1
|
Ommati MM, Zuo Q, Sabouri S, Retana-Marquez S, Nategh Ahmadi H, Gholami A, Eftekhari A, Shojaei S, Lijuan L, Heidari R, Wang HW. Fluoride-Induced Autophagy and Apoptosis in the Mouse Ovary: Genomic Insights into IL-17 Signaling and Gut Microbiota Dysbiosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2138-2155. [PMID: 39791957 DOI: 10.1021/acs.jafc.4c10165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Chronic fluoride (F) exposure is linked to gonadotoxicity in females, yet the underlying molecular mechanisms remain unclear. This study investigated fluoride-induced reprotoxicity using advanced genomic profiling. RNA-seq analysis identified significant activation of autophagy, apoptosis, and IL-17 signaling pathways in fluoride-exposed female mice. To explore these mechanisms, F0 pregnant mice were exposed to deionized water (control) or 100 mg/L sodium fluoride (NaF) during gestation and throughout the F1 generation (n = 16 females/group), covering puberty to weaning and maturity. NaF exposure caused significant reductions in body weight, organ coefficients, and pathological indices, with increased ovarian autophagic vacuoles, mitochondrial injuries, and elevated serum/ovary LPS levels in F1 females. qRT-PCR, fluorescent staining, biochemical assays, and Western blotting confirmed the activation of IL-17 signaling, apoptosis, and autophagy. Moreover, 16S rRNA sequencing revealed gut microbiota dysbiosis in NaF-exposed F1 females, potentially exacerbating ovary injury via serum LPS elevation. The gut dysbiosis could justify deteriorated serum LPS levels and its connection to F-induced ovary injury. These findings provide mechanistic insights into fluoride-induced reprotoxicity, emphasizing the interplay of IL-17 signaling, autophagy, and apoptosis in disrupting cellular homeostasis and suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan,China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Qiyong Zuo
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan,China
| | - Samira Sabouri
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Socorro Retana-Marquez
- Department of Biology of Reproduction, Autonomous Metropolitan University, Iztapalapa, Mexico City 09340, Mexico
| | - Hassan Nategh Ahmadi
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
- College of Animal Science and Veterinary Medicine, Shiraz University, Shiraz 71946-84471, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35040, Turkey
- Engineered Biomaterials Research Center, Department of Life Sciences, Khazar University, Baku AZ1096, Azerbaijan
| | - Sina Shojaei
- Department of Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 14155-6453, Iran
| | - Liu Lijuan
- Gynecology Department of Luoyang Maternal and Child Health Hospital, Luoyang 471000, Henan, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan,China
| |
Collapse
|
2
|
Caneparo C, Carignan L, Lonina E, Goulet SM, Pellerin FA, Chabaud S, Bordeleau F, Bolduc S, Pelletier M. Impact of Endocrine Disruptors on the Genitourinary Tract. J Xenobiot 2024; 14:1849-1888. [PMID: 39728407 DOI: 10.3390/jox14040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Over the last decades, the human species has seen an increase in the incidence of pathologies linked to the genitourinary tract. Observations in animals have allowed us to link these increases, at least in part, to changes in the environment and, in particular, to an increasing presence of endocrine disruptors. These can be physical agents, such as light or heat; natural products, such as phytoestrogens; or chemicals produced by humans. Endocrine disruptors may interfere with the signaling pathways mediated by the endocrine system, particularly those linked to sex hormones. These factors and their general effects are presented before focusing on the male and female genitourinary tracts by describing their anatomy, development, and pathologies, including bladder and prostate cancer.
Collapse
Affiliation(s)
- Christophe Caneparo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals, University of Geneva, CH-1205 Geneva, Switzerland
| | - Laurence Carignan
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Elena Lonina
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Felix-Antoine Pellerin
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Stéphane Chabaud
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - François Bordeleau
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Surgery, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Foyle KL, Robertson SA. Gamma delta (γδ) T cells in the female reproductive tract: active participants or indifferent bystanders in reproductive success? DISCOVERY IMMUNOLOGY 2024; 3:kyae004. [PMID: 38863792 PMCID: PMC11165432 DOI: 10.1093/discim/kyae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
The female reproductive tract accommodates and balances the unique immunological challenges of protection from sexually transmitted pathogens and tolerance of the fetus and placenta in pregnancy. Leukocytes in the female reproductive tract actively engage in extensive maternal adaptations that are imperative for embryo implantation, placental development, and fetal growth support. γδ T cells are abundant at many mucosal sites in the body, where they provide protection against pathogens and cancer, and have roles in tissue renewal and homeostasis. In this review, we summarize studies in humans and rodents showing that γδ T cells are prevalent in the female reproductive tract and fluctuate in response to hormone changes across the reproductive cycle. Emerging evidence points to a link between changes in their abundance and molecular repertoire in the uterus and pregnancy disorders including recurrent miscarriage and preterm birth. However, defining the precise functional role of female reproductive tract γδ T cells and understanding their physiological significance in reproduction and pregnancy have remained elusive. Here, we critically analyze whether reproductive tract γδ T cells could be active participants in reproductive events-or whether their principal function is immune defense, in which case they may compromise pregnancy success unless adequately regulated.
Collapse
Affiliation(s)
- Kerrie L Foyle
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
4
|
Shen Q, Wu X, Chen J, He C, Wang Z, Zhou B, Zhang H. Immune Regulation of Seminal Plasma on the Endometrial Microenvironment: Physiological and Pathological Conditions. Int J Mol Sci 2023; 24:14639. [PMID: 37834087 PMCID: PMC10572377 DOI: 10.3390/ijms241914639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Seminal plasma (SP) accounts for more than 90% of semen volume. It induces inflammation, regulates immune tolerance, and facilitates embryonic development and implantation in the female reproductive tract. In the physiological state, SP promotes endometrial decidualization and causes changes in immune cells such as macrophages, natural killer cells, regulatory T cells, and dendritic cells. This leads to the secretion of cytokines and chemokines and also results in the alteration of miRNA profiles and the expression of genes related to endometrial tolerance and angiogenesis. Together, these changes modulate the endometrial immune microenvironment and contribute to implantation and pregnancy. However, in pathological situations, abnormal alterations in SP due to advanced age or poor diet in men can interfere with a woman's immune adaptation to pregnancy, negatively affecting embryo implantation and even the health of the offspring. Uterine pathologies such as endometriosis and endometritis can cause the endometrium to respond negatively to SP, which can further contribute to pathological progress and interfere with conception. The research on the mechanism of SP in the endometrium is conducive to the development of new targets for intervention to improve reproductive outcomes and may also provide new ideas for semen-assisted treatment of clinical infertility.
Collapse
Affiliation(s)
- Qiuzi Shen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Xiaoyu Wu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Chao He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Zehao Wang
- School of Management, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Boyan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.S.); (X.W.); (J.C.); (C.H.)
| |
Collapse
|
5
|
Fernandez-Fuertes B. Review: The role of male reproductive tract secretions in ruminant fertility. Animal 2023; 17 Suppl 1:100773. [PMID: 37567680 DOI: 10.1016/j.animal.2023.100773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 08/13/2023] Open
Abstract
Male fertility largely depends on the ability to produce sperm that can transmit the paternal information onto the next generation. However, the factors that are critical for sperm function and the subsequent development of healthy offspring are still not completely understood in ruminants. Importantly, sperm function is not completely encoded by germ cell DNA, but rather, depends on sequential acquisition, loss, and modification of elements through interaction with secretions from the testes, epididymides, and accessory glands (collectively termed seminal plasma). In addition, these secretions can play a role in the inheritance of paternal environmental effects by progeny. This is likely achieved directly, by the regulation of sperm epigenetic effectors, and indirectly, by altering the female environment in which the individual develops. This review will provide an overview of the different organs that contribute to seminal plasma in ruminants, and summarise how their secretions shape sperm function and modulate the female reproductive tract. Finally, some consideration will be given to the potential of paternal factors to affect embryo development and offspring health in ruminants.
Collapse
Affiliation(s)
- B Fernandez-Fuertes
- Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Hidalgo AI, Ulloa-Leal C, Gajardo G, López G, Carretta D, Burgos RA, Ratto M. Ovulation Induced by Intrauterine Seminal Plasma Increases Total Protein, PGE2, IL-8, and IL-1β in Uterine Fluid of Llamas ( Lama glama). Animals (Basel) 2023; 13:ani13040554. [PMID: 36830341 PMCID: PMC9951705 DOI: 10.3390/ani13040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The establishment of a state of immunotolerance in the female reproductive tract is important for embryo development, implantation and placentation. Llamas are induced ovulators and more than 98% of pregnancies occur in the left uterine horn. The objective of this study was to determine the uterine immune response of llamas in different stages of the reproductive cycle. Adult llamas (n = 20) were examined daily by transrectal ultrasonography to determine follicular growth and then randomly assigned to four groups: Follicular phase (n = 5); Luteal phase induced by an intramuscular administration of 50 ug of GnRH analogue (n = 5); Luteal phase induced by intrauterine infusion of seminal plasma (n = 5); and Luteal phase induced by mating (n = 5). Uterine fluid was collected separately from both uterine horns by non-surgical flushing to determine the presence of cells, total proteins and concentration of IL-1β, IL-6, IL-8, IFN γ, TNF-α and PGE2. Inflammatory cells were not observed in the uterine fluid and total protein pattern and inflammatory mediators did not differ between the left and the right horn amongst groups. Llamas treated with an intrauterine infusion of seminal plasma showed the highest concentration of total proteins, inflammatory cytokines PGE2, IL-8 and IL-1β in the uterine fluid. In conclusion, seminal plasma is made up of significant numbers of signaling molecules that are able to modify the uterine immune response in llamas.
Collapse
Affiliation(s)
- Alejandra Isabel Hidalgo
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, Institute of Animal Science, Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence:
| | - Cesar Ulloa-Leal
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, Institute of Animal Science, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Gonzalo Gajardo
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, Institute of Animal Science, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Gerardo López
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, Institute of Animal Science, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniella Carretta
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile
- Laboratory of Immunometabolism, Faculty of Veterinary Sciences, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Marcelo Ratto
- Laboratory of Animal Reproduction, Faculty of Veterinary Sciences, Institute of Animal Science, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
7
|
Composition and effects of seminal plasma in the female reproductive tracts on implantation of human embryos. Biomed Pharmacother 2022; 151:113065. [PMID: 35550527 DOI: 10.1016/j.biopha.2022.113065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
The function of seminal plasma involves acting as a transport medium for sperm and as a means of communication between the reproductive tissues of the male and female. It is also a vital factor to prime the reproductive tracts of the female for optimal pregnancy. When the reproductive tract of the female is exposed to seminal plasma, serious alterations take place, enhancing pathogen and debris clearance observed in the uterus throughout mating. It is also capable of supporting embryo growth, promoting the receptivity of the uterus, and establishing tolerance to the semi-allogenic embryo. Moreover, seminal plasma is capable of regulating the functions of several female reproductive organs and providing an ideal condition for effective embryo implantation and pregnancy. It is believed that the health state of the offspring is affected by exposure to seminal plasma. For the treatment of infertility, assisted reproductive technologies have been extensively employed. The application of seminal plasma as a therapeutic approach to enhance the development of embryo competency and rate of implantation, receptivity of endometrium, and establishment of maternal immune tolerance in cycles of ART appears possible. Herein, current knowledge on the composition of seminal plasma and the physiological roles it possesses on various parts of the female reproductive tract are summarized. Moreover, the role of seminal plasma in the development of embryos, implantation, and the following fetal growth and survival have been reviewed in this article.
Collapse
|
8
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
9
|
Extracellular vesicles from seminal plasma improved development of in vitro-fertilized mouse embryos. ZYGOTE 2022; 30:619-624. [PMID: 35730539 DOI: 10.1017/s0967199422000041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In vitro fertilization (IVF) has wide application in human infertility and animal breeding. It is also used for research on reproduction, fertility and development. However, IVF embryos are still inferior to their in vivo counterparts. Some substances in seminal plasma appear to have important roles in embryo development, and during the traditional IVF procedure, the seminal plasma is washed away. In this study, extracellular vesicles (EVs) were concentrated from seminal plasma by ultracentrifugation, visualized using transmission electron microscopy, and particle size distributions and concentrations were determined with a NanoSight particle analyzer. We found particles of various sizes in the seminal plasma, the majority having diameters ranging from 100 to 200 nm and concentrations of 6.07 × 1010 ± 2.91 × 109 particles/ml. Addition of seminal plasma EVs (SP-EVs) to the IVF medium with mouse oocytes and sperm significantly increased the rate of blastocyst formation and the inner cell mass (ICM)/trophectoderm (TE) cell ratio, and reduced the apoptosis of blastocysts. Our findings provide new insights into the role of seminal plasma EVs in mediating embryo development and it suggests that SP-EVs may be used to improve the developmental competence of IVF embryos, which has important significance for assisted reproduction in animals and humans.
Collapse
|
10
|
Semen Modulates Cell Proliferation and Differentiation-Related Transcripts in the Pig Peri-Ovulatory Endometrium. BIOLOGY 2022; 11:biology11040616. [PMID: 35453814 PMCID: PMC9029625 DOI: 10.3390/biology11040616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 01/18/2023]
Abstract
Simple Summary Homeostasis of the uterus after mating is crucial for the subsequent reproductive events. The post-mating inflammatory response is restricted to the uterus, but semen also modulates the expression of other genes involved in regulation along the female reproductive tract, including the oviduct. This study aims to determine if several ejaculate fractions of the pig may modulate cell proliferation and differentiation-related transcripts in different sections of the peri-ovulatory sow reproductive tract. Our data demonstrate that most of the mRNA expression changes of the 144 transcripts tested were induced by mating. Additionally, spermatozoa and seminal plasma also triggered differential expression of the transcripts tested. Finally, our data imply that spermatozoa, seminal plasma components, and the act of mating induce differential mechanisms in the peri-ovulatory female reproductive tract, which are essential for tissue repair. Abstract Uterine homeostasis is maintained after mating by eliminating pathogens, foreign cells, and proteins by a transient inflammation of the uterus. Such inflammation does not occur in the oviductal sperm reservoir (utero-tubal junction, UTJ), colonized by a population of potentially fertile spermatozoa before the inflammatory changes are triggered. Semen entry (spermatozoa and/or seminal plasma) modifies the expression of regulatory genes, including cell proliferation and differentiation-related transcripts. Considering pigs display a fractionated ejaculation, this study aims to determine whether different ejaculate fractions differentially modulate cell proliferation and differentiation-related transcripts in the sow reproductive tract during the peri-ovulatory stage. Using species-specific microarray analyses, the differential expression of 144 cell proliferation and differentiation-related transcripts was studied in specific segments: cervix (Cvx), distal and proximal uterus (DistUt, ProxUt), UTJ, isthmus (Isth), ampulla (Amp), and infundibulum (Inf) of the peri-ovulatory sow reproductive tract in response to semen and/or seminal plasma cervical deposition. Most mRNA expression changes were induced by mating. In addition, while mating upregulates the fibroblast growth factor 1 (FGF1, p-value DistUt = 0.0007; ProxUt = 0.0253) transcript in the endometrium, both its receptor, the fibroblast growth factor receptor 1 (FGFR1, p-value DistUt = 2.14 e−06; ProxUt = 0.0027; UTJ = 0.0458) transcript, and a potentiator of its biological effect, the fibroblast growth factor binding protein 1 (FGFBP1), were downregulated in the endometrium (p-value DistUt = 0.0068; ProxUt = 0.0011) and the UTJ (p-value UTJ = 0.0191). The FGFBP1 was downregulated in the whole oviduct after seminal depositions (p-value Isth = 0.0007; Amp = 0.0007; Inf = 6.87 e−05) and, interestingly, FGFR1 was downregulated in the endometrium in the absence of semen (p-value DistUt = 0.0097; ProxUt = 0.0456). In conclusion, the findings suggest that spermatozoa, seminal components, and the act of mating trigger, besides inflammation, differential mechanisms in the peri-ovulatory female reproductive tract, relevant for tissue repair.
Collapse
|
11
|
Wang D, Jueraitetibaike K, Tang T, Wang Y, Jing J, Xue T, Ma J, Cao S, Lin Y, Li X, Ma R, Chen X, Yao B. Seminal Plasma and Seminal Plasma Exosomes of Aged Male Mice Affect Early Embryo Implantation via Immunomodulation. Front Immunol 2021; 12:723409. [PMID: 34712227 PMCID: PMC8546305 DOI: 10.3389/fimmu.2021.723409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Seminal plasma (SP), particularly SP exosomes (sExos), alters with age and can affect female mouse uterine immune microenvironment. However, the relationship between fertility decline in reproductively older males, and SP and sExos age-related changes, which may compromise the uterine immune microenvironment, remains unclear. The present study demonstrated that the implantation rate of female mice treated with SP from reproductively older male mice (aged-SP group) was lower than that of those treated with SP from younger male mice (young-SP group). RNA-sequencing analysis revealed altered levels of dendritic cell (DC)-related cytokines and chemokines in the uteri of the former group compared with those of the latter group. In vivo and in vitro experiments demonstrated a weaker inhibitory effect of aged SP on DC maturation than of young SP upon stimulation. After isolating and characterizing sExos from young and advanced-age male mice, we discovered that insemination of a subset of the aged-SP group with sExos from young male mice partially recovered the implantation rate decline. Additional in vivo and in vitro experiments revealed that sExos extracted from age male mice exerted a similar effect on DC maturation as SP of aged mice, indicating an age-related sExos inhibitory effect. In conclusion, our study demonstrated that age-related alterations of sExos may be partially responsible for lower implantation rates in the aged-SP group compared with those in the young-SP group, which were mediated by uterine immunomodulation. These findings provide new insights for clinical seminal adjuvant therapy.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Kadiliya Jueraitetibaike
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Ting Tang
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yanbo Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Jun Jing
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Tongmin Xue
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Jinzhao Ma
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Siyuan Cao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Ying Lin
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Xiaoyan Li
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Rujun Ma
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Xi Chen
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Bing Yao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Paktinat S, Esfandyari S, Karamian A, Koochaki A, Asadirad A, Ghaffari Novin M, Mohammadi-Yeganeh S, Salehpour S, Hashemi SM, Nazarian H. Conditioned medium derived from seminal extracellular vesicles-exposed endometrial stromal cells induces inflammatory cytokine secretion by macrophages. Eur J Obstet Gynecol Reprod Biol 2021; 262:174-181. [PMID: 34034196 DOI: 10.1016/j.ejogrb.2021.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/06/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Seminal plasma (SP) contains large numbers of sub-cellular structures called extracellular vesicles (EV) which have been postulated to have immunological functions due to their bioactive contents including proteins and small non-coding RNAs. Although the response of endometrial cells to seminal EV (SEV) is recently being elucidated, the impact of these signaling vesicles on stroma-immune crosstalk is still unknown. Herein, we aimed to investigate the effect of conditioned medium (CM) derived from SEV-exposed endometrial stromal cells (eSC) on cytokine secretion by macrophages. STUDY DESIGN SEV were isolated from SP samples of healthy donors and characterized by common methods needed for EV characterization, including size determination by dynamic light scattering (DLS), transmission electron microscopy (TEM), and western blot analysis of EV markers. Endometrial biopsies were obtained from healthy individuals and eSC were isolated and characterized. EV internalization assay was performed by labeling the SEV with PKH67 green fluorescent dye. Then, the eSC were exposed to SEV and the CM was collected. Finally, the CM from SEV-exposed eSC was added to the macrophage culture and the level of inflammatory (interleukin (IL)-1α and IL-6) and anti-inflammatory (IL-10) cytokines were measured in the culture supernatant of macrophages. RESULTS The results demonstrated that the CM derived from SEV-exposed eSC induce IL-1α and IL-6 secretion by the macrophages, while the secretion of IL-10 was reduced. CONCLUSION Our results support the idea that the stroma-immune interaction is affected by SEV. This effect may be a part of immunoregulatory function of SP inside upper female genital tract and have an obvious impact during peri-implantation period.
Collapse
Affiliation(s)
- Shahrokh Paktinat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Esfandyari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Karamian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saghar Salehpour
- Department of Obstetrics and Gynecology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Nazarian
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Intra-nasal administration of sperm head turns neutrophil into reparative mode after PGE1- and/or Ang II receptor-mediated phagocytosis followed by expression of sperm head's coding RNA. Int Immunopharmacol 2021; 98:107696. [PMID: 34147914 DOI: 10.1016/j.intimp.2021.107696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/25/2021] [Accepted: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Having played homeostatic role, the immune system maintains the integrity of the body. Such a characteristic makes immune system as an attractive candidate for resolution of inflammatory disease followed by tissue repair. As first responder cells, neutrophils direct immune response playing key role in tissue remodeling. Previous studies revealed that sperm attracts neutrophils and promotes uterine remodeling suitable for fetus growth. Accordingly, sperm and more efficiently sperm head had remodeling effects on damaged brain in Alzheimer's disease (AD) model. To further reveal the mechanism, two kinds of in vivo study, including kinetic study and inhibition of neutrophil phagocytosis on AD model, as well as in vitro study using co-culture of neutrophil and sperm head were performed. Kinetic study revealed that sperm head recruited neutrophil to nasal mucosa similar to that of uterus and sperm head-phagocytizing neutrophils acquired new activation status comparing to control. In vitro study also demonstrated that sperm head-phagocytizing neutrophils acquire new activation status and express coding RNAs of sperm head. Accordingly, inhibition of neutrophil phagocytic activity abrogated therapeutic effects of sperm head. Neutrophils activation status is important in the fate of inflammatory process. Modulation but not suppression of neutrophils helps remodeling and repair of damaged tissue. Sperm head is an intelligent cell and not just a simple particle to remove by phagocytosis but instead can program neutrophils and consequently immune response into reparative mode after phagocytosis.
Collapse
|
14
|
Qin Q, Chang H, Zhou S, Zhang S, Yuan D, Yu LL, Qu T. Intrauterine administration of peripheral blood mononuclear cells activated by human chorionic gonadotropin in patients with repeated implantation failure: A meta-analysis. J Reprod Immunol 2021; 145:103323. [PMID: 33878637 DOI: 10.1016/j.jri.2021.103323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/01/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to assess whether intrauterine administration of peripheral blood mononuclear cells (PBMCs) activated by human chorionic gonadotropin (hCG) could improve the pregnancy and live birth rates in women with repeated implantation failure (RIF), and whether the parameters of co-culture of hCG and PBMCs would affect the clinical outcomes. Six databases (PubMed, Ovid, Medline, NCBI, Cqvip and Wanfang) were searched up to October 2020 by two independent reviewers. Seven studies were included according to specific inclusion and exclusion criteria. A meta-analysis showed that the pregnancy and live birth rates were significantly increased in the case group compared with the control group (odds ratio [OR]: 3.43, 95 % confidence interval [CI]: 1.78-6.61; P = 0.0002 and OR: 2.79, 95 % CI: 1.09-7.15; P = 0.03), especially when hCG was cultured with PBMCs for 48 h or PBMCs administration was performed two or three days before embryo transfer (ET). Neither the dosage of the hCG co-cultured with PBMCs nor the mean concentration of the administered PBMCs appeared to influence the therapeutic efficiency. In conclusion, intrauterine administration of PBMCs co-cultured with hCG for 48 h, conducted two or three days before ET, could be an effective therapy for women experiencing RIF. Due to the limitations of sample size and quality of the included studies, further high-quality studies with large sample sizes are warranted to optimize the parameters of hCG and PBMC co-culture to help more RIF patients benefit from this therapy.
Collapse
Affiliation(s)
- Qi Qin
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Hong Chang
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Shuling Zhou
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu, China
| | - Sujuan Zhang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu, China
| | - Dongzhi Yuan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Lin-Lin Yu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ting Qu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu, China.
| |
Collapse
|
15
|
Espey BT, Kielwein K, van der Ven H, Steger K, Allam JP, Paradowska-Dogan A, van der Ven K. Effects of Pulsed-Wave Photobiomodulation Therapy on Human Spermatozoa. Lasers Surg Med 2021; 54:540-553. [PMID: 33792933 DOI: 10.1002/lsm.23399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVES Previous studies reported that photobiomodulation (PBM) positively affects the mitochondrial respiratory chain in sperm, resulting in improved motility and velocity. As laser settings are not yet fully established, the present study aimed at optimizing PBM on human sperm. In addition, possible side-effects of PBM on sperm DNA fragmentation level and acrosomal integrity have been analyzed. STUDY DESIGN/MATERIALS AND METHODS A pulsed laser-probe (wavelength 655 nm, output power 25 mW/cm², impulse duration 200 nanoseconds) was used. Native fresh liquefied semen samples underwent radiation with energy doses of 0 (control), 4, 6, and 10 J/cm². Sperm parameters were assessed at 0, 30, 60, 90, and 120 minutes after radiation using a computer-assisted sperm analysis system. Motility and velocity of sperm from asthenozoospermic patients (n = 42) and normozoospermic controls (n = 22) were measured. The amount of DNA strand breaks was analyzed using ligation-mediated quantitative polymerase chain reaction in patients with asthenozoospermia (n = 18) and normozoospermia (n = 13). Post-irradiance acrosomal integrity was investigated using flow cytometry based on CD46 protein expression (n = 7). RESULTS Exposure to laser energy-doses of 4 and 6 J/cm² improved sperm motility and velocity in asthenozoospermic patients. PBM exhibited no significant effect on DNA fragmentation level and expression of CD46 serving as a biomarker for acrosome integrity. CONCLUSION PBM improves sperm motility parameters by maintaining DNA and acrosome integrity and, therefore, represents a promising new tool for assisted reproductive therapy. In particular, improving sperm motility in asthenozoospermic patients by PBM in future may contribute to increasing the chance for successful intrauterine insemination. The present trial has no clinical registration number, as only in vitro studies were performed. The study was approved by the local ethics committee and performed according to the Declaration of Helsinki. Lasers Surg. Med. © 2021 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Burkhard T Espey
- Department of Gynecological Endocrinology and Reproductive Medicine, University Clinic of Bonn, Bonn, 53127, Germany.,Department of Dermatology, Venereology and Allergy, St. Joseph Hospital, University Clinic of Bochum, Bochum, 44791, Germany
| | - Karin Kielwein
- Department of Gynecological Endocrinology and Reproductive Medicine, University Clinic of Bonn, Bonn, 53127, Germany
| | - Hans van der Ven
- Department of Gynecological Endocrinology and Reproductive Medicine, University Clinic of Bonn, Bonn, 53127, Germany
| | - Klaus Steger
- Clinic of Urology, Pediatric Urology and Andrology, Molecular Andrology, Justus Liebig University of Giessen, Giessen, 35392, Germany
| | - Jean-Pierre Allam
- Department of Dermatology and Allergy, Andrology Unit, University Clinic of Bonn, Bonn, 53127, Germany
| | - Agnieszka Paradowska-Dogan
- Department of Gynecological Endocrinology and Reproductive Medicine, University Clinic of Bonn, Bonn, 53127, Germany.,TFP VivaNeo Sperm Bank GmbH, Düsseldorf, 440219, Germany
| | - Katrin van der Ven
- Department of Gynecological Endocrinology and Reproductive Medicine, University Clinic of Bonn, Bonn, 53127, Germany.,Medical Care Centre for Gynecological Endocrinology and Reproductive Medicine (MVZ für Frauenheilkunde und IvF-Medizin Bonn GbR), Bonn, 53175, Germany
| |
Collapse
|
16
|
Pekcan MK, Ozgu-Erdinc AS, Yilmaz N, Tokmak A, Engin-Ustun Y. Inflammatory Markers in Peripheral Blood Cells Cannot Predict Intrauterine Insemination Outcome: A Retrospective Cohort Study. J Hum Reprod Sci 2021; 14:11-15. [PMID: 34083986 PMCID: PMC8057155 DOI: 10.4103/jhrs.jhrs_216_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/31/2021] [Accepted: 02/07/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Although infertility is known as a chronic inflammatory condition, the effect of the increased inflammatory response on IUI success is not clear. Systemic inflammation can be calculated by applying various hematological markers. Aims: We aimed to evaluate the ability of hematologic parameters of inflammation in predicting intrauterine insemination (IUI) outcome. Study Setting and Design: A total of 334 infertile couples included in this retrospective cohort study. The study population comprised of all couples who were candidates for ovulation induction and IUI due to polycystic ovary syndrome (PCOS) (n = 147) or unexplained infertility (UI) (n = 187). Materials and Methods: The inflammatory parameters in the complete blood count parameters, such as neutrophil-lymphocyte ratio, platelet lymphocyte ratio, platelet distribution width, plateletcrit were obtained on IUI day and compared between the two groups. The predictive values of these markers for IUI outcome were calculated. Results: There were 44 pregnancies (13.2%) in the whole study cohort. There were no significant differences between the pregnant and nonpregnant groups regarding the evaluated parameters (all P > 0.05). Also, no significant difference was observed between the patients with PCOS and UI in terms of those parameters. The area under receiver operating characteristic (ROC) curve analysis revealed that none of the inflammatory markers can predict pregnancy in intrauterine insemination cycles. Further prospective studies are needed to verify our findings. Conclusion: We found no relationship between the hematologic inflammatory markers and IUI outcome.Therefore these markers cannot be used for prediction of pregnancy.
Collapse
Affiliation(s)
- Meryem Kuru Pekcan
- Department of Obstetrics and Gynecology, Zekai Tahir Burak Women's Health Care Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - A Seval Ozgu-Erdinc
- Department of Obstetrics and Gynecology, Zekai Tahir Burak Women's Health Care Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Nafiye Yilmaz
- Department of Obstetrics and Gynecology, Zekai Tahir Burak Women's Health Care Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Aytekin Tokmak
- Department of Obstetrics and Gynecology, Zekai Tahir Burak Women's Health Care Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Yaprak Engin-Ustun
- Department of Obstetrics and Gynecology, Zekai Tahir Burak Women's Health Care Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
17
|
Campanile G, Baruselli PS, Limone A, D'Occhio MJ. Local action of cytokines and immune cells in communication between the conceptus and uterus during the critical period of early embryo development, attachment and implantation - Implications for embryo survival in cattle: A review. Theriogenology 2021; 167:1-12. [PMID: 33743503 DOI: 10.1016/j.theriogenology.2021.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Early embryo development, implantation and pregnancy involve a complex dialogue between the embryo and mother. In cattle this dialogue starts as early as days 3-4 when the embryo is still in the oviduct, and it continues to implantation. Immunological processes involving cytokines, mast cells and macrophages form an important part of this dialogue. Amongst the cytokines, interleukin-6 (Il-6) and leukemia inhibitory factor (LIF) are secreted by both the embryo and uterine endometrium and form part of an ongoing and reciprocating dialogue. Mast cells and macrophages populate the uterine endometrium during embryo development and are involved in achieving the correct balance between inflammatory and anti-inflammatory reactions at the uterus that are associated with embryo attachment and implantation. Embryo loss is the major cause of reproductive wastage in cattle, and livestock generally. A deeper understanding of immunological processes during early embryo development will help to achieve the next step change in the efficiency of natural and assisted breeding.
Collapse
Affiliation(s)
- Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| | - Antonio Limone
- Instituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
18
|
Wilharm A, Brigas HC, Sandrock I, Ribeiro M, Amado T, Reinhardt A, Demera A, Hoenicke L, Strowig T, Carvalho T, Prinz I, Ribot JC. Microbiota-dependent expansion of testicular IL-17-producing Vγ6 + γδ T cells upon puberty promotes local tissue immune surveillance. Mucosal Immunol 2021; 14:242-252. [PMID: 32733025 PMCID: PMC7790758 DOI: 10.1038/s41385-020-0330-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/04/2023]
Abstract
γδT cells represent the majority of lymphocytes in several mucosal tissues where they contribute to tissue homoeostasis, microbial defence and wound repair. Here we characterise a population of interleukin (IL) 17-producing γδ (γδ17) T cells that seed the testis of naive C57BL/6 mice, expand at puberty and persist throughout adulthood. We show that this population is foetal-derived and displays a T-cell receptor (TCR) repertoire highly biased towards Vγ6-containing rearrangements. These γδ17 cells were the major source of IL-17 in the testis, whereas αβ T cells mostly provided interferon (IFN)-γ in situ. Importantly, testicular γδ17 cell homoeostasis was strongly dependent on the microbiota and Toll-like receptor (TLR4)/IL-1α/IL-23 signalling. We further found that γδ17 cells contributed to tissue surveillance in a model of experimental orchitis induced by intra-testicular inoculation of Listeria monocytogenes, as Tcrδ-/- and Il17-/- infected mice displayed higher bacterial loads than wild-type (WT) controls and died 3 days after infection. Altogether, this study identified a previously unappreciated foetal-derived γδ17 cell subset that infiltrates the testis at steady state, expands upon puberty and plays a crucial role in local tissue immune surveillance.
Collapse
Affiliation(s)
- Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Helena C Brigas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Miguel Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Amado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Annika Reinhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Lisa Hoenicke
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Tânia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.
| | - Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
19
|
Anderson MK, Selvaratnam JS. Interaction between γδTCR signaling and the E protein-Id axis in γδ T cell development. Immunol Rev 2020; 298:181-197. [PMID: 33058287 DOI: 10.1111/imr.12924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
γδ T cells acquire their functional properties in the thymus, enabling them to exert rapid innate-like responses. To understand how distinct γδ T cell subsets are generated, we have developed a Two-Stage model for γδ T cell development. This model is predicated on the finding that γδTCR signal strength impacts E protein activity through graded upregulation of Id3. Our model proposes that cells enter Stage 1 in response to a γδTCR signaling event in the cortex that activates a γδ T cell-specific gene network. Part of this program includes the upregulation of chemokine receptors that guide them to the medulla. In the medulla, Stage 1 cells receive distinct combinations of γδTCR, cytokine, and/co-stimulatory signals that induce their transit into Stage 2, either toward the γδT1 or the γδT17 lineage. The intersection between γδTCR and cytokine signals can tune Id3 expression, leading to different outcomes even in the presence of strong γδTCR signals. The thymic signaling niches required for γδT17 development are segregated in time and space, providing transient windows of opportunity during ontogeny. Understanding the regulatory context in which E proteins operate at different stages will be key in defining how their activity levels impose functional outcomes.
Collapse
Affiliation(s)
- Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Johanna S Selvaratnam
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Abstract
γδ T cells are a unique T cell subpopulation that are rare in secondary lymphoid organs but enriched in many peripheral tissues, such as the skin, intestines and lungs. By rapidly producing large amounts of cytokines, γδ T cells make key contributions to immune responses in these tissues. In addition to their immune surveillance activities, recent reports have unravelled exciting new roles for γδ T cells in steady-state tissue physiology, with functions ranging from the regulation of thermogenesis in adipose tissue to the control of neuronal synaptic plasticity in the central nervous system. Here, we review the roles of γδ T cells in tissue homeostasis and in surveillance of infection, aiming to illustrate their major impact on tissue integrity, tissue repair and immune protection.
Collapse
|
21
|
Yasuda I, Shima T, Moriya T, Ikebuchi R, Kusumoto Y, Ushijima A, Nakashima A, Tomura M, Saito S. Dynamic Changes in the Phenotype of Dendritic Cells in the Uterus and Uterine Draining Lymph Nodes After Coitus. Front Immunol 2020; 11:557720. [PMID: 33013926 PMCID: PMC7516021 DOI: 10.3389/fimmu.2020.557720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/20/2020] [Indexed: 01/28/2023] Open
Abstract
Dendritic cells (DCs) are essential for successful embryo implantation. However, the properties of uterine DCs (uDCs) during the implantation period are not well characterized. In this study, we investigated the dynamic changes in the uDC phenotypes during the period between coitus and implantation. In virgin mice, we evaluated the expressions of CD103 and XCR1, this is the first report to demonstrate uDCs expressing CD103 in XCR1+cDC1s and XCR1+cDC2s. On day 0.5 post coitus (pc), the number of uterine CD11c+CD103–MHC classIIhighCD86high–mature DCs rapidly increased and then decreased to non-pregnancy levels on days 1.5 and 2.5 pc. On day 3.5 pc just before implantation, the number of CD11c+CD103+MHC class IIdimCD86dim–immature DCs increased in the uterus. The increase in mature uDCs on day 1.5 pc was observed in both allogeneic- and syngeneic mating, suggesting that sexual intercourse, or semen, play a role in this process. Meanwhile, the increase in immature uDCs on day 3.5 pc was only observed in allogeneic mating, suggesting that allo-antigens in the semen contribute to this process. Next, to understand the turnover and migration of uDCs, we monitored DC movement in the uterus and uterine draining lymph nodes (dLNs) using photoconvertible protein Kikume Green Red (KikGR) mice. On day 0.5 pc, uDCs were composed of equal numbers of remaining DCs and migratory DCs. However, on day 3.5 pc, uDCs were primarily composed of migratory DCs, suggesting that most of the uDCs migrate from the periphery just before implantation. Finally, we studied the expression of PD-L2—which induces immunoregulation—on DCs. On day 3.5 pc, PD-L2 was expressed on CD103+-mature and CD103–-mature DCs in the uterus. However, PD-L2 expression on CD103–-immature DCs and CD103+-immature DCs was very low. Furthermore, both remaining and migratory DCs in the uterus and uterus-derived-DCs in the dLNs on day 3.5 pc highly expressed PD-L2 on their surface. Therefore, our study findings provide a better understanding of the dynamic changes occurring in uterine DCs and dLNs in preparation for implantation following allogeneic- and syngeneic mating.
Collapse
Affiliation(s)
- Ippei Yasuda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan.,Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomoko Shima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Akemi Ushijima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| |
Collapse
|
22
|
Pourmoghadam Z, Soltani-Zangbar MS, Sheikhansari G, Azizi R, Eghbal-Fard S, Mohammadi H, Siahmansouri H, Aghebati-Maleki L, Danaii S, Mehdizadeh A, Hojjat-Farsangi M, Motavalli R, Yousefi M. Intrauterine administration of autologous hCG- activated peripheral blood mononuclear cells improves pregnancy outcomes in patients with recurrent implantation failure; A double-blind, randomized control trial study. J Reprod Immunol 2020; 142:103182. [PMID: 32781360 DOI: 10.1016/j.jri.2020.103182] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 07/18/2020] [Accepted: 07/26/2020] [Indexed: 01/30/2023]
Abstract
We aimed to investigate the effect of intrauterine administration of autologous hCG-activated PBMCs in RIF women with low Th-17/Treg cell ratio. 248 women with a history of implantation failure volunteered to receive PBMC-therapy. After immunologic consultation and doing flow cytometry analysis, 100 women with at least three IVF/ET failure who had low Th-17/Treg ratio in comparison with healthy control were enrolled in this study. These 100 patients were randomly divided into two groups as PBMC receiving (n = 50) and controls (n = 50). Then PBMCs were obtained from patients and treated with hCG for 48 h. Afterward, PBMCs were administered into the uterine cavity of the patient in the study group, two days before ET. The concentration of inflammatory cytokines was examined in the supernatant of cultured PBMCs after 2, 24, and 48 h of incubation using the ELISA method. The frequency of Th-17, Treg, and the Th-17/Treg ratio was significantly lower in RIF women than the healthy controls (P < 0.0001). The secretion of inflammatory cytokines was significantly higher after 48 h compared to 2 and 24 h (P < 0.0001). The pregnancy and live birth rate were significantly increased in women undergoing the PBMC-therapy compared to control (PBS-injecting) group (P = 0.032 and P = 0.047, respectively). The miscarriage rate was considerably lower in PBMC-therapy group (P = 0.029). Our findings suggest that intrauterine administration of autologous in vitro hCG-activated PBMCs improves pregnancy outcomes in patients with at least three IVF/ET failures.
Collapse
Affiliation(s)
- Zahra Pourmoghadam
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Golshan Sheikhansari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramyar Azizi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Eghbal-Fard
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | | | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART center, Eastern Azerbaijan branch of ACECR, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Kidney Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Kidney Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Recuero S, Sánchez JM, Mateo-Otero Y, Bagés-Arnal S, McDonald M, Behura SK, Spencer TE, Kenny DA, Yeste M, Lonergan P, Fernandez-Fuertes B. Mating to Intact, but Not Vasectomized, Males Elicits Changes in the Endometrial Transcriptome: Insights From the Bovine Model. Front Cell Dev Biol 2020; 8:547. [PMID: 32766237 PMCID: PMC7381276 DOI: 10.3389/fcell.2020.00547] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
An appropriate female reproductive environment is essential for pregnancy success. In several species, including mice, pigs and horses, seminal plasma (SP) components have been shown to modulate this environment, leading to increased embryo viability and implantation. Due to the characteristics of mating in the aforementioned species, SP comes into direct contact with the uterus. However, it is questionable whether any SP reaches the uterus in species that ejaculate inside the vagina, such as humans and cattle. Hence, we hypothesized that sperm, perhaps acting as a vehicle for SP factors, play a more important role in the modulation of the maternal uterine environment in these species. In addition, changes elicited by SP and/or sperm may originate in the vagina and propagate to more distal regions of the female reproductive tract. To test these hypotheses, a bovine model in which heifers were mated to intact or vasectomized bulls or were left unmated was used. RNA-sequencing of endometrial samples collected 24 h after mating with a vasectomized bull did not reveal any differentially expressed genes (DEGs) in comparison with control samples. However, the endometrium of heifers mated with intact bulls exhibited 24 DEGs when compared to heifers mated with vasectomized bulls, and 22 DEGs when compared to unmated control heifers. The expression of a set of cytokines (IL6, IL1A, IL8, and TNFA) and candidate genes identified in the endometrial RNA-sequencing (PLA2G10, CX3CL1, C4BPA, PRSS2, BLA-DQB, and CEBPD) were assessed by RT-qPCR in the vagina and oviductal ampulla. No differences in expression of these genes were observed between treatments in any region. However, mating to both intact and vasectomized bulls induced an increase in IL1A and TNFA expression in the vagina compared to the oviduct. These data indicate that sperm, but not secretions from the accessory glands alone, induce modest changes in endometrial gene expression after natural mating in cattle. However, it is not clear whether this effect is triggered by inherent sperm proteins or SP proteins bound to sperm surface at the time of ejaculation.
Collapse
Affiliation(s)
- Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Sandra Bagés-Arnal
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - David A Kenny
- Animal and Bioscience Research Centre, Teagasc Grange, Meath, Ireland
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Beatriz Fernandez-Fuertes
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| |
Collapse
|
24
|
Nikolaeva M, Arefieva A, Babayan A, Chagovets V, Kitsilovskaya N, Starodubtseva N, Frankevich V, Kalinina E, Krechetova L, Sukhikh G. Immunoendocrine Markers of Stress in Seminal Plasma at IVF/ICSI Failure: a Preliminary Study. Reprod Sci 2020; 28:144-158. [PMID: 32638280 DOI: 10.1007/s43032-020-00253-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022]
Abstract
We have previously shown that high level of seminal interleukin (IL)-18 is positively associated with a greater risk of pregnancy failure in women exposed to their partners' seminal plasma (SP) during the in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycle. Since IL-18 and IL-1β considered to be the key immune markers of stress, here we ask whether their increase in SP may be due to the stress experienced by men engaged in the IVF programs. Therefore, we correlated seminal IL-18 with IL-1β and both cytokines with the seminal steroids, whose increase indicates the activation of neuroendocrine stress response systems. Retrospective analysis of stored seminal samples was performed. Based on previously identified cutoff level for content of IL-18 per ejaculate, samples with high IL-18 content from IVF failure group (n = 9), as well as samples with low IL-18 content from IVF success group (n = 7), were included in the study. Seminal cytokines were evaluated using FlowCytomix™ technology. A set of 16 biologically active steroids in SP was quantified by liquid chromatography coupled with mass spectrometry. Concentrations and total amounts per ejaculate of cytokines and steroids were determined. A positive significant correlation was found between the levels of IL-18 and IL-1β. There was also a positive correlation between IL-18 or IL-1β and 17-α-hydroxypregnenolone, 17-α-hydroxyprogesterone, dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), androstenedione, testosterone, dihydrotestosterone, progesterone, corticosterone, 11-deoxycorticosterone, and the ratio of DHEAS/cortisol. We suggested that stress-related overexpression of immune and hormonal factors in SP may be the key link between male stress and embryo implantation failure.
Collapse
Affiliation(s)
- Marina Nikolaeva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.
| | - Alla Arefieva
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Alina Babayan
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Vitaliy Chagovets
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Kitsilovskaya
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Natalia Starodubtseva
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow, Russia, 141701
| | - Vladimir Frankevich
- Department of Systems Biology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Elena Kalinina
- Department of Assisted Technologies in Treatment of Infertility, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Lubov Krechetova
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997
| | - Gennady Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation, Oparina str. 4, Moscow, Russia, 117997.,First Moscow State Medical University named after I.M. Sechenov, Trubetskaya str. 8-2, Moscow, Russia, 119991
| |
Collapse
|
25
|
Ibrahim LA, Rizo JA, Fontes PLP, Lamb GC, Bromfield JJ. Seminal plasma modulates expression of endometrial inflammatory meditators in the bovine†. Biol Reprod 2020; 100:660-671. [PMID: 30329018 DOI: 10.1093/biolre/ioy226] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/15/2018] [Accepted: 10/15/2018] [Indexed: 12/27/2022] Open
Abstract
Seminal plasma has conventionally been viewed as a transport and survival medium for mammalian sperm; however, its role now extends beyond this process to actively targeting female tissues. Studies in rodents, swine, and humans demonstrate that seminal plasma induces molecular and cellular changes within the endometrium or cervix following insemination. Seminal-plasma-induced alterations to the maternal environment have been theorized to facilitate embryo development, modulate maternal immunity toward the conceptus, and potentially improve pregnancy success. It is unknown if bovine seminal plasma modulates the uterine environment following insemination in the cow, where routine use of artificial insemination reduces maternal exposure to seminal plasma. We hypothesize that seminal plasma modulates the expression of inflammatory mediators in the endometrium, altering the maternal environment of early pregnancy. In vitro, seminal plasma altered intact endometrial explant expression of CSF2, IL1B, IL6, IL17A, TGFB1, IFNE, PTGS2, and AKR1C4. Furthermore, endometrial epithelial cell CSF2, CXCL8, TGFB1, PTGS2, and AKR1C4 expression were increased after seminal plasma exposure, while endometrial stromal cell CSF2, IL1B, IL6, CXCL8, IL17A, TGFB1, PTGS2, and AKR1C4 expression were increased following seminal plasma exposure. Endometrial expression of IL1B was increased in the cow 24 h after uterine infusion of seminal plasma, while other evaluated inflammatory mediators remained unchanged. These data indicate that seminal plasma may induce changes in the bovine endometrium in a temporal manner. Understanding the role of seminal plasma in modulating the maternal environment may aid in improving pregnancy success in cattle.
Collapse
Affiliation(s)
- Laila A Ibrahim
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Jason A Rizo
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| | - Pedro L P Fontes
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - G Cliff Lamb
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - John J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
26
|
Pourmoghadam Z, Abdolmohammadi-Vahid S, Pashazadeh F, Aghebati-Maleki L, Ansari F, Yousefi M. Efficacy of intrauterine administration of autologous peripheral blood mononuclear cells on the pregnancy outcomes in patients with recurrent implantation failure: A systematic review and meta-analysis. J Reprod Immunol 2020; 137:103077. [DOI: 10.1016/j.jri.2019.103077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/29/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
|
27
|
Stadtmauer DJ, Wagner GP. Cooperative inflammation: The recruitment of inflammatory signaling in marsupial and eutherian pregnancy. J Reprod Immunol 2020; 137:102626. [PMID: 31783286 PMCID: PMC7028515 DOI: 10.1016/j.jri.2019.102626] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/19/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
The evolution of viviparity in therian mammals, i.e. marsupials and "placental" mammals, occurred by retention of the conceptus in the female reproductive tract and precocious "hatching" from the shell coat. Both eutherian embryo implantation and the opossum embryo attachment reaction are evolutionarily derived from and homologous to a defensive inflammatory process induced after shell coat hatching. However, both lineages, marsupials and placental mammals, have modified the inflammatory response substantially. We review the induction, maintenance, and effects of inflammation throughout pregnancy, with special attention to the role of prostaglandins and the mucosal inflammatory response, both of which likely had roles in early mammalian viviparity. We propose that the key step was not only suppression of the inflammatory response after implantation in placental mammals, but also the transfer of the inflammatory cell-cell communication network to a different set of cell types than in generic inflammation. To support this conclusion we discuss evidence that pro-inflammatory signal production in the opossum is not limited to maternal cells, as expected in bona fide defensive inflammation, but also includes fetal tissues, in a process we term cooperative inflammation. The ways in which the inflammatory reaction was independently modified in these two lineages helps explain major life history differences between extant marsupials and eutherians.
Collapse
Affiliation(s)
- Daniel J Stadtmauer
- Department of Ecology and Evolutionary Biology, Yale Universisty. 165 Prospect Street, New Haven, CT, USA; Yale Systems Biology Institute, Yale University. 850 West Campus Drive, West Haven, CT, USA.
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale Universisty. 165 Prospect Street, New Haven, CT, USA; Yale Systems Biology Institute, Yale University. 850 West Campus Drive, West Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine. 300 Cedar Street, New Haven, CT, USA; Department of Obstetrics and Gynecology, Wayne State University. 540 East Canfield Avenue, Detroit, MI, USA.
| |
Collapse
|
28
|
Abstract
Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-β. The balance of male signals affects the nature of the female response, providing a mechanism of ‟cryptic female choiceˮ that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.
Collapse
Affiliation(s)
- John E Schjenken
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| |
Collapse
|
29
|
Kurane T, Kawase F, Morooka A, Konno T. Spatio-temporal distribution of eosinophils in the mouse uterus during peri-implantation period. Okajimas Folia Anat Jpn 2020; 96:49-56. [PMID: 31902831 DOI: 10.2535/ofaj.96.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Embryo implantation is an immunologically paradoxical event. In humans and rodents, blastocysts adhere to uterine epithelium and then invade into endometrial stroma, while maternal body is protected from extraneous materials by its immune system. Eosinophils, a kind of leucocytes involving parasitic infections and allergic response, increase in number in uterus when serum estrogen level is elevated during estrus cycles. However, response of uterine eosinophils to ovarian estrogen during peri-implantation period is not clear. Therefore, we investigated the distribution of eosinophils in murine peri-implantation uterus. On day 0.5 of pregnancy, eosinophils were found primarily in endometrial stroma near the luminal epithelium, whereas they were primarily distributed in basal endometrium and myometrium on day 3.5 of pregnancy. The number of uterine eosinophils on day 4.5 of pregnancy was significantly increased by inhibition of maternal estrogen action. Collectively, our results indicate that the ovarian estrogen negatively regulates uterine eosinophil distribution during peri-implantation period and provide insight into a role of maternal immune system in embryo implantation.
Collapse
Affiliation(s)
- Tomomi Kurane
- Molecular Microbiology Group, Tropical Biosphere Research Center and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus
| | - Fumie Kawase
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Akira Morooka
- Department of Subtropical Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus
| | - Toshihiro Konno
- Molecular Microbiology Group, Tropical Biosphere Research Center and Department of Host Defense, Graduate School of Medicine, University of the Ryukyus.,The United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
30
|
Schumacher A, Zenclussen AC. Human Chorionic Gonadotropin-Mediated Immune Responses That Facilitate Embryo Implantation and Placentation. Front Immunol 2019; 10:2896. [PMID: 31921157 PMCID: PMC6914810 DOI: 10.3389/fimmu.2019.02896] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Human chorionic gonadotropin (hCG) serves as one of the first signals provided by the embryo to the mother. Exactly at the time when the first step of the implantation process is initiated and the blastocyst adheres to the maternal endometrium, the embryonic tissue starts to actively secrete hCG. Shortly thereafter, the hormone can be detected in the maternal circulation where its concentration steadily increases throughout early pregnancy as it is continuously released by the forming placenta. Accumulating evidence underlines the critical function of hCG for embryo implantation and placentation. hCG not only regulates biological aspects of these early pregnancy events but also supports maternal immune cells in their function as helpers in the establishment of an adequate embryo-endometrial relationship. In view of its early presence in the maternal circulation, hCG has the potential to influence both local uterine immune cell populations as well as peripheral ones. The current review aims to summarize recent literature on the participation of innate and adaptive immune cells in embryo implantation and placentation with a specific focus on their regulation by hCG.
Collapse
Affiliation(s)
- Anne Schumacher
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ana C Zenclussen
- Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
31
|
Turkeltaub PC, Lockey RF, Holmes K, Friedmann E. Asthma and/or hay fever as predictors of fertility/impaired fecundity in U.S. women: National Survey of Family Growth. Sci Rep 2019; 9:18711. [PMID: 31822754 PMCID: PMC6904488 DOI: 10.1038/s41598-019-55259-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023] Open
Abstract
This study addresses whether asthma and/or hay fever predict fertility and impaired fecundity. The lifetime number of pregnancies (fertility) and spontaneous pregnancy losses (impaired fecundity) in 10,847 women representative of the U.S. population 15 to 44 years of age with histories of diagnosed asthma and/or hay fever are analyzed in the 1995 National Survey of Family Growth using multivariable Poisson regression with multiple covariates and adjustments for complex sampling. Smokers have significantly increased fertility compared to nonsmokers. Smokers with asthma only have significantly increased fertility compared to other smokers. Higher fertility is associated with impaired fecundity (ectopic pregnancy, miscarriage, stillbirth). Women with asthma (with and without hay fever) have significantly higher pregnancy losses than women without asthma. With increasing number of pregnancies, smokers have increased pregnancy losses compared to nonsmokers. Smokers, especially those with asthma only, have increased fertility and require special attention as to their family planning needs, reproductive health, and smoking cessation. Women with asthma, regardless of number of pregnancies, and smokers with higher numbers of pregnancies have high risk pregnancies that require optimal asthma/medical management prenatally and throughout pregnancy. Whether a proinflammatory asthma endotype underlies both the increased fertility and impaired fecundity associated with age and smoking is discussed.
Collapse
Affiliation(s)
| | - Richard F Lockey
- Division of Allergy & Immunology, University of South Florida College of Medicine, 13000 Bruce B. Downs Blvd, Tampa, Florida, 33613, USA
| | - Katie Holmes
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 W. Lombard St., Baltimore, Maryland, 21201, USA
- The Hilltop Institute, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland, 21250, USA
| | - Erika Friedmann
- Organizational Systems and Adult Health, University of Maryland School of Nursing, 655 W. Lombard St., Baltimore, Maryland, 21201, USA
| |
Collapse
|
32
|
Archana SS, Selvaraju S, Binsila BK, Arangasamy A, Krawetz SA. Immune regulatory molecules as modifiers of semen and fertility: A review. Mol Reprod Dev 2019; 86:1485-1504. [DOI: 10.1002/mrd.23263] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Affiliation(s)
- S. Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
- Department of BiochemistryJain University Bengaluru India
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - B. Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology DivisionICAR‐National Institute of Animal Nutrition and Physiology Bengaluru India
| | - Stephen A. Krawetz
- Department of Obstetrics and GynecologyWayne State University School of Medicine Detroit Michigan
- Center for Molecular Medicine and GeneticsC.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine Detroit Michigan
| |
Collapse
|
33
|
Paktinat S, Hashemi SM, Ghaffari Novin M, Mohammadi-Yeganeh S, Salehpour S, Karamian A, Nazarian H. Seminal exosomes induce interleukin-6 and interleukin-8 secretion by human endometrial stromal cells. Eur J Obstet Gynecol Reprod Biol 2019; 235:71-76. [DOI: 10.1016/j.ejogrb.2019.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/26/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
|
34
|
Polese B, Gridelet V, Perrier d'Hauterive S, Renard C, Munaut C, Martens H, Vermijlen D, King IL, Jacobs N, Geenen V. Accumulation of IL-17 + Vγ6 + γδ T cells in pregnant mice is not associated with spontaneous abortion. Clin Transl Immunology 2018; 7:e1008. [PMID: 29484185 PMCID: PMC5822401 DOI: 10.1002/cti2.1008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/04/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Introduction Pregnancy is an immune paradox. While the immune system is required for embryo implantation, placental development and progression of gestation, excessive inflammation is associated with pregnancy failure. Similarly, the cytokine IL‐17A plays an important role in defence against extracellular pathogens, but its dysregulation can lead to pathogenic inflammation and tissue damage. Although expression of IL‐17 has been reported during pregnancy, the cellular source of this cytokine and its relevance to gestation are not clear. Objectives Here we define the kinetics and cellular source of IL‐17A in the uterus during healthy and abortion‐prone murine pregnancy. Methods The CBA/J x DBA/2J abortion‐prone mating was used and compared to CBA/J x BALB/c control mating. Results We demonstrate that, irrespective of gestational health, the number of IL‐17‐producing cells peaks during midterm pregnancy and is largely derived from the γδ T‐cell lineage. We identify γδ T, Th17, CD8 T and NKT cells as the cellular source of IL‐17A in pregnant mice. Furthermore, we positively identify the Vγ6+ subset of uterine γδ T cells as the main producer of IL‐17A during both healthy pregnancy and abortive pregnancy. Conclusions To conclude, the accumulation of uterine IL‐17+ innate‐like T cells appears not to adversely impact the developing foetus. Collectively, our results show that IL‐17+ γδ T cells are present in the uterus throughout the course of normal gestation and therefore may play an important role in healthy pregnancy.
Collapse
Affiliation(s)
- Barbara Polese
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute University of Liege Liege Belgium
| | - Virginie Gridelet
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute University of Liege Liege Belgium
| | | | - Chantal Renard
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute University of Liege Liege Belgium
| | - Carine Munaut
- GIGA Laboratory of Tumor and Development Biology (LBTD) GIGA Research Institute University of Liege Liege Belgium
| | - Henri Martens
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute University of Liege Liege Belgium
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics and Institute for Medical Immunology Université Libre de Bruxelles (ULB) Bruxelles Belgium
| | - Irah L King
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre McGill University Montreal QC Canada
| | - Nathalie Jacobs
- GIGA-I3 Laboratory of Cellular and Molecular Immunology GIGA Research Institute University of Liege Liege Belgium
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute University of Liege Liege Belgium
| |
Collapse
|
35
|
Pérez-Cerezales S, Ramos-Ibeas P, Acuña OS, Avilés M, Coy P, Rizos D, Gutiérrez-Adán A. The oviduct: from sperm selection to the epigenetic landscape of the embryo†. Biol Reprod 2017; 98:262-276. [DOI: 10.1093/biolre/iox173] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023] Open
Affiliation(s)
- Serafín Pérez-Cerezales
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Priscila Ramos-Ibeas
- School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Omar Salvador Acuña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
- Departamento de Biología de la Reproducción, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
| | - Pilar Coy
- Departamento de Biología de la Reproducción, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca Murcia, Spain
- Physiology of Reproduction Group, Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia-Campus Mare Nostrum, Murcia, Spain
| | - Dimitrios Rizos
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departmento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
36
|
Huang C, Zeng Y, Tu W. The role of γδ-T cells during human pregnancy. Am J Reprod Immunol 2017; 78. [DOI: 10.1111/aji.12713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/04/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Chunyu Huang
- Department of Paediatric and Adolescent Medicine; Li Ka Shing Faculty of Medicine; the University of Hong Kong; HongKong China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Shenzhen Zhongshan Urology of Hospital; Shenzhen Guangdong China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation; Shenzhen Zhongshan Urology of Hospital; Shenzhen Guangdong China
| | - Wenwei Tu
- Department of Paediatric and Adolescent Medicine; Li Ka Shing Faculty of Medicine; the University of Hong Kong; HongKong China
| |
Collapse
|
37
|
Do JS, Kim S, Keslar K, Jang E, Huang E, Fairchild RL, Pizarro TT, Min B. γδ T Cells Coexpressing Gut Homing α4β7 and αE Integrins Define a Novel Subset Promoting Intestinal Inflammation. THE JOURNAL OF IMMUNOLOGY 2016; 198:908-915. [PMID: 27927968 DOI: 10.4049/jimmunol.1601060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/10/2016] [Indexed: 02/07/2023]
Abstract
γδ T lymphocytes, dominant T cell subsets in the intestine, mediate both regulatory and pathogenic roles, yet the mechanisms underlying such opposing effects remain unclear. In this study, we identified a unique γδ T cell subset that coexpresses high levels of gut-homing integrins, CD103 and α4β7. They were exclusively found in the mesenteric lymph node after T cell-mediated colitis induction, and their appearance preceded the inflammation. Adoptive transfer of the CD103+α4β7high subsets enhanced Th1/Th17 T cell generation and accumulation in the intestine, and the disease severity. The level of generation correlated with the disease severity. Moreover, these cells were also found to be elevated in a spontaneous mouse model of ileitis. Based on the procolitogenic function, we referred to this subset as "inflammatory" γδ T cells. Targeting inflammatory γδ T cells may open a novel strategy to treat inflammatory diseases where γδ T cells play a pathogenic role including inflammatory bowel disease.
Collapse
Affiliation(s)
- Jeong-Su Do
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sohee Kim
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Karen Keslar
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Eunjung Jang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Emina Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195; and
| | - Robert L Fairchild
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44116
| | - Booki Min
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195;
| |
Collapse
|
38
|
Atikuzzaman M, Sanz L, Pla D, Alvarez-Rodriguez M, Rubér M, Wright D, Calvete JJ, Rodriguez-Martinez H. Selection for higher fertility reflects in the seminal fluid proteome of modern domestic chicken. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:27-40. [PMID: 27852008 DOI: 10.1016/j.cbd.2016.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 01/31/2023]
Abstract
The high egg-laying capacity of the modern domestic chicken (i.e. White Leghorn, WL) has arisen from the low egg-laying ancestor Red Junglefowl (RJF) via continuous trait selection and breeding. To investigate whether this long-term selection impacted the seminal fluid (SF)-proteome, 2DE electrophoresis-based proteomic analyses and immunoassays were conducted to map SF-proteins/cytokines in RJF, WL and a 9th generation Advanced Intercross Line (AIL) of RJF/WL-L13, including individual SF (n=4, from each RJF, WL and AIL groups) and pools of the SF from 15 males of each group, analyzed by 2DE to determine their degree of intra-group (AIL, WL, and RJF) variability using Principal Component Analysis (PCA); respectively an inter-breed comparative analysis of intergroup fold change of specific SF protein spots intensity between breeds. The PCA clearly highlighted a clear intra-group similarity among individual roosters as well as a clear inter-group variability (e.g. between RJF, WL and AIL) validating the use of pools to minimize confounding individual variation. Protein expression varied considerably for processes related to sperm motility, nutrition, transport and survival in the female, including signaling towards immunomodulation. The major conserved SF-proteins were serum albumin and ovotransferrin. Aspartate aminotransferase, annexin A5, arginosuccinate synthase, glutathione S-transferase 2 and l-lactate dehydrogenase-A were RJF-specific. Glyceraldehyde-3-phosphate dehydrogenase appeared specific to the WL-SF while angiotensin-converting enzyme, γ-enolase, coagulation factor IX, fibrinogen α-chain, hemoglobin subunit α-D, lysozyme C, phosphoglycerate kinase, Src-substrate protein p85, tubulins and thioredoxin were AIL-specific. The RJF-SF contained fewer immune system process proteins and lower amounts of the anti-inflammatory/immunomodulatory TGF-β2 compared to WL and AIL, which had low levels- or lacked pro-inflammatory CXCL10 compared to RJF. The seminal fluid proteome differs between ancestor and modern chicken, with a clear enrichment of proteins and peptides related to immune-modulation for sperm survival in the female and fertility.
Collapse
Affiliation(s)
- Mohammad Atikuzzaman
- Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Davinia Pla
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | | | - Marie Rubér
- Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, University of Linköping, Linköping, Sweden
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| | | |
Collapse
|
39
|
Robertson SA, Sharkey DJ. Seminal fluid and fertility in women. Fertil Steril 2016; 106:511-9. [PMID: 27485480 DOI: 10.1016/j.fertnstert.2016.07.1101] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Seminal fluid is often viewed as simply a vehicle to carry sperm to fertilize the oocyte, but a more complex function in influencing female reproductive physiology is now evident. Remarkably, seminal fluid contains soluble and exosome-born signaling agents that interact with the female reproductive tract to prime the immune response, with consequences for fertility and pregnancy outcome. Experiments in rodent models demonstrate a key role for seminal fluid in enabling robust embryo implantation and optimal placental development. In particular, seminal fluid promotes leukocyte recruitment and generation of regulatory T cells, which facilitate embryo implantation by suppressing inflammation, assisting uterine vascular adaptation, and sustaining tolerance of fetal antigens. There is emerging evidence of comparable effects in women, where seminal fluid provokes an adaptive immune response in the cervical tissues after contact at intercourse, and spermatozoa accessing the higher tract potentially affect the endometrium directly. These biological responses may have clinical significance, explaining why [1] intercourse in IVF ET cycles improves the likelihood of pregnancy, [2] inflammatory disorders of gestation are more common in women who conceive after limited exposure to seminal fluid of the prospective father, and [3] preeclampsia incidence is elevated after use of donor oocytes or donor sperm where prior contact with conceptus alloantigens has not occurred. It will be important to define the mechanisms through which seminal fluid interacts with female reproductive tissues, to provide knowledge that may assist in preconception planning and infertility treatment.
Collapse
Affiliation(s)
- Sarah A Robertson
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - David J Sharkey
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|