1
|
Hoerter A, Petrucciani A, Bonifacio J, Arnett E, Schlesinger LS, Pienaar E. Timing matters in macrophage/CD4+ T cell interactions: an agent-based model comparing Mycobacterium tuberculosis host-pathogen interactions between latently infected and naïve individuals. mSystems 2025; 10:e0129024. [PMID: 39918314 PMCID: PMC11915833 DOI: 10.1128/msystems.01290-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/17/2024] [Indexed: 03/19/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant health challenge. Clinical manifestations of TB exist across a spectrum with a majority of infected individuals remaining asymptomatic, commonly referred to as latent TB infection (LTBI). In vitro models have demonstrated that cells from individuals with LTBI can better control Mtb growth and form granuloma-like structures more quickly, compared to cells from uninfected (Mtb-naïve) individuals. These in vitro results agree with animal and clinical evidence that LTBI protects, to some degree, against reinfection. However, the mechanisms by which LTBI might offer protection against reinfection remain unclear, and quantifying the relative contributions of multiple control mechanisms is challenging using experimental methods alone. To complement in vitro models, we have developed an in silico agent-based model to help elucidate host responses that might contribute to protection against reinfection. Our simulations indicate that earlier contact between macrophages and CD4+ T cells leads to LTBI simulations having more activated CD4+ T cells and, in turn, more activated infected macrophages, all of which contribute to a decreased bacterial load early on. Our simulations also demonstrate that granuloma-like structures support this early macrophage activation in LTBI simulations. We find that differences between LTBI and Mtb-naïve simulations are driven by TNFα and IFNγ-associated mechanisms as well as macrophage phagocytosis and killing mechanisms. Together, our simulations show how important the timing of the first interactions between innate and adaptive immune cells is, how this impacts infection progression, and why cells from LTBI individuals might be faster to respond to reinfection.IMPORTANCETuberculosis (TB) remains a significant global health challenge, with millions of new infections and deaths annually. Despite extensive research, the mechanisms by which latent TB infection (LTBI) confers protection against reinfection remain unclear. In this study, we developed an in silico agent-based model to simulate early immune responses to Mycobacterium tuberculosis infection based on experimental in vitro infection of human donor cells. Our simulations reveal that early interactions between macrophages and CD4+ T cells, driven by TNFα and IFNγ, are critical for bacterial control and granuloma formation in LTBI. These findings offer new insights into the immune processes involved in TB, which could inform the development of targeted vaccines and host-directed therapies. By integrating experimental data with computational predictions, our research provides a robust framework for understanding TB immunity and guiding future interventions to mitigate the global TB burden.
Collapse
Affiliation(s)
- Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Alexa Petrucciani
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | - Eusondia Arnett
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Hall CK, Barr OM, Delamare A, Burkholder A, Tsai A, Tian Y, Felix E Ellett, Li BM, Tanzi RE, Jorfi M. Profiling migration of human monocytes in response to chemotactic and barotactic guidance cues. CELL REPORTS METHODS 2024; 4:100846. [PMID: 39241776 PMCID: PMC11440068 DOI: 10.1016/j.crmeth.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Monocytes are critical to innate immunity, participating in chemotaxis during tissue injury, infection, and inflammatory conditions. However, the migration dynamics of human monocytes under different guidance cues are not well characterized. Here, we developed a microfluidic device to profile the migration characteristics of human monocytes under chemotactic and barotactic guidance cues while also assessing the effects of age and cytokine stimulation. Human monocytes preferentially migrated toward the CCL2 gradient through confined microchannels, regardless of donor age and migration pathway. Stimulation with interferon (IFN)-γ, but not granulocyte-macrophage colony-stimulating factor (GM-CSF), disrupted monocyte navigation through complex paths and decreased monocyte CCL2 chemotaxis, velocity, and CCR2 expression. Additionally, monocytes exhibited a bias toward low-hydraulic-resistance pathways in asymmetric environments, which remained consistent across donor ages, cytokine stimulation, and chemoattractants. This microfluidic system provides insights into the unique migratory behaviors of human monocytes and is a valuable tool for studying peripheral immune cell migration in health and disease.
Collapse
Affiliation(s)
- Clare K Hall
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Olivia M Barr
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Antoine Delamare
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alex Burkholder
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alice Tsai
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuyao Tian
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Felix E Ellett
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brent M Li
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Du W, Zhou B, Forjaz A, Shin SM, Wu F, Crawford AJ, Nair PR, Johnston AC, West-Foyle H, Tang A, Kim D, Fan R, Kiemen AL, Wu PH, Phillip JM, Ho WJ, Sanin DE, Wirtz D. High-motility pro-tumorigenic monocytes drive macrophage enrichment in the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603739. [PMID: 39071324 PMCID: PMC11275814 DOI: 10.1101/2024.07.16.603739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Enrichment of tumor-associated macrophages (TAMΦs) in the tumor microenvironment correlates with worse clinical outcomes in triple-negative breast cancer (TNBC) patients, prompting the development of therapies to inhibit TAMΦ infiltration. However, the lackluster efficacy of CCL2-based chemotaxis blockade in clinical trials suggests that a new understanding of monocyte/macrophage infiltration may be necessary. Here we demonstrate that random migration, and not only chemotaxis, drives macrophage tumor infiltration. We identified tumor- associated monocytes (TAMos) that display a dramatically enhanced migration capability, induced rapidly by the tumor microenvironment, that drives effective tumor infiltration, in contrast to low-motility differentiated macrophages. TAMo, not TAMΦ, promotes cancer cell proliferation through activation of the MAPK pathway. IL-6 secreted both by cancer cells and TAMo themselves enhances TAMo migration by increasing dendritic protrusion dynamics and myosin- based contractility via the JAK2/STAT3 signaling pathway. Independent from CCL2 mediated chemotaxis, IL-6 driven enhanced migration and pro-proliferative effect of TAMo were validated in a syngeneic TNBC mouse model. Depletion of IL-6 in cancer cells significantly attenuated monocyte infiltration and reversed TAMo-induced cancer cell proliferation. This work reveals the critical role random migration plays in monocyte driven TAMΦ enrichment in a tumor and pinpoints IL-6 as a potential therapeutic target in combination with CCL2 to ameliorate current strategies against TAMΦ infiltration.
Collapse
|
4
|
Petrucciani A, Hoerter A, Kotze L, Du Plessis N, Pienaar E. Agent-based model predicts that layered structure and 3D movement work synergistically to reduce bacterial load in 3D in vitro models of tuberculosis granuloma. PLoS Comput Biol 2024; 20:e1012266. [PMID: 38995971 PMCID: PMC11288457 DOI: 10.1371/journal.pcbi.1012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/30/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Tuberculosis (TB) remains a global public health threat. Understanding the dynamics of host-pathogen interactions within TB granulomas will assist in identifying what leads to the successful elimination of infection. In vitro TB models provide a controllable environment to study these granuloma dynamics. Previously we developed a biomimetic 3D spheroid granuloma model that controls bacteria better than a traditional monolayer culture counterpart. We used agent-based simulations to predict the mechanistic reason for this difference. Our calibrated simulations were able to predict heterogeneous bacterial dynamics that are consistent with experimental data. In one group of simulations, spheroids are found to have higher macrophage activation than their traditional counterparts, leading to better bacterial control. This higher macrophage activation in the spheroids was not due to higher counts of activated T cells, instead fewer activated T cells were able to activate more macrophages due to the proximity of these cells to each other within the spheroid. In a second group of simulations, spheroids again have more macrophage activation but also more T cell activation, specifically CD8+ T cells. This higher level of CD8+ T cell activation is predicted to be due to the proximity of these cells to the cells that activate them. Multiple mechanisms of control were predicted. Simulations removing individual mechanisms show that one group of simulations has a CD4+ T cell dominant response, while the other has a mixed/CD8+ T cell dominant response. Lastly, we demonstrated that in spheroids the initial structure and movement rules work synergistically to reduce bacterial load. These findings provide valuable insights into how the structural complexity of in vitro models impacts immune responses. Moreover, our study has implications for engineering more physiologically relevant in vitro models and advancing our understanding of TB pathogenesis and potential therapeutic interventions.
Collapse
Affiliation(s)
- Alexa Petrucciani
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Alexis Hoerter
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Leigh Kotze
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita Du Plessis
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medical and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
5
|
Golebiowska AA, Jala VR, Nukavarapu SP. Decellularized Tissue-Induced Cellular Recruitment for Tissue Engineering and Regenerative Medicine. Ann Biomed Eng 2024; 52:1835-1847. [PMID: 36952144 DOI: 10.1007/s10439-023-03182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Biomaterials that recapitulate the native in vivo microenvironment are promising to facilitate tissue repair and regeneration when used in combination with relevant growth factors (GFs), chemokines, cytokines, and other small molecules and cell sources. However, limitations with the use of exogenous factors and ex vivo cell expansion has prompted cell-/GF-free tissue engineering strategies. Additionally, conventional chemotaxis assays for studying cell migration behavior provide limited information, lack long-term stability, and fail to recapitulate physiologically relevant conditions. In this study, articular cartilage tissue-based biomaterials were developed via a rapid tissue decellularization protocol. The decellularized tissue was further processed into a hydrogel through solubilization and self-assembly. Chemotactic activity of the tissue-derived gel was investigated using sophisticated cellular migration assays. These tissue-derived extracellular matrix (ECM) biomaterials retain biochemical cues of native tissue and stimulate the chemotactic migration of hBMSCs in 2D and 3D cell migration models using a real-time chemotaxis assay. This strategy, in a way, developed a new paradigm in tissue engineering where cartilage tissue repair and regeneration can be approached with decellularized cartilage tissue in the place of an engineered matrix. This strategy can be further expanded for other tissue-based ECMs to develop cell-/GF-free tissue engineering and regenerative medicine strategies for recruiting endogenous cell populations to facilitate tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Venkatakrishna R Jala
- Department of Microbiology and Immunology, James Graham Brown Cancer Centre, University of Louisville, Louisville, KY, USA
| | - Syam P Nukavarapu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Materials Science & Engineering, University of Connecticut, Storrs, CT, USA.
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA.
| |
Collapse
|
6
|
Crespo-Avilan GE, Hernandez-Resendiz S, Ramachandra CJ, Ungureanu V, Lin YH, Lu S, Bernhagen J, El Bounkari O, Preissner KT, Liehn EA, Hausenloy DJ. Metabolic reprogramming of immune cells by mitochondrial division inhibitor-1 to prevent post-vascular injury neointimal hyperplasia. Atherosclerosis 2024; 390:117450. [PMID: 38266625 DOI: 10.1016/j.atherosclerosis.2024.117450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND AIMS New treatments are needed to prevent neointimal hyperplasia that contributes to post-angioplasty and stent restenosis in patients with coronary artery disease (CAD) and peripheral arterial disease (PAD). We investigated whether modulating mitochondrial function using mitochondrial division inhibitor-1 (Mdivi-1) could reduce post-vascular injury neointimal hyperplasia by metabolic reprogramming of macrophages from a pro-inflammatory to anti-inflammatory phenotype. METHODS AND RESULTS In vivo Mdivi-1 treatment of Apoe-/- mice fed a high-fat diet and subjected to carotid-wire injury decreased neointimal hyperplasia by 68%, reduced numbers of plaque vascular smooth muscle cells and pro-inflammatory M1-like macrophages, and decreased plaque inflammation, endothelial activation, and apoptosis, when compared to control. Mdivi-1 treatment of human THP-1 macrophages shifted polarization from a pro-inflammatory M1-like to an anti-inflammatory M2-like phenotype, reduced monocyte chemotaxis and migration to CCL2 and macrophage colony stimulating factor (M-CSF) and decreased secretion of pro-inflammatory mediators. Finally, treatment of pro-inflammatory M1-type-macrophages with Mdivi-1 metabolically reprogrammed them to an anti-inflammatory M2-like phenotype by inhibiting oxidative phosphorylation and attenuating the increase in succinate levels and correcting the decreased levels of arginine and citrulline. CONCLUSIONS We report that treatment with Mdivi-1 inhibits post-vascular injury neointimal hyperplasia by metabolic reprogramming macrophages towards an anti-inflammatory phenotype thereby highlighting the therapeutic potential of Mdivi-1 for preventing neointimal hyperplasia and restenosis following angioplasty and stenting in CAD and PAD patients.
Collapse
Affiliation(s)
- Gustavo E Crespo-Avilan
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Sauri Hernandez-Resendiz
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Chrishan J Ramachandra
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Victor Ungureanu
- National Institute of Pathology, "Victor Babes", Bucharest, Romania
| | - Ying-Hsi Lin
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Shengjie Lu
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Munich Heart Alliance, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Klaus T Preissner
- Department of Biochemistry, Medical Faculty, Justus Liebig-University, Giessen, Germany; Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Elisa A Liehn
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; National Institute of Pathology, "Victor Babes", Bucharest, Romania; Institute for Molecular Medicine, University of South Denmark, Odense, Denmark.
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, London, WC1E 6BT, UK; Yong Loo Lin School of Medicine, National University Singapore, Singapore.
| |
Collapse
|
7
|
Li C, Hendrikse NW, Mai M, Farooqui MA, Argall-Knapp Z, Kim JS, Wheat EA, Juang T. Microliter whole blood neutrophil assay preserving physiological lifespan and functional heterogeneity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.28.23294744. [PMID: 37693613 PMCID: PMC10491351 DOI: 10.1101/2023.08.28.23294744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophil inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability. Here we present a method - named micro-Blood - that enables functional neutrophil assays using a microliter of unprocessed whole blood. micro-Blood allows multiple phenotypic readouts of neutrophil function (including cell/nucleus morphology, motility, recruitment, and pathogen control). In micro-Blood, neutrophils show sustained migration and limited non-specific activation kinetics (<0.1% non-specific activation) over 3-6 days. In contrast, neutrophils isolated using traditional methods show increased and divergent activation kinetics (10-70% non-specific activation) in only 3 h. Finally, micro-Blood allows the capture and quantitative comparison of distinct neutrophil functional heterogeneity between healthy donors and cancer patients in response to microbial stimuli with the preserved physiological lifespan over 6 days.
Collapse
|
8
|
Rodríguez-Fernández JL, Criado-García O. A meta-analysis indicates that the regulation of cell motility is a non-intrinsic function of chemoattractant receptors that is governed independently of directional sensing. Front Immunol 2022; 13:1001086. [PMID: 36341452 PMCID: PMC9630654 DOI: 10.3389/fimmu.2022.1001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Chemoattraction, defined as the migration of a cell toward a source of a chemical gradient, is controlled by chemoattractant receptors. Chemoattraction involves two basic activities, namely, directional sensing, a molecular mechanism that detects the direction of a source of chemoattractant, and actin-based motility, which allows the migration of a cell towards it. Current models assume first, that chemoattractant receptors govern both directional sensing and motility (most commonly inducing an increase in the migratory speed of the cells, i.e. chemokinesis), and, second, that the signaling pathways controlling both activities are intertwined. We performed a meta-analysis to reassess these two points. From this study emerge two main findings. First, although many chemoattractant receptors govern directional sensing, there are also receptors that do not regulate cell motility, suggesting that is the ability to control directional sensing, not motility, that best defines a chemoattractant receptor. Second, multiple experimental data suggest that receptor-controlled directional sensing and motility can be controlled independently. We hypothesize that this independence may be based on the existence of separated signalling modules that selectively govern directional sensing and motility in chemotactic cells. Together, the information gathered can be useful to update current models representing the signalling from chemoattractant receptors. The new models may facilitate the development of strategies for a more effective pharmacological modulation of chemoattractant receptor-controlled chemoattraction in health and disease.
Collapse
|
9
|
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension. Cells 2021; 10:cells10071648. [PMID: 34209333 PMCID: PMC8303917 DOI: 10.3390/cells10071648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.
Collapse
|
10
|
Suwankitwat N, Libby S, Liggitt HD, Avalos A, Ruddell A, Rosch JW, Park H, Iritani BM. The actin-regulatory protein Hem-1 is essential for alveolar macrophage development. J Exp Med 2021; 218:211806. [PMID: 33600594 PMCID: PMC7894047 DOI: 10.1084/jem.20200472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 01/27/2023] Open
Abstract
Hematopoietic protein-1 (Hem-1) is a hematopoietic cell–specific actin-regulatory protein. Loss-of-function (LOF) variants in the NCKAP1L gene encoding Hem-1 have recently been found to result in primary immunodeficiency disease (PID) in humans, characterized by recurring respiratory infections, asthma, and high mortality. However, the mechanisms of how Hem-1 variants result in PID are not known. In this study, we generated constitutive and myeloid cell–specific Nckap1l-KO mice to dissect the importance of Hem-1 in lung immunity. We found that Hem-1–deficient mice accumulated excessive surfactant and cell debris in airways (pulmonary alveolar proteinosis) due to impaired development of alveolar macrophages (AMs) and reduced expression of the AM differentiation factor Pparg. Residual Hem-1–deficient AMs shifted to a proinflammatory phenotype, and Hem-1–deficient neutrophils and monocytes failed to migrate normally. Myeloid cell–specific Hem-1–deficient mice exhibited increased morbidity following influenza A virus or Streptococcus pneumoniae challenge. These results provide potential mechanisms for how LOF variants in Hem-1 result in recurring respiratory diseases.
Collapse
Affiliation(s)
| | - Stephen Libby
- Department of Microbiology, University of Washington, Seattle, WA
| | - H Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Alan Avalos
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Alanna Ruddell
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN
| | - Heon Park
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Brian M Iritani
- Department of Comparative Medicine, University of Washington, Seattle, WA
| |
Collapse
|
11
|
Li L, Song J, Chuquisana O, Hannocks MJ, Loismann S, Vogl T, Roth J, Hallmann R, Sorokin L. Endothelial Basement Membrane Laminins as an Environmental Cue in Monocyte Differentiation to Macrophages. Front Immunol 2020; 11:584229. [PMID: 33193400 PMCID: PMC7662115 DOI: 10.3389/fimmu.2020.584229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 12/01/2022] Open
Abstract
Monocyte differentiation to macrophages is triggered by migration across the endothelial barrier, which is constituted by both endothelial cells and their underlying basement membrane. We address here the role of the endothelial basement membrane laminins (laminins 411 and 511) in this monocyte to macrophage switch. Chimeric mice carrying CX3CR1-GFP bone marrow were employed to track CCL2-induced monocyte extravasation in a cremaster muscle model using intravital microscopy, revealing faster extravasation in mice lacking endothelial laminin 511 (Tek-cre::Lama5−/−) and slower extravasation in mice lacking laminin 411 (Lama4−/−). CX3CR1-GFPlow extravasating monocytes were found to have a higher motility at laminin 511 low sites and to preferentially exit vessels at these sites. However, in vitro experiments reveal that this is not due to effects of laminin 511 on monocyte migration mode nor on the tightness of the endothelial barrier. Rather, using an intestinal macrophage replenishment model and in vitro differentiation studies, we demonstrate that laminin 511, together with the attached endothelium, promote monocyte differentiation to macrophages. Macrophage differentiation is associated with a change in integrin profile, permitting differentiating macrophages to distinguish between laminin 511 high and low areas and to preferentially migrate across laminin 511 low sites. These studies highlight the endothelial basement membrane as a critical site for monocyte differentiation to macrophages, which may be relevant to the differentiation of other cells at vascular niches.
Collapse
Affiliation(s)
- Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Omar Chuquisana
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Sophie Loismann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Thomas Vogl
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany.,Institute of Immunology, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany.,Institute of Immunology, University of Muenster, Muenster, Germany
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| |
Collapse
|
12
|
Heaster TM, Humayun M, Yu J, Beebe DJ, Skala MC. Autofluorescence Imaging of 3D Tumor-Macrophage Microscale Cultures Resolves Spatial and Temporal Dynamics of Macrophage Metabolism. Cancer Res 2020; 80:5408-5423. [PMID: 33093167 DOI: 10.1158/0008-5472.can-20-0831] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/17/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Macrophages within the tumor microenvironment (TME) exhibit a spectrum of protumor and antitumor functions, yet it is unclear how the TME regulates this macrophage heterogeneity. Standard methods to measure macrophage heterogeneity require destructive processing, limiting spatiotemporal studies of function within the live, intact 3D TME. Here, we demonstrate two-photon autofluorescence imaging of NAD(P)H and FAD to nondestructively resolve spatiotemporal metabolic heterogeneity of individual macrophages within 3D microscale TME models. Fluorescence lifetimes and intensities of NAD(P)H and FAD were acquired at 24, 48, and 72 hours poststimulation for mouse macrophages (RAW264.7) stimulated with IFNγ or IL4 plus IL13 in 2D culture, confirming that autofluorescence measurements capture known metabolic phenotypes. To quantify metabolic dynamics of macrophages within the TME, mouse macrophages or human monocytes (RAW264.7 or THP-1) were cultured alone or with breast cancer cells (mouse polyoma-middle T virus or primary human IDC) in 3D microfluidic platforms. Human monocytes and mouse macrophages in tumor cocultures exhibited significantly different FAD mean lifetimes and greater migration than monocultures at 24, 48, and 72 hours postseeding. In cocultures with primary human cancer cells, actively migrating monocyte-derived macrophages had greater redox ratios [NAD(P)H/FAD intensity] compared with passively migrating monocytes at 24 and 48 hours postseeding, reflecting metabolic heterogeneity in this subpopulation of monocytes. Genetic analyses further confirmed this metabolic heterogeneity. These results establish label-free autofluorescence imaging to quantify dynamic metabolism, polarization, and migration of macrophages at single-cell resolution within 3D microscale models. This combined culture and imaging system provides unique insights into spatiotemporal tumor-immune cross-talk within the 3D TME. SIGNIFICANCE: Label-free metabolic imaging and microscale culture technologies enable monitoring of single-cell macrophage metabolism, migration, and function in the 3D tumor microenvironment.
Collapse
Affiliation(s)
- Tiffany M Heaster
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin.,Morgridge Institute for Research, Madison, Wisconsin
| | - Mouhita Humayun
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin
| | - Jiaquan Yu
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin.,Massachusetts Institute of Technology Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, Wisconsin
| | - Melissa C Skala
- Department of Biomedical Engineering, University of Wisconsin- Madison, Madison, Wisconsin. .,Morgridge Institute for Research, Madison, Wisconsin.,The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
13
|
Boudhraa Z, Carmona E, Provencher D, Mes-Masson AM. Ran GTPase: A Key Player in Tumor Progression and Metastasis. Front Cell Dev Biol 2020; 8:345. [PMID: 32528950 PMCID: PMC7264121 DOI: 10.3389/fcell.2020.00345] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Ran (Ras-related nuclear protein) GTPase is a member of the Ras superfamily. Like all the GTPases, Ran cycles between an active (GTP-bound) and inactive (GDP-bound) state. However, Ran lacks the CAAX motif at its C-terminus, a feature of other small GTPases that ensures a plasma membrane localization, and largely traffics between the nucleus and the cytoplasm. Ran regulates nucleo-cytoplasmic transport of molecules through the nuclear pore complex and controls cell cycle progression through the regulation of microtubule polymerization and mitotic spindle formation. The disruption of Ran expression has been linked to cancer at different levels - from cancer initiation to metastasis. In the present review, we discuss the contribution of Ran in the acquisition of three hallmarks of cancer, namely, proliferative signaling, resistance to apoptosis, and invasion/metastasis, and highlight its prognostic value in cancer patients. In addition, we discuss the use of this GTPase as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Zied Boudhraa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Euridice Carmona
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada
| | - Diane Provencher
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Division of Gynecologic Oncology, Université de Montréal, Montreal, QC, Canada
| | - Anne-Marie Mes-Masson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Institut du Cancer de Montréal (ICM), Montreal, QC, Canada.,Department of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
14
|
van den Bos E, Ambrosy B, Horsthemke M, Walbaum S, Bachg AC, Wettschureck N, Innamorati G, Wilkie TM, Hanley PJ. Knockout mouse models reveal the contributions of G protein subunits to complement C5a receptor-mediated chemotaxis. J Biol Chem 2020; 295:7726-7742. [PMID: 32332099 DOI: 10.1074/jbc.ra119.011984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/22/2020] [Indexed: 01/20/2023] Open
Abstract
G protein-coupled receptor signaling is required for the navigation of immune cells along chemoattractant gradients. However, chemoattractant receptors may couple to more than one type of heterotrimeric G protein, each of which consists of a Gα, Gβ, and Gγ subunit, making it difficult to delineate the critical signaling pathways. Here, we used knockout mouse models and time-lapse microscopy to elucidate Gα and Gβ subunits contributing to complement C5a receptor-mediated chemotaxis. Complement C5a-mediated chemokinesis and chemotaxis were almost completely abolished in macrophages lacking Gnai2 (encoding Gαi2), consistent with a reduced leukocyte recruitment previously observed in Gnai2 -/- mice, whereas cells lacking Gnai3 (Gαi3) exhibited only a slight decrease in cell velocity. Surprisingly, C5a-induced Ca2+ transients and lamellipodial membrane spreading were persistent in Gnai2 -/- macrophages. Macrophages lacking both Gnaq (Gαq) and Gna11 (Gα11) or both Gna12 (Gα12) and Gna13 (Gα13) had essentially normal chemotaxis, Ca2+ signaling, and cell spreading, except Gna12/Gna13-deficient macrophages had increased cell velocity and elongated trailing ends. Moreover, Gnaq/Gna11-deficient cells did not respond to purinergic receptor P2Y2 stimulation. Genetic deletion of Gna15 (Gα15) virtually abolished C5a-induced Ca2+ transients, but chemotaxis and cell spreading were preserved. Homozygous Gnb1 (Gβ1) deletion was lethal, but mice lacking Gnb2 (Gβ2) were viable. Gnb2 -/- macrophages exhibited robust Ca2+ transients and cell spreading, albeit decreased cell velocity and impaired chemotaxis. In summary, complement C5a-mediated chemotaxis requires Gαi2 and Gβ2, but not Ca2+ signaling, and membrane protrusive activity is promoted by G proteins that deplete phosphatidylinositol 4,5-bisphosphate.
Collapse
Affiliation(s)
- Esther van den Bos
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Benjamin Ambrosy
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Markus Horsthemke
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Stefan Walbaum
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Anne C Bachg
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Giulio Innamorati
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Thomas M Wilkie
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter J Hanley
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
15
|
Margraf A, Ley K, Zarbock A. Neutrophil Recruitment: From Model Systems to Tissue-Specific Patterns. Trends Immunol 2019; 40:613-634. [PMID: 31175062 PMCID: PMC6745447 DOI: 10.1016/j.it.2019.04.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
Neutrophil recruitment is not only vital for host defense, but also relevant in pathological inflammatory reactions, such as sepsis. Model systems have been established to examine different steps of the leukocyte recruitment cascade in vivo and in vitro under inflammatory conditions. Recently, tissue-specific recruitment patterns have come into focus, requiring modification of formerly generalized assumptions. Here, we summarize existing models of neutrophil recruitment and highlight recent discoveries in organ-specific recruitment patterns. New techniques show that previously stated assumptions of integrin activation and tissue invasion may need revision. Similarly, neutrophil recruitment to specific organs can rely on different organ properties, adhesion molecules, and chemokines. To advance our understanding of neutrophil recruitment, organ-specific intravital microscopy methods are needed.
Collapse
Affiliation(s)
- Andreas Margraf
- Department of Anesthesiology, Intensive Care Therapy and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care Therapy and Pain Medicine, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
16
|
Henderson BW, Greathouse KM, Ramdas R, Walker CK, Rao TC, Bach SV, Curtis KA, Day JJ, Mattheyses AL, Herskowitz JH. Pharmacologic inhibition of LIMK1 provides dendritic spine resilience against β-amyloid. Sci Signal 2019; 12:eaaw9318. [PMID: 31239325 PMCID: PMC7088434 DOI: 10.1126/scisignal.aaw9318] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) therapies predominantly focus on β-amyloid (Aβ), but Aβ effects may be maximal before clinical symptoms appear. Downstream of Aβ, dendritic spine loss correlates most strongly with cognitive decline in AD. Rho-associated kinases (ROCK1 and ROCK2) regulate the actin cytoskeleton, and ROCK1 and ROCK2 protein abundances are increased in early AD. Here, we found that the increased abundance of ROCK1 in cultured primary rat hippocampal neurons reduced dendritic spine length through a myosin-based pathway, whereas the increased abundance of ROCK2 induced spine loss through the serine and threonine kinase LIMK1. Aβ42 oligomers can activate ROCKs. Here, using static imaging studies combined with multielectrode array analyses, we found that the ROCK2-LIMK1 pathway mediated Aβ42-induced spine degeneration and neuronal hyperexcitability. Live-cell microscopy revealed that pharmacologic inhibition of LIMK1 rendered dendritic spines resilient to Aβ42 oligomers. Treatment of hAPP mice with a LIMK1 inhibitor rescued Aβ-induced hippocampal spine loss and morphologic aberrations. Our data suggest that therapeutically targeting LIMK1 may provide dendritic spine resilience to Aβ and therefore may benefit cognitively normal patients that are at high risk for developing dementia.
Collapse
Affiliation(s)
- Benjamin W Henderson
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Kelsey M Greathouse
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Raksha Ramdas
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Courtney K Walker
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Tejeshwar C Rao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Svitlana V Bach
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Kendall A Curtis
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Alexa L Mattheyses
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA.
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Ran promotes membrane targeting and stabilization of RhoA to orchestrate ovarian cancer cell invasion. Nat Commun 2019; 10:2666. [PMID: 31209254 PMCID: PMC6573066 DOI: 10.1038/s41467-019-10570-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/15/2019] [Indexed: 12/22/2022] Open
Abstract
Ran is a nucleocytoplasmic shuttle protein that is involved in cell cycle regulation, nuclear-cytoplasmic transport, and cell transformation. Ran plays an important role in cancer cell survival and cancer progression. Here, we show that, in addition to the nucleocytoplasmic localization of Ran, this GTPase is specifically associated with the plasma membrane/ruffles of ovarian cancer cells. Ran depletion has a drastic effect on RhoA stability and inhibits RhoA localization to the plasma membrane/ruffles and RhoA activity. We further demonstrate that the DEDDDL domain of Ran is required for the interaction with serine 188 of RhoA, which prevents RhoA degradation by the proteasome pathway. Moreover, the knockdown of Ran leads to a reduction of ovarian cancer cell invasion by impairing RhoA signalling. Our findings provide advanced insights into the mode of action of the Ran-RhoA signalling axis and may represent a potential therapeutic avenue for drug development to prevent ovarian tumour metastasis. Ran, a nucleus-cytoplasm shuttle protein, is implicated in cancer development and survival. Here, the authors show that Ran binds RhoA to impair its degradation and allow its localisation to the plasma membrane of ovarian cancer cells for tumour invasion.
Collapse
|
18
|
Barbier L, Sáez PJ, Attia R, Lennon-Duménil AM, Lavi I, Piel M, Vargas P. Myosin II Activity Is Selectively Needed for Migration in Highly Confined Microenvironments in Mature Dendritic Cells. Front Immunol 2019; 10:747. [PMID: 31031752 PMCID: PMC6474329 DOI: 10.3389/fimmu.2019.00747] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/19/2019] [Indexed: 01/04/2023] Open
Abstract
Upon infection, mature dendritic cells (mDCs) migrate from peripheral tissue to lymph nodes (LNs) to activate T lymphocytes and initiate the adaptive immune response. This fast and tightly regulated process is tuned by different microenvironmental factors, such as the physical properties of the tissue. Mechanistically, mDCs migration mostly relies on acto-myosin flow and contractility that depend on non-muscular Myosin IIA (MyoII) activity. However, the specific contribution of this molecular motor for mDCs navigation in complex microenvironments has yet to be fully established. Here, we identified a specific role of MyoII activity in the regulation of mDCs migration in highly confined microenvironments. Using microfluidic systems, we observed that during mDCs chemotaxis in 3D collagen gels under defined CCL21 gradients, MyoII activity was required to sustain their fast speed but not to orientate them toward the chemokine. Indeed, despite the fact that mDCs speed declined, these cells still migrated through the 3D gels, indicating that this molecular motor has a discrete function during their motility in this irregular microenvironment. Consistently, using microchannels of different sizes, we found that MyoII activity was essential to maintain fast cell speed specifically under strong confinement. Analysis of cell motility through micrometric holes further demonstrated that cell contractility facilitated mDCs passage only over very small gaps. Altogether, this work highlights that high contractility acts as an adaptation mechanism exhibited by mDCs to optimize their motility in restricted landscapes. Hence, MyoII activity ultimately facilitates their navigation in highly confined areas of structurally irregular tissues, contributing to the fine-tuning of their homing to LNs to initiate adaptive immune responses.
Collapse
Affiliation(s)
- Lucie Barbier
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France.,Université Paris Sud, Université Paris-Saclay, Orsay, France
| | - Pablo J Sáez
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Rafaele Attia
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | | | - Ido Lavi
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Institut Pierre-Gilles de Gennes, PSL Research University, Paris, France
| |
Collapse
|
19
|
Soni UK, Chadchan SB, Kumar V, Ubba V, Khan MTA, Vinod BSV, Konwar R, Bora HK, Rath SK, Sharma S, Jha RK. A high level of TGF-B1 promotes endometriosis development via cell migration, adhesiveness, colonization, and invasiveness†. Biol Reprod 2018; 100:917-938. [DOI: 10.1093/biolre/ioy242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/29/2017] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Upendra Kumar Soni
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Vijay Kumar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vaibhave Ubba
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | - Rituraj Konwar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Himangsu Kousik Bora
- Animal Laboratory Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Srikanta Kumar Rath
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sharad Sharma
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajesh Kumar Jha
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
20
|
Horsthemke M, Wilden J, Bachg AC, Hanley PJ. Time-lapse 3D Imaging of Phagocytosis by Mouse Macrophages. J Vis Exp 2018. [PMID: 30394377 DOI: 10.3791/57566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Phagocytosis plays a key role in host defense, as well as in tissue development and maintenance, and involves rapid, receptor-mediated rearrangements of the actin cytoskeleton to capture, envelop and engulf large particles. Although phagocytic receptors, downstream signaling pathways, and effectors, such as Rho GTPases, have been identified, the dynamic cytoskeletal remodeling of specific receptor-mediated phagocytic events remain unclear. Four decades ago, two distinct mechanisms of phagocytosis, exemplified by Fcγ receptor (FcγR)- and complement receptor (CR)-mediated phagocytosis, were identified using scanning electron microscopy. Binding of immunoglobulin G (IgG)-opsonized particles to FcγRs triggers the protrusion of thin membrane extensions, which initially form a so-called phagocytic cup around the particle before it becomes completely enclosed and retracted into the cell. In contrast, complement opsonized particles appear to sink into the phagocyte following binding to complement receptors. These two modes of phagocytosis, phagocytic cup formation and sinking in, have become well established in the literature. However, the distinctions between the two modes have become blurred by reports that complement receptor-mediated phagocytosis may induce various membrane protrusions. With the availability of high resolution imaging techniques, phagocytosis assays are required that allow real-time 3D (three dimensional) visualization of how specific phagocytic receptors mediate the uptake of individual particles. More commonly used approaches for the study of phagocytosis, such as end-point assays, miss the opportunity to understand what is happening at the interface of particles and phagocytes. Here we describe phagocytic assays, using time-lapse spinning disk confocal microscopy, that allow 3D imaging of single phagocytic events. In addition, we describe assays to unambiguously image Fcγ receptor- or complement receptor-mediated phagocytosis.
Collapse
|
21
|
Pakshir P, Hinz B. The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol 2018; 68-69:81-93. [DOI: 10.1016/j.matbio.2018.01.019] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
|
22
|
Abstract
( S)-Blebbistatin, a chiral tetrahydropyrroloquinolinone, is a widely used and well-characterized ATPase inhibitor selective for myosin II. The central role of myosin II in many normal and pathological biological processes has been revealed with the aid of this small molecule. The first part of this manuscript provides a summary of myosin II and ( S)-blebbistatin literature from a medicinal chemist's perspective. The second part of this perspective deals with the physicochemical deficiencies that trouble the use of ( S)-blebbistatin in advanced biological settings: low potency and solubility, fluorescence interference, (photo)toxicity, and stability issues. A large toolbox of analogues has been developed in which particular shortcomings have been addressed. This perspective provides a necessary overview of these developments and presents guidelines for selecting the best available analogue for a given application. As the unmet need for high-potency analogues remains, we also propose starting points for medicinal chemists in search of nanomolar myosin II inhibitors.
Collapse
|
23
|
Nano-scale microfluidics to study 3D chemotaxis at the single cell level. PLoS One 2018; 13:e0198330. [PMID: 29879160 PMCID: PMC5991685 DOI: 10.1371/journal.pone.0198330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/17/2018] [Indexed: 11/19/2022] Open
Abstract
Directed migration of cells relies on their ability to sense directional guidance cues and to interact with pericellular structures in order to transduce contractile cytoskeletal- into mechanical forces. These biomechanical processes depend highly on microenvironmental factors such as exposure to 2D surfaces or 3D matrices. In vivo, the majority of cells are exposed to 3D environments. Data on 3D cell migration are mostly derived from intravital microscopy or collagen-based in vitro assays. Both approaches offer only limited controllability of experimental conditions. Here, we developed an automated microfluidic system that allows positioning of cells in 3D microenvironments containing highly controlled diffusion-based chemokine gradients. Tracking migration in such gradients was feasible in real time at the single cell level. Moreover, the setup allowed on-chip immunocytochemistry and thus linking of functional with phenotypical properties in individual cells. Spatially defined retrieval of cells from the device allows down-stream off-chip analysis. Using dendritic cells as a model, our setup specifically allowed us for the first time to quantitate key migration characteristics of cells exposed to identical gradients of the chemokine CCL19 yet placed on 2D vs in 3D environments. Migration properties between 2D and 3D migration were distinct. Morphological features of cells migrating in an in vitro 3D environment were similar to those of cells migrating in animal tissues, but different from cells migrating on a surface. Our system thus offers a highly controllable in vitro-mimic of a 3D environment that cells traffic in vivo.
Collapse
|
24
|
Boussommier-Calleja A, Atiyas Y, Haase K, Headley M, Lewis C, Kamm RD. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 2018; 198:180-193. [PMID: 29548546 DOI: 10.1016/j.biomaterials.2018.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/17/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Recent developments in cancer immunotherapy have shown exciting therapeutic promise for metastatic patients. While most therapies target T cells, other immune cells, such as monocytes, hold great promise for therapeutic intervention. In our study, we provide primary evidence of direct engagement between human monocytes and tumor cells in a 3D vascularized microfluidic model. We first characterize the novel application of our model to investigate and visualize at high resolution the evolution of monocytes as they migrate from the intravascular to the extravascular micro-environment. We also demonstrate their differentiation into macrophages in our all-human model. Our model replicates physiological differences between different monocyte subsets. In particular, we report that inflammatory, but not patrolling, monocytes rely on actomyosin based motility. Finally, we exploit this platform to study the effect of monocytes, at different stages of their life cycle, on cancer cell extravasation. Our data demonstrates that monocytes can directly reduce cancer cell extravasation in a non-contact dependent manner. In contrast, we see little effect of monocytes on cancer cell extravasation once monocytes transmigrate through the vasculature and are macrophage-like. Taken together, our study brings novel insight into the role of monocytes in cancer cell extravasation, which is an important step in the metastatic cascade. These findings establish our microfluidic platform as a powerful tool to investigate the characteristics and function of monocytes and monocyte-derived macrophages in normal and diseased states. We propose that monocyte-cancer cell interactions could be targeted to potentiate the anti-metastatic effect we observe in vitro, possibly expanding the milieu of immunotherapies available to tame metastasis.
Collapse
Affiliation(s)
| | - Y Atiyas
- Biological Engineering, Massachussetts Institute of Technology, USA
| | - K Haase
- Mechanical Engineering, Massachussetts Institute of Technology, USA
| | - M Headley
- Department of Pathology, University of California, San Francisco, CA, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - C Lewis
- Department of Oncology & Metabolism, University of Sheffield, UK
| | - R D Kamm
- Mechanical Engineering, Massachussetts Institute of Technology, USA; Biological Engineering, Massachussetts Institute of Technology, USA.
| |
Collapse
|
25
|
Fröhlich E. Toxicity of orally inhaled drug formulations at the alveolar barrier: parameters for initial biological screening. Drug Deliv 2017; 24:891-905. [PMID: 28574335 PMCID: PMC8241192 DOI: 10.1080/10717544.2017.1333172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oral delivery is the most common mode of systemic drug application. Inhalation is mainly used for local therapy of lung diseases but may also be a promising route for systemic delivery of drugs that have poor oral bioavailability. The thin alveolar barrier enables fast and efficient uptake of many molecules and could deliver small molecules and proteins, which are susceptible to degradation and show poor absorption by oral application. The low rate of biotransformation and proteolytic degradation increases bioavailability of drugs but accumulation of not absorbed material may impair normal lung function. This limitation is more relevant for compounds that should be systematically active because higher doses have to be applied to the lung. The review describes processes that determine absorption of orally inhaled formulations, namely dissolution in the lung lining fluid and uptake and degradation by alveolar epithelial cells and macrophages. Dissolution testing in simulated lung fluid, screening for cytotoxicity and pro-inflammatory action in respiratory cells and study of macrophage morphology, and phagocytosis can help to identify adverse effects of pulmonary formulations.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- a Center for Medical Research, Medical University of Graz , Graz , Austria.,b Research Center Pharmaceutical Engineering GmbH , Graz , Austria
| |
Collapse
|
26
|
Verhasselt S, Roman BI, Bracke ME, Stevens CV. Improved synthesis and comparative analysis of the tool properties of new and existing D-ring modified (S)-blebbistatin analogs. Eur J Med Chem 2017; 136:85-103. [PMID: 28486210 DOI: 10.1016/j.ejmech.2017.04.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
(S)-Blebbistatin is a widely used research tool to study myosin II, an important regulator of many motility based diseases. Its potency is too low to be of clinical relevance, but identification of analogs with enhanced potency could deliver leads for targeted pharmacotherapeutics. This, however, requires a profound insight into the structure-activity relationship of the (S)-blebbistatin scaffold. Therefore, new D-ring modified (S)-blebbistatin derivatives were prepared to extend the existing small library of analogs. These molecules were obtained via an improved synthesis pathway and their myosin II inhibitory properties were evaluated in vitro. Finally, all new and known D-ring modified (S)-blebbistatin analogs were compared and the most potent ones underwent a screening of their physicochemical properties.
Collapse
Affiliation(s)
- Sigrid Verhasselt
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Campus Coupure, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Bart I Roman
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Campus Coupure, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Marc E Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Christian V Stevens
- SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Campus Coupure, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
27
|
Beerling E, Oosterom I, Voest E, Lolkema M, van Rheenen J. Intravital characterization of tumor cell migration in pancreatic cancer. INTRAVITAL 2016; 5:e1261773. [PMID: 28243522 PMCID: PMC5226006 DOI: 10.1080/21659087.2016.1261773] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 01/04/2023]
Abstract
Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior of primary tumor cells of a genetically engineered pancreatic cancer mouse model and found that pancreatic tumor cells migrate with a mesenchymal morphology as single individual cells or collectively as a stream of non-cohesive single motile cells. These findings may improve our ability to conceive treatments that block metastatic behavior.
Collapse
Affiliation(s)
- Evelyne Beerling
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht , Utrecht, the Netherlands
| | - Ilse Oosterom
- University Medical Center Utrecht , Utrecht, the Netherlands
| | - Emile Voest
- Cancer Genomics Netherlands, The Netherlands Cancer Institute , Amsterdam, the Netherlands
| | - Martijn Lolkema
- University Medical Center Utrecht , Utrecht, the Netherlands
| | - Jacco van Rheenen
- Cancer Genomics Netherlands, Hubrecht Institute-KNAW & University Medical Center Utrecht , Utrecht, the Netherlands
| |
Collapse
|