1
|
Dong X, Edwards S, Deng Y, Dapat C, Hirankitti A, Wordsworth R, Whitney P, Baird R, Freeman K, Daley A, Barr I. An Improved Rapid and Sensitive Long Amplicon Method for Nanopore-Based RSV Whole-Genome Sequencing. Influenza Other Respir Viruses 2025; 19:e70106. [PMID: 40296507 PMCID: PMC12037990 DOI: 10.1111/irv.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS) provides critical insights into the respiratory syncytial virus (RSV) transmission and any emerging mutations that could impair the efficacy of monoclonal antibodies or vaccines that have been recently licenced for clinical use worldwide. However, the ability to sequence RSV genomes at large scale is limited by expensive and time-consuming sequencing methods. Oxford Nanopore Technology (ONT) offers significant improvements in next generation sequencing (NGS) both in turnaround time and cost, compared with other platforms for viral WGS. METHODS We have developed and modified an RSV long amplicon-based WGS protocol for the ONT platform using a one-step multiplex RT-PCR assay and the rapid barcoding kit. One hundred thirty-five RSV positive Australian clinical specimens (91 RSV-A and 44 RSV-B) sampled in 2023 with cycle threshold (Ct) values between 14 to 35 were tested in this study. This ONT workflow was compared with other recent RSV WGS amplification assays based on short amplicons. RESULTS A PCR amplicon clean-up step prior to library preparation significantly improved WGS result for samples with poor amplicon generation, but it is not necessary or beneficial for ones that generated high concentrations of amplicons. Overall, a success rate of 85.9% was achieved for WGS. This method performed as well as the more complex short amplicon methods in terms of genome coverage and sequencing depth. CONCLUSIONS The workflow described here was highly successful in generating RSV WGS on ONT platform and had improved turnaround times and excellent results with RSV clinical samples with Ct values up to 30.
Collapse
Affiliation(s)
- Xiaomin Dong
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Steven Edwards
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Yi‐Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- School of Biomedical SciencesThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Clyde Dapat
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Arada Hirankitti
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Rachel Wordsworth
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Paul Whitney
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Rob Baird
- Royal Darwin HospitalTiwiNorthern TerritoryAustralia
| | - Kevin Freeman
- Royal Darwin HospitalTiwiNorthern TerritoryAustralia
| | - Andrew J. Daley
- Department of MicrobiologyThe Royal Children's Hospital MelbourneParkvilleVictoriaAustralia
| | - Ian G. Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Banse P, Elena SF, Beslon G. Innovation in viruses: fitness valley crossing, neutral landscapes, or just duplications? Virus Evol 2024; 10:veae078. [PMID: 39386076 PMCID: PMC11463231 DOI: 10.1093/ve/veae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/19/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
Viruses evolve by periods of relative stasis interleaved with sudden, rapid series of mutation fixations, known as evolutionary bursts. These bursts can be triggered by external factors, such as environmental changes, antiviral therapies, or spill-overs from reservoirs into novel host species. However, it has also been suggested that bursts may result from the intrinsic evolutionary dynamics of viruses. Indeed, bursts could be caused by fitness valley crossing, or a neutral exploration of a fitness plateau until an escape mutant is found. In order to investigate the importance of these intrinsic causes of evolutionary bursts, we used a simulation software package to perform massive evolution experiments of viral-like genomes. We tested two conditions: (i) after an external change and (ii) in a constant environment, with the latter condition guaranteeing the absence of an external triggering factor. As expected, an external change was almost systematically followed by an evolutionary burst. However, we also observed bursts in the constant environment as well, albeit much less frequently. We analyzed how many of these bursts are triggered by deleterious, quasi-neutral, or beneficial mutations and show that, while bursts can occasionally be triggered by valley crossing or traveling along neutral ridges, many of them were triggered by chromosomal rearrangements and, in particular, segmental duplications. Our results suggest that combinatorial differences between the different mutation types lead to punctuated evolutionary dynamics, with long periods of stasis occasionally interrupted by short periods of rapid evolution, akin to what is observed in virus evolution.
Collapse
Affiliation(s)
- Paul Banse
- INSA Lyon, INRIA, CNRS, Universite Claude Bernard Lyon 1, Ecole Centrale de Lyon, Université Lumière Lyon 2, LIRIS, UMR5205, Villeurbanne 69621, France
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, Valencia 46980, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Guillaume Beslon
- INSA Lyon, INRIA, CNRS, Universite Claude Bernard Lyon 1, Ecole Centrale de Lyon, Université Lumière Lyon 2, LIRIS, UMR5205, Villeurbanne 69621, France
| |
Collapse
|
3
|
Sondlane H, Ogunbayo A, Donato C, Mogotsi M, Esona M, Hallbauer U, Bester P, Goedhals D, Nyaga M. Whole genome molecular analysis of respiratory syncytial virus pre and during the COVID-19 pandemic in Free State province, South Africa. Virus Res 2024; 347:199421. [PMID: 38942296 PMCID: PMC11283024 DOI: 10.1016/j.virusres.2024.199421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 06/16/2024] [Indexed: 06/30/2024]
Abstract
Respiratory syncytial virus (RSV) is the most predominant viral pathogen worldwide in children with lower respiratory tract infections. The Coronavirus disease 2019 (COVID-19) pandemic and resulting nonpharmaceutical interventions perturbed the transmission pattern of respiratory pathogens in South Africa. A seasonality shift and RSV resurgence was observed in 2020 and 2021, with several infected children observed. Conventional RSV-positive nasopharyngeal swabs were collected from various hospitals in the Free State province, Bloemfontein, South Africa, from children suffering from respiratory distress and severe acute respiratory infection between 2020 to 2021. Overlapping genome fragments were amplified and complete genomes were sequenced using the Illumina MiSeq platform. Maximum likelihood phylogenetic and evolutionary analysis were performed on both RSV-A/-B G-genes with published reference sequences from GISAID and GenBank. Our study strains belonged to the RSV-A GA2.3.2 and RSV-B GB5.0.5a clades. The upsurge of RSV was due to pre-existing strains that predominated in South Africa and circulating globally also driving these off-season RSV outbreaks during the COVID-19 pandemic. The variants responsible for the resurgence were phylogenetically related to pre-pandemic strains and could have contributed to the immune debt resulting from pandemic imposed restrictions. The deviation of the RSV season from the usual pattern affected by the COVID-19 pandemic highlights the need for ongoing genomic surveillance and the identification of genetic variants to prevent unforeseen outbreaks in the future.
Collapse
Affiliation(s)
- Hlengiwe Sondlane
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Ayodeji Ogunbayo
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Celeste Donato
- Enteric Diseases Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; The Centre for Pathogen Genomics, The Doherty Institute, University of Melbourne, Australia
| | - Milton Mogotsi
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Mathew Esona
- Diarrheal Pathogens Research Unit, Sefako Makgatho Health Sciences University, Medunsa 0204, Pretoria, South Africa
| | - Ute Hallbauer
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Phillip Bester
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Dominique Goedhals
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa; PathCare, Pretoria, South Africa
| | - Martin Nyaga
- Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| |
Collapse
|
4
|
Musa AO, Faber SR, Forrest K, Smith KP, Sengupta S, López CB. Identification of distinct genotypes in circulating RSV A strains based on variants in the virus replication-associated genes. J Virol 2024; 98:e0099024. [PMID: 39007617 PMCID: PMC11334426 DOI: 10.1128/jvi.00990-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 07/16/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a common cause of respiratory infection that often leads to hospitalization of infected younger children and older adults. RSV is classified into two strains, A and B, each with several subgroups or genotypes. One issue with the definition of these subgroups is the lack of a unified method of identification or genotyping. We propose that genotyping strategies based on the genes coding for replication-associated proteins could provide critical information on the replication capacity of the distinct subgroups, while clearly distinguishing genotypes. Here, we analyzed the virus replication-associated genes N, P, M2, and L from de novo assembled RSV A sequences obtained from 31 newly sequenced samples from hospitalized patients in Philadelphia and 78 additional publicly available sequences from different geographic locations within the United States. In-depth analysis and annotation of variants in the replication-associated proteins identified the polymerase protein L as a robust target for genotyping RSV subgroups. Importantly, our analysis revealed non-synonymous variations in L that were consistently accompanied by conserved changes in its co-factor P or the M2-2 protein, suggesting associations and interactions between specific domains of these proteins. Similar associations were seen among sequences of the related human metapneumovirus. These results highlight L as an alternative to other RSV genotyping targets and demonstrate the value of in-depth analyses and annotations of RSV sequences as it can serve as a foundation for subsequent in vitro and clinical studies on the efficiency of the polymerase and fitness of different virus isolates.IMPORTANCEGiven the historical heterogeneity of respiratory syncytial virus (RSV) and the disease it causes, there is a need to understand the properties of the circulating RSV strains each season. This information would benefit from an informative and consensus method of genotyping the virus. Here, we carried out a variant analysis that shows a pattern of specific variations among the replication-associated genes of RSV A across different seasons. Interestingly, these variation patterns, which were also seen in human metapneumovirus sequences, point to previously defined interactions of domains within these genes, suggesting co-variation in the replication-associated genes. Our results also suggest a genotyping strategy that can prove to be particularly important in understanding the genotype-phenotype correlation in the era of RSV vaccination, where selective pressure on the virus to evolve is anticipated. More importantly, the categorization of pneumoviruses based on these patterns may be of prognostic value.
Collapse
Affiliation(s)
- Abdulafiz O. Musa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sydney R. Faber
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kaitlyn Forrest
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kenneth P. Smith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Infectious Disease Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shaon Sengupta
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Carolina B. López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
5
|
Madi N, Sadeq M, Safar HA, Al-Adwani A, Al-Turab M. Circulation of new lineages of RSV-A and RSV-B in Kuwait shows high diversity in the N- and O-linked glycosylation sites in the G protein between 2020 and 2022. Front Cell Infect Microbiol 2024; 14:1445115. [PMID: 39220282 PMCID: PMC11362131 DOI: 10.3389/fcimb.2024.1445115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
The human respiratory syncytial virus (RSV) is a significant health concern, particularly for infants, young children, and the elderly. This virus is known to evolve continuously due to environmental factors and herd immunity. In light of this, our study aimed to analyze the genetic variability of the G protein in RSV-A and RSV-B genotypes in Kuwait from 2020 to 2022. Between January 2020 and September 2022, we collected 490 respiratory samples from hospitalized patients with acute respiratory tract infections. These samples were tested and confirmed positive for RSV using multiplex Real-Time PCR. Subsequently, the samples underwent nucleic acid sequencing using the advanced Nanopore sequencing technology to analyze the full-length G gene. Sequence analysis showed that 64 isolates (76%) were RSV-A, and 20 isolates (24%) were RSV-B. The G genes of RSV-A belonged to genotype GA2.3.5, while all the RSV-B genotypes belonged to GB5.0.5a. New lineages and sub-lineages of RSV-A and RSV-B were detected, indicating the circulation of new strains in Kuwait. Many unique and new amino acid changes, including insertions, were found in the G proteins of Kuwaiti isolates, with the highest variability in the second hypervariable region. An increased number of N and O-linked glycosylation sites were also identified in the G protein, which could speculate to alter the antigenicity of RSV. The identified changes in the G protein of RSV-A and RSV-B genotypes might result from immune pressure and could affect the antigenic characteristics of circulating strains in Kuwait. This could potentially lead to new RSV variants that can evade the immune response. Our in-depth analysis of the G proteins of both RSV-A and RSV-B could aid in the development of more potent treatments and vaccines.
Collapse
Affiliation(s)
- Nada Madi
- Virology Unit, Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Sadeq
- Jaber Al-Ahmad Armed Forces Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Hussain A. Safar
- Research Core Facility and OMICS Research Unit, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Anfal Al-Adwani
- Virology Unit, Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Mariam Al-Turab
- Virology Unit, Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
6
|
Nuttens C, Moyersoen J, Curcio D, Aponte-Torres Z, Baay M, Vroling H, Gessner BD, Begier E. Differences Between RSV A and RSV B Subgroups and Implications for Pharmaceutical Preventive Measures. Infect Dis Ther 2024; 13:1725-1742. [PMID: 38971918 PMCID: PMC11266343 DOI: 10.1007/s40121-024-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Understanding the differences between respiratory syncytial virus (RSV) subgroups A and B provides insights for the development of prevention strategies and public health interventions. We aimed to describe the structural differences of RSV subgroups, their epidemiology, and genomic diversity. The associated immune response and differences in clinical severity were also investigated. METHODS A literature review from PubMed and Google Scholar (1985-2023) was performed and extended using snowballing from references in captured publications. RESULTS RSV has two major antigenic subgroups, A and B, defined by the G glycoprotein. The RSV F fusion glycoprotein in the prefusion conformation is a major target of virus neutralizing antibodies and differs in surface exposed regions between RSV A and RSV B. The subgroups co-circulate annually, but there is considerable debate as to whether clinical severity is impacted by the subgroup of the infecting RSV strain. Large variations between the studies reporting RSV subgroup impact on clinical severity were observed. A tendency for higher disease severity may be attributed to RSV A but no consensus could be reached as to whether infection by one of the subgroup caused more severe outcomes. RSV genotype diversity decreased over the last two decades, and ON and BA have become the sole lineages detected for RSV A and RSV B, since 2014. No studies with data obtained after 2014 reported a difference in disease severity between the two subgroups. RSV F is relatively well conserved and highly similar between RSV A and B, but changes in the amino acid sequence have been observed. Some of these changes led to differences in F antigenic sites compared to reference F sequences (e.g., RSV/A Long strain), which are more pronounced in antigenic sites of the prefusion conformation of RSV B. Initial results from the second season after vaccination suggest specific RSV B efficacy wanes more rapidly than RSV A for RSV PreF-based monovalent vaccines. CONCLUSIONS RSV A and RSV B both contribute substantially to the global RSV burden. Both RSV subgroups cause severe disease and none of the available evidence to date suggests any differences in clinical severity between the subgroups. Therefore, it is important to implement measures effective at preventing disease due to both RSV A and RSV B to ensure impactful public health interventions. Monitoring overtime will be needed to assess the impact of waning antibody levels on subgroup-specific efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Marc Baay
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | - Hilde Vroling
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | | | - Elizabeth Begier
- Scientific Affairs, Older Adult RSV Vaccine Program, Global Medical Development Scientific and Clinical Affairs, Pfizer Vaccines, 9 Riverwalk, Citywest Business Campus, Dublin 24, Dublin, Ireland.
| |
Collapse
|
7
|
Musa AO, Faber SR, Forrest K, Smith KP, Sengupta S, López CB. Identification of distinct genotypes in circulating RSV A strains based on variants on the virus replication-associated genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590570. [PMID: 38712045 PMCID: PMC11071361 DOI: 10.1101/2024.04.22.590570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Respiratory syncytial virus is a common cause of respiratory infection that often leads to hospitalization of infected younger children and older adults. RSV is classified into two strains, A and B, each with several subgroups or genotypes. One issue with the definition of these subgroups is the lack of a unified method of identification or genotyping. We propose that genotyping strategies based on the genes coding for replication-associated proteins could provide critical information on the replication capacity of the distinct subgroup, while clearly distinguishing genotypes. Here, we analyzed the virus replication-associated genes N, P, M2, and L from de novo assembled RSV A sequences obtained from 31 newly sequenced samples from hospitalized patients in Philadelphia and 78 additional publicly available sequences from different geographic locations within the US. In-depth analysis and annotation of the protein variants in L and the other replication-associated proteins N, P, M2-1, and M2-2 identified the polymerase protein L as a robust target for genotyping RSV subgroups. Importantly, our analysis revealed non-synonymous variations in L that were consistently accompanied by conserved changes in its co-factor P or the M2-2 protein, suggesting associations and interactions between specific domains of these proteins. These results highlight L as an alternative to other RSV genotyping targets and demonstrate the value of in-depth analyses and annotations of RSV sequences as it can serve as a foundation for subsequent in vitro and clinical studies on the efficiency of the polymerase and fitness of different virus isolates.
Collapse
Affiliation(s)
- Abdulafiz O. Musa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sydney R. Faber
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kaitlyn Forrest
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kenneth P. Smith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Infectious Disease Diagnostics Laboratory, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Shaon Sengupta
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Carolina B. López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Womeńs Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
8
|
Rios-Guzman E, Simons LM, Dean TJ, Agnes F, Pawlowski A, Alisoltanidehkordi A, Nam HH, Ison MG, Ozer EA, Lorenzo-Redondo R, Hultquist JF. Deviations in RSV epidemiological patterns and population structures in the United States following the COVID-19 pandemic. Nat Commun 2024; 15:3374. [PMID: 38643200 PMCID: PMC11032338 DOI: 10.1038/s41467-024-47757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory tract infection, with the greatest impact on infants, immunocompromised individuals, and older adults. RSV prevalence decreased substantially in the United States (US) following the implementation of COVID-19-related non-pharmaceutical interventions but later rebounded with abnormal seasonality. The biological and epidemiological factors underlying this altered behavior remain poorly defined. In this retrospective cohort study from 2009 to 2023 in Chicago, Illinois, US, we examined RSV epidemiology, clinical severity, and genetic diversity. We found that changes in RSV diagnostic platforms drove increased detections in outpatient settings post-2020 and that hospitalized adults infected with RSV-A were at higher risk of intensive care admission than those with RSV-B. While population structures of RSV-A remained unchanged, RSV-B exhibited a genetic shift into geographically distinct clusters. Mutations in the antigenic regions of the fusion protein suggest convergent evolution with potential implications for vaccine and therapeutic development.
Collapse
Affiliation(s)
- Estefany Rios-Guzman
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Taylor J Dean
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Francesca Agnes
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Anna Pawlowski
- Northwestern Medicine Enterprise Data Warehouse, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arghavan Alisoltanidehkordi
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Hannah H Nam
- Department of Infectious Diseases, University of California - Irvine, Orange, CA, 92868, USA
| | - Michael G Ison
- Division of Microbiology and Infectious Diseases (DMID), National Institute of Health, Rockville, MD, 20852, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Boattini M, Almeida A, Comini S, Bianco G, Cavallo R, Costa C. From Forgotten Pathogen to Target for New Vaccines: What Clinicians Need to Know about Respiratory Syncytial Virus Infection in Older Adults. Viruses 2024; 16:531. [PMID: 38675874 PMCID: PMC11053843 DOI: 10.3390/v16040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Respiratory syncytial virus (RSV) is increasingly recognized as being implicated in acute illness in older adults, with a significant weight in hospitalizations for respiratory illness and death. By means of a best-evidence review, this paper aims to investigate whether RSV can be considered a forgotten pathogen in older patients, looking at trends in the literature volume and exploring possible epidemiological and clinical features underlying the focus given to it. We then present an assessment of its disease burden and present and future strategies for its reduction, particularly in light of the recent availability of new vaccines.
Collapse
Affiliation(s)
- Matteo Boattini
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
- Lisbon Academic Medical Centre, 1649-028 Lisbon, Portugal
| | - André Almeida
- Department of Internal Medicine 4, Centro Hospitalar Universitário de Lisboa Central, Centro Clínico Académico de Lisboa, 1169-024 Lisbon, Portugal;
- NOVA Medical School, Universidade Nova de Lisboa, Centro Clínico Académico de Lisboa, 1169-056 Lisbon, Portugal
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, 60035 Jesi, Italy
| | - Gabriele Bianco
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
- Department of Experimental Medicine, University of Salento, Via Provinciale Monteroni n. 165, 73100 Lecce, Italy
| | - Rossana Cavallo
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| | - Cristina Costa
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Turin, Italy; (G.B.)
- Department of Public Health and Paediatrics, University of Torino, 10126 Turin, Italy
| |
Collapse
|
10
|
Köndgen S, Oh DY, Thürmer A, Sedaghatjoo S, Patrono LV, Calvignac-Spencer S, Biere B, Wolff T, Dürrwald R, Fuchs S, Reiche J. A robust, scalable, and cost-efficient approach to whole genome sequencing of RSV directly from clinical samples. J Clin Microbiol 2024; 62:e0111123. [PMID: 38407068 PMCID: PMC10935636 DOI: 10.1128/jcm.01111-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections causing significant morbidity and mortality among children and the elderly; two RSV vaccines and a monoclonal antibody have recently been approved. Thus, there is an increasing need for a detailed and continuous genomic surveillance of RSV circulating in resource-rich and resource-limited settings worldwide. However, robust, cost-effective methods for whole genome sequencing of RSV from clinical samples that are amenable to high-throughput are still scarce. We developed Next-RSV-SEQ, an experimental and computational pipeline to generate whole genome sequences of historic and current RSV genotypes by in-solution hybridization capture-based next generation sequencing. We optimized this workflow by automating library preparation and pooling libraries prior to enrichment in order to reduce hands-on time and cost, thereby augmenting scalability. Next-RSV-SEQ yielded near-complete to complete genome sequences for 98% of specimens with Cp values ≤31, at median on-target reads >93%, and mean coverage depths between ~1,000 and >5,000, depending on viral load. Whole genomes were successfully recovered from samples with viral loads as low as 230 copies per microliter RNA. We demonstrate that the method can be expanded to other respiratory viruses like parainfluenza virus and human metapneumovirus. Next-RSV-SEQ produces high-quality RSV genomes directly from culture isolates and, more importantly, clinical specimens of all genotypes in circulation. It is cost-efficient, scalable, and can be extended to other respiratory viruses, thereby opening new perspectives for a future effective and broad genomic surveillance of respiratory viruses. IMPORTANCE Respiratory syncytial virus (RSV) is a leading cause of severe acute respiratory tract infections in children and the elderly, and its prevention has become an increasing priority. Recently, vaccines and a long-acting monoclonal antibody to protect effectively against severe disease have been approved for the first time. Hence, there is an urgent need for genomic surveillance of RSV at the global scale to monitor virus evolution, especially with an eye toward immune evasion. However, robust, cost-effective methods for RSV whole genome sequencing that are suitable for high-throughput of clinical samples are currently scarce. Therefore, we have developed Next-RSV-SEQ, an experimental and computational pipeline that produces reliably high-quality RSV genomes directly from clinical specimens and isolates.
Collapse
Affiliation(s)
- Sophie Köndgen
- Influenza and Other Respiratory Viruses, Consultant Laboratory for RSV, PIV and HMPV, Robert Koch-Institute, Berlin, Germany
| | - Djin-Ye Oh
- Influenza and Other Respiratory Viruses, Consultant Laboratory for RSV, PIV and HMPV, Robert Koch-Institute, Berlin, Germany
| | - Andrea Thürmer
- Genome Competence Center, Robert Koch-Institute, Berlin, Germany
| | | | - Livia V. Patrono
- Epidemiology of highly pathogenic microorganisms, Robert Koch-Institute, Berlin, Germany
| | | | - Barbara Biere
- Influenza and Other Respiratory Viruses, Consultant Laboratory for RSV, PIV and HMPV, Robert Koch-Institute, Berlin, Germany
| | - Thorsten Wolff
- Influenza and Other Respiratory Viruses, Consultant Laboratory for RSV, PIV and HMPV, Robert Koch-Institute, Berlin, Germany
| | - Ralf Dürrwald
- Influenza and Other Respiratory Viruses, Consultant Laboratory for RSV, PIV and HMPV, Robert Koch-Institute, Berlin, Germany
| | - Stephan Fuchs
- Genome Competence Center, Robert Koch-Institute, Berlin, Germany
| | - Janine Reiche
- Influenza and Other Respiratory Viruses, Consultant Laboratory for RSV, PIV and HMPV, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
11
|
Hultquist J, Rios-Guzman E, Simons L, Dean T, Agnes F, Pawlowski A, Alisoltanidehkordi A, Nam H, Ison M, Ozer E, Lorenzo-Redondo R. Altered RSV Epidemiology and Genetic Diversity Following the COVID-19 Pandemic. RESEARCH SQUARE 2023:rs.3.rs-3712859. [PMID: 38168164 PMCID: PMC10760306 DOI: 10.21203/rs.3.rs-3712859/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory tract infection, with greatest impact on infants, immunocompromised individuals, and older adults. RSV prevalence decreased substantially following the implementation of non-pharmaceutical interventions to mitigate the COVID-19 pandemic but later rebounded with initially abnormal seasonality. The biological and epidemiological factors underlying this altered behavior remain poorly defined. In this retrospective cohort study, we examined RSV epidemiology, clinical severity, and genetic diversity in the years surrounding the COVID-19 pandemic. We found that changes in RSV diagnostic platforms drove increased detections in outpatient settings after 2020 and that hospitalized adults with RSV-A were at higher risk of needing intensive care than those with RSV-B. While the population structure of RSV-A remained unchanged, the population structure of RSV-B shifted in geographically distinct clusters. Mutations in the antigenic regions of the fusion protein suggest convergent evolution with potential implications for vaccine and therapeutic development.
Collapse
|
12
|
Kok CR, Mulakken N, Thissen JB, Grey SF, Avila-Herrera A, Upadhyay MM, Lisboa FA, Mabery S, Elster EA, Schobel SA, Be NA. Targeted metagenomic assessment reflects critical colonization in battlefield injuries. Microbiol Spectr 2023; 11:e0252023. [PMID: 37874143 PMCID: PMC10714869 DOI: 10.1128/spectrum.02520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Microbial contamination in combat wounds can lead to opportunistic infections and adverse outcomes. However, current microbiological detection has a limited ability to capture microbial functional genes. This work describes the application of targeted metagenomic sequencing to profile wound bioburden and capture relevant wound-associated signatures for clinical utility. Ultimately, the ability to detect such signatures will help guide clinical decisions regarding wound care and management and aid in the prediction of wound outcomes.
Collapse
Affiliation(s)
- Car Reen Kok
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Nisha Mulakken
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - James B. Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Scott F. Grey
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Aram Avila-Herrera
- Computing Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Meenu M. Upadhyay
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Felipe A. Lisboa
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Shalini Mabery
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Eric A. Elster
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Seth A. Schobel
- Surgical Critical Care Initiative (SC2i), Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Nicholas A. Be
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
13
|
Davina-Nunez C, Perez-Castro S, Cabrera-Alvargonzalez JJ, Montano-Barrientos J, Godoy-Diz M, Regueiro B. The Modification of the Illumina ® CovidSeq™ Workflow for RSV Genomic Surveillance: The Genetic Variability of RSV during the 2022-2023 Season in Northwest Spain. Int J Mol Sci 2023; 24:16055. [PMID: 38003246 PMCID: PMC10671726 DOI: 10.3390/ijms242216055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
There is growing interest in the molecular surveillance of the Respiratory Syncytial Virus and the monitorization of emerging mutations that could impair the efficacy of antiviral prophylaxis and treatments. A simple, scalable protocol for viral nucleic acid enrichment could improve the surveillance of RSV. We developed a protocol for RSV-A and B amplification based on the Illumina CovidSeq workflow using an RSV primer panel. A total of 135 viral genomes were sequenced from nasopharyngeal samples through the optimization steps of this panel, while an additional 15 samples were used to test the final version. Full coverage of the G gene and over 95% of the coverage of the F gene, the target of the available RSV antivirals or monoclonal antibodies, were obtained. The F:K68N mutation, associated with decreased nirsevimab activity, was detected in our facility. Additionally, phylogenetic analysis showed several sublineages in the 2022-2023 influenza season in Europe. Our protocol allows for a simple and scalable simultaneous amplification of the RSV-A and B whole genome, increasing the yield of RSV sequencing and reducing costs. Its application would allow the world to be ready for the detection of arising mutations in relation to the widespread use of nirsevimab for RSV prevention.
Collapse
Affiliation(s)
- Carlos Davina-Nunez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain; (C.D.-N.); (J.J.C.-A.); (B.R.)
- Faculty of Biology, Universidade de Vigo, 36310 Vigo, Spain
| | - Sonia Perez-Castro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain; (C.D.-N.); (J.J.C.-A.); (B.R.)
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Servizo Galego de Saúde (SERGAS), 36214 Vigo, Spain; (J.M.-B.); (M.G.-D.)
| | - Jorge Julio Cabrera-Alvargonzalez
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain; (C.D.-N.); (J.J.C.-A.); (B.R.)
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Servizo Galego de Saúde (SERGAS), 36214 Vigo, Spain; (J.M.-B.); (M.G.-D.)
| | - Jhon Montano-Barrientos
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Servizo Galego de Saúde (SERGAS), 36214 Vigo, Spain; (J.M.-B.); (M.G.-D.)
| | - Montse Godoy-Diz
- Microbiology Department, Complexo Hospitalario Universitario de Vigo (CHUVI), Servizo Galego de Saúde (SERGAS), 36214 Vigo, Spain; (J.M.-B.); (M.G.-D.)
| | - Benito Regueiro
- Microbiology and Infectology Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain; (C.D.-N.); (J.J.C.-A.); (B.R.)
| |
Collapse
|
14
|
Pangesti KNA, Ansari HR, Bayoumi A, Kesson AM, Hill-Cawthorne GA, Abd El Ghany M. Genomic characterization of respiratory syncytial virus genotypes circulating in the paediatric population of Sydney, NSW, Australia. Microb Genom 2023; 9:001095. [PMID: 37656160 PMCID: PMC10569731 DOI: 10.1099/mgen.0.001095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Respiratory syncytial virus (RSV), or human orthopneumovirus, is a major cause of acute lower respiratory infection (ALRI), particularly in young children, causing significant morbidity and mortality. We used pathogen genomics to characterize the population structure and genetic signatures of RSV isolates circulating in children in New South Wales between 2016 and 2018 and to understand the evolutionary dynamics of these strains in the context of publicly available RSV genomes from the region and globally. Whole-genome phylogenetic analysis demonstrated the co-circulation of a few major RSV clades in the paediatric population from Sydney. The whole-genome-based genotypes A23 (RSV-A ON1-like genotype) and B6 (RSV-B BA9-like genotype) were the predominant RSV-A and RSV-B genotypes circulating during the study period, respectively. These genotypes were characterized with high levels of diversity of predicted N- and O-linked glycosylation patterns in both the G and F glycoproteins. Interestingly, a novel 72-nucleotide triplication in the sequence that corresponds to the C-terminal region of the G gene was identified in four of the A23 genotype sequenced in this study. Consistently, the population dynamics analysis demonstrated a continuous increase in the effective population size of A23 and B6 genotypes globally. Further investigations including functional mapping of mutations and identifying the impact of sequence changes on virus fitness are highly required. This study highlights the potential impact of an integrated approach that uses WG-based phylogeny and studying selective pressure events in understanding the emergence and dissemination of RSV genotypes.
Collapse
Affiliation(s)
- Krisna N. A. Pangesti
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Hifzur R. Ansari
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ali Bayoumi
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Alison M. Kesson
- Department of Infectious Diseases and Microbiology, The Children’s Hospital at Westmead, Sydney, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Grant A. Hill-Cawthorne
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Moataz Abd El Ghany
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Shishir TA, Saha O, Rajia S, Mondol SM, Masum MHU, Rahaman MM, Hossen F, Bahadur NM, Ahmed F, Naser IB, Amin MR. Genome-wide study of globally distributed respiratory syncytial virus (RSV) strains implicates diversification utilizing phylodynamics and mutational analysis. Sci Rep 2023; 13:13531. [PMID: 37598270 PMCID: PMC10439963 DOI: 10.1038/s41598-023-40760-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a common respiratory pathogen that causes mild cold-like symptoms and severe lower respiratory tract infections, causing hospitalizations in children, the elderly and immunocompromised individuals. Due to genetic variability, this virus causes life-threatening pneumonia and bronchiolitis in young infants. Thus, we examined 3600 whole genome sequences submitted to GISAID by 31 December 2022 to examine the genetic variability of RSV. While RSVA and RSVB coexist throughout RSV seasons, RSVA is more prevalent, fatal, and epidemic-prone in several countries, including the United States, the United Kingdom, Australia, and China. Additionally, the virus's attachment glycoprotein and fusion protein were highly mutated, with RSVA having higher Shannon entropy than RSVB. The genetic makeup of these viruses contributes significantly to their prevalence and epidemic potential. Several strain-specific SNPs co-occurred with specific haplotypes of RSVA and RSVB, followed by different haplotypes of the viruses. RSVA and RSVB have the highest linkage probability at loci T12844A/T3483C and G13959T/C2198T, respectively. The results indicate that specific haplotypes and SNPs may significantly affect their spread. Overall, this analysis presents a promising strategy for tracking the evolving epidemic situation and genetic variants of RSV, which could aid in developing effective control, prophylactic, and treatment strategies.
Collapse
Affiliation(s)
- Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Sultana Rajia
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Md Habib Ullah Masum
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Iftekhar Bin Naser
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Mohammad Ruhul Amin
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh.
| |
Collapse
|
16
|
Yan Y, Wang D, Li Y, Wu Z, Liu H, Shi Y, Lu X, Liu D. Prevalence, variation, and transmission patterns of human respiratory syncytial virus from pediatric patients in Hubei, China during 2020-2021. Virol Sin 2023; 38:363-372. [PMID: 37146717 PMCID: PMC10311268 DOI: 10.1016/j.virs.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a severe threat to children and a main cause of acute lower respiratory tract infections. Nevertheless, the intra-host evolution and inter-regional diffusion of RSV are little known. In this study, we performed a systematic surveillance in hospitalized children in Hubei during 2020-2021, in which 106 RSV-positive samples were detected both clinically and by metagenomic next generation sequencing (mNGS). RSV-A and RSV-B groups co-circulated during surveillance with RSV-B being predominant. About 46 high-quality genomes were used for further analyses. A total of 163 intra-host nucleotide variation (iSNV) sites distributed in 34 samples were detected, and glycoprotein (G) gene was the most enriched gene for iSNVs, with non-synonymous substitutions more than synonymous substitutions. Evolutionary dynamic analysis showed that the evolutionary rates of G and NS2 genes were higher, and the population size of RSV groups changed over time. We also found evidences of inter-regional diffusion from Europe and Oceania to Hubei for RSV-A and RSV-B, respectively. This study highlighted the intra-host and inter-host evolution of RSV, and provided some evidences for understanding the evolution of RSV.
Collapse
Affiliation(s)
- Yi Yan
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Decheng Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ying Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China; Department of Respiratory Medicine, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China; Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhiyong Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yue Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Wuhan Children' Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China; Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; National Virus Resource Center, Chinese Academy of Sciences, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Wuhan, 430071, China; Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
17
|
Piñana M, González-Sánchez A, Andrés C, Abanto M, Vila J, Esperalba J, Moral N, Espartosa E, Saubi N, Creus A, Codina MG, Folgueira D, Martinez-Urtaza J, Pumarola T, Antón A. The emergence, impact, and evolution of human metapneumovirus variants from 2014 to 2021 in Spain. J Infect 2023:S0163-4453(23)00262-1. [PMID: 37178807 DOI: 10.1016/j.jinf.2023.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Human metapneumovirus (HMPV) is an important aetiologic agent of respiratory tract infection (RTI). This study aimed to describe the prevalence, genetic diversity, and evolutionary dynamics of HMPV. METHODS Laboratory-confirmed HMPV were characterised based on partial-coding G gene sequences with MEGA.v6.0. WGS was performed with Illumina, and evolutionary analyses with Datamonkey and Nextstrain. RESULTS HMPV prevalence was 2.5%, peaking in February-April and with an alternation in the predominance of HMPV-A and -B until the emergence of SARS-CoV-2, not circulating until summer and autumn-winter 2021, with a higher prevalence and with the almost only circulation of A2c111dup. G and SH proteins were the most variable, and 70% of F protein was under negative selection. Mutation rate of HMPV genome was 6.95 ×10-4 substitutions/site/year. CONCLUSION HMPV showed a significant morbidity until the emergence of SARS-CoV-2 pandemic in 2020, not circulating again until summer and autumn 2021, with a higher prevalence and with almost the only circulation of A2c111dup, probably due to a more efficient immune evasion mechanism. The F protein showed a very conserved nature, supporting the need for steric shielding. The tMRCA showed a recent emergence of the A2c variants carrying duplications, supporting the importance of virological surveillance.
Collapse
Affiliation(s)
- Maria Piñana
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandra González-Sánchez
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Michel Abanto
- Genomics and Bioinformatics Unit, Scientific and Technological Bioresource Nucleus (BIOREN). Universidad de La Frontera, Temuco, Chile
| | - Jorgina Vila
- Paediatric Hospitalization Unit, Paediatrics Department, Hospital Universitari Maternoinfantil Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Noelia Moral
- Department of Clinical Microbiology, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Espartosa
- Department of Clinical Microbiology, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Narcís Saubi
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Creus
- Paediatric Hospitalization Unit, Paediatrics Department, Hospital Universitari Maternoinfantil Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dolores Folgueira
- Department of Clinical Microbiology, Hospital Universitario 12 de Octubre, Instituto de Investigación Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, Madrid, Spain
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, School of Biosciences, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Andrés Antón
- Respiratory Viruses Unit, Microbiology Department, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Dong X, Deng YM, Aziz A, Whitney P, Clark J, Harris P, Bautista C, Costa AM, Waller G, Daley AJ, Wieringa M, Korman T, Barr IG. A simplified, amplicon-based method for whole genome sequencing of human respiratory syncytial viruses. J Clin Virol 2023; 161:105423. [PMID: 36934591 DOI: 10.1016/j.jcv.2023.105423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Human Respiratory Syncytial Virus (RSV) infections pose a significant risk to human health worldwide, especially for young children. Whole genome sequencing (WGS) provides a useful tool for global surveillance to better understand the evolution and epidemiology of RSV and provide essential information that may impact on antibody treatments, antiviral drug sensitivity and vaccine effectiveness. OBJECTIVES Here we report the development of a rapid and simplified amplicon-based one-step multiplex reverse-transcription polymerase chain reaction (mRT-PCR) for WGS of both human RSV-A and RSV-B viruses. STUDY DESIGN Two mRT-PCR reactions for each sample were designed to generate amplicons for RSV WGS. This new method was tested and evaluated by sequencing 206 RSV positive clinical samples collected in Australia in 2020 and 2021 with RSV Ct values between 10 and 32. RESULTS In silico analysis and laboratory testing revealed that the primers used in the new method covered most of the currently circulating RSV-A and RSV-B. Amplicons generated were suitable for both Illumina and Oxford Nanopore Technologies (ONT) NGS platforms. A success rate of 83.5% with a full coverage for the genome of 98 RSV-A and 74 RSV-B was achieved from all clinical samples tested. CONCLUSIONS This assay is simple to set up, robust, easily scalable in sample preparation and relatively inexpensive, and as such, provides a valuable addition to existing NGS RSV WGS methods.
Collapse
Affiliation(s)
- Xiaomin Dong
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia; Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia; Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Ammar Aziz
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia; Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Paul Whitney
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia; Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
| | - Julia Clark
- Queensland Children's Hospital, Brisbane, QLD, 4101, Australia; Children's Health Queensland Hospital & Health Service, Brisbane, QLD, 4101, Australia
| | - Patrick Harris
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, QLD, 4029, Australia; Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, Herston, QLD, 4006, Australia
| | - Catherine Bautista
- Central Microbiology, Pathology Queensland, Royal Brisbane & Women's Hospital, Herston, QLD, 4006, Australia
| | - Anna-Maria Costa
- Department of Microbiology and Infectious Diseases, The Royal Children's Hospital Melbourne, Parkville, VIC, 3052, Australia
| | - Gregory Waller
- Department of Microbiology and Infectious Diseases, The Royal Children's Hospital Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew J Daley
- Department of Microbiology, Infection Prevention and Control, The Royal Children's and Royal Women's Hospitals, Parkville, VIC, 3052, Australia
| | | | - Tony Korman
- Monash Health, Clayton, VIC, 3168, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia; Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
19
|
Influence of Sex on Respiratory Syncytial Virus Genotype Infection Frequency and Nasopharyngeal Microbiome. J Virol 2023; 97:e0147222. [PMID: 36815771 PMCID: PMC10062153 DOI: 10.1128/jvi.01472-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) has a significant health burden in children, older adults, and the immunocompromised. However, limited effort has been made to identify emergence of new RSV genotypes' frequency of infection and how the combination of nasopharyngeal microbiome and viral genotypes impact RSV disease outcomes. In an observational cohort designed to capture the first infant RSV infection, we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes, during which the 2012/2013 season was dominated by RSV-A, whereas 2013 and 2014 was dominated by RSV-B. We found non-G-72nt-duplicated RSV-A strains were more frequent in male infants (P = 0.02), whereas G-72nt-duplicated genotypes (which is ON1 lineage) were seen equally in both males and females. DESeq2 testing of the nasal microbiome showed Haemophilus was significantly more abundant in infants with RSV-A infection compared to infants with RSV-B infection (adjusted P = 0.002). In addition, the broad microbial clustering of the abundant genera was significantly associated with infant sex (P = 0.03). Overall, we show sex differences in infection by RSV genotype and host nasopharyngeal microbiome, suggesting an interaction between host genetics, virus genotype, and associated nasopharyngeal microbiome. IMPORTANCE Respiratory syncytial virus (RSV) is one of the leading causes of lower respiratory tract infections in young children and is responsible for high hospitalization rates and morbidity in infants and the elderly. To understand how the emergence of RSV viral genotypes and viral-respiratory microbiome interactions contribute to infection frequency and severity, we utilized an observational cohort designed to capture the first infant RSV infection we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes. We found non-G-72nt-duplicated RSV-A genotypes were more frequent in male infants, whereas G-72nt-duplicated RSV-A strains (ON1 lineage) were seen equally in both males and females. Microbiome analysis show Haemophilus was significantly more abundant in infants with RSV-A compared to infants with RSV-B infection and the microbial clustering of the abundant genera was associated with infant sex. Overall, we show sex differences in RSV genotype-nasopharyngeal microbiome, suggesting an interaction host genetics-virus-microbiome interaction.
Collapse
|
20
|
Goya S, Lucion MF, Shilts MH, Juárez MDV, Gentile A, Mistchenko AS, Viegas M, Das SR. Evolutionary dynamics of respiratory syncytial virus in Buenos Aires: Viral diversity, migration, and subgroup replacement. Virus Evol 2023; 9:vead006. [PMID: 36880065 PMCID: PMC9985318 DOI: 10.1093/ve/vead006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/25/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Globally, the human respiratory syncytial virus (RSV) is one of the major causes of lower respiratory tract infections (LRTIs) in children. The scarcity of complete genome data limits our understanding of RSV spatiotemporal distribution, evolution, and viral variant emergence. Nasopharyngeal samples collected from hospitalized pediatric patients from Buenos Aires tested positive for RSV LRTI during four consecutive outbreaks (2014-2017) were randomly subsampled for RSV complete genome sequencing. Phylodynamic studies and viral population characterization of genomic variability, diversity, and migration of viruses to and from Argentina during the study period were performed. Our sequencing effort resulted in one of the largest collections of RSV genomes from a given location (141 RSV-A and 135 RSV-B) published so far. RSV-B was dominant during the 2014-2016 outbreaks (60 per cent of cases) but was abruptly replaced by RSV-A in 2017, with RSV-A accounting for 90 per cent of sequenced samples. A significant decrease in RSV genomic diversity-represented by both a reduction in genetic lineages detected and the predominance of viral variants defined by signature amino acids-was observed in Buenos Aires in 2016, the year prior to the RSV subgroup predominance replacement. Multiple introductions to Buenos Aires were detected, some with persistent detection over seasons, and also, RSV was observed to migrate from Buenos Aires to other countries. Our results suggest that the decrease in viral diversity may have allowed the dramatic predominance switch from RSV-B to RSV-A in 2017. The immune pressure generated against circulating viruses with limited diversity during a given outbreak may have created a fertile ground for an antigenically divergent RSV variant to be introduced and successfully spread in the subsequent outbreak. Overall, our RSV genomic analysis of intra- and inter-outbreak diversity provides an opportunity to better understand the epochal evolutionary dynamics of RSV.
Collapse
Affiliation(s)
- Stephanie Goya
- Virology Laboratory, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
- National Scientific and Technical Research Council, Godoy Cruz 2290, Buenos Aires 1425, Argentina
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA
| | - Maria Florencia Lucion
- Department of Epidemiology, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA
| | - María del Valle Juárez
- Department of Epidemiology, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Angela Gentile
- Department of Epidemiology, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Alicia S Mistchenko
- Virology Laboratory, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
| | - Mariana Viegas
- Virology Laboratory, Ricardo Gutiérrez Children’s Hospital, Gallo 1330, Buenos Aires 1425, Argentina
- National Scientific and Technical Research Council, Godoy Cruz 2290, Buenos Aires 1425, Argentina
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA
- Department Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, 1215 21st Ave S, Nashville, TN 37232, USA
| |
Collapse
|
21
|
Investigation of the Fuzzy Complex between RSV Nucleoprotein and Phosphoprotein to Optimize an Inhibition Assay by Fluorescence Polarization. Int J Mol Sci 2022; 24:ijms24010569. [PMID: 36614009 PMCID: PMC9820559 DOI: 10.3390/ijms24010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
The interaction between Respiratory Syncytial Virus phosphoprotein P and nucleoprotein N is essential for the formation of the holo RSV polymerase that carries out replication. In vitro screening of antivirals targeting the N-P protein interaction requires a molecular interaction model, ideally consisting of a complex between N protein and a short peptide corresponding to the C-terminal tail of the P protein. However, the flexibility of C-terminal P peptides as well as their phosphorylation status play a role in binding and may bias the outcome of an inhibition assay. We therefore investigated binding affinities and dynamics of this interaction by testing two N protein constructs and P peptides of different lengths and composition, using nuclear magnetic resonance and fluorescence polarization (FP). We show that, although the last C-terminal Phe241 residue is the main determinant for anchoring P to N, only longer peptides afford sub-micromolar affinity, despite increasing mobility towards the N-terminus. We investigated competitive binding by peptides and small compounds, including molecules used as fluorescent labels in FP. Based on these results, we draw optimized parameters for a robust RSV N-P inhibition assay and validated this assay with the M76 molecule, which displays antiviral properties, for further screening of chemical libraries.
Collapse
|
22
|
Lin WH, Wu FT, Chen YY, Wang CW, Lin HC, Kuo CC, Lai WC, Lin FJ, Tiew WT, Tsai AL, Ho KT, Kuo TY, Li CH, Wu CY, Pan YJ, Tsao KC, Hsieh YC. Unprecedented outbreak of respiratory syncytial virus in Taiwan associated with ON1 variant emergence between 2010 and 2020. Emerg Microbes Infect 2022; 11:1000-1009. [PMID: 35293267 PMCID: PMC8979508 DOI: 10.1080/22221751.2022.2054365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/13/2022] [Indexed: 11/03/2022]
Abstract
An outbreak of respiratory syncytial virus (RSV) has been observed in Taiwan since August 2020. We reviewed a central laboratory-based surveillance network established over 20 years by Taiwan Centres for Disease Control for respiratory viral pathogens between 2010 and 2020.A retrospective study of children <5 years old hospitalized with RSV infection at Chang Gung Memorial Hospital between 2018 and 2020 was conducted, and samples positive for RSV-A were sequenced. Clinical data were obtained and stratified by genotype and year.Data from 2020 showed an approximately 4-fold surge in RSV cases compared to 2010 in Taiwan, surpassing previous years during which ON1 was prevalent. Phylogenetic analysis of G protein showed that novel ON1 variants were clustered separately from those of 2018 and 2019 seasons and ON1 reference strains. The variant G protein carried six amino acid changes that emerged gradually in 2019; high consistency was observed in 2020. A unique substitution, E257K, was observed in 2020 exclusively. The F protein of the variant carried T12I and H514N substitutions, which weren't at antigenic sites. In terms of multivariate analysis, age (OR: 0.97; 95% CI: 0.94-0.99; p = 0.02) and 2020 ON1 variant (OR:2.52; 95% CI:1.13-5.63; p = 0.025) were independently associated with oxygen saturation <94% during hospitalization.The 2020 ON1 variant didn't show higher replication or virulence compared with those in 2018 in our study. The unprecedented 2020 RSV epidemic may attribute to antigenic changes and lack of interferon-stimulated immunity induced by seasonal circulating virus under non-pharmaceutical intervention.
Collapse
Affiliation(s)
- Wei-Hsuan Lin
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Tzy Wu
- Center for Diagnostics and Vaccine Development, Centres for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Wang
- Departments of Anatomic Pathology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ho-Chen Lin
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chia Kuo
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wan-Chun Lai
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Ju Lin
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Wan-Tin Tiew
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - An-Li Tsai
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Ta Ho
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yu Kuo
- Center for Diagnostics and Vaccine Development, Centres for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Chung-Hao Li
- Center for Diagnostics and Vaccine Development, Centres for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Ching-Yi Wu
- Center for Diagnostics and Vaccine Development, Centres for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yi-Jiun Pan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Kuo-Chien Tsao
- Research Centre for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yu-Chia Hsieh
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
23
|
Donovan-Banfield I, Milligan R, Hall S, Gao T, Murphy E, Li J, Shawli GT, Hiscox J, Zhuang X, McKeating JA, Fearns R, Matthews DA. Direct RNA sequencing of respiratory syncytial virus infected human cells generates a detailed overview of RSV polycistronic mRNA and transcript abundance. PLoS One 2022; 17:e0276697. [PMID: 36355791 PMCID: PMC9648745 DOI: 10.1371/journal.pone.0276697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/11/2022] [Indexed: 11/12/2022] Open
Abstract
To characterize species of viral mRNA transcripts generated during respiratory syncytial virus (RSV) infection, human fibroblast-like MRC-5 lung cells were infected with subgroup A RSV for 6, 16 and 24 hours. In addition, we characterised the viral transcriptome in infected Calu-3 lung epithelial cells at 48 hours post infection. Total RNA was harvested and polyadenylated mRNA was enriched and sequenced by direct RNA sequencing using an Oxford nanopore device. This platform yielded over 450,000 direct mRNA transcript reads which were mapped to the viral genome and analysed to determine the relative mRNA levels of viral genes using our in-house ORF-centric pipeline. We examined the frequency of polycistronic readthrough mRNAs were generated and assessed the length of the polyadenylated tails for each group of transcripts. We show a general but non-linear decline in gene transcript abundance across the viral genome, as predicted by the model of RSV gene transcription. However, the decline in transcript abundance is not uniform. The polyadenylate tails generated by the viral polymerase are similar in length to those generated by the host polyadenylation machinery and broadly declined in length for most transcripts as the infection progressed. Finally, we observed that the steady state abundance of transcripts with very short polyadenylate tails less than 20 nucleotides is less for N, SH and G transcripts in both cell lines compared to NS1, NS2, P, M, F and M2 which may reflect differences in mRNA stability and/or translation rates within and between the cell lines.
Collapse
Affiliation(s)
- I’ah Donovan-Banfield
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Department of Infection Biology and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rachel Milligan
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Sophie Hall
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tianyi Gao
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Eleanor Murphy
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Jack Li
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ghada T. Shawli
- Department of Infection Biology and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Julian Hiscox
- Department of Infection Biology and Microbiome, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Fearns
- Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (DAM); (RF)
| | - David A. Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (DAM); (RF)
| |
Collapse
|
24
|
Pre COVID-19 molecular epidemiology of respiratory syncytial virus (RSV) among children in Bangladesh. Heliyon 2022; 8:e11043. [PMID: 36247113 PMCID: PMC9551109 DOI: 10.1016/j.heliyon.2022.e11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/24/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Epidemiological data of specific respiratory pathogens from the pre-COVID-19 period are essential to determine the effects of the COVID-19 pandemic on other respiratory infections. In this study, we revealed the pre-COVID-19 molecular epidemiology of respiratory syncytial virus (RSV) among children in Bangladesh. We tested 3170 samples collected from 2008 to 2012 for a panel of respiratory viruses; RSV, human metapneumovirus (hMPV), human parainfluenza viruses (hPIV) 1, 2, 3, and adenovirus. Five hundred fifty-five samples (17.5 %) were positive for RSV, including 2.5% having co-infections with other viruses. Genotypic characterization of RSV showed that RSV-A (82%) contributed more acute respiratory infections than RSV-B (18%). Clinical features were similar with RSV-A and RSV-B infections. However, children with RSV-B were more likely to have upper respiratory infections (URI) (10% vs. 29%, p = 0.03). Among RSV-A cases, hospitalization was higher for ON1 cases (25%, ON1 vs. 8%, NA1, p = 0.04), whereas the recovery without a disability was higher among the NA1 cases (56%, ON1 vs. 88%, NA1, p = 0.02). The time to the most recent common ancestor (TMRCA) for RSV in Bangladesh was 1949 for RSV-A and 1944 for RSV-B. This study revealed the genotypic diversity and evolutionary relatedness of RSV strains in Bangladesh and provided pre-COVID molecular epidemiology data to understand better the COVID-19 impact on upcoming RSV epidemiology in Bangladesh.
Collapse
|
25
|
A multi-center study to determine genetic variations in the fusion gene of respiratory syncytial virus (RSV) from children <2 years of age in the U.S. J Clin Virol 2022; 154:105223. [DOI: 10.1016/j.jcv.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
|
26
|
Chen G, Lan M, Lin S, Zhang Y, Zhang D, Weng Y, Zheng K. Genome analysis of human respiratory syncytial virus in Fujian Province, Southeast China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105329. [PMID: 35788050 DOI: 10.1016/j.meegid.2022.105329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is one of the main causes of acute respiratory infections (ARI) leading to a heavy disease burden. Reports on RSV in China are limited, especially in Fujian Province, and RSV whole-genome sequences in Fujian Province are not reported. This study aimed to explore the genomic characteristics of RSV to provide evidence for the development of vaccines and medicines. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) was used to amplify and obtain the attachment (G) gene and whole-genome fragments from the positive samples. Genetic evolution as well as nucleotide and amino acid homology analyses of the virus sequences were conducted to identify any amino acid mutations. RESULTS A total of 72 RSV-positive cases were collected, and 53 G gene sequences were obtained using polymerase chain reaction (PCR) amplification. The ON1 and BA11 genotypes were found to be dominant using the Basic Local Alignment Search Tool (BLAST) on the NCBI website. The 40 genotype ON1 sequences had high nucleotide identity (95.3%-99.8%) and amino acid similarity (92.5%-100%), whereas the 13 BA11 genotype sequenceshad 97.3% - 99.6% nucleotide identity and 94.8% - 99.7% amino acid similarity. Compared to the ON1 prototype (JN257693) and BA11 prototype (AY333364), the obtained sequences had no nucleotide insertions or deletions, indicating high similarity among the samples. A total of 17 RSV whole genome sequences were obtained, 10 of which were genotype ON1 and seven were genotype BA11. Certain amino acid mutations were found in the antigen site and epitope of the fusion (F) protein but not in the G protein. Glycosylation analyses of specific RSV genes revealed high positive selection rates for the gene, and the N- and O-linked glycosylation sequences in the F gene were relatively conserved. CONCLUSIONS From July 2018 to January 2020, ON1 and BA11 were the most prevalent RSV genotypes in Fujian Province. A high nucleotide identity and amino acid similarity were observed between the reference strain and the obtained strains, as well as among the sequences of the obtained isotypes. Certain amino acid mutations occur at the antigen site and the epitope of the F protein.
Collapse
Affiliation(s)
- Guangmin Chen
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Meifang Lan
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Sixian Lin
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Yanhua Zhang
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Dongjuan Zhang
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Yuwei Weng
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China
| | - Kuicheng Zheng
- The Practice Base on the School of Public Health, Fujian Medical University, Fuzhou 350001, China; Fujian Provincial Center for Disease Control & Prevention, Fuzhou 350001, China; Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou 350001, China.
| |
Collapse
|
27
|
Multiple Respiratory Syncytial Virus (RSV) Strains Infecting HEp-2 and A549 Cells Reveal Cell Line-Dependent Differences in Resistance to RSV Infection. J Virol 2022; 96:e0190421. [PMID: 35285685 PMCID: PMC9006923 DOI: 10.1128/jvi.01904-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of pediatric acute respiratory infection worldwide. There are currently no approved vaccines or antivirals to combat RSV disease. A few transformed cell lines and two historic strains have been extensively used to study RSV. Here, we reported a thorough molecular and cell biological characterization of HEp-2 and A549 cells infected with one of four strains of RSV representing both major subgroups as well as historic and more contemporary genotypes (RSV/A/Tracy [GA1], RSV/A/Ontario [ON], RSV/B/18537 [GB1], and RSV/B/Buenos Aires [BA]) via measurements of viral replication kinetics and viral gene expression, immunofluorescence-based imaging of gross cellular morphology and cell-associated RSV, and measurements of host response, including transcriptional changes and levels of secreted cytokines and growth factors. IMPORTANCE Infection with the respiratory syncytial virus (RSV) early in life is essentially guaranteed and can lead to severe disease. Most RSV studies have involved either of two historic RSV/A strains infecting one of two cell lines, HEp-2 or A549 cells. However, RSV contains ample variation within two evolving subgroups (A and B), and HEp-2 and A549 cell lines are genetically distinct. Here, we measured viral action and host response in both HEp-2 and A549 cells infected with four RSV strains from both subgroups and representing both historic and more contemporary strains. We discovered a subgroup-dependent difference in viral gene expression and found A549 cells were more potently antiviral and more sensitive, albeit subtly, to viral variation. Our findings revealed important differences between RSV subgroups and two widely used cell lines and provided baseline data for experiments with model systems better representative of natural RSV infection.
Collapse
|
28
|
Tabatabai J, Ihling CM, Rehbein RM, Schnee SV, Hoos J, Pfeil J, Grulich-Henn J, Schnitzler P. Molecular epidemiology of respiratory syncytial virus in hospitalised children in Heidelberg, Southern Germany, 2014-2017. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105209. [PMID: 35032683 DOI: 10.1016/j.meegid.2022.105209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of hopitalisation in young children with respiratory tract infections (RTI). The aim of this research project was to analyse RSV genotypes and the diversification of RSV strains among hospitalised children in Heidelberg, Germany. METHODS We prospectively analysed nasopharyngeal swabs (NPS) from children who were hospitalised with acute RTI at the University Hospital Heidelberg, Germany, during winter seasons 2014 to 2017. RSV RT-PCR and RSV sequence analysis of the G gene coding for the attachment glycoprotein were performed. Clinical data was obtained using a standardised questionnaire. RESULTS RSV was detected in 405 out of 946 samples from hospitalised children. Most RSV positive children were below the age of two years (84.4%) and had a lower RTI (78.8%). The majority of RSV positive children was male, significantly younger than RSV negative children with a median age of 0.39 years and with more severe respiratory symptoms. Out of 405 positive samples, 317 RSV strains were successfully sub-grouped into RSV subtypes A (57.4%; 182/317) and B (42.6%; 135/317). Both RSV subtypes cocirculated in all analysed winter seasons. Phylogenetic analysis of 317 isolates revealed that the majority of RSV-A strains (180/182) belonged to the ON1 genotype, most RSV-B strains could be attributed to the BAIX genotype (132/135). ON1 and BAIX strains showed a sub-differentiation into different lineages and we were able to identify new (sub)genotypes. CONCLUSION Analysis of the molecular epidemiology of RSV from different seasons revealed the cocirculation and diversification of RSV genotypes ON1 and BAIX.
Collapse
Affiliation(s)
- J Tabatabai
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - C M Ihling
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Dr. von Haunersches Kinderspital, University Hospital of the LMU Munich, Munich, Germany
| | - R M Rehbein
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - S V Schnee
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany
| | - J Hoos
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - J Pfeil
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - J Grulich-Henn
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - P Schnitzler
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
29
|
Rios Guzman E, Hultquist JF. Clinical and biological consequences of respiratory syncytial virus genetic diversity. Ther Adv Infect Dis 2022; 9:20499361221128091. [PMID: 36225856 PMCID: PMC9549189 DOI: 10.1177/20499361221128091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common etiological agents of global acute respiratory tract infections with a disproportionate burden among infants, individuals over the age of 65, and immunocompromised populations. The two major subtypes of RSV (A and B) co-circulate with a predominance of either group during different epidemic seasons, with frequently emerging genotypes due to RSV's high genetic variability. Global surveillance systems have improved our understanding of seasonality, disease burden, and genomic evolution of RSV through genotyping by sequencing of attachment (G) glycoprotein. However, the integration of these systems into international infrastructures is in its infancy, resulting in a relatively low number (~2200) of publicly available RSV genomes. These limitations in surveillance hinder our ability to contextualize RSV evolution past current canonical attachment glycoprotein (G)-oriented understanding, thus resulting in gaps in understanding of how genetic diversity can play a role in clinical outcome, therapeutic efficacy, and the host immune response. Furthermore, utilizing emerging RSV genotype information from surveillance and testing the impact of viral evolution using molecular techniques allows us to establish causation between the clinical and biological consequences of arising genotypes, which subsequently aids in informed vaccine design and future vaccination strategy. In this review, we aim to discuss the findings from current molecular surveillance efforts and the gaps in knowledge surrounding the consequence of RSV genetic diversity on disease severity, therapeutic efficacy, and RSV-host interactions.
Collapse
Affiliation(s)
- Estefany Rios Guzman
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - Judd F. Hultquist
- Robert H. Lurie Medical Research Center,
Northwestern University, 9-141, 303 E. Superior St., Chicago, IL 60611,
USA
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| |
Collapse
|
30
|
Lee CY, Fang YP, Wang LC, Chou TY, Liu HF. Genetic Diversity and Molecular Epidemiology of Circulating Respiratory Syncytial Virus in Central Taiwan, 2008-2017. Viruses 2021; 14:v14010032. [PMID: 35062237 PMCID: PMC8777914 DOI: 10.3390/v14010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
In this study, we investigated the molecular evolution and phylodynamics of respiratory syncytial virus (RSV) over 10 consecutive seasons (2008–2017) and the genetic variability of the RSV genotypes ON1 and BA in central Taiwan. The ectodomain region of the G gene was sequenced for genotyping. The nucleotide and deduced amino acid sequences of the second hypervariable region of the G protein in RSV ON1 and BA were analyzed. A total of 132 RSV-A and 81 RSV-B isolates were obtained. Phylogenetic analysis revealed that the NA1, ON1, and BA9 genotypes were responsible for the RSV epidemics in central Taiwan in the study period. For RSV-A, the NA1 genotype predominated during the 2008–2011 seasons. The ON1 genotype was first detected in 2011 and replaced NA1 after 2012. For RSV-B, the BA9 and BA10 genotypes cocirculated from 2008 to 2010, but the BA9 genotype has predominated since 2012. Amino acid sequence alignments revealed the continuous evolution of the G gene in the ectodomain region. The predicted N-glycosylation sites were relatively conserved in the ON1 (site 237 and 318) and BA9 (site 296 and 310) genotype strains. Our results contribute to the understanding and prediction of the temporal evolution of RSV at the local level.
Collapse
Affiliation(s)
- Chun-Yi Lee
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.L.); (Y.-P.F.)
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Ping Fang
- Department of Pediatrics, Chang Bing Show Chwan Memorial Hospital, Changhua 505029, Taiwan; (C.-Y.L.); (Y.-P.F.)
| | - Li-Chung Wang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsin-Fu Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 25160, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan
- Correspondence:
| |
Collapse
|
31
|
Chen J, Qiu X, Avadhanula V, Shepard SS, Kim DK, Hixson J, Piedra PA, Bahl J. Novel and extendable genotyping system for human respiratory syncytial virus based on whole-genome sequence analysis. Influenza Other Respir Viruses 2021; 16:492-500. [PMID: 34894077 PMCID: PMC8983899 DOI: 10.1111/irv.12936] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/12/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Human respiratory syncytial virus (RSV) is one of the leading causes of respiratory infections, especially in infants and young children. Previous RSV sequencing studies have primarily focused on partial sequencing of G gene (200-300 nucleotides) for genotype characterization or diagnostics. However, the genotype assignment with G gene has not recapitulated the phylogenetic signal of other genes, and there is no consensus on RSV genotype definition. METHODS We conducted maximum likelihood phylogenetic analysis with 10 RSV individual genes and whole-genome sequence (WGS) that are published in GenBank. RSV genotypes were determined by using phylogenetic analysis and pair-wise node distances. RESULTS In this study, we first statistically examined the phylogenetic incongruence, rate variation for each RSV gene sequence and WGS. We then proposed a new RSV genotyping system based on a comparative analysis of WGS and the temporal distribution of strains. We also provide an RSV classification tool to perform RSV genotype assignment and a publicly accessible up-to-date instance of Nextstrain where the phylogenetic relationship of all genotypes can be explored. CONCLUSIONS This revised RSV genotyping system will provide important information for disease surveillance, epidemiology, and vaccine development.
Collapse
Affiliation(s)
- Jiani Chen
- Center for Ecology of Infectious Diseases, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Xueting Qiu
- Department of Infectious Disease, University of Georgia, Athens, GA, USA.,Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Samuel S Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Do-Kyun Kim
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - James Hixson
- Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - Pedro A Piedra
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Institute of Bioinformatics, University of Georgia, Athens, GA, USA.,Department of Infectious Disease, University of Georgia, Athens, GA, USA.,Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| |
Collapse
|
32
|
Next-generation sequencing of human respiratory syncytial virus subgroups A and B genomes. J Virol Methods 2021; 299:114335. [PMID: 34673119 DOI: 10.1016/j.jviromet.2021.114335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022]
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of acute respiratory illness in young children worldwide. Whole genome sequencing of HRSV offers enhanced resolution of strain variability for epidemiological surveillance and provides genomic information essential for antiviral and vaccine development. A 10-amplicon one-step RT-PCR assay and a 20-amplicon nested RT-PCR assay with enhanced sensitivity were developed to amplify whole HRSV genomes from samples containing high and low viral loads, respectively. Ninety-six HRSV-positive samples comprised of 58 clinical specimens and 38 virus isolates with Ct values ≤ 24 were amplified successfully using the 10-amplicon one-step RT-PCR method and multiplexed in a single MiSeq run. Genome coverage exceeded 99.3% for all 96 samples. The 20-amplicon nested RT-PCR NGS method was used to generate >99.6% HRSV full-length genome for 72 clinical specimens with Ct values ranging from 24 to 33. Phylogenetic analysis of the genome sequences obtained from the 130 clinical specimens revealed a wide diversity of HRSV genotypes demonstrating methodologic robustness.
Collapse
|
33
|
Langedijk AC, Harding ER, Konya B, Vrancken B, Lebbink RJ, Evers A, Willemsen J, Lemey P, Bont LJ. A systematic review on global RSV genetic data: Identification of knowledge gaps. Rev Med Virol 2021; 32:e2284. [PMID: 34543489 PMCID: PMC9285027 DOI: 10.1002/rmv.2284] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is a major health problem. A better understanding of the geographical and temporal dynamics of RSV circulation will assist in tracking resistance against therapeutics currently under development. Since 2015, the field of RSV molecular epidemiology has evolved rapidly with around 20–30 published articles per year. The objective of this systematic review is to identify knowledge gaps in recent RSV genetic literature to guide global molecular epidemiology research. We included 78 studies published between 2015 and 2020 describing 12,998 RSV sequences of which 8,233 (63%) have been uploaded to GenBank. Seventeen (22%) studies were performed in low‐ and middle‐income countries (LMICs), and seven (9%) studies sequenced whole‐genomes. Although most reported polymorphisms for monoclonal antibodies in clinical development (nirsevimab, MK‐1654) have not been tested for resistance in neutralisation essays, known resistance was detected at low levels for the nirsevimab and palivizumab binding site. High resistance was found for the suptavumab binding site. We present the first literature review of an enormous amount of RSV genetic data. The need for global monitoring of RSV molecular epidemiology becomes increasingly important in evaluating the effectiveness of monoclonal antibody candidates as they reach their final stages of clinical development. We have identified the following three knowledge gaps: whole‐genome data to study global RSV evolution, data from LMICs and data from global surveillance programs.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatrics, Division of Paediatric Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eline R Harding
- Department of Paediatrics, Division of Paediatric Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Burak Konya
- Department of Paediatrics, Division of Paediatric Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anouk Evers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joukje Willemsen
- Department of Paediatrics, Division of Paediatric Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Louis J Bont
- Department of Paediatrics, Division of Paediatric Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands.,ReSViNET Foundation, Zeist, The Netherlands
| |
Collapse
|
34
|
Lin GL, Drysdale SB, Snape MD, O’Connor D, Brown A, MacIntyre-Cockett G, Mellado-Gomez E, de Cesare M, Bonsall D, Ansari MA, Öner D, Aerssens J, Butler C, Bont L, Openshaw P, Martinón-Torres F, Nair H, Bowden R, Golubchik T, Pollard AJ. Distinct patterns of within-host virus populations between two subgroups of human respiratory syncytial virus. Nat Commun 2021; 12:5125. [PMID: 34446722 PMCID: PMC8390747 DOI: 10.1038/s41467-021-25265-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection in young children globally, but little is known about within-host RSV diversity. Here, we characterised within-host RSV populations using deep-sequencing data from 319 nasopharyngeal swabs collected during 2017-2020. RSV-B had lower consensus diversity than RSV-A at the population level, while exhibiting greater within-host diversity. Two RSV-B consensus sequences had an amino acid alteration (K68N) in the fusion (F) protein, which has been associated with reduced susceptibility to nirsevimab (MEDI8897), a novel RSV monoclonal antibody under development. In addition, several minor variants were identified in the antigenic sites of the F protein, one of which may confer resistance to palivizumab, the only licensed RSV monoclonal antibody. The differences in within-host virus populations emphasise the importance of monitoring for vaccine efficacy and may help to explain the different prevalences of monoclonal antibody-escape mutants between the two subgroups.
Collapse
Affiliation(s)
- Gu-Lung Lin
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Simon B. Drysdale
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK ,grid.4464.20000 0001 2161 2573Present Address: Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George’s, University of London, London, UK
| | - Matthew D. Snape
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O’Connor
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anthony Brown
- grid.4991.50000 0004 1936 8948Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - George MacIntyre-Cockett
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Esther Mellado-Gomez
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mariateresa de Cesare
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Bonsall
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,grid.4991.50000 0004 1936 8948Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M. Azim Ansari
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Deniz Öner
- grid.419619.20000 0004 0623 0341Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jeroen Aerssens
- grid.419619.20000 0004 0623 0341Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christopher Butler
- grid.4991.50000 0004 1936 8948Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Louis Bont
- grid.7692.a0000000090126352Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands ,ReSViNET Foundation, Zeist, Netherlands
| | - Peter Openshaw
- grid.7445.20000 0001 2113 8111National Heart and Lung Institute, Imperial College London, London, UK
| | - Federico Martinón-Torres
- grid.411048.80000 0000 8816 6945Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain ,grid.488911.d0000 0004 0408 4897Genetics, Vaccines, Infectious Diseases, and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Harish Nair
- grid.4305.20000 0004 1936 7988Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Rory Bowden
- grid.4991.50000 0004 1936 8948Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK ,grid.1042.7Present Address: Division of Advanced Technology and Biology, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC Australia
| | | | - Tanya Golubchik
- grid.4991.50000 0004 1936 8948Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J. Pollard
- grid.4991.50000 0004 1936 8948Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK ,grid.454382.cNIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
35
|
Jadhao SJ, Ha B, McCracken C, Gebretsadik T, Rosas-Salazar C, Chappell J, Das S, Hartert T, Anderson LJ. Performance evaluation of antibody tests for detecting infant respiratory syncytial virus infection. J Med Virol 2021; 93:3439-3445. [PMID: 33325064 PMCID: PMC8046717 DOI: 10.1002/jmv.26736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 12/12/2020] [Indexed: 11/12/2022]
Abstract
Respiratory syncytial virus (RSV) infection is a major cause of respiratory tract disease in young children and throughout life. Infant infection is also associated with later respiratory morbidity including asthma. With a prospective birth cohort study of RSV and asthma, we evaluated the performance of an RSV antibody enzyme-linked immunoassay (EIA) for detecting prior infant RSV infection. Infant RSV infection was determined by biweekly respiratory illness surveillance plus RSV polymerase chain reaction (PCR) testing in their first RSV season and serum RSV antibodies after the season at approximately 1 year of age. RSV antibodies were detected by RSV A and B lysate EIA. Antibody and PCR results on 1707 children included 327 RSV PCR positive (PCR+) and 1380 not RSV+. Of 327 PCR+ children, 314 (96%) were lysate EIA positive and 583 out of 1380 (42%) children not PCR+ were positive. We compared the lysate EIA to RSV F, group A G (Ga), and group B G (Gb) protein antibody EIAs in a subset of 226 sera, 118 PCR+ children (97 group A and 21 group B) and 108 not PCR+. In this subset, 117 out of 118 (99%) RSV PCR+ children were positive by both the F and lysate EIAs and 103 out of 118 (87%) were positive by the Ga and/or Gb EIAs. Comparison of the two G EIAs indicated the infecting group correctly in 100 out of 118 (86%) and incorrectly in 1 out of 118 (1%). The lysate and F EIAs are sensitive for detecting infant infection and the two G EIAs can indicate the group of an earlier primary infection.
Collapse
Affiliation(s)
- Samadhan J. Jadhao
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Binh Ha
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Courtney McCracken
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Tebeb Gebretsadik
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Christian Rosas-Salazar
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - James Chappell
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Suman Das
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tina Hartert
- Department of Medicine, Biostatistics and Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Larry J. Anderson
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Trovão NS, Khuri-Bulos N, Tan Y, Puri V, Shilts MH, Halpin RA, Fedorova NB, Nelson MI, Halasa N, Das SR. Molecular characterization of respiratory syncytial viruses circulating in a paediatric cohort in Amman, Jordan. Microb Genom 2021; 7:000292. [PMID: 31532357 PMCID: PMC8627666 DOI: 10.1099/mgen.0.000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial viruses (RSVs) are an important cause of mortality worldwide and a major cause of respiratory tract infections in children, driving development of vaccine candidates. However, there are large gaps in our knowledge of the local evolutionary and transmission dynamics of RSVs, particularly in understudied regions such as the Middle East. To address this gap, we sequenced the complete genomes of 58 RSVA and 27 RSVB samples collected in a paediatric cohort in Amman, Jordan, between 2010 and 2013. RSVA and RSVB co-circulated during each winter epidemic of RSV in Amman, and each epidemic comprised multiple independent viral introductions of RSVA and RSVB. However, RSVA and RSVB alternated in dominance across years, potential evidence of immunological interactions. Children infected with RSVA tended to be older than RSVB-infected children [30 months versus 22.4 months, respectively (P value = 0.02)], and tended to developed bronchopneumonia less frequently than those with RSVB, although the difference was not statistically significant (P value = 0.06). Differences in spatial patterns were investigated, and RSVA lineages were often identified in multiple regions in Amman, whereas RSVB introductions did not spread beyond a single region of the city, although these findings were based on small sample sizes. Multiple RSVA genotypes were identified in Amman, including GA2 viruses as well as three viruses from the ON1 sub-genotype that emerged in 2009 and are now the dominant genotype circulating worldwide. As vaccine development advances, further sequencing of RSV is needed to understand viral ecology and transmission, particularly in under-studied locations.
Collapse
Affiliation(s)
- Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Najwa Khuri-Bulos
- Division of Infectious Diseases, Department of Pediatrics, University of Jordan, Amman, Jordan
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Vinita Puri
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Meghan H. Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Rebecca A. Halpin
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Nadia B. Fedorova
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Natasha Halasa
- Departments of Pediatrics, Vanderbilt University, Nashville, TN, USA
| | - Suman R. Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| |
Collapse
|
37
|
Evolutionary analysis of human respiratory syncytial virus collected in Myanmar between 2015 and 2018. INFECTION GENETICS AND EVOLUTION 2021; 93:104927. [PMID: 34020068 DOI: 10.1016/j.meegid.2021.104927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/24/2022]
Abstract
We studied genetic variation in the second hypervariable region (HVR) of the G gene of human respiratory syncytial virus (HRSV) from 1701 nasal swab samples collected from outpatients with acute respiratory infections at two general hospitals in the cities Yangon and Pyinmana in Myanmar from 2015 to 2018. HRSV genotypes were characterized using phylogenetic trees constructed using the maximum likelihood method. Time-scale phylogenetic tree analyses were performed using the Bayesian Markov chain Monte Carlo method. In total, 244 (14.3%) samples were HRSV-positive and were classified as HRSV-A (n = 84, 34.4%), HRSV-B (n = 158, 64.8%), and co-detection of HRSV-A/HRSV-B (n = 2, 0.8%). HRSV epidemics occurred seasonally between July (1.9%, 15/785) and August (10.5%, 108/1028), with peak infections in September (35.8%, 149/416) and October (58.2%, 89/153). HRSV infection rate was higher in children ≥1 year of age than in those <1 year of age (70.5% vs. 29.5%). The most common HRSV symptoms in children were cough (80%-90%) and rhinorrhea (70%-100%). The predominant genotypes were ON1for HRSV-A (78%) and BA9 for HRSV-B (64%). Time to the most recent common ancestor was 2014 (95% highest posterior density [HPD], 2012-2015) for HRSV-A ON1 and 2009 (95% HPD, 2004-2012) for HRSV-B BA9. The mean evolutionary rate (substitutions/site/year) for HRSV-B (2.12 × 10-2, 95% HPD, 8.53 × 10-3-3.63 × 10-2) was slightly higher than that for HRSV-A (1.39 × 10-2, 95% HPD, 6.03 × 10-3-2.12 × 10-2). The estimated effective population size (diversity) for HRSV-A increased from 2015 to 2016 and declined in mid-2018, whereas HRSV-B diversity was constant in 2015 and 2016 and increased in mid-2017. In conclusion, the dominant HRSV-A and HRSV-B genotypes in Myanmar were ON1 and BA9, respectively, between 2015 and 2018. HRSV-B evolved slightly faster than HRSV-A and exhibited unique phylogenetic characteristics.
Collapse
|
38
|
Todd AK, Costa AM, Waller G, Daley AJ, Barr IG, Deng YM. Rapid detection of human respiratory syncytial virus A and B by duplex real-time RT-PCR. J Virol Methods 2021; 294:114171. [PMID: 33984394 DOI: 10.1016/j.jviromet.2021.114171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Respiratory syncytial virus (RSV) is a common cause of acute respiratory disease worldwide, especially in young children. The World Health Organization (WHO) has initiated an RSV Surveillance Pilot program that aims to perform worldwide RSV surveillance, requiring the development of reliable and rapid molecular methods to detect and identify RSV. A duplex real-time RT-PCR assay developed for simultaneous detection of both A and B subtypes of RSV was included as part of this program. This duplex assay targeted a conserved region of the RSV polymerase gene and was validated for analytical sensitivity, specificity, reproducibility and clinical performance with a wide range of respiratory specimens. The assay was highly specific for RSV and did not react with non-RSV respiratory pathogens, including the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Angela K Todd
- WHO Collaborating Centre for Reference and Research on Influenza, Victoria Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Elizabeth Street, Melbourne, VIC, Australia
| | - Anna-Maria Costa
- Department of Microbiology, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, VIC, Australia
| | - Gregory Waller
- Department of Microbiology, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, VIC, Australia
| | - Andrew J Daley
- Department of Microbiology, Royal Children's Hospital, Flemington Road, Parkville, Melbourne, VIC, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victoria Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Elizabeth Street, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Victoria Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Elizabeth Street, Melbourne, VIC, Australia.
| |
Collapse
|
39
|
Teirlinck AC, Broberg EK, Berg AS, Campbell H, Reeves RM, Carnahan A, Lina B, Pakarna G, Bøås H, Nohynek H, Emborg HD, Nair H, Reiche J, Oliva JA, Gorman JO, Paget J, Szymanski K, Danis K, Socan M, Gijon M, Rapp M, Havlíčková M, Trebbien R, Guiomar R, Hirve SS, Buda S, van der Werf S, Meijer A, Fischer TK. Recommendations for respiratory syncytial virus surveillance at national level. Eur Respir J 2021; 58:13993003.03766-2020. [PMID: 33888523 PMCID: PMC8485062 DOI: 10.1183/13993003.03766-2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infections and hospitalisations among young children and is globally responsible for many deaths in young children, especially in infants aged <6 months. Furthermore, RSV is a common cause of severe respiratory disease and hospitalisation among older adults. The development of new candidate vaccines and monoclonal antibodies highlights the need for reliable surveillance of RSV. In the European Union (EU), no up-to-date general recommendations on RSV surveillance are currently available. Based on outcomes of a workshop with 29 European experts in the field of RSV virology, epidemiology and public health, we provide recommendations for developing a feasible and sustainable national surveillance strategy for RSV that will enable harmonisation and data comparison at the European level. We discuss three surveillance components: active sentinel community surveillance, active sentinel hospital surveillance and passive laboratory surveillance, using the EU acute respiratory infection and World Health Organization (WHO) extended severe acute respiratory infection case definitions. Furthermore, we recommend the use of quantitative reverse transcriptase PCR-based assays as the standard detection method for RSV and virus genetic characterisation, if possible, to monitor genetic evolution. These guidelines provide a basis for good quality, feasible and affordable surveillance of RSV. Harmonisation of surveillance standards at the European and global level will contribute to the wider availability of national level RSV surveillance data for regional and global analysis, and for estimation of RSV burden and the impact of future immunisation programmes. Recommendations for developing a feasible and sustainable national surveillance strategy for respiratory syncytial virus that will enable harmonisation and data comparison at the European level.https://bit.ly/3rWUOOI
Collapse
Affiliation(s)
- Anne C Teirlinck
- National Institute for Public Health and the Environment (RIVM) - Centre for Infectious Disease Control, Bilthoven, the Netherlands
| | - Eeva K Broberg
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | | | | | | | | | | | - Håkon Bøås
- Norwegian Institute of Public Health, Oslo, Norway
| | - Hanna Nohynek
- Finnish National Institute for Health and Welfare, Finland
| | | | - Harish Nair
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | - Jesus Angel Oliva
- Instituto de Salud Carlos III Madrid, CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - John Paget
- Netherlands Institute for Health Services Research (Nivel), Utrecht, the Netherlands
| | | | - Kostas Danis
- Santé publique France (SpFrance), the French national public health agency, Saint-Maurice, France
| | - Maja Socan
- Public Health Institute, Ljubljana, Slovenia
| | | | - Marie Rapp
- Public Health Agency Stockholm, Solna, Sweden
| | | | | | | | | | | | | | - Adam Meijer
- National Institute for Public Health and the Environment (RIVM) - Centre for Infectious Disease Control, Bilthoven, the Netherlands
| | - Thea K Fischer
- Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Research, Nordsjaellands Hospital, Hilleroed, Denmark and Department of Global Health and Infectious Diseases, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
40
|
Fall A, Elawar F, Hodcroft EB, Jallow MM, Toure CT, Barry MA, Kiori DE, Sy S, Diaw Y, Goudiaby D, Niang MN, Dia N. Genetic diversity and evolutionary dynamics of respiratory syncytial virus over eleven consecutive years of surveillance in Senegal. INFECTION GENETICS AND EVOLUTION 2021; 91:104864. [PMID: 33866019 DOI: 10.1016/j.meegid.2021.104864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Senegal.
| | - Farah Elawar
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Emma B Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Mamadou Malado Jallow
- Virology Department, Institute Pasteur of Dakar, Senegal; University Cheikh Anta Diop of Dakar, Senegal.
| | - Cheikh Talibouya Toure
- Virology Department, Institute Pasteur of Dakar, Senegal; University Cheikh Anta Diop of Dakar, Senegal.
| | - Mamadou A Barry
- Unit Epidemiology of Infectious Diseases, Institute Pasteur of Dakar, Senegal.
| | | | - Sara Sy
- Virology Department, Institute Pasteur of Dakar, Senegal.
| | - Yague Diaw
- Virology Department, Institute Pasteur of Dakar, Senegal.
| | | | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Senegal.
| |
Collapse
|
41
|
Carbonell-Estrany X, Rodgers-Gray BS, Paes B. Challenges in the prevention or treatment of RSV with emerging new agents in children from low- and middle-income countries. Expert Rev Anti Infect Ther 2020; 19:419-441. [PMID: 32972198 DOI: 10.1080/14787210.2021.1828866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) causes approximately 120,000 deaths annually in children <5 years, with 99% of fatalities occurring in low- and middle-income countries (LMICs). AREAS COVERED There are numerous RSV interventions in development, including long-acting monoclonal antibodies, vaccines (maternal and child) and treatments which are expected to become available soon. We reviewed the key challenges and issues that need to be addressed to maximize the impact of these interventions in LMICs. The epidemiology of RSV in LMICs was reviewed (PubMed search to 30 June 2020 inclusive) and the need for more and better-quality data, encompassing hospital admissions, community contacts, and longer-term respiratory morbidity, emphasized. The requirement for an agreed clinical definition of RSV lower respiratory tract infection was proposed. The pros and cons of the new RSV interventions are reviewed from the perspective of LMICs. EXPERT OPINION We believe that a vaccine (or combination of vaccines, if practicable) is the only viable solution to the burden of RSV in LMICs. A coordinated program, analogous to that with polio, involving governments, non-governmental organizations, the World Health Organization, the manufacturers and the healthcare community is required to realize the full potential of vaccine(s) and end the devastation of RSV in LMICs.
Collapse
Affiliation(s)
- Xavier Carbonell-Estrany
- Neonatology Service, Hospital Clinic, Institut d'Investigacions Biomediques August Pi Suñer (IDIBAPS), Barcelona, Spain
| | | | - Bosco Paes
- Department of Pediatrics (Neonatal Division), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
42
|
Dominance of the ON1 Genotype of RSV-A and BA9 Genotype of RSV-B in Respiratory Cases from Jeddah, Saudi Arabia. Genes (Basel) 2020; 11:genes11111323. [PMID: 33182267 PMCID: PMC7695323 DOI: 10.3390/genes11111323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
Human respiratory syncytial virus (HRSV) is a main cause of hospital admission for lower respiratory tract infection. In previous studies from Saudi Arabia, higher prevalence of the NA1 genotype in group A was observed from Riyadh and Taif. This study recruited respiratory cases from Jeddah during January to December, 2017. RSV represented 13.4% in the recruited cases with 64% of them belonging to group A and 36% to group B. All group A cases in this study were ON1 type characterized by duplication of 72 nucleotides, 24 amino acids in the C-terminal in the second hypervariable region of the G gene. In addition, for group B all of the cases were clustered under BA9, which had uniquely characterized as duplication of 60 nucleotides in the G protein. Our sequences showed similarity with earlier sequences from Saudi Arabia, Kuwait, Thailand, South Africa, Spain, the USA and Cyprus. Some amino acid substitutions in the investigated sequences would cause a change in potential O-glycosylation and N-glycosylation profiles from prototype ON1. The predominance of the ON1 and BA9 genotype of RSV-A in Jeddah compared to previous Saudi studies showing predominance of the NA1 genotype for group A. This difference in genotype prevalence could be due to fast spread of the ON1 genotype worldwide or due to the flux of travelers through Jeddah during hajj/umrah compared to Riyadh and Taif. This shift in genotype distribution requires continuous surveillance for genetic characterization of circulating respiratory infections including RSV. These findings may contribute to the understanding of RSV evolution and to the potential development of a vaccine against RSV.
Collapse
|
43
|
Malekshahi SS, Samieipour Y, Rahbarimanesh AA, Izadi A, Ghavami N, Razaghipour S, Naseri M, Mokhtari-Azad T, Salimi V. Genetic characterization of G protein in respiratory syncytial virus ON-1 genotype in Tehran. Future Virol 2020. [DOI: 10.2217/fvl-2019-0152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Aim: We investigated the genetic characterization of the respiratory syncytial virus (RSV) ON-1 genotypes and their different lineages based on the G gene among children <2 years of age presenting with acute respiratory tract infections in Tehran, Iran. Materials & methods: A phylogenetic tree from the Iranian samples and ON-1 strains of various parts of the world were constructed. The amino acid composition of the RSV G protein of the ON-1 genotype was mapped. Results: Human RSV ON-1 genotypes from the Iranian samples clustered in three lineages. The most common amino acid substitutions were as follows: X218Q, I240S, L289P, Y304H and L310P. Conclusion: Continuing molecular epidemiological surveys in other regions of Iran will provide deeper insight into the nature of this replacement of the dominant RSV genotype from GA2 to ON-1 in Iran.
Collapse
Affiliation(s)
| | - Yazdan Samieipour
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Anahita Izadi
- Bahrami Children Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Ghavami
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Razaghipour
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Naseri
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Rennick LJ, Nambulli S, Lemon K, Olinger GY, Crossland NA, Millar EL, Duprex WP. Recombinant subtype A and B human respiratory syncytial virus clinical isolates co-infect the respiratory tract of cotton rats. J Gen Virol 2020; 101:1056-1068. [PMID: 32723429 DOI: 10.1099/jgv.0.001471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is an important respiratory pathogen causing a spectrum of illness, from common cold-like symptoms, to bronchiolitis and pneumonia requiring hospitalization in infants, the immunocompromised and the elderly. HRSV exists as two antigenic subtypes, A and B, which typically cycle biannually in separate seasons. There are many unresolved questions in HRSV biology regarding the interactions and interplay of the two subtypes. Therefore, we generated a reverse genetics system for a subtype A HRSV from the 2011 season (A11) to complement our existing subtype B reverse genetics system. We obtained the sequence (HRSVA11) directly from an unpassaged clinical sample and generated the recombinant (r) HRSVA11. A version of the virus expressing enhanced green fluorescent protein (EGFP) from an additional transcription unit in the fifth (5) position of the genome, rHRSVA11EGFP(5), was also generated. rHRSVA11 and rHRSVA11EGFP(5) grew comparably in cell culture. To facilitate animal co-infection studies, we derivatized our subtype B clinical isolate using reverse genetics toexpress the red fluorescent protein (dTom)-expressing rHRSVB05dTom(5). These viruses were then used to study simultaneous in vivo co-infection of the respiratory tract. Following intranasal infection, both rHRSVA11EGFP(5) and rHRSVB05dTom(5) infected cotton rats targeting the same cell populations and demonstrating that co-infection occurs in vivo. The implications of this finding on viral evolution are important since it shows that inter-subtype cooperativity and/or competition is feasible in vivo during the natural course of the infection.
Collapse
Affiliation(s)
- Linda J Rennick
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Sham Nambulli
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Ken Lemon
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, BT7 9BL, UK
| | - Grace Y Olinger
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nicholas A Crossland
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
| | - Emma L Millar
- School of Medicine, Dentistry and Biomedical Sciences, The Queen's University of Belfast, Belfast, Northern Ireland, BT7 9BL, UK
| | - W Paul Duprex
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
45
|
Thielen BK, Bye E, Wang X, Maroushek S, Friedlander H, Bistodeau S, Christensen J, Reisdorf E, Shilts MH, Martin K, Como-Sabetti K, Strain AK, Ferrieri P, Lynfield R. Summer Outbreak of Severe RSV-B Disease, Minnesota, 2017 Associated with Emergence of a Genetically Distinct Viral Lineage. J Infect Dis 2020; 222:288-297. [PMID: 32083677 PMCID: PMC7323494 DOI: 10.1093/infdis/jiaa075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 02/16/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) typically causes winter outbreaks in temperate climates. During summer 2017, the Minnesota Department of Health received a report of increased cases of severe RSV-B infection. METHODS We compared characteristics of summer 2017 cases with those of 2014-2018 summers. To understand the genetic relatedness among viruses, we performed high-throughput sequencing of RSV from patients with a spectrum of illness from sites in Minnesota and Wisconsin. RESULTS From May to September 2017, 58 RSV cases (43 RSV-B) were reported compared to 20-29 cases (3-7 RSV-B) during these months in other years. Median age and frequency of comorbidities were similar, but 55% (24/43) were admitted to the ICU in 2017 compared to 12% in preceding 3 years (odds ratio, 4.84, P < .01). Sequencing was performed on 137 specimens from March 2016 to March 2018. Outbreak cases formed a unique clade sharing a single conserved nonsynonymous change in the SH gene. We observed increased cases during the following winter season, when the new lineage was the predominant strain. CONCLUSIONS We identified an outbreak of severe RSV-B disease associated with a new genetic lineage among urban Minnesota children during a time of expected low RSV circulation.
Collapse
Affiliation(s)
- Beth K Thielen
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Erica Bye
- Minnesota Department of Health, St Paul, Minnesota, USA
| | - Xiong Wang
- Minnesota Department of Health, St Paul, Minnesota, USA
| | | | | | | | | | - Erik Reisdorf
- Wisconsin State Laboratory of Hygiene, Madison, Wisconsin, USA
| | - Meghan H Shilts
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Karen Martin
- Minnesota Department of Health, St Paul, Minnesota, USA
| | | | - Anna K Strain
- Minnesota Department of Health, St Paul, Minnesota, USA
| | - Patricia Ferrieri
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ruth Lynfield
- Minnesota Department of Health, St Paul, Minnesota, USA
| |
Collapse
|
46
|
Disease severity of respiratory syncytial virus (RSV) infection correlate to a novel set of five amino acid substitutions in the RSV attachment glycoprotein (G) in China. Virus Res 2020; 281:197937. [PMID: 32194139 DOI: 10.1016/j.virusres.2020.197937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 11/23/2022]
Abstract
Human respiratory syncytial virus (RSV) is one of the major viruses of acute respiratory tract disease among infants and young children. We performed molecular epidemiology analysis of RSV among inpatient children in Guangzhou, China. Phylogenetic and Bayesian analysis showed that genotype ON1 was the only subgroup A virus in this study. Interestingly, the majority of Guangzhou ON1 strains formed a well-supported cluster, and these strains shared a novel set of five amino acid substitutions that never illustrated before. Furthermore, the degree of disease severity was assessed using a severity scoring system. The patients carrying the novel RSV A strain were associated with milder respiratory symptoms compared to other RSV A positives. In conclusion, a specific set of five amino acid substitutions was found in China and further analysis showed that disease severity was associated with these alterations. These findings will provide valuable information for the pathogenic mechanism and vaccine development of RSV.
Collapse
|
47
|
Lhomme S, Nicot F, Jeanne N, Dimeglio C, Roulet A, Lefebvre C, Carcenac R, Manno M, Dubois M, Peron JM, Alric L, Kamar N, Abravanel F, Izopet J. Insertions and Duplications in the Polyproline Region of the Hepatitis E Virus. Front Microbiol 2020; 11:1. [PMID: 32082274 PMCID: PMC7004952 DOI: 10.3389/fmicb.2020.00001] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
Recombinant strains of hepatitis E virus (HEV) with insertions of human genomic fragments or HEV sequence duplications in the sequence encoding the polyproline region (PPR) were previously described in chronically infected patients. Such genomic rearrangements confer a replicative advantage in vitro but little is known about their frequency, location, or origin. As the sequences of only a few virus genomes are available, we analyzed the complete genomes of 114 HEV genotype 3 strains from immunocompromised (n = 85) and immunocompetent (n = 29) patients using the single molecular real-time sequencing method to determine the frequency, location, and origin of inserted genomic fragments, plus the proportions of variants with genomic rearrangements in each virus quasispecies. We also examined the amino acid compositions and post-translational modifications conferred by these rearrangements by comparing them to sequences without human gene insertions or HEV gene duplications. We found genomic rearrangements in 7/114 (6.1%) complete genome sequences (4 HEV-3f, 1 HEV-3e, 1 HEV-3 h, and 1 HEV-3chi-new), all from immunocompromised patients, and 3/7 were found at the acute phase of infection. Six of the seven patients harbored virus-host recombinant variants, including one patient with two different recombinant variants. We also detected three recombinant variants with genome duplications of the PPR or PPR + X domains in a single patient. All the genomic rearrangements (seven human fragment insertions of varying origins and three HEV genome duplications) occurred in the PPR. The sequences with genomic rearrangements had specific characteristics: increased net load (p < 0.001) and more ubiquitination (p < 0.001), phosphorylation (p < 0.001), and acetylation (p < 0.001) sites. The human fragment insertions and HEV genome duplications had slightly different characteristics. We believe this is the first description of HEV strains with genomic rearrangements in patients at the acute phase of infection; perhaps these strains are directly transmitted. Clearly, genomic rearrangements produce a greater net load with duplications and insertions having different features. Further studies are needed to clarify the mechanisms by which such modifications influence HEV replication.
Collapse
Affiliation(s)
- Sébastien Lhomme
- Laboratoire de Virologie, Centre National de Référence du virus de l'hépatite E, Hôpital Purpan, CHU de Toulouse, Toulouse, France.,INSERM, U1043, Toulouse, France.,Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Florence Nicot
- Laboratoire de Virologie, Centre National de Référence du virus de l'hépatite E, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Nicolas Jeanne
- Laboratoire de Virologie, Centre National de Référence du virus de l'hépatite E, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Chloé Dimeglio
- Laboratoire de Virologie, Centre National de Référence du virus de l'hépatite E, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Alain Roulet
- Plateforme Génomique, Centre INRA Occitanie-Toulouse, Castanet-Tolosan, France
| | - Caroline Lefebvre
- Laboratoire de Virologie, Centre National de Référence du virus de l'hépatite E, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Romain Carcenac
- Laboratoire de Virologie, Centre National de Référence du virus de l'hépatite E, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Maxime Manno
- Plateforme Génomique, Centre INRA Occitanie-Toulouse, Castanet-Tolosan, France
| | - Martine Dubois
- Laboratoire de Virologie, Centre National de Référence du virus de l'hépatite E, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Jean-Marie Peron
- Service de Gastroentérologie, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Laurent Alric
- Service de médecine interne, Hôpital Purpan, CHU de Toulouse, Toulouse, France
| | - Nassim Kamar
- INSERM, U1043, Toulouse, France.,Université Toulouse III-Paul Sabatier, Toulouse, France.,Service de néphrologie, Dialyse et Transplantation d'Organe, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | - Florence Abravanel
- Laboratoire de Virologie, Centre National de Référence du virus de l'hépatite E, Hôpital Purpan, CHU de Toulouse, Toulouse, France.,INSERM, U1043, Toulouse, France.,Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Jacques Izopet
- Laboratoire de Virologie, Centre National de Référence du virus de l'hépatite E, Hôpital Purpan, CHU de Toulouse, Toulouse, France.,INSERM, U1043, Toulouse, France.,Université Toulouse III-Paul Sabatier, Toulouse, France
| |
Collapse
|
48
|
Piedra FA, Qiu X, Teng MN, Avadhanula V, Machado AA, Kim DK, Hixson J, Bahl J, Piedra PA. Non-gradient and genotype-dependent patterns of RSV gene expression. PLoS One 2020; 15:e0227558. [PMID: 31923213 PMCID: PMC6953876 DOI: 10.1371/journal.pone.0227558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a nonsegmented negative-strand RNA virus (NSV) and a leading cause of severe lower respiratory tract illness in infants and the elderly. Transcription of the ten RSV genes proceeds sequentially from the 3’ promoter and requires conserved gene start (GS) and gene end (GE) signals. Previous studies using the prototypical GA1 genotype Long and A2 strains have indicated a gradient of gene transcription extending across the genome, with the highest level of mRNA coming from the most promoter-proximal gene, the first nonstructural (NS1) gene, and mRNA levels from subsequent genes dropping until reaching a minimum at the most promoter-distal gene, the polymerase (L) gene. However, recent reports show non-gradient levels of mRNA, with higher than expected levels from the attachment (G) gene. It is unknown to what extent different transcript stabilities might shape measured mRNA levels. It is also unclear whether patterns of RSV gene expression vary, or show strain- or genotype-dependence. To address this, mRNA abundances from five RSV genes were measured by quantitative real-time PCR (qPCR) in three cell lines and in cotton rats infected with RSV isolates belonging to four genotypes (GA1, ON, GB1, BA). Relative mRNA levels reached steady-state between four and 24 hours post-infection. Steady-state patterns were non-gradient and genotype-specific, where mRNA levels from the G gene exceeded those from the more promoter-proximal nucleocapsid (N) gene across isolates. Transcript stabilities could not account for the non-gradient patterns observed, indicating that relative mRNA levels more strongly reflect transcription than decay. Our results indicate that gene expression from a small but diverse set of RSV genotypes is non-gradient and genotype-dependent. We propose novel models of RSV transcription that can account for non-gradient transcription.
Collapse
Affiliation(s)
- Felipe-Andrés Piedra
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| | - Xueting Qiu
- Center for the Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Michael N. Teng
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, United States of America
| | - Vasanthi Avadhanula
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Annette A. Machado
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Do-Kyun Kim
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, United States of America
| | - James Hixson
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX, United States of America
| | - Justin Bahl
- Center for the Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, Singapore
| | - Pedro A. Piedra
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
49
|
Al-Hassinah S, Parveen S, Somily AM, AlSaadi MM, Alamery SF, Haq SH, Alsenaidy HA, Ahmed A. Evolutionary analysis of the ON1 genotype of subtype a respiratory syncytial virus in Riyadh during 2008-16. INFECTION GENETICS AND EVOLUTION 2019; 79:104153. [PMID: 31881360 DOI: 10.1016/j.meegid.2019.104153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 12/20/2019] [Indexed: 01/07/2023]
Abstract
Respiratory syncytial virus is a leading cause of acute respiratory tract infection (ARI) in children worldwide. Limited information is available on molecular epidemiology of respiratory syncytial virus (RSV) from Saudi Arabia. An attempt was made to identify and characterize RSV strains in nasopharyngeal aspirates collected from hospitalized symptomatic ARI pediatric patients with <5 years of age from Riyadh, Saudi Arabia during 2016. All the samples (n = 100) were tested for RSV by real time PCR. The RSV strains were characterized by sequencing of the second hypervariable region of G protein gene. The study sequences along with the previously reported strains from Saudi Arabia were assessed for mutational, glycosylation, phylogenetic, selection pressure and entropy analyses. Fifty percent of the nasopharyngeal aspirates were positive for RSV. The RSVA (72%) predominated as compared to RSVB (24%) during the study. The study RSVA strains (n = 29) clustered into NA1 and ON1 genotypes whereas all the RSVB sequences (n = 5) were in BA genotype by phylogenetic analysis. Interestingly, 97% of RSVA sequences (n =28) clustered into ON1 genotype with 72 bp duplication in the G protein gene. Numerous mutations, variable N-/O-glycosylation sites and purifying selections were observed in the ON1 genotype. Positive selection with high entropy value was observed for three codons in ON1 (247, 262 and 274 amino acids) indicating higher probability of variations at these positions. Our study shows the progressive emergence and predominance of the ON1 genotype in Riyadh, Saudi Arabia during 2008-16. ON1 genotype almost replaced the previously circulating RSVA strains in this region during this period. Contribution of host genetic and immune factors towards disease severity of the ON1 genotype needs to be investigated in future studies. RSV surveillance in future elaborate investigations are needed in this region to understand its disease burden, evolutionary trajectory and circulation dynamics warranting steps towards vaccine development.
Collapse
Affiliation(s)
- Sarah Al-Hassinah
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ali M Somily
- Department of Microbiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Muslim Mohammed AlSaadi
- Department of Pediatrics, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Salman Fareeh Alamery
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia; Centre of Excellence in Biotechnology Research, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samina Haider Haq
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia; Centre of Excellence in Biotechnology Research, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
50
|
Muñoz-Escalante JC, Comas-García A, Bernal-Silva S, Robles-Espinoza CD, Gómez-Leal G, Noyola DE. Respiratory syncytial virus A genotype classification based on systematic intergenotypic and intragenotypic sequence analysis. Sci Rep 2019; 9:20097. [PMID: 31882808 PMCID: PMC6934736 DOI: 10.1038/s41598-019-56552-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022] Open
Abstract
Respiratory syncytial virus (RSV), a leading cause of lower respiratory tract infections, is classified in two major groups (A and B) with multiple genotypes within them. Continuous changes in spatiotemporal distribution of RSV genotypes have been recorded since the identification of this virus. However, there are no established criteria for genotype definition, which affects the understanding of viral evolution, immunity, and development of vaccines. We conducted a phylogenetic analysis of 4,353 RSV-A G gene ectodomain sequences, and used 1,103 complete genome sequences to analyze the totallity of RSV-A genes. Intra- and intergenotype p-distance analysis and identification of molecular markers associated to specific genotypes were performed. Our results indicate that previously reported genotypes can be classified into nine distinct genotypes: GA1-GA7, SAA1, and NA1. We propose the analysis of the G gene ectodomain with a wide set of reference sequences of all genotypes for an accurate genotype identification.
Collapse
Affiliation(s)
- Juan Carlos Muñoz-Escalante
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Andreu Comas-García
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Center for Research in Biomedicine and Health Sciences, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sofía Bernal-Silva
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Center for Research in Biomedicine and Health Sciences, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Guillermo Gómez-Leal
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel E Noyola
- Microbiology Department, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|