology & Allergology, Campus Lübeck, Airway Research Center North (ARCN), Member of the German Center of Lung Research (DZL), Lübeck, Germany
- * E-mail:
| | | |
Collapse
|
34
|
Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018; 113:200-214. [PMID: 30514504 DOI: 10.1016/j.tube.2018.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/29/2022]
Abstract
Tuberculosis (TB) infection caused by Mycobacterium tuberculosis (Mtb) is still a persistent global health problem, particularly in developing countries. The World Health Organization (WHO) reported a mortality rate of about 1.8 million worldwide due to TB complications in 2015. The Bacillus Calmette-Guérin (BCG) vaccine was introduced in 1921 and is still widely used to prevent TB development. This vaccine offers up to 80% protection against various forms of TB; however its efficacy against lung infection varies among different geographical settings. Devastatingly, the development of various forms of drug-resistant TB strains has significantly impaired the discovery of effective and safe anti-bacterial agents. Consequently, this necessitated discovery of new drug targets and novel anti-TB therapeutics to counter infection caused by various Mtb strains. Importantly, various factors that contribute to TB development have been identified and include bacterial resuscitation factors, host factors, environmental factors and genetics. Furthermore, Mtb-induced epigenetic changes also play a crucial role in evading the host immune response and leads to bacterial persistence and dissemination. Recently, the application of GeneXpert MTB/RIF® to rapidly diagnose and identify drug-resistant strains and discovery of different molecular markers that distinguish between latent and active TB infection has motivated and energised TB research. Therefore, this review article will briefly discuss the current TB state, highlight various mechanisms employed by Mtb to evade the host immune response as well as to discuss some modern molecular techniques that may potentially target and inhibit Mtb replication.
Collapse
Affiliation(s)
- Musa Marimani
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa.
| | - Adriano Duse
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Infection Control, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa
| |
Collapse
|
35
|
Anastasiadi D, Esteve-Codina A, Piferrer F. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics Chromatin 2018; 11:37. [PMID: 29958539 PMCID: PMC6025724 DOI: 10.1186/s13072-018-0205-1] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is one of the main epigenetic mechanisms for the regulation of gene expression in eukaryotes. In the standard model, methylation in gene promoters has received the most attention since it is generally associated with transcriptional silencing. Nevertheless, recent studies in human tissues reveal that methylation of the region downstream of the transcription start site is highly informative of gene expression. Also, in some cell types and specific genes it has been found that methylation of the first intron, a gene feature typically rich in enhancers, is linked with gene expression. However, a genome-wide, tissue-independent, systematic comparative analysis of the relationship between DNA methylation in the first intron and gene expression across vertebrates has not been explored yet. RESULTS The most important findings of this study are: (1) using different tissues from a modern fish, we show a clear genome-wide, tissue-independent quasi-linear inverse relationship between DNA methylation of the first intron and gene expression. (2) This relationship is conserved across vertebrates, since it is also present in the genomes of a model pufferfish, a model frog and different human tissues. Among the gene features, tissues and species interrogated, the first intron's negative correlation with the gene expression was most consistent. (3) We identified more tissue-specific differentially methylated regions (tDMRs) in the first intron than in any other gene feature. These tDMRs have positive or negative correlation with gene expression, indicative of distinct mechanisms of tissue-specific regulation. (4) Lastly, we identified CpGs in transcription factor binding motifs, enriched in the first intron, the methylation of which tended to increase with the distance from the first exon-first intron boundary, with a concomitant decrease in gene expression. CONCLUSIONS Our integrative analysis clearly reveals the important and conserved role of the methylation level of the first intron and its inverse association with gene expression regardless of tissue and species. These findings not only contribute to our basic understanding of the epigenetic regulation of gene expression but also identify the first intron as an informative gene feature regarding the relationship between DNA methylation and gene expression where future studies should be focused.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesc Piferrer
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
36
|
Kint S, De Spiegelaere W, De Kesel J, Vandekerckhove L, Van Criekinge W. Evaluation of bisulfite kits for DNA methylation profiling in terms of DNA fragmentation and DNA recovery using digital PCR. PLoS One 2018; 13:e0199091. [PMID: 29902267 PMCID: PMC6002050 DOI: 10.1371/journal.pone.0199091] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is one of the most important epigenetic modifications in the regulation of gene transcription. The current gold standard to study this modification is bisulfite sequencing. Although multiple commercial bisulfite treatment kits provide good conversion efficiencies, DNA loss and especially DNA fragmentation remain troublesome. This hampers DNA methylation profiling of long DNA sequences. Here, we explored the performance of twelve commercial bisulfite kits by an in-depth comparison of DNA fragmentation using gel electrophoresis, qPCR and digital PCR, DNA recovery by spectroscopic measurements and digital PCR and conversion efficiency by next generation sequencing. The results show a clear performance difference between the bisulfite kits, and depending on the specific goal of the study, the most appropriate kit might differ. Moreover, we demonstrated that digital PCR is a valuable method to monitor both DNA fragmentation as well as DNA recovery after bisulfite treatment.
Collapse
Affiliation(s)
- Sam Kint
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
- * E-mail:
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Wim Van Criekinge
- Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
DiNardo AR, Nishiguchi T, Mace EM, Rajapakshe K, Mtetwa G, Kay A, Maphalala G, Secor WE, Mejia R, Orange JS, Coarfa C, Bhalla KN, Graviss EA, Mandalakas AM, Makedonas G. Schistosomiasis Induces Persistent DNA Methylation and Tuberculosis-Specific Immune Changes. THE JOURNAL OF IMMUNOLOGY 2018; 201:124-133. [PMID: 29752313 DOI: 10.4049/jimmunol.1800101] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022]
Abstract
Epigenetic mechanisms, such as DNA methylation, determine immune cell phenotype. To understand the epigenetic alterations induced by helminth coinfections, we evaluated the longitudinal effect of ascariasis and schistosomiasis infection on CD4+ T cell DNA methylation and the downstream tuberculosis (TB)-specific and bacillus Calmette-Guérin-induced immune phenotype. All experiments were performed on human primary immune cells from a longitudinal cohort of recently TB-exposed children. Compared with age-matched uninfected controls, children with active Schistosoma haematobium and Ascaris lumbricoides infection had 751 differentially DNA-methylated genes, with 72% hypermethylated. Gene ontology pathway analysis identified inhibition of IFN-γ signaling, cellular proliferation, and the Th1 pathway. Targeted real-time quantitative PCR after methyl-specific endonuclease digestion confirmed DNA hypermethylation of the transcription factors BATF3, ID2, STAT5A, IRF5, PPARg, RUNX2, IRF4, and NFATC1 and cytokines or cytokine receptors IFNGR1, TNFS11, RELT (TNF receptor), IL12RB2, and IL12B (p < 0.001; Sidak-Bonferroni). Functional blockage of the IFN-γ signaling pathway was confirmed, with helminth-infected individuals having decreased upregulation of IFN-γ-inducible genes (Mann-Whitney p < 0.05). Hypomethylation of the IL-4 pathway and DNA hypermethylation of the Th1 pathway was confirmed by Ag-specific multidimensional flow cytometry demonstrating decreased TB-specific IFN-γ and TNF and increased IL-4 production by CD4+ T cells (Wilcoxon signed-rank p < 0.05). In S. haematobium-infected individuals, these DNA methylation and immune phenotypic changes persisted at least 6 mo after successful deworming. This work demonstrates that helminth infection induces DNA methylation and immune perturbations that inhibit TB-specific immune control and that the duration of these changes are helminth specific.
Collapse
Affiliation(s)
- Andrew R DiNardo
- The Global Tuberculosis Program, Immigrant and Global Health, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030;
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Immigrant and Global Health, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Emily M Mace
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030.,Texas Children's Hospital Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital Center for Human Immunobiology, Baylor College of Medicine, Houston, TX 77030
| | - Kimal Rajapakshe
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Godwin Mtetwa
- Baylor-Swaziland Children's Foundation, Mbabane H100, Swaziland
| | - Alexander Kay
- Baylor-Swaziland Children's Foundation, Mbabane H100, Swaziland
| | | | - W Evan Secor
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | - Rojelio Mejia
- Department of Pediatrics, National School of Tropical Medicine, Texas Children's Hospital Center for Human Immunobiology, Houston, TX 77030
| | - Jordan S Orange
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030.,Texas Children's Hospital Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital Center for Human Immunobiology, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Kapil N Bhalla
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX 77030; and
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute, Houston, TX 77030
| | - Anna M Mandalakas
- The Global Tuberculosis Program, Immigrant and Global Health, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - George Makedonas
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030.,Texas Children's Hospital Center for Human Immunobiology, Department of Pediatrics, Texas Children's Hospital Center for Human Immunobiology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
38
|
Minnifield BA, Aslibekyan SW. The Interplay Between the Microbiome and Cardiovascular Risk. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0142-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Abstract
PURPOSE OF REVIEW We wished to overview recent data on a subset of epigenetic changes elicited by intracellular bacteria in human cells. Reprogramming the gene expression pattern of various host cells may facilitate bacterial growth, survival, and spread. RECENT FINDINGS DNA-(cytosine C5)-methyltransferases of Mycoplasma hyorhinis targeting cytosine-phosphate-guanine (CpG) dinucleotides and a Mycobacterium tuberculosis methyltransferase targeting non-CpG sites methylated the host cell DNA and altered the pattern of gene expression. Gene silencing by CpG methylation and histone deacetylation, mediated by cellular enzymes, also occurred in M. tuberculosis-infected macrophages. M. tuberculosis elicited cell type-specific epigenetic changes: it caused increased DNA methylation in macrophages, but induced demethylation, deposition of euchromatic histone marks and activation of immune-related genes in dendritic cells. A secreted transposase of Acinetobacter baumannii silenced a cellular gene, whereas Mycobacterium leprae altered the epigenotype, phenotype, and fate of infected Schwann cells. The 'keystone pathogen' oral bacterium Porphyromonas gingivalis induced local DNA methylation and increased the level of histone acetylation in host cells. These epigenetic changes at the biofilm-gingiva interface may contribute to the development of periodontitis. SUMMARY Epigenetic regulators produced by intracellular bacteria alter the epigenotype and gene expression pattern of host cells and play an important role in pathogenesis.
Collapse
|
40
|
Yaseen I, Choudhury M, Sritharan M, Khosla S. Histone methyltransferase SUV39H1 participates in host defense by methylating mycobacterial histone-like protein HupB. EMBO J 2017; 37:183-200. [PMID: 29170282 DOI: 10.15252/embj.201796918] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/25/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Host cell defense against an invading pathogen depends upon various multifactorial mechanisms, several of which remain undiscovered. Here, we report a novel defense mechanism against mycobacterial infection that utilizes the histone methyltransferase, SUV39H1. Normally, a part of the host chromatin, SUV39H1, was also found to be associated with the mycobacterial bacilli during infection. Its binding to bacilli was accompanied by trimethylation of the mycobacterial histone-like protein, HupB, which in turn reduced the cell adhesion capability of the bacilli. Importantly, SUV39H1-mediated methylation of HupB reduced the mycobacterial survival inside the host cell. This was also true in mice infection experiments. In addition, the ability of mycobacteria to form biofilms, a survival strategy of the bacteria dependent upon cell-cell adhesion, was dramatically reduced in the presence of SUV39H1. Thus, this novel defense mechanism against mycobacteria represents a surrogate function of the epigenetic modulator, SUV39H1, and operates by interfering with their cell-cell adhesion ability.
Collapse
Affiliation(s)
- Imtiyaz Yaseen
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India.,Graduate Studies, Manipal University, Manipal, India
| | - Mitali Choudhury
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Manjula Sritharan
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
41
|
Meyer V, Saccone DS, Tugizimana F, Asani FF, Jeffery TJ, Bornman L. Methylation of the Vitamin D Receptor (VDR) Gene, Together with Genetic Variation, Race, and Environment Influence the Signaling Efficacy of the Toll-Like Receptor 2/1-VDR Pathway. Front Immunol 2017; 8:1048. [PMID: 28959253 PMCID: PMC5603903 DOI: 10.3389/fimmu.2017.01048] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/14/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The disparity in prevalence of infectious diseases across the globe is common knowledge. Vitamin D receptor (VDR)-mediated toll-like receptor (TLR) 2/1 signaling produces antimicrobial peptides, which is critical as a first line of defense in innate immunity. Numerous studies disclosed the independent role of genetic polymorphisms in this pathway, vitamin D status or season and more recently epigenetics, as factors contributing to infectious disease predisposition. Few studies address the interaction between environment, genetics, and epigenetics. Here, we hypothesized that VDR-mediated TLR2/1 signaling is influenced by a combination of environment, epigenetics and genetics, collectively influencing differential innate immunity. METHODS Healthy Black and White South Africans (n = 100) donated blood, while ultraviolet index (UVI) was recorded for the duration of the study. LC-MS/MS supported 25(OH)D3 quantification. Monocyte/macrophage cultures, supplemented with/without 1,25(OH)2D3, were activated with the TLR2/1 elicitor, Pam3CSK4. VDR, cathelicidin antimicrobial peptide, hCAP-18, and 25-hydroxyvitamin D3-24-hydroxylase expression were quantified by RT-qPCR or flow cytometry. Pyrosequencing facilitated VDR methylation analysis and single-nucleotide polymorphism (SNP) genotyping in regions pinpointed through a bioinformatics workflow. RESULTS Season interacted with race showing 25(OH)D3 deficiency in Blacks. UVI correlated with 25(OH)D3 and VDR methylation, likely influencing race differences in the latter. Regarding the TLR2/1 pathway, race differences in SNP genotype distribution were confirmed and functional analysis of VDR-mediated signaling showed interaction between race, season, and 25(OH)D3 status. Multivariate OPLS-DA mirrored several interactions between UVI, 25(OH)D3 status, DNA sequence, and methylation variants. Methylation of the third cytosine-phosphate-guanine dinucleotide (CpG) in the promoter CpG island (CGI) 1062, CGI 1062 CpG 3, significantly discriminated a 5.7-fold above average mean in VDR protein level upon TLR2/1 elicitation, the variation of which was further influenced by 25(OH)D3 status and the VDR SNP TaqI. CONCLUSION Regulation of VDR-mediated TLR2/1 signaling is multifactorial, involving interaction between environment [UVI and consequent 25(OH)D3 status], epigenetics (VDR methylation at key regulatory sites), and genetics (TLR1, TIRAP, and VDR SNPs).
Collapse
Affiliation(s)
- Vanessa Meyer
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Donovan Sean Saccone
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | | | - Tamsyn Jacki Jeffery
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Liza Bornman
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
42
|
Farias ND, de Oliveira NFP, da Silva PM. Perkinsus infection is associated with alterations in the level of global DNA methylation of gills and gastrointestinal tract of the oyster Crassostrea gasar. J Invertebr Pathol 2017; 149:76-81. [PMID: 28800971 DOI: 10.1016/j.jip.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Bivalves are filter feeders that obtain food from seawater that may contain infectious agents, such as the protozoan parasites Perkinsus marinus and P. olseni that are associated with massive mortalities responsible for losses in the aquaculture industry. Despite all physical and chemical barriers, microorganisms cross epithelia and infect host tissues to cause pathologies. Epigenetics mechanisms play important roles in a variety of human processes, from embryonic development to cell differentiation and growth. It is currently emerging as crucial mechanism involved in modulation of host-parasite interactions and pathogenesis, promoting discovery of targets for drug treatment. In bivalves, little is known about epigenetic mechanism in host parasite interactions. The objective of the present study was to evaluate the effect of Perkinsus sp. infections on DNA methylation levels in tissues of Crassostrea gasar oysters. Samples were collected in 2015 and 2016 in the Mamanguape River estuary (PB). Oyster gills were removed and used for Perkinsus sp. DIAGNOSIS Gills (G) and gastrointestinal tract (GT), as well as cultured P. marinus trophozoites were preserved in 95% ethanol for DNA extractions. DNA methylation levels were estimated from G and GT tissues of uninfected (n=60) and infected oysters (n=60), and from P. marinus trophozoites, by ELISA assays. Results showed that the mean prevalence of Perkinsus sp. infections was high (87.3%) in 2015 and moderate (59.6%) in 2016. DNA methylation levels of G and GT tissues were significantly lower in infected oyster than in uninfected oysters, suggesting that infections are associated with hypomethylation. Methylation level was significantly higher in G than in GT tissues, indicating a likely tissue-specific mechanism. P. marinus trophozoites showed 33% methylation. This was the first study that confirms alterations of DNA methylation in two tissues of C. gasar oysters in association with Perkinsus sp. infections.
Collapse
Affiliation(s)
- Natanael Dantas Farias
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Universidade Federal da Paraíba, CEP 58051-900, João Pessoa, PB, Brazil.
| | - Naila Francis Paulo de Oliveira
- Laboratório de Genética Molecular Humana, Departamento de Biologia Molecular, Universidade Federal da Paraíba, CEP 58051-900, João Pessoa, PB, Brazil.
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados, Departamento de Biologia Molecular, Universidade Federal da Paraíba, CEP 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
43
|
|
44
|
Tie J, Zhang X, Fan D. Epigenetic roles in the malignant transformation of gastric mucosal cells. Cell Mol Life Sci 2016; 73:4599-4610. [PMID: 27464701 PMCID: PMC5097112 DOI: 10.1007/s00018-016-2308-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
Gastric carcinogenesis occurs when gastric epithelial cells transition through the initial, immortal, premalignant, and malignant stages of transformation. Epigenetic regulations contribute to this multistep process. Due to the critical role of epigenetic modifications , these changes are highly likely to be of clinical use in the future as new biomarkers and therapeutic targets for the early detection and treatment of cancers. Here, we summarize the recent findings on how epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, regulate gastric carcinogenesis, and we discuss potential new strategies for the diagnosis and treatments of gastric cancer. The strategies may be helpful in the further understanding of epigenetic regulation in human diseases.
Collapse
Affiliation(s)
- Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Xiangyuan Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|