1
|
Aziz M, Chaudry IH, Wang P. Extracellular Cold-Inducible RNA-Binding Protein: Progress from Discovery to Present. Int J Mol Sci 2025; 26:3524. [PMID: 40332009 PMCID: PMC12026706 DOI: 10.3390/ijms26083524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) is a critical damage-associated molecular pattern (DAMP) that drives inflammation and tissue injury in hemorrhagic and septic shock, and has emerged as a promising therapeutic target. Since then, extensive research using preclinical models of diseases and patient materials has explored eCIRP's role in driving inflammatory responses and its potential as a biomarker. The main objective of this comprehensive review is to provide a detailed overview of eCIRP, covering its discovery, role in disease pathophysiology, mechanisms of release and action, potential as a biomarker, and therapeutic strategies targeting eCIRP in preclinical models of inflammatory and ischemic diseases. We examine the molecular, cellular, and immunological mechanisms through which eCIRP contributes to disease progression, and explore both well-established and emerging areas of research. Furthermore, we discuss potential therapeutic strategies targeting eCIRP across a broad spectrum of inflammatory conditions, including shock, ischemia-reperfusion injury, neurodegenerative diseases, and radiation injury.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Manhasset, NY 11030, USA
| | - Irshad H. Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA;
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine, Manhasset, NY 11030, USA
| |
Collapse
|
2
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Wang T, Wang M, Liu W, Zhang L, Zhang J, Zhao J, Wu Z, Lyu Y, Wu R. Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice. Int J Mol Med 2025; 55:42. [PMID: 39791211 PMCID: PMC11758893 DOI: 10.3892/ijmm.2025.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism. The overall involvement of CIRP in liver regeneration and injury after hepatectomy was evaluated in CIRP‑deficient mice. C23, an antagonist of extracellular CIRP, was used to assess the effect of extracellular CIRP on liver regeneration and injury after hepatectomy. CIRP overexpression and short hairpin RNA plasmids were transfected into HepG2 cells to study the effect of intracellular CIRP on cell proliferation. The effects of extracellular CIRP on cell proliferation and injury were determined via the use of recombinant CIRP protein to stimulate HepG2 cells in vitro. The results indicated that both hepatic and serum CIRP levels significantly increased after partial hepatectomy. Additionally, CIRP deficiency impaired liver regeneration but alleviated liver injury after partial hepatectomy in mice. C23 administration attenuated liver injury and suppressed endoplasmic reticulum (ER) stress and oxidative stress. Loss‑ and gain‑of‑function analyses in HepG2 cells indicated that an increase in intracellular CIRP promoted cell proliferation via signal transducers and activation of transcription 3 (STAT3) signaling pathway activation. Moreover, recombinant CIRP had no effect on cell proliferation or STAT3 phosphorylation but induced ER stress, which was blocked by TAK242, an inhibitor of Toll‑like receptor 4 (TLR4), in HepG2 cells. Taken together, the results of the present study demonstrated that intracellular CIRP promotes liver regeneration by activating the STAT3 pathway, whereas extracellular CIRP induces ER stress possibly via the TLR4 signaling pathway after hepatectomy.
Collapse
Affiliation(s)
- Tao Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mengzhou Wang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wuming Liu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Zhang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Junzhou Zhao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yi Lyu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
4
|
Lapin D, Sharma A, Wang P. Extracellular cold-inducible RNA-binding protein in CNS injury: molecular insights and therapeutic approaches. J Neuroinflammation 2025; 22:12. [PMID: 39838468 PMCID: PMC11752631 DOI: 10.1186/s12974-025-03340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Central nervous system (CNS) injuries, such as ischemic stroke (IS), intracerebral hemorrhage (ICH) and traumatic brain injury (TBI), are a significant global burden. The complex pathophysiology of CNS injury is comprised of primary and secondary injury. Inflammatory secondary injury is incited by damage-associated molecular patterns (DAMPs) which signal a variety of resident CNS cells and infiltrating immune cells. Extracellular cold-inducible RNA-binding protein (eCIRP) is a DAMP which acts through multiple immune and non-immune cells to promote inflammation. Despite the well-established role of eCIRP in systemic and sterile inflammation, its role in CNS injury is less elucidated. Recent literature suggests that eCIRP is a pleiotropic inflammatory mediator in CNS injury. eCIRP is also being evaluated as a clinical biomarker to indicate prognosis in CNS injuries. This review provides a broad overview of CNS injury, with a focus on immune-mediated secondary injury and neuroinflammation. We then review what is known about eCIRP in CNS injury, and its known mechanisms in both CNS and non-CNS cells, identifying opportunities for further study. We also explore eCIRP's potential as a prognostic marker of CNS injury severity and outcome. Next, we provide an overview of eCIRP-targeting therapeutics and suggest strategies to develop these agents to ameliorate CNS injury. Finally, we emphasize exploring novel molecular mechanisms, aside from neuroinflammation, by which eCIRP acts as a critical mediator with significant potential as a therapeutic target and prognostic biomarker in CNS injury.
Collapse
Affiliation(s)
- Dmitriy Lapin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA
| | - Archna Sharma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, 11030, USA.
| |
Collapse
|
5
|
Yao Y, Jiang H, Xu D, Zhang B, Yao F, Guo W. The extracellular CIRP as a predictive marker for the endothelial dysfunction in chronic obstructive pulmonary disease combined with pulmonary hypertension. BMC Pulm Med 2024; 24:615. [PMID: 39695535 DOI: 10.1186/s12890-024-03416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a serious complication of chronic obstructive pulmonary disease (COPD), distinguished by pulmonary endothelial dysfunction. The extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern (DAMP) that triggers inflammation and causes vascular endothelial dysfunction in COPD-PH. METHODS The expression levels of CIRP were compared in peripheral lung tissues among 40 individuals. Moreover, A prospective analysis was conducted on serum levels of eCIRP, interleukin (IL) 1β, IL-33, endothelin-1 (ET-1), and nitric oxide (NO) in 150 COPD patients and 50 healthy control individuals at Jiangsu Taizhou Peoples Hospital. The study aimed to compare these serum levels and correlations among COPD-PH group, COPD non-PH group and the normal group. RESULTS We found higher CIRP levels in COPD-PH compared to COPD non-PH and the normal in lung tissue samples. A prospective analysis showed higher serum levels of eCIRP, IL-1β, IL-33, and ET 1 in COPD-PH, while a noticeable reduction in NO levels. There exists a correlation between the severity of COPD-PH and elevated levels of eCIRP, proinflammatory cytokines like IL-1β and IL-33, along with indicators of endothelial dysfunction like endothelin-1 ET-1 and NO. Moreover, the serum eCIRP level demonstrated a notable positive correlation with the levels of IL-1β, IL-33, PCT, and ET-1, while displaying a negative correlation with NO and Peripheral Oxygen Saturation (SpO2). Moreover, the serum eCIRP level demonstrated a notable positive correlation with the levels of IL-1β, IL-33, PCT, and ET-1, while displaying a negative correlation with NO and SpO2. Moreover, an assessment of independent risk factors for COPD-PH with ROC curve analysis, gauged the predictive value of serum eCIRP, IL-1β, IL-33, ET-1, and NO levels in diagnosing COPD-PH. Elevated eCIRP, IL-33, and ET-1 levels significantly correlated with COPD-PH, highlighting eCIRP's strong predictive value for this condition. CONCLUSION eCIRP levels could serve as a valuable biomarker for predicting endothelial dysfunction in COPD-PH.
Collapse
Affiliation(s)
- Yun Yao
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Lujiang County People's Hospital, Hefei, Anhui, P.R. China
| | - Haibo Jiang
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Lujiang County People's Hospital, Hefei, Anhui, P.R. China
| | - Dalin Xu
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Lujiang County People's Hospital, Hefei, Anhui, P.R. China
| | - Bing Zhang
- Department of Internal Medicine, Taizhou People's Hospital, Taizhou, Jiangsu, P.R. China
| | - Feng Yao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P.R. China.
| | - Wei Guo
- Department of Respiratory and Critical Care Medicine, Anhui Provincial Lujiang County People's Hospital, Hefei, Anhui, P.R. China.
| |
Collapse
|
6
|
Zhang W, Jiang L, Tong X, He H, Zheng Y, Xia Z. Sepsis-Induced Endothelial Dysfunction: Permeability and Regulated Cell Death. J Inflamm Res 2024; 17:9953-9973. [PMID: 39628705 PMCID: PMC11612565 DOI: 10.2147/jir.s479926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Endothelial cells (ECs) are an important cell type typically affected in sepsis, resulting in compromised barrier function and various forms of regulated cell death (RCD). However, the precise mechanisms underlying sepsis-induced EC damage remain unclear. This review summarizes the recent research progress on factors and mechanisms that may affect the permeability and RCD of ECs under septic conditions, including glycocalyx, damage-associated molecular patterns, and various forms of RCD in ECs, such as apoptosis, pyroptosis, ferroptosis, and autophagy. This review offers important insights into the underlying mechanisms of endothelial dysfunction in sepsis, aiming to contribute to developing small-molecule targeted clinical therapies.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Luofeng Jiang
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Xirui Tong
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Heng He
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai, 200433, People’s Republic of China
- Research Unit of Key Techniques for Treatment of burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
7
|
Gong T, Wang QD, Loughran PA, Li YH, Scott MJ, Billiar TR, Liu YT, Fan J. Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: role for CIRP-ZBP1-PANoptosis pathway. Mil Med Res 2024; 11:71. [PMID: 39465383 PMCID: PMC11514876 DOI: 10.1186/s40779-024-00574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Sepsis is often accompanied by lactic acidemia and acute lung injury (ALI). Clinical studies have established that high serum lactate levels are associated with increased mortality rates in septic patients. We further observed a significant correlation between the levels of cold-inducible RNA-binding protein (CIRP) in plasma and bronchoalveolar lavage fluid (BALF), as well as lactate levels, and the severity of post-sepsis ALI. The underlying mechanism, however, remains elusive. METHODS C57BL/6 wild type (WT), Casp8-/-, Ripk3-/-, and Zbp1-/- mice were subjected to the cecal ligation and puncture (CLP) sepsis model. In this model, we measured intra-macrophage CIRP lactylation and the subsequent release of CIRP. We also tracked the internalization of extracellular CIRP (eCIRP) in pulmonary vascular endothelial cells (PVECs) and its interaction with Z-DNA binding protein 1 (ZBP1). Furthermore, we monitored changes in ZBP1 levels in PVECs and the consequent activation of cell death pathways. RESULTS In the current study, we demonstrate that lactate, accumulating during sepsis, promotes the lactylation of CIRP in macrophages, leading to the release of CIRP. Once eCIRP is internalized by PVEC through a Toll-like receptor 4 (TLR4)-mediated endocytosis pathway, it competitively binds to ZBP1 and effectively blocks the interaction between ZBP1 and tripartite motif containing 32 (TRIM32), an E3 ubiquitin ligase targeting ZBP1 for proteasomal degradation. This interference mechanism stabilizes ZBP1, thereby enhancing ZBP1-receptor-interacting protein kinase 3 (RIPK3)-dependent PVEC PANoptosis, a form of cell death involving the simultaneous activation of multiple cell death pathways, thereby exacerbating ALI. CONCLUSIONS These findings unveil a novel pathway by which lactic acidemia promotes macrophage-derived eCIRP release, which, in turn, mediates ZBP1-dependent PVEC PANoptosis in sepsis-induced ALI. This finding offers new insights into the molecular mechanisms driving sepsis-related pulmonary complications and provides potential new therapeutic strategies.
Collapse
Affiliation(s)
- Ting Gong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, Guangdong, China.
| | - Qing-De Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yue-Hua Li
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - You-Tan Liu
- Department of Anesthesiology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518110, Guangdong, China.
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Research and Development, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
8
|
Hu Z, Li J, Jacob A, Wang P. Harnessing extracellular cold-inducible RNA binding protein by PS-OMe miR130: A promising shield against hemorrhage-induced lung injury. J Trauma Acute Care Surg 2024; 97:581-589. [PMID: 38685193 DOI: 10.1097/ta.0000000000004361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Hemorrhagic shock (HS) poses a life-threatening condition with the lungs being one of the most susceptible organs to its deleterious effects. Extracellular cold-inducible RNA binding protein has emerged as a pivotal mediator of inflammation, and its release has been observed as a case of HS-induced tissue injury. Previous studies unveiled a promising engineered microRNA, designated PS-OMe miR130, which inhibits extracellular cold-inducible RNA binding protein, thereby safeguarding vital organs. In this study, we hypothesized that PS-OMe miR130 serves as a protective shield against HS-induced lung injury by curtailing the overzealous inflammatory immune response. METHODS Hemorrhagic shock was induced in male C57BL6 mice by withdrawing blood via a femoral artery cannula to a mean arterial pressure of 30 mm Hg for 90 minutes. The mice were resuscitated with twice the shed blood volume with Ringer's lactate solution. They were then treated intravenously with either phosphate-buffered saline (vehicle) or 62.5 nmol PS-OMe miR130. At 4 hours later, blood and lungs were harvested. RESULTS Following PS-OMe miR130 treatment in HS mice, a substantial decrease was observed in serum injury markers including aspartate aminotransferase, alanine transaminase, lactate dehydrogenase, and blood urea nitrogen. Serum interleukin (IL)-6 exhibited a similar reduction. In lung tissues, PS-OMe miR130 led to a significant decrease in the messenger RNA expressions of pro-inflammatory cytokines (IL-6, IL-1β, and tumor necrosis factor α), chemokines (keratinocyte-derived chemokine and macrophage inflammatory protein 2), and an endothelial injury marker, E-selectin. PS-OMe miR130 also produced substantial inhibition of lung myeloperoxidase activity and resulted in a marked reduction in lung injury as evidenced by histological evaluation. This was further confirmed by the observation that PS-OMe miR130 significantly reduced the presence of lymphocyte antigen 6 family member G-positive neutrophils and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive apoptotic cells. CONCLUSION PS-OMe miR130 emerges as a potent safeguard against HS-induced lung injury by effectively inhibiting pro-inflammation and injuries, offering a promising therapeutic strategy in such critical clinical condition.
Collapse
Affiliation(s)
- Zhijian Hu
- From the Center for Immunology and Inflammation (Z.H., J.L., A.J., P.W.), Feinstein Institutes for Medical Research; and Departments of Surgery (A.J., P.W.) and Molecular Medicine (A.J., P.W.), Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | | | | | | |
Collapse
|
9
|
Shen Y, He Y, Pan Y, Liu L, Liu Y, Jia J. Role and mechanisms of autophagy, ferroptosis, and pyroptosis in sepsis-induced acute lung injury. Front Pharmacol 2024; 15:1415145. [PMID: 39161900 PMCID: PMC11330786 DOI: 10.3389/fphar.2024.1415145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI) is a major cause of death among patients with sepsis in intensive care units. By analyzing a model of sepsis-induced ALI using lipopolysaccharide (LPS) and cecal ligation and puncture (CLP), treatment methods and strategies to protect against ALI were discussed, which could provide an experimental basis for the clinical treatment of sepsis-induced ALI. Recent studies have found that an imbalance in autophagy, ferroptosis, and pyroptosis is a key mechanism that triggers sepsis-induced ALI, and regulating these death mechanisms can improve lung injuries caused by LPS or CLP. This article summarized and reviewed the mechanisms and regulatory networks of autophagy, ferroptosis, and pyroptosis and their important roles in the process of LPS/CLP-induced ALI in sepsis, discusses the possible targeted drugs of the above mechanisms and their effects, describes their dilemma and prospects, and provides new perspectives for the future treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Yao Shen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yingying He
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Pan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yulin Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Guo Q, Li H, Zeng C, Lü Z, Jiang M. Associations of cold-inducible RNA-binding protein with bacterial load, proinflammatory cytokines and mortality from pneumonia. Clin Transl Sci 2024; 17:e13850. [PMID: 38807464 PMCID: PMC11134167 DOI: 10.1111/cts.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern that plays a critical role in triggering inflammatory responses. It remains unknown whether CIRP is strongly associated with bacterial load, inflammatory response, and mortality in sepsis model. Pneumonia was induced in specific pathogen-free 8-9-week old male rats by injecting bacteria via puncture of the tracheal cartilage. The expressions of CIRP and proinflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β] in lung tissues, alveolar macrophages (AMs), plasma, and bronchoalveolar lavage fluid (BALF) were determined by reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The numbers of bacteria recovered from the lungs were correlated with the bacterial loads injected and mortality. The expressions of CIRP increased sharply as the bacterial loads increased in the lung tissues and AMs. The amounts of TNF-α, IL-6 and IL-1β proteins synthesized were dependent on the bacterial load in the lung tissues. Releases of CIRP, TNF-α, IL-6, and IL-1β increased with the bacterial load in the blood plasma. The proteins confirmed similar patterns in the BALF. CIRP was strongly associated with the releases of TNF-α, IL-6, and IL-1β in the lung tissues, blood plasma, and BALF, and showed a close correlation with mortality. CIRP demonstrated a strong association with bacterial load, which is new evidence, and close correlations with proinflammatory cytokines and mortality of pneumonia in rats, suggesting that it might be an interesting pneumonic biomarker for monitoring host response and predicting mortality, and a promising target for immunotherapy.
Collapse
Affiliation(s)
- Qi Guo
- Department of Pulmonary and Critical Care Medicine, Shenzhen HospitalPeking UniversityShenzhenGuangdongChina
- Department of Pulmonary and Critical Care MedicineThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hai‐yan Li
- Department of General MedicineThe Eighth Affiliated Hospital, Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Chao Zeng
- Department of Pulmonary and Critical Care Medicine, Shenzhen HospitalPeking UniversityShenzhenGuangdongChina
| | - Zhong‐dong Lü
- Department of Pulmonary and Critical Care Medicine, Shenzhen HospitalPeking UniversityShenzhenGuangdongChina
| | - Mei Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
11
|
Dai S, Ji J, Li R, Gao L, He X. Stellate Ganglion Block Attenuates LPS-Induced Acute Lung Injury by Activating Sirt3 Regulation of Oxidative Stress and Inflammation. Biomedicines 2024; 12:1148. [PMID: 38927355 PMCID: PMC11200983 DOI: 10.3390/biomedicines12061148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 06/28/2024] Open
Abstract
Stellate ganglion blocks (SGBs) has been applied in clinics to alleviate pain-related syndromes for almost a century. In recent years, it has been reported that SGB can attenuate acute lung injury (ALI) in animals. However, the details of these molecular mechanisms remain complex and unclear. In this study, rats were randomly divided into four groups: group C (receiving no treatment), group NS (receiving the intratracheal instillation of normal saline), group L (receiving the intratracheal instillation of LPS) and group LS (receiving SGB after the intratracheal instillation of LPS). The pathological damage of lung tissue, arterial blood gases, the differentiation of alveolar macrophages (AMs) and inflammatory cytokines (IL-1β, IL-6, IL-10) were detected. Furthermore, the oxidative stress indexes (ROS, CYP-D, T-SOD, Mn-SOD and CAT) in serum and the levels of Sirt3 signaling-associated proteins (JAK2/STAT3, NF-κb p65, CIRP and NLRP3) in the lungs were measured. The results revealed that SGB could attenuate lung tissue damage, improve pulmonary oxygenation, promote the differentiation of AMs to the M2 phenotype, decrease the secretion of IL-1β and IL-6, and increase the secretion of IL-10. Meanwhile, SGB was found to inhibit the production of ROS and CYP-D, and enhance the activities of T-SOD, Mn-SOD and CAT. Furthermore, SGB upregulated Sirt3 and downregulated JAK2/STAT3 and NF-κb p65 phosphorylation, CIRP and NLRP3. Our work revealed that SGB could attenuate LPS-induced ALI by activating the Sirt3-mediated regulation of oxidative stress and pulmonary inflammation; this may shed new light upon the protection of SGB and provide a novel prophylactic strategy for LPS-induced ALI.
Collapse
Affiliation(s)
- Shiyun Dai
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; (S.D.)
- Department of Anesthesiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jun Ji
- Department of Anesthesiology, Air Force Medical Center, Air Force Medical University, PLA, Beijing 100142, China
| | - Rongrong Li
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; (S.D.)
| | - Lu Gao
- Department of Physiology, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200433, China
| | - Xingying He
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; (S.D.)
| |
Collapse
|
12
|
Hu Z, Li J, Zhang F, Jacob A, Wang P. A NOVEL OLIGONUCLEOTIDE MRNA MIMIC ATTENUATES HEMORRHAGE-INDUCED ACUTE LUNG INJURY. Shock 2024; 61:630-637. [PMID: 38300836 PMCID: PMC11009070 DOI: 10.1097/shk.0000000000002309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
ABSTRACT Hemorrhagic shock (HS) is accompanied by a pronounced activation of the inflammatory response in which acute lung injury (ALI) is one of the most frequent consequences. Among the pivotal orchestrators of this inflammatory cascade, extracellular cold-inducible RNA-binding protein (eCIRP) emerges as a noteworthy focal point, rendering it as a promising target for the management of inflammation and tissue injury. Recently, we have reported that oligonucleotide poly(A) mRNA mimic termed A 12 selectively binds to the RNA binding region of eCIRP and inhibits eCIRP binding to its receptor TLR4. Furthermore, in vivo administration of eCIRP induces lung injury in healthy mice and that mouse deficient in CIRP showed protection from inflammation-associated lung injury. We hypothesize that A 12 inhibits systemic inflammation and ALI in HS. To test the impacts of A 12 on systemic and lung inflammation, extent of inflammatory cellular infiltration and resultant lung damage were evaluated in a mouse model of HS. Male mice were subjected to controlled hemorrhage with a mean arterial pressure of 30 mm Hg for 90 min and then resuscitated with Ringer's lactate solution containing phosphate-buffered saline (vehicle) or A 12 at a dose of 4 nmol/g body weight (treatment). The infusion volume was twice that of the shed blood. At 4 h after resuscitation, mice were euthanized, and blood and lung tissues were harvested. Blood and tissue markers of inflammation and injury were evaluated. Serum markers of injury (lactate dehydrogenase, alanine transaminase, and blood urea nitrogen) and inflammation (TNF-α, IL-6) were increased after HS and A 12 treatment significantly decreased their levels. A 12 treatment also decreased lung levels of TNF-α, MIP-2, and KC mRNA expressions. Lung histological injury score, neutrophil infiltration (Ly6G staining and myeloperoxidase activity), and lung apoptosis were significantly attenuated after A 12 treatment. Our study suggests that the capacity of A 12 in attenuating HS-induced ALI and may provide novel perspectives in developing efficacious pharmaceutics for improving hemorrhage prognosis.
Collapse
Affiliation(s)
- Zhijian Hu
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Jingsong Li
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Fangming Zhang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, United States
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, United States
| |
Collapse
|
13
|
Li Z, Sun S, Xiao Q, Tan S, Jin H, Hu B. Neuron Derived Cold-Inducible RNA-Binding Protein Promotes NETs Formation to Exacerbate Brain Endothelial Barrier Disruption after Ischemic Stroke. Aging Dis 2024; 16:AD.2024.0204-1. [PMID: 38377019 PMCID: PMC11745456 DOI: 10.14336/ad.2024.0204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/04/2024] [Indexed: 02/22/2024] Open
Abstract
In ischemic stroke, neutrophils are the first-line peripheral immune cells infiltrating the brain tissue to form neutrophil extracellular traps (NETs). The present study aimed to investigate the role of neuronal cold-inducible RNA-binding protein (CIRP) in promoting NETs-induced brain endothelial barrier destruction and cerebral edema after ischemic stroke. We found that the expression of NETs and neuronal CIRP in the penumbra increased at 6 hours after transient middle cerebral artery occlusion (tMCAO) and increased significantly at 24 hours, reaching a peak at 3 days. NETs degradation or CIRP inhibition can alleviate the leakage of brain endothelial barrier and reverse the decreased expression of tight junction proteins (zonula occludens-1, claudin-5 and occludin) in tMCAO mice. Oxygen-glucose deprivation/reperfusion treated primary neurons or recombinant CIRP could induce NETs formation via TLR4/p38 signaling pathway in vitro. Transcription factor specificity protein 1 (sp1) was responsible for the increased neuronal CIRP expression and the inhibition of sp1 could suppress the increased CIRP expression, reduce NETs formation, and diminish brain endothelial barrier leakage in tMCAO mice. We also found the upregulated CIRP level was associated with severe cerebral edema in patients with acute ischemic stroke. In conclusion, the increased expression of transcription factor sp1 after ischemic stroke can lead to elevated CIRP expression and release from the neurons, which subsequently interacts with neutrophils and promotes NETs formation, resulting in brain endothelial barrier destruction and cerebral edema.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qinghui Xiao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Senwei Tan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
14
|
Yoon T, Ha JW, Pyo JY, Song JJ, Park YB, Ahn SS, Lee SW. Circulating cold-inducible RNA-binding protein levels in microscopic polyangiitis and granulomatosis with polyangiitis : Correlation with disease activity. Z Rheumatol 2024; 83:230-235. [PMID: 36732449 DOI: 10.1007/s00393-023-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study investigated whether circulating cold-inducible RNA-binding protein (CIRP) could be a biomarker to reflect the current activity, function, and damage status in patients with microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA). METHODS This study selected 39 MPA and 26 GPA patients. Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)-specific indices include the Birmingham Vasculitis Activity Index (BVAS), five-factor score (FFS), the Korean version of the Short-Form 36-Item Health Survey (SF-36) physical component summary (PCS) and mental component summary (MCS), and the vasculitis damage index (VDI). The highest tertile of BVAS was defined as high activity of AAV. RESULTS The median age of the study subjects was 65.0 years and 53.8% were women. The median BVAS, FFS, SF-36 PCS, MCS, and VDI scores were 12.0, 2.0, 47.5, 50.3, and 3.0, respectively. The median circulating CIRP level was 6.4 ng/mL. Among the four AAV-specific indices, circulating CIRP was significantly correlated with BVAS (r = 0.256). Using the receiver operator characteristic curve, the cut-off of circulating CIRP for high activity of AAV was 6.16 ng/mL. High activity of AAV was identified more frequently in patients with circulating CIRP ≥ 6.16 ng/mL than in those with circulating CIRP < 6.16 ng/mL (48.6% vs. 21.4%). In addition, patients with circulating CIRP ≥ 6.16 ng/mL exhibited a significantly higher risk for high activity of AAV than those with circulating CIRP < 6.16 ng/mL (relative risk 3.474). CONCLUSION This study suggests the clinical potential of circulating CIRP as a biomarker for reflecting the current BVAS and predicting high activity of AAV in patients with MPA and GPA.
Collapse
Affiliation(s)
- Taejun Yoon
- Department of Medical Science, BK21 Plus Project, Yonsei University, College of Medicine, Seoul, Korea (Republic of)
| | - Jang Woo Ha
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, 16995, Yongin, Gyeonggi-do, Korea (Republic of)
| | - Jung Yoon Pyo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea (Republic of)
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea (Republic of)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (Republic of)
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea (Republic of)
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (Republic of)
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, 16995, Yongin, Gyeonggi-do, Korea (Republic of).
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Korea (Republic of).
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (Republic of).
| |
Collapse
|
15
|
Lücht J, Seiler R, Herre AL, Brankova L, Fritsche-Guenther R, Kirwan J, Huscher D, Münzfeld H, Berger F, Photiadis J, Tong G, Schmitt KRL. Promising results of a clinical feasibility study: CIRBP as a potential biomarker in pediatric cardiac surgery. Front Cardiovasc Med 2024; 11:1247472. [PMID: 38361581 PMCID: PMC10867162 DOI: 10.3389/fcvm.2024.1247472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Objective Cold-inducible RNA binding Protein (CIRBP) has been shown to be a potent inflammatory mediator and could serve as a novel biomarker for inflammation. Systemic inflammatory response syndrome (SIRS) and capillary leak syndrome (CLS) are frequent complications after pediatric cardiac surgery increasing morbidity, therefore early diagnosis and therapy is crucial. As CIRBP serum levels have not been analyzed in a pediatric population, we conducted a clinical feasibility establishing a customized magnetic bead panel analyzing CIRBP in pediatric patients undergoing cardiac surgery. Methods A prospective hypothesis generating observational clinical study was conducted at the German Heart Center Berlin during a period of 9 months starting in May 2020 (DRKS00020885, https://drks.de/search/de/trial/DRKS00020885). Serum samples were obtained before the cardiac operation, upon arrival at the pediatric intensive care unit, 6 and 24 h after the operation in patients up to 18 years of age with congenital heart disease (CHD). Customized multiplex magnetic bead-based immunoassay panels were developed to analyze CIRBP, Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Interleukin-10 (IL-10), Monocyte chemotactic protein 1 (MCP-1), Syndecan-1 (SDC-1), Thrombomodulin (TM), Vascular endothelial growth factor (VEGF-A), Angiopoietin-2 (Ang-2), and Fibroblast growth factor 23 (FGF-23) in 25 µl serum using the Luminex MagPix® system. Results 19 patients representing a broad range of CHD (10 male patients, median age 2 years, 9 female patients, median age 3 years) were included in the feasibility study. CIRBP was detectable in the whole patient cohort. Relative to individual baseline values, CIRBP concentrations increased 6 h after operation and returned to baseline levels over time. IL-6, IL-8, IL-10, and MCP-1 concentrations were significantly increased after operation and except for MCP-1 concentrations stayed upregulated over time. SDC-1, TM, Ang-2, as well as FGF-23 concentrations were also significantly increased, whereas VEGF-A concentration was significantly decreased after surgery. Discussion Using customized magnetic bead panels, we were able to detect CIRBP in a minimal serum volume (25 µl) in all enrolled patients. To our knowledge this is the first clinical study to assess CIRBP serum concentrations in a pediatric population.
Collapse
Affiliation(s)
- Jana Lücht
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Raphael Seiler
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Alexa Leona Herre
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Liliya Brankova
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Metabolomics Platform, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Dörte Huscher
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Biometry and Clinical Epidemiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna Münzfeld
- Department of Radiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Joachim Photiadis
- Department of Congenital Heart Surgery and Pediatric Heart Surgery, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Giang Tong
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Katharina R. L. Schmitt
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum der Charité – Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
16
|
Zhang R, Fang K, Mu C, Zhang L. Cold-inducible RNA-binding protein induces inflammatory responses via NF-κB signaling pathway in normal human bronchial epithelial cells infected with streptococcus pneumoniae. Int Immunopharmacol 2024; 127:111338. [PMID: 38064816 DOI: 10.1016/j.intimp.2023.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Community-acquired pneumonia causes significant illness and death worldwide, requiring further investigation and intervention. The invasion of Streptococcus pneumoniae (S. pneumoniae, S.p) can lead to serious conditions like meningitis, sepsis, or pneumonia. Extracellular Cold-inducible RNA-binding protein (eCIRP) acts as a damage-associated molecular pattern that triggers inflammatory responses and plays an important role in both acute and chronic inflammatory diseases. It remains unclear whether CIRP is involved in the process of S. pneumoniae infection in normal human bronchial epithelial cells (BEAS-2B). METHODS Cell counting kit (CCK)-8 assay was used to detect the activity of BEAS-2B cells. The subcellular localization of CIRP was detected by immunofluorescence. The mRNA and protein levels of CIRP, nuclear factor kappa-B (NF-κB) p65, toll like receptor-4 (TLR4), interleukin-6 (IL-6) were detected using quantitative real-time PCR (PCR) and Western Blot (WB). The protein expressions of CIRP, IL-1β, IL-6, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) were assessed by enzyme-linked immunosorbent assay (ELISA). RESULTS CIRP affects the activity of BEAS-2B cells induced by S. pneumoniae infection. After infection, CIRP translocates from the nucleus to the cytoplasm, thereby inducing the production of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and MCP-1). Additionally, the NF-κB p65 protein increases in infected cells but decreases with si-CIRP interference. Treatment with TLR4 neutralizing antibodies or NF-κB inhibitor effectively reduces the expressions of IL-1β, IL-6, TNF-α, and MCP-1. CONCLUSIONS The infection with S. pneumoniae upregulates CIRP expression and translocates it from the nucleus to the cytoplasm in BEAS-2B cells, leading to the release of proinflammatory factors via activation of NF-κB signaling pathway. CIRP as a key mediator in S. pneumoniae-induced inflammation offers potential targets for therapeutic intervention against community-acquired pneumonia.
Collapse
Affiliation(s)
- Rong Zhang
- Emergency Department of the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Kun Fang
- Emergency Department of the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Chunyan Mu
- Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Liang Zhang
- Emergency Department of the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
17
|
Cicchinelli S, Pignataro G, Gemma S, Piccioni A, Picozzi D, Ojetti V, Franceschi F, Candelli M. PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. Int J Mol Sci 2024; 25:962. [PMID: 38256033 PMCID: PMC10815927 DOI: 10.3390/ijms25020962] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Sepsis is a serious organ dysfunction caused by a dysregulated immune host reaction to a pathogen. The innate immunity is programmed to react immediately to conserved molecules, released by the pathogens (PAMPs), and the host (DAMPs). We aimed to review the molecular mechanisms of the early phases of sepsis, focusing on PAMPs, DAMPs, and their related pathways, to identify potential biomarkers. We included studies published in English and searched on PubMed® and Cochrane®. After a detailed discussion on the actual knowledge of PAMPs/DAMPs, we analyzed their role in the different organs affected by sepsis, trying to elucidate the molecular basis of some of the most-used prognostic scores for sepsis. Furthermore, we described a chronological trend for the release of PAMPs/DAMPs that may be useful to identify different subsets of septic patients, who may benefit from targeted therapies. These findings are preliminary since these pathways seem to be strongly influenced by the peculiar characteristics of different pathogens and host features. Due to these reasons, while initial findings are promising, additional studies are necessary to clarify the potential involvement of these molecular patterns in the natural evolution of sepsis and to facilitate their transition into the clinical setting.
Collapse
Affiliation(s)
- Sara Cicchinelli
- Department of Emergency, S.S. Filippo e Nicola Hospital, 67051 Avezzano, Italy;
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Stefania Gemma
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Andrea Piccioni
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Domitilla Picozzi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| | - Marcello Candelli
- Department of Emergency, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario Agostino Gemelli—IRRCS, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (G.P.); (S.G.); (A.P.); (D.P.); (V.O.); (F.F.)
| |
Collapse
|
18
|
Murao A, Jha A, Ma G, Chaung W, Aziz M, Wang P. A Synthetic Poly(A) Tail Targeting Extracellular CIRP Inhibits Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1144-1153. [PMID: 37585248 PMCID: PMC10528014 DOI: 10.4049/jimmunol.2300228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
Sepsis is an infectious inflammatory disease that often results in acute lung injury (ALI). Cold-inducible RNA-binding protein (CIRP) is an intracellular RNA chaperon that binds to mRNA's poly(A) tail. However, CIRP can be released in sepsis, and extracellular CIRP (eCIRP) is a damage-associated molecular pattern, exaggerating inflammation, ALI, and mortality. In this study, we developed an engineered poly(A) mRNA mimic, AAAAAAAAAAAA, named A12, with 2'-O-methyl ribose modification and terminal phosphorothioate linkages to protect it from RNase degradation, exhibiting an increased half-life. A12 selectively and strongly interacted with the RNA-binding motif of eCIRP, thereby preventing eCIRP's binding to its receptor, TLR4. In vitro treatment with A12 significantly decreased eCIRP-induced macrophage MAPK and NF-κB activation and inflammatory transcription factor upregulation. A12 also attenuated proinflammatory cytokine production induced by eCIRP in vitro and in vivo in macrophages and mice, respectively. We revealed that treating cecal ligation and puncture-induced sepsis with A12 significantly reduced serum organ injury markers and cytokine levels and ALI, and it decreased bacterial loads in the blood and peritoneal fluid, ultimately improving their survival. Thus, A12's ability to attenuate the clinical models of sepsis sheds lights on inflammatory disease pathophysiology and prevention of the disease progress.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Gaifeng Ma
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
19
|
Moftah NH, Alnos H, Rashed L, Hamdino M. Evaluation of serum and tissue levels of cold-inducible RNA-binding protein in non-segmental Vitiligo. Arch Dermatol Res 2023; 315:2065-2071. [PMID: 36920542 PMCID: PMC10366246 DOI: 10.1007/s00403-023-02586-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/12/2023] [Accepted: 02/16/2023] [Indexed: 03/16/2023]
Abstract
Damage-associated molecular patterns (DAMPs) play a role in the pathogenesis of vitiligo. It has been established that the cold-inducible RNA-binding protein (CIRP), a member of the family of cold-shock proteins that respond to stress, is a DAMP molecule that promotes inflammation. The objective was to evaluate the serum and tissue CIRP expression in non-segmental vitiligo (NSV) patients. A sample of 40 participants, 20 NSV patients and 20 control groups of age- and sex-matched healthy individuals were included in this case-control study where the enzyme-linked immunosorbent assay was used in detecting the serum and tissue CIRP levels in participants. The serum and tissue CIRP levels significantly increased in NSV patients compared with the healthy controls, (165.35 ± 24.42, 226.29 ± 24.00 versus 59.81 ± 12.10, 105.86 ± 11.27 pg/ml, respectively) (P < 0.01). Serum and tissue CIRP are significantly correlated with each other (r = 0.641, P = 0.002). Except for a statistically significant positive correlation between CIRP tissue level and VASI (r = 0.539, P = 0.014), the CIRP Serum and tissue did not show any statistically significant correlations with different clinical parameters in patients. ROC curve shows that the cut-off point for serum and tissue CIRP level to differentiate between patients and controls was 86.5, 124.3 pg/ml, respectively, with 100.0% sensitivity, 100.0% specificity and 1.000 AUC for each of them. It is concluded that CIRP may have a crucial role in the pathogenesis of NSV and could be used as a marker for vitiligo and its extent with the need for further large-scale study.
Collapse
Affiliation(s)
- Nayera Hassan Moftah
- Dermatology and Venereology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
| | - Huda Alnos
- Dermatology and Venereology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Laila Rashed
- Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mervat Hamdino
- Dermatology and Venereology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Honda TSB, Ku J, Anders HJ. Cell type-specific roles of NLRP3, inflammasome-dependent and -independent, in host defense, sterile necroinflammation, tissue repair, and fibrosis. Front Immunol 2023; 14:1214289. [PMID: 37564649 PMCID: PMC10411525 DOI: 10.3389/fimmu.2023.1214289] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023] Open
Abstract
The NLRP3 inflammasome transforms a wide variety of infectious and non-infectious danger signals that activate pro-inflammatory caspases, which promote the secretion of IL-1β and IL-18, and pyroptosis, a pro-inflammatory form of cell necrosis. Most published evidence documents the presence and importance of the NLRP3 inflammasome in monocytes, macrophages, and neutrophils during host defense and sterile forms of inflammation. In contrast, in numerous unbiased data sets, NLRP3 inflammasome-related transcripts are absent in non-immune cells. However, an increasing number of studies report the presence and functionality of the NLRP3 inflammasome in almost every cell type. Here, we take a closer look at the reported cell type-specific expression of the NLRP3 inflammasome components, review the reported inflammasome-dependent and -independent functions, and discuss possible explanations for this discrepancy.
Collapse
Affiliation(s)
| | | | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| |
Collapse
|
21
|
Ju J, Liu Y, Liang H, Yang B. The role of pyroptosis in endothelial dysfunction induced by diseases. Front Immunol 2023. [DOI: 10.3389/fimmu.2023.1093985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most organs in the body rely on blood flow, and vesicular damage is the leading cause of injury in multiple organs. The endothelium, as the barriers of vessels, play a critical role in ensuring vascular homeostasis and angiogenesis. The rapid development of risk factors in endothelial injuries has been seen in the past decade, such as smoking, infectious, and diabetes mellites. Pyroptotic endothelium is an inflammatory mode of governed endothelial cell death that depend on the metabolic disorder and severe infectious such as atherosclerosis, and sepsis-related acute lung injury, respectively. Pyroptotic endothelial cells need GSDMD cleaved into N- and C-terminal by caspase1, and the cytokines are released by a pore constructed by the N-terminal of GSDMD in the membrane of ECs, finally resulting in severe inflammation and pyroptotic cell death. This review will focus on the patho-physiological and pharmacological pathways of pyroptotic endothelial metabolism in diseases. Overall, this review indicates that pyroptosis is a significant risk factor in diseases and a potential drug target in related diseases.
Collapse
|
22
|
Ju J, Liu Y, Liang H, Yang B. The role of pyroptosis in endothelial dysfunction induced by diseases. Front Immunol 2023; 13:1093985. [PMID: 36776394 PMCID: PMC9910335 DOI: 10.3389/fimmu.2022.1093985] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Most organs in the body rely on blood flow, and vesicular damage is the leading cause of injury in multiple organs. The endothelium, as the barriers of vessels, play a critical role in ensuring vascular homeostasis and angiogenesis. The rapid development of risk factors in endothelial injuries has been seen in the past decade, such as smoking, infectious, and diabetes mellites. Pyroptotic endothelium is an inflammatory mode of governed endothelial cell death that depend on the metabolic disorder and severe infectious such as atherosclerosis, and sepsis-related acute lung injury, respectively. Pyroptotic endothelial cells need GSDMD cleaved into N- and C-terminal by caspase1, and the cytokines are released by a pore constructed by the N-terminal of GSDMD in the membrane of ECs, finally resulting in severe inflammation and pyroptotic cell death. This review will focus on the patho-physiological and pharmacological pathways of pyroptotic endothelial metabolism in diseases. Overall, this review indicates that pyroptosis is a significant risk factor in diseases and a potential drug target in related diseases.
Collapse
Affiliation(s)
- Jin Ju
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Haihai Liang
- Key Laboratory of Cardiovascular Research, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, China
| | - Baofeng Yang
- Key Laboratory of Cardiovascular Research, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, China,Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, Heilongjiang, China,*Correspondence: Baofeng Yang,
| |
Collapse
|
23
|
Han J, Zhang Y, Ge P, Dakal TC, Wen H, Tang S, Luo Y, Yang Q, Hua B, Zhang G, Chen H, Xu C. Exosome-derived CIRP: An amplifier of inflammatory diseases. Front Immunol 2023; 14:1066721. [PMID: 36865547 PMCID: PMC9971932 DOI: 10.3389/fimmu.2023.1066721] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is an intracellular stress-response protein and a type of damage-associated molecular pattern (DAMP) that responds to various stress stimulus by altering its expression and mRNA stability. Upon exposure to ultraviolet (UV) light or low temperature, CIRP get translocated from the nucleus to the cytoplasm through methylation modification and stored in stress granules (SG). During exosome biogenesis, which involves formation of endosomes from the cell membrane through endocytosis, CIRP also gets packaged within the endosomes along with DNA, and RNA and other proteins. Subsequently, intraluminal vesicles (ILVs) are formed following the inward budding of the endosomal membrane, turning the endosomes into multi-vesicle bodies (MVBs). Finally, the MVBs fuse with the cell membrane to form exosomes. As a result, CIRP can also be secreted out of cells through the lysosomal pathway as Extracellular CIRP (eCIRP). Extracellular CIRP (eCIRP) is implicated in various conditions, including sepsis, ischemia-reperfusion damage, lung injury, and neuroinflammation, through the release of exosomes. In addition, CIRP interacts with TLR4, TREM-1, and IL-6R, and therefore are involved in triggering immune and inflammatory responses. Accordingly, eCIRP has been studied as potential novel targets for disease therapy. C23 and M3, polypeptides that oppose eCIRP binding to its receptors, are beneficial in numerous inflammatory illnesses. Some natural molecules such as Luteolin and Emodin can also antagonize CIRP, which play roles similar to C23 in inflammatory responses and inhibit macrophage-mediated inflammation. This review aims to provide a better understanding on CIRP translocation and secretion from the nucleus to the extracellular space and the mechanisms and inhibitory roles of eCIRP in diverse inflammatory illnesses.
Collapse
Affiliation(s)
- Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yibo Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Haiyun Wen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shuangfeng Tang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qi Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bianca Hua
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA, United States
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.,Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Comprehensive Cancer Center, Monrovia, CA, United States
| |
Collapse
|
24
|
Siskind S, Zhang F, Brenner M, Wang P. Extracellular CIRP induces acute kidney injury via endothelial TREM-1. Front Physiol 2022; 13:954815. [PMID: 36246143 PMCID: PMC9558214 DOI: 10.3389/fphys.2022.954815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/12/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction: Acute kidney injury is associated with elevated serum levels of extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern released during ischemia/reperfusion injury, hemorrhagic shock, and sepsis. It is unknown if circulating eCIRP and eCIRP-induced activation of receptor triggering receptor expressed on myeloid cells-1 (TREM-1), expressed on endothelial cells, play an important role in the pathogenesis of AKI. Methods: Male B6 wild-type (WT) and TREM-1−/− mice were subjected to intravenous injection of recombinant murine (rm) CIRP. Serum, urine, and renal tissue were collected 6 h later for analysis. Additionally, primary human renal glomerular endothelial cells (HRGEC) were stimulated in vitro with rmCIRP after pretreatment with M3, a novel inhibitory peptide of TREM-1, or vehicle. Supernatants and cells were collected 20 h after stimulation. Results: After injection with rmCIRP, WT mice had a significant increase in serum levels of BUN, creatinine, and NGAL compared to control. Additionally, NGAL was significantly increased in the urine of rmCIRP-injected mice, suggesting that circulating eCIRP can directly induce AKI. The levels of TREM-1 mRNA in the kidneys, as well as soluble (s) TREM-1 released into the serum and urine, were significantly increased in rmCIRP-injected mice. TREM-1−/− mice injected with rmCIRP had attenuated AKI, indicated by significantly decreased serum BUN, creatinine, and NGAL, and renal mRNA expression of NGAL and KIM-1 compared to WT mice. TREM-1−/− mice also had attenuated endothelial activation, with decreased mRNA and protein expression of ICAM-1 in renal tissue. HRGEC stimulated with rmCIRP in vitro had significant increases in cytokine production and sTREM-1 release, which was attenuated in cells treated with M3. Conclusion: Activation of renal TREM-1 with circulating eCIRP is sufficient to cause AKI. Elevated levels of eCIRP may be critical for the development of AKI under conditions such as ischemia/reperfusion injury, hemorrhagic shock, and sepsis. Mice deficient in the TREM-1 receptor have attenuated AKI and reduced endothelial cell activation after injection of rmCIRP. TREM-1 inhibition with M3 attenuates HRGEC activation after eCIRP stimulation. Targeting eCIRP activation of TREM-1 may provide a novel and effective treatment for AKI.
Collapse
Affiliation(s)
- Sara Siskind
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Medicine, Manhasset, NY, United States
| | - Fangming Zhang
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| | - Ping Wang
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Elmezzi Graduate School of Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| |
Collapse
|
25
|
Gardela J, Ruiz-Conca M, Olvera-Maneu S, López-Béjar M, Álvarez-Rodríguez M. The mRNA expression of the three major described cold-inducible proteins, including CIRBP, differs in the bovine endometrium and ampulla during the estrous cycle. Res Vet Sci 2022; 152:181-189. [PMID: 35987103 DOI: 10.1016/j.rvsc.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/08/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
The cold-inducible proteins (CIPs) are essential for post-transcriptional gene regulation playing diverse tissue-specific roles in maintaining normal cellular function and morphogenesis. The potential implications of CIPs in reproductive events raise questions about their role in the physiology of the bovine reproductive tract. However, the expression changes of CIPs during the bovine estrous cycle have not been studied so far. Here, we hypothesized that the bovine estrous cycle could affect the mRNA expression of the CIPs and other candidate transcripts in the reproductive tract. This study aimed to examine estrous cycle-dependent mRNA expression patterns in the bovine endometrium and ampulla of three of the major described CIPs (CIRBP, RBM3, SRSF5), a set of inflammatory cytokines (IL-10, IL-18, IL-1β), and other candidate genes (IL-10RA, IL-10RB, BCL2, NLRP3, STAT1, STAT3, STAT5A, STAT6). Endometrial and ampullar tissues were assessed by RT-qPCR. Additionally, the mRNA expression levels were correlated among them and with follicular progesterone and estradiol concentrations. The transcript levels of CIPs increased in the endometrium during stage III (Days 11-17) compared to stage I (Days 1-4) and IV (Days 18-20). In the ampulla, the mRNA expression of CIRBP increased during the late luteal phase (stage III), but no differences in the expression of other CIPs were observed. This study expands the current knowledge regarding mRNA expression in the endometrium and oviductal ampulla of cycling heifers, focusing mainly on the CIPs. A better understanding of the mechanisms within the uterus and oviduct during the estrous cycle is crucial to improving the fertility rate.
Collapse
Affiliation(s)
- Jaume Gardela
- Division of Children's and Women Health (BKH), Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Mateo Ruiz-Conca
- Division of Children's and Women Health (BKH), Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Manuel Álvarez-Rodríguez
- Division of Children's and Women Health (BKH), Obstetrics and Gynecology, Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58185, Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
26
|
Takizawa S, Lee Y, Jacob A, Aziz M, Wang P. Neutrophil trogocytosis during their trans-endothelial migration: role of extracellular CIRP. Mol Med 2022; 28:91. [PMID: 35941574 PMCID: PMC9358840 DOI: 10.1186/s10020-022-00515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Neutrophils are the most abundant innate immune cells in the circulating blood, and they act as the first responder against bacterial and fungal infection. However, accumulation of activated neutrophils can cause severe inflammation and tissue damage. Recently, neutrophil trogocytosis or membrane transfer with neighboring cells was reported to modulate immune responses. Extracellular cold-inducible RNA binding protein (eCIRP) is a newly identified damage-associated molecular pattern (DAMP). eCIRP can activate neutrophils to be more pro-inflammatory. This study aimed to identify the role of eCIRP in neutrophil trogocytosis during their trans-endothelial migration. Methods A trans-endothelial migration (TEM) assay using bone marrow neutrophils and mouse primary lung vascular endothelial cells was conducted using transwell chambers and neutrophil trogocytosis was assessed in vitro. In an in vivo mouse model of acute lung injury, neutrophil trogocytosis was assessed from bronchoalveolar lavage fluid. Results In TEM assay, the trogocytosis of neutrophils occurred during trans-endothelial migration and eCIRP significantly increased the percentage of these neutrophils. The trogocytosed neutrophils acquired the endothelial membrane containing junctional adhesion molecule-C (JAM-C) and VE-cadherin, and these membrane patches were polarized by Mac-1 binding. Furthermore, eCIRP-induced JAM-C positive trogocytosed neutrophils are more pro-inflammatory than the JAM-C negative counterpart. JAM-C positive trogocytosed neutrophils were also observed in the bronchoalveolar lavage fluid of a mouse model of acute lung injury. Conclusion These data suggest that during the paracellular trans-endothelial migration of neutrophils in response to inflammation, eCIRP induces trogocytosis of neutrophils, and the trogocytosed neutrophils exhibit an exaggerated pro-inflammatory phenotype promoting acute lung injury. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00515-3.
Collapse
Affiliation(s)
- Satoshi Takizawa
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Departments of Molecular Medicine and Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
27
|
Schagatay F, Diamant K, Lidén M, Edin A, Athlin S, Hultgren O, Ahlm C, Forsell MNE, Savilampi J, Normark J, Lange A, Cajander S. Serum concentration of extracellular cold-inducible RNA-binding protein is associated with respiratory failure in COVID-19. Front Immunol 2022; 13:945603. [PMID: 35967397 PMCID: PMC9373926 DOI: 10.3389/fimmu.2022.945603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Uncontrolled release of damage-associated molecular patterns (DAMPs) is suggested to be a major trigger for the dysregulated host immune response that leads to severe COVID-19. Cold-inducible RNA-binding protein (CIRP), is a newly identified DAMP that aggravates inflammation and tissue injury, and induces respiratory failure in sepsis. Whether CIRP contributes to the pathogenesis of respiratory failure in COVID-19 has not yet been explored. Aim To investigate if the concentration of extracellular CIRP (eCIRP) in serum associates with respiratory failure and lung involvement by chest computed tomography (CT) in COVID-19. Methods Herein we report a prospective observational study of patients with COVID-19 included at two University Hospitals in Sweden between April 2020 and May 2021. Serum from hospitalized patients in Örebro (N=97) were used to assess the association between eCIRP and the level of respiratory support and its correlation with pulmonary involvement on chest CT and inflammatory biomarkers. A cohort of hospitalized and non-hospitalized patients from Umeå (N=78) was used as an external validation cohort. The severity of disease was defined according to the highest degree of respiratory support; mild disease (no oxygen), non-severe hypoxemia (conventional oxygen or high-flow nasal oxygen, HFNO <50% FiO2), and severe hypoxemia (HFNO ≥50% FiO2, mechanical ventilation). Unadjusted and adjusted linear regression was used to evaluate peak eCIRP day 0-4 in respect to severity, age, sex, Charlson comorbidity score, symptom duration, and BMI. Results Peak eCIRP concentrations were higher in patients with severe hypoxemia and were independently associated with the degree of respiratory support in both cohorts (Örebro; p=0.01, Umeå; p<0.01). The degree of pulmonary involvement measured by CT correlated with eCIRP, rs=0.30, p<0.01 (n=97). Conclusion High serum levels of eCIRP are associated with acute respiratory failure in COVID-19. Experimental studies are needed to determine if treatments targeting eCIRP reduces the risk of acute respiratory failure in COVID-19.
Collapse
Affiliation(s)
- Felix Schagatay
- Department of Infectious Diseases, CKF Region Västmanland, Västerås Hospital, Västerås, Sweden
| | - Klara Diamant
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Mats Lidén
- Department of Radiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Alicia Edin
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Simon Athlin
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Olof Hultgren
- Department of Laboratory medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | - Johanna Savilampi
- Department of Anaesthesiology and Intensive Care, Örebro University, Örebro, Sweden
| | - Johan Normark
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anna Lange
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
28
|
Reilly B, Tan C, Murao A, Nofi C, Jha A, Aziz M, Wang P. Necroptosis-Mediated eCIRP Release in Sepsis. J Inflamm Res 2022; 15:4047-4059. [PMID: 35873387 PMCID: PMC9304637 DOI: 10.2147/jir.s370615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Extracellular cold-inducible RNA-binding protein (eCIRP) is an endogenous pro-inflammatory mediator that exacerbates injury in inflammation and sepsis. The mechanisms in which eCIRP is released have yet to be fully explored. Necroptosis is a programmed cell death that is dependent on the activation of mixed lineage kinase domain-like pseudo kinase (MLKL) which causes the release of damage-associated molecular patterns. We hypothesize that eCIRP is released through necroptosis and intensifies inflammation in sepsis. Methods RAW264.7 cells were treated with pan-caspase inhibitor z-VAD (15 μM) 1 h before stimulation with LPS (1 μg/mL). Necroptosis inhibitor, Necrostatin-1 (Nec-1) (10 μM) was added to the cells with LPS simultaneously. After 24 h of LPS stimulation, cytotoxicity was determined by LDH assay. eCIRP levels in the culture supernatants and phospho-MLKL (p-MLKL) from cell lysates were assessed by Western blot. p-MLKL interaction with the cell membrane was visualized by immunofluorescence. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Mice were treated with Nec-1 (1 mg/kg) or DMSO. 20 h post-surgery, serum and peritoneal fluid levels of eCIRP, TNF-α and IL-6 were determined by ELISA. H&E staining of lung tissue sections was performed. Results We found that in RAW264.7 cells, LPS+z-VAD induces necroptosis as evidenced by an increase in p-MLKL levels and causes eCIRP release. Nec-1 reduces both p-MLKL activation and eCIRP release in LPS+z-VAD-treated RAW264.7 cells. Nec-1 also inhibits the release of eCIRP, TNF-α and IL-6 in the serum and peritoneal fluid in CLP-induced septic mice. We predicted a transient interaction between eCIRP and MLKL using a computational model, suggesting that eCIRP may exit the cell via the pores formed by p-MLKL. Conclusion Necroptosis is a novel mechanism of eCIRP release in sepsis. Targeting necroptosis may ameliorate inflammation and injury in sepsis by inhibiting eCIRP release.
Collapse
Affiliation(s)
- Bridgette Reilly
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Colleen Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Alok Jha
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| |
Collapse
|
29
|
Shimizu J, Murao A, Nofi C, Wang P, Aziz M. Extracellular CIRP Promotes GPX4-Mediated Ferroptosis in Sepsis. Front Immunol 2022; 13:903859. [PMID: 35844517 PMCID: PMC9277504 DOI: 10.3389/fimmu.2022.903859] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 12/29/2022] Open
Abstract
Sepsis is characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern (DAMP) that promotes inflammation and induces cell death via apoptosis, NETosis, and/or pyroptosis. Ferroptosis is a form of regulated cell death characterized by the accumulation of lipid peroxide on cellular membranes. We hypothesize that eCIRP induces ferroptosis in macrophages and lung tissue during sepsis. RAW 264.7 cells stimulated with recombinant murine (rm) CIRP significantly decreased the expression of glutathione peroxidase 4 (GPX4), a negative regulator of ferroptosis, and increased lipid reactive oxygen species (ROS) in a TLR4 dependent manner. In TLR4-/- peritoneal macrophages, depression of GPX4 expression and increase in lipid ROS levels were attenuated after rmCIRP-treatment compared to WT macrophages. rmCIRP also induced cell death in RAW 264.7 cells which was corrected by the ferroptosis inhibitor, ferrostatin-1 (Fer-1). Intraperitoneal injection of rmCIRP decreased GPX4 expression and increased lipid ROS in lung tissue, whereas the increase of lipid ROS was reduced by Fer-1 treatment. GPX4 expression was significantly decreased, while malondialdehyde (MDA), iron levels, and injury scores were significantly increased in lungs of WT mice after cecal ligation and puncture (CLP)-induced sepsis compared to CIRP-/- mice. Treatment with C23, a specific eCIRP inhibitor, in CLP mice alleviated the decrease in GPX4 and increase in MDA levels of lung tissue. These findings suggest that eCIRP induces ferroptosis in septic lungs by decreasing GPX4 and increasing lipid ROS. Therefore, regulation of ferroptosis by targeting eCIRP may provide a new therapeutic approach in sepsis and other inflammatory diseases.
Collapse
Affiliation(s)
- Junji Shimizu
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Colleen Nofi
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
30
|
Change in Oxidative Stress and Mitochondrial Dynamics in Response to Elevated Cold-Inducible RNA-Binding Protein in Cardiac Surgery-Associated Acute Kidney Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3576892. [PMID: 35855864 PMCID: PMC9288297 DOI: 10.1155/2022/3576892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common yet serious complication that is closely related to cardiopulmonary bypass (CPB). Extracellular cold-inducible RNA-binding protein (eCIRP) can mediate aseptic inflammation and trigger intracellular oxidative stress. In the present study, expression of serum CIRP was significantly elevated post-CPB (
pg/mL vs.
pg/mL,
) and was positively correlated with CPB duration (
,
). Patients with high expression of CIRP had higher risks of postoperative AKI than patients with low CIRP expression (OR: 1.67, 95% CI 1.04-2.68). In a rat CPB model, the serum CIRP concentration increased significantly after CPB. Similarly, the levels of Scr and BUN significantly increased 4 hours after CPB. KIM-1 and NGAL mRNA levels in the CPB group were 8.2 and 4.3 times higher than the sham group, respectively. In addition, the levels of inflammatory cell infiltration, oxidative stress, and apoptosis in the renal tissue of the CPB group were significantly higher compared to the sham group. The expression levels of serum inflammatory factors at 4 hours post-CPB were also increased. Administration of recombinant human CIRP protein promoted the expression of NADPH oxidase via the TLR-4/MyD88 pathway, aggravated intracellular oxidative stress, mediated mitochondrial dynamics disorder, and eventually increased apoptosis in HK-2 cells. However, the CIRP inhibitor C23 improved the CIRP-mediated oxidative stress and mitochondrial dysfunction in both rat and cell models. In summary, elevated CIRP could mediate oxidative stress and mitochondrial dynamics in the kidney to promote CSA-AKI.
Collapse
|
31
|
Siskind S, Brenner M, Wang P. TREM-1 Modulation Strategies for Sepsis. Front Immunol 2022; 13:907387. [PMID: 35784361 PMCID: PMC9240770 DOI: 10.3389/fimmu.2022.907387] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 12/28/2022] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor, which can be upregulated in inflammatory diseases as an amplifier of immune responses. Once activated, TREM-1 induces the production and release of pro-inflammatory cytokines and chemokines, in addition to increasing its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). This amplification of the inflammatory response by TREM-1 has now been considered as a critical contributor to the dysregulated immune responses in sepsis. Studies have shown that in septic patients there is an elevated expression of TREM-1 on immune cells and increased circulating levels of sTREM-1, associated with increased mortality. As a result, a considerable effort has been made towards identifying endogenous ligands of TREM-1 and developing TREM-1 inhibitory peptides to attenuate the exacerbated inflammatory response in sepsis. TREM-1 modulation has proven a promising strategy for the development of therapeutic agents to treat sepsis. Therefore, this review encompasses the ligands investigated as activators of TREM-1 thus far and highlights the development and efficacy of novel inhibitors for the treatment of sepsis and septic shock.
Collapse
Affiliation(s)
- Sara Siskind
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
- *Correspondence: Ping Wang, ; Max Brenner,
| |
Collapse
|
32
|
Endothelial Dysfunction Induced by Extracellular Neutrophil Traps Plays Important Role in the Occurrence and Treatment of Extracellular Neutrophil Traps-Related Disease. Int J Mol Sci 2022; 23:ijms23105626. [PMID: 35628437 PMCID: PMC9147606 DOI: 10.3390/ijms23105626] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major focus of tissue damage, which is highly related to many inflammatory diseases. Therefore, this review summarizes the latest advances in the primary and secondary mechanisms between NETs and ED regarding inflammation as a mediator. Moreover, the detailed molecular mechanisms with emphasis on the disadvantages from NETs are elaborated: NETs can use its own enzymes, release particles as damage-associated molecular patterns (DAMPs) and activate the complement system to interact with endothelial cells (ECs), drive ECs damage and eventually aggravate inflammation. In view of the role of NETs-induced ED in different diseases, we also discussed possible molecular mechanisms and the treatments of NETs-related diseases.
Collapse
|
33
|
Prognostic Value of Plasma Cold-Inducible RNA-Binding Protein in Patients with Acute Coronary Syndrome. DISEASE MARKERS 2022; 2022:6119601. [PMID: 35531472 PMCID: PMC9068342 DOI: 10.1155/2022/6119601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 11/18/2022]
Abstract
Background. Cold-inducible RNA-binding protein (CIRP) is a proinflammatory cytokine. The Global Registry of Acute Coronary Events (GRACE) risk score has been widely applied in risk stratification in patients with acute coronary syndrome (ACS). We aimed to investigate the prognostic value of CIRP in ACS patients and its incremental prognostic performance on top of GARCE score. Methods. We consecutively enrolled 320 ACS patients, including 128 patients with ST-elevation myocardial infarction (STEMI), 67 patients with non-ST-elevation myocardial infarction (NSTEMI), and 125 patients with unstable angina pectoris (UAP). Plasma CIRP levels were measured at baseline. All patients received one-year follow-up for occurrence of major adverse cardiovascular outcomes (MACEs). Results. STEMI patients had a significantly higher concentration of plasma CIRP than those with NSTEMI (
) and UAP (
). Plasma CIRP level was positively correlated with GRACE score (
,
). Survival analysis revealed that the risk of MACEs increased with increasing CIRP level (log-rank
). During follow-up, 45 (14.1%) patients experienced MACEs. Both GRACE score (hazard ratio: 1.023, 95% confidence interval: 1.007-1.050,
) and plasma CIRP level (hazard ratio:1.800, 95% confidence interval:1.209-2.679,
) were independently predictive of MACEs after Cox multivariate adjustment. Incremental predictive value was observed after combining CIRP with GRACE score. Conclusions. Plasma CIRP was an independent prognostic biomarker and could improve the predictive value of GRACE score for prognosis in ACS patients.
Collapse
|
34
|
Bolourani S, Sari E, Brenner M, Wang P. The role of eCIRP in bleomycin-induced pulmonary fibrosis in mice. PLoS One 2022; 17:e0266163. [PMID: 35377906 PMCID: PMC8979429 DOI: 10.1371/journal.pone.0266163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE AND DESIGN We examined the role of eCIRP in the pathogenesis of bleomycin-induced pulmonary fibrosis (PF). MATERIAL AND METHODS Publicly available gene expression omnibus datasets were analyzed for the expression of CIRP in lung samples from patients with PF. Wild type (WT) or CIRP-/- mice received daily injections of 10 μg/g bleomycin for 10 days. A subset of bleomycin-injected WT mice was treated with the eCIRP antagonist C23 (8 μg/g/day) from day 10 to day 19. At three weeks, transthoracic echocardiography was performed to measure the degree of pulmonary hypertension, and lung tissues were collected and analyzed for markers of fibrosis. RESULTS Analysis of the mRNA data of human lung samples showed a significant positive correlation between CIRP and α-smooth muscle actin (α-SMA), an important marker of fibrosis. Moreover, the expression of CIRP was higher in patients with acute exacerbation of PF than in patients with stable PF. CIRP-/- mice showed attenuated induction of α-SMA and collagens (Col1a1, Col3a1), reduced hydroxyproline content, decreased histological fibrosis scores, and improved pulmonary hypertension as compared to WT mice. WT mice treated with C23 also had significant attenuation of the above endpoint measure. CONCLUSIONS Our study demonstrates that eCIRP plays a key role in promoting the development of PF, and blocking eCIRP with C23 can significantly attenuate this process.
Collapse
Affiliation(s)
- Siavash Bolourani
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| | - Ezgi Sari
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States of America
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States of America
| |
Collapse
|
35
|
A novel eCIRP/TREM-1 pathway inhibitor attenuates acute kidney injury. Surgery 2022; 172:639-647. [PMID: 35292178 PMCID: PMC9283225 DOI: 10.1016/j.surg.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Extracellular cold-inducible RNA-binding protein aggravates acute kidney injury after renal ischemia/reperfusion. Although extracellular cold-inducible RNA-binding protein activates triggering receptor expressed on myeloid cells-1, how this receptor and its antagonism with a novel peptide M3 affects acute kidney injury is poorly understood. We, therefore, hypothesize that inhibiting the extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway with M3 attenuates acute kidney injury. METHODS Wild-type and triggering receptor expressed on myeloid cells-1-/- mice were subjected to bilateral 30-minute renal hilum clamping followed by reperfusion or sham. After 4 hours, wild-type mice received M3 (10 mg/kg BW) or normal saline intraperitoneally. After 24 hours, renal tissue and serum were collected for analysis. Additionally, wild-type mice were subjected to bilateral renal ischemia for 34 minutes and treated with M3 at 10 mg/kg BW or vehicle at the time of reperfusion. Survival was monitored for 10 days. RESULTS After renal ischemia/reperfusion, triggering receptor expressed on myeloid cells-1 messenger ribonucleic acid expression increased by 9-fold in wild-type mice compared to sham mice. Wild-type mice also demonstrated significant increases in serum blood urea nitrogen, creatinine, and interleukin-6 and renal tissue levels of interleukin-6 and neutrophil gelatinase-associated lipocalin after renal ischemia/reperfusion compared to sham mice. Triggering receptor expressed on myeloid cells-1-/- mice demonstrated significant reductions in serum blood urea nitrogen, creatinine, and interleukin-6 compared to wild-type mice after renal ischemia/reperfusion. Levels of renal interleukin-6 and neutrophil gelatinase-associated lipocalin were also significantly decreased in the kidneys of triggering receptor expressed on myeloid cells-1-/- mice. Furthermore, treatment with M3 in wild-type mice significantly decreased serum and renal levels of interleukin-6 after renal ischemia/reperfusion. M3 treatment demonstrated significant reductions in renal messenger ribonucleic acid and protein levels of neutrophil gelatinase-associated lipocalin, serum blood urea nitrogen and creatinine, and histologic structural damage as well as apoptosis. Treatment with M3 also increased survival from 35% to 65% in mice with acute kidney injury. CONCLUSION Triggering receptor expressed on myeloid cells-1 mediates the deleterious effects of extracellular cold-inducible RNA-binding protein in acute kidney injury after renal ischemia/reperfusion. The novel extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway antagonist, M3, attenuates acute kidney injury and has the potential to be developed as a therapeutic agent for acute kidney injury.
Collapse
|
36
|
Zhong P, Zhou M, Zhang J, Peng J, Zeng G, Huang H. The role of Cold-Inducible RNA-binding protein in respiratory diseases. J Cell Mol Med 2021; 26:957-965. [PMID: 34953031 PMCID: PMC8831972 DOI: 10.1111/jcmm.17142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/28/2022] Open
Abstract
Cold‐inducible RNA‐binding protein (CIRP) is a stress‐response protein that is expressed in various types of cells and acts as an RNA chaperone, modifying the stability of its targeted mRNA. Intracellular CIRP could also be released into extracellular space and once released, extracellular CIRP (eCIRP) acts as a damage‐associated molecular pattern (DAMP) to induce and amplify inflammation. Recent studies have found that eCIRP could promote acute lung injury (ALI) via activation of macrophages, neutrophils, pneumocytes and lung vascular endothelial cells in context of sepsis, haemorrhagic shock, intestinal ischemia/reperfusion injury and severe acute pancreatitis. In addition, CIRP is also highly expressed in the bronchial epithelial cells and its expression is upregulated in the bronchial epithelial cells of patients with chronic obstructive pulmonary diseases (COPD) and rat models with chronic bronchitis. CIRP is a key contributing factor in the cold‐induced exacerbation of COPD by promoting the expression of inflammatory genes and hypersecretion of airway mucus in the bronchial epithelial cells. Besides, CIRP is also involved in regulating pulmonary fibrosis, as eCIRP could directly activate and induce an inflammatory phenotype in pulmonary fibroblast. This review summarizes the findings of CIRP investigation in respiratory diseases and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peng Zhong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Miao Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingjing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Jianye Peng
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Hengyang, Hunan, China.,Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China
| | - Gaofeng Zeng
- The Second Affiliated Hospital, Department of Cardiovascular Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Hengyang, Hunan, China.,Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, Hunan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China.,Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Lee Y, Reilly B, Tan C, Wang P, Aziz M. Extracellular CIRP Induces Macrophage Extracellular Trap Formation Via Gasdermin D Activation. Front Immunol 2021; 12:780210. [PMID: 35003095 PMCID: PMC8732379 DOI: 10.3389/fimmu.2021.780210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern promoting inflammation and tissue injury. During bacterial or viral infection, macrophages release DNA decorated with nuclear and cytoplasmic proteins known as macrophage extracellular traps (METs). Gasdermin D (GSDMD) is a pore-forming protein that has been involved in extracellular trap formation in neutrophils. We hypothesized that eCIRP induces MET formation by activating GSDMD. Human monocytic cell line THP-1 cells were differentiated with phorbol 12-myristate 13-acetate (PMA) and treated with recombinant murine (rm) CIRP. The MET formation was detected by three methods: time-lapse fluorescence microscopy (video imaging), colorimetry, and ELISA. Cleaved forms of GSDMD, and caspase-1 were detected by Western blotting. Treatment of THP-1 cells with rmCIRP increased MET formation as revealed by SYTOX Orange Staining assay in a time- and dose-dependent manner. METs formed by rmCIRP stimulation were further confirmed by extracellular DNA, citrullinated histone H3, and myeloperoxidase. Treatment of THP-1 cells with rmCIRP significantly increased the cleaved forms of caspase-1 and GSDMD compared to PBS-treated cells. Treatment of macrophages with caspase-1, and GSDMD inhibitors z-VAD-fmk, and disulfiram, separately, significantly decreased rmCIRP-induced MET formation. We also confirmed rmCIRP-induced MET formation using primary cells murine peritoneal macrophages. These data clearly show that eCIRP serves as a novel inducer of MET formation through the activation of GSDMD and caspase-1.
Collapse
Affiliation(s)
- Yongchan Lee
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Bridgette Reilly
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Chuyi Tan
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
38
|
Abstract
Significance: Sepsis is defined as a life-threatening organ dysfunction caused by dysregulated host response to infection. This leads to an uncontrolled inflammatory response at the onset of infection, followed by immunosuppression. The development of a specific treatment modality for sepsis is still challenging, reflecting our inadequate understanding of its pathophysiology. Understanding the mechanism and transition of the early hyperinflammation to late stage of immunosuppression in sepsis is critical for developing sepsis therapeutics. Recent Advances: Damage-associated molecular patterns (DAMPs) are intracellular molecules and released upon tissue injury and cell death in sepsis. DAMPs are recognized by pattern recognition receptors to initiate inflammatory cascades. DAMPs not only elicit an inflammatory response but also they subsequently induce immunosuppression, both are equally important for exacerbating sepsis. Recent advances on a new DAMP, extracellular cold-inducible RNA-binding protein for fueling inflammation and immunosuppression in sepsis, have added a new avenue into the dual functions of DAMPs in sepsis. Critical Issues: The molecular modification of DAMPs and their binding to pattern recognition receptors transit dynamically by the cellular environment in pathophysiologic conditions. Correlation between the dynamic changes of the impacts of DAMPs and the clinical outcomes in sepsis still lacks adequate understanding. Here, we focus on the impacts of DAMPs that cause inflammation as well as induce immunosuppression in sepsis. We further discuss the therapeutic potential by targeting DAMPs to attenuate inflammation and immunosuppression for mitigating sepsis. Future Directions: Uncovering pathways of the transition from inflammation to immunosuppression of DAMPs is a potential therapeutic avenue for mitigating sepsis.
Collapse
Affiliation(s)
- Mian Zhou
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Departments of Surgery and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA
| |
Collapse
|
39
|
Kim YM, Hong S. Controversial roles of cold‑inducible RNA‑binding protein in human cancer (Review). Int J Oncol 2021; 59:91. [PMID: 34558638 DOI: 10.3892/ijo.2021.5271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 11/05/2022] Open
Abstract
Cold‑inducible RNA‑binding protein (CIRBP) is a cold‑shock protein comprised of an RNA‑binding motif that is induced by several stressors, such as cold shock, UV radiation, nutrient deprivation, reactive oxygen species and hypoxia. CIRBP can modulate post‑transcriptional regulation of target mRNA, which is required to control DNA repair, circadian rhythms, cell growth, telomere integrity and cardiac physiology. In addition, the crucial function of CIRBP in various human diseases, including cancers and inflammatory disease, has been reported. Although CIRBP is primarily considered to be an oncogene, it may also serve a role in tumor suppression. In the present study, the controversial roles of CIRBP in various human cancers is summarized, with a focus on the interconnectivity between CIRBP and its target mRNAs involved in tumorigenesis. CIRBP may represent an important prognostic marker and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Suntaek Hong
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
40
|
Kübler M, Beck S, Peffenköver LL, Götz P, Ishikawa-Ankerhold H, Preissner KT, Fischer S, Lasch M, Deindl E. The Absence of Extracellular Cold-Inducible RNA-Binding Protein (eCIRP) Promotes Pro-Angiogenic Microenvironmental Conditions and Angiogenesis in Muscle Tissue Ischemia. Int J Mol Sci 2021; 22:ijms22179484. [PMID: 34502391 PMCID: PMC8431021 DOI: 10.3390/ijms22179484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular Cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern, is released from cells upon hypoxia and cold-stress. The overall absence of extra- and intracellular CIRP is associated with increased angiogenesis, most likely induced through influencing leukocyte accumulation. The aim of the present study was to specifically characterize the role of eCIRP in ischemia-induced angiogenesis together with the associated leukocyte recruitment. For analyzing eCIRPs impact, we induced muscle ischemia via femoral artery ligation (FAL) in mice in the presence or absence of an anti-CIRP antibody and isolated the gastrocnemius muscle for immunohistological analyses. Upon eCIRP-depletion, mice showed increased capillary/muscle fiber ratio and numbers of proliferating endothelial cells (CD31+/CD45−/BrdU+). This was accompanied by a reduction of total leukocyte count (CD45+), neutrophils (MPO+), neutrophil extracellular traps (NETs) (MPO+CitH3+), apoptotic area (ascertained via TUNEL assay), and pro-inflammatory M1-like polarized macrophages (CD68+/MRC1−) in ischemic muscle tissue. Conversely, the number of regenerative M2-like polarized macrophages (CD68+/MRC1+) was elevated. Altogether, we observed that eCIRP depletion similarly affected angiogenesis and leukocyte recruitment as described for the overall absence of CIRP. Thus, we propose that eCIRP is mainly responsible for modulating angiogenesis via promoting pro-angiogenic microenvironmental conditions in muscle ischemia.
Collapse
Affiliation(s)
- Matthias Kübler
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Sebastian Beck
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Lisa Lilian Peffenköver
- Department of Biochemistry, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (L.L.P.); (K.T.P.); (S.F.)
| | - Philipp Götz
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Hellen Ishikawa-Ankerhold
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Department of Internal Medicine I, Faculty of Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (L.L.P.); (K.T.P.); (S.F.)
| | - Silvia Fischer
- Department of Biochemistry, Faculty of Medicine, Justus Liebig University, 35392 Giessen, Germany; (L.L.P.); (K.T.P.); (S.F.)
| | - Manuel Lasch
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (M.K.); (S.B.); (P.G.); (H.I.-A.); (M.L.)
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig- Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
- Correspondence: ; Tel.: +49-(0)-89-2180-76504
| |
Collapse
|
41
|
Fujita Y, Yago T, Asano T, Matsumoto H, Matsuoka N, Temmoku J, Sato S, Yashiro-Furuya M, Suzuki E, Watanabe H, Kawakami A, Migita K. Clinical relevance for circulating cold-inducible RNA-binding protein (CIRP) in patients with adult-onset Still's disease. PLoS One 2021; 16:e0255493. [PMID: 34351954 PMCID: PMC8341607 DOI: 10.1371/journal.pone.0255493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022] Open
Abstract
Background Adult-onset Still’s disease (AOSD) is a systemic autoinflammatory disease in which danger-associated molecular patterns (DAMPs)-mediated inflammasome activation seems to be involved in the disease pathogenesis. Cold-inducible RNA-binding protein (CIRP) belongs to a family of cold-shock proteins that respond to cellular stress and has been identified as a DAMP that triggers the inflammatory response. The aim of this study is to investigate the clinical significance of serum CIRP levels in AOSD. Methods Serum samples were obtained from 44 patients with active AOSD or 50 patients with rheumatoid arthritis (RA), 20 patients with systemic lupus erythematosus (SLE), and 15 healthy control patients (HCs). Serum levels of CIRP and IL-18 were determined using enzyme-linked immunosorbent assay. Results were compared among AOSD patients, RA patients, SLE patients and HCs. Results were also analyzed according to the clinical features of AOSD. Results Serum CIRP levels were significantly higher in AOSD patients compared with RA patients (median: 9.6 ng/mL, IQR [5.7–14.4] versus 3.2 ng/mL, IQR [1.9–3.8]; p < 0.001) and with HCs (2.8 ng/mL, [IQR; 1.4–4.9], p < 0.001). There was a significant positive correlation between serum CIRP levels and AOSD disease activity score (Pouchot’s score r = 0.45, p = 0.003) as well as between AOSD-specific biomarkers ferritin and IL-18. However, there was no significant difference in the serum CIRP levels among AOSD patients with three different disease phenotypes. Conclusions These results suggest that CIRP may play a significant role in the pathophysiology of AOSD and could be a potential biomarker for monitoring the disease activity of AOSD.
Collapse
Affiliation(s)
- Yuya Fujita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
- * E-mail:
| | - Toru Yago
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Haruki Matsumoto
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Matsuoka
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Jumpei Temmoku
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shuzo Sato
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Makiko Yashiro-Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Eiji Suzuki
- Department of Rheumatology, Ohta-Nishinouchi Hospital, Koriyama, Fukushima, Japan
| | - Hiroshi Watanabe
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
42
|
Bolourani S, Sari E, Brenner M, Wang P. Extracellular CIRP Induces an Inflammatory Phenotype in Pulmonary Fibroblasts via TLR4. Front Immunol 2021; 12:721970. [PMID: 34367191 PMCID: PMC8342891 DOI: 10.3389/fimmu.2021.721970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern (DAMP), has been recently shown to play a critical role in promoting the development of bleomycin-induced pulmonary fibrosis. Although fibroblast activation is a critical component of the fibrotic process, the direct effects of eCIRP on fibroblasts have never been examined. We studied eCIRP’s role in the induction of inflammatory phenotype in pulmonary fibroblasts and its connection to bleomycin-induced pulmonary fibrosis in mice. We found that eCIRP causes the induction of proinflammatory cytokines and differentially expression-related pathways in a TLR4-dependent manner in pulmonary fibroblasts. Our analysis further showed that the accessory pathways MD2 and Myd88 are involved in the induction of inflammatory phenotype. In order to study the connection of the enrichment of these pathways in priming the microenvironment for pulmonary fibrosis, we investigated the gene expression profile of lung tissues from mice subjected to bleomycin-induced pulmonary fibrosis collected at various time points. We found that at day 14, which corresponds to the inflammatory-to-fibrotic transition phase after bleomycin injection, TLR4, MD2, and Myd88 were induced, and the transcriptome was differentially enriched for genes in those pathways. Furthermore, we also found that inflammatory cytokines gene expressions were induced, and the cellular responses to these inflammatory cytokines were differentially enriched on day 14. Overall, our results show that eCIRP induces inflammatory phenotype in pulmonary fibroblasts in a TLR4 dependent manner. This study sheds light on the mechanism by which eCIRP induced inflammatory fibroblasts, contributing to pulmonary fibrosis.
Collapse
Affiliation(s)
- Siavash Bolourani
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ezgi Sari
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Max Brenner
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
43
|
Hozumi H, Kataoka K, Kondoh Y, Isayama T, Okada J, Sugiura K, Mori K, Kono M, Suzuki Y, Karayama M, Furuhashi K, Enomoto N, Fujisawa T, Inui N, Nakamura Y, Suda T. Clinical Significance of Cold-Inducible RNA-Binding Protein in Idiopathic Pulmonary Fibrosis. Chest 2021; 160:2149-2157. [PMID: 34252438 DOI: 10.1016/j.chest.2021.06.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is associated with a poor prognosis with variable clinical course. Early identification of patients at high risk for disease progression and death would lead to early therapeutic intervention and thereby improvement of outcomes. Cold-inducible RNA-binding protein (CIRBP) is produced in response to cellular stresses, which is implicated in multiple biological processes, including cell survival and proliferation. RESEARCH QUESTION Is CIRBP a useful biomarker for predicting the outcomes of patients with IPF? STUDY DESIGN AND METHODS This study included 95 and 93 patients with IPF from two independent hospitals (derivation and validation cohorts, respectively). The associations of serum CIRBP level on IPF diagnosis with disease progression within 1 year after diagnosis (ie, ≥10% relative decline in percent predicted FVC or death) and all-cause mortality were retrospectively analyzed. Discrimination performances for predicting these outcomes were evaluated using the c-index. RESULTS Serum and lung tissue CIRBP levels were higher in patients with IPF than in control subjects. In the derivation cohort, the CIRBPhigh subgroup had significantly higher 1-year disease progression rates and lower cumulative survival rates than the CIRBPlow subgroup, and the results were replicated in the validation cohort. In multivariate analyses, high serum CIRBP level was independently associated with higher 1-year disease progression and all-cause mortality rates in both cohorts. Combining the Gender-Age-Physiology (GAP) and serum CIRBP models improved the c-indexes for predicting 1-year disease progression and all-cause mortality compared with that of each model alone. The c-indexes of serum CIRBP were particularly high in patients with GAP stage I. INTERPRETATION This study successfully validated that serum CIRBP level was an independent predictor of 1-year disease progression and all-cause mortality in IPF. CIRBP is a promising biomarker that can help identify high-risk patients with IPF, especially in the early stage.
Collapse
Affiliation(s)
- Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Kensuke Kataoka
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Takuya Isayama
- Medical & Biological Laboratories Co., Ltd., Nagoya, Japan
| | - Jun Okada
- Medical & Biological Laboratories Co., Ltd., Nagoya, Japan
| | | | - Kazutaka Mori
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Kono
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuki Furuhashi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
44
|
Liu W, Yan Y, Han D, Li Y, Wang Q, Li J, Liu F, Zheng X. CIRP Secretion during Cardiopulmonary Bypass Is Associated with Increased Risk of Postoperative Acute Kidney Injury. Thorac Cardiovasc Surg 2021; 69:542-547. [PMID: 34233365 DOI: 10.1055/s-0041-1730450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Systemic inflammation contributes to cardiac surgery-associated acute kidney injury (AKI). Cardiomyocytes and other organs experience hypothermia and hypoxia during cardiopulmonary bypass (CPB), which induces the secretion of cold-inducible RNA-binding protein (CIRP). Extracellular CIRP may induce a proinflammatory response. MATERIALS AND METHODS The serum CIRP levels in 76 patients before and after cardiac surgery were determined to analyze the correlation between CIRP levels and CPB time. The risk factors for AKI after cardiac surgery and the in-hospital outcomes were also analyzed. RESULTS The difference in the levels of CIRP (ΔCIRP) after and before surgery in patients who experienced cardioplegic arrest (CA) was 26-fold higher than those who did not, and 2.7-fold of those who experienced CPB without CA. The ΔCIRP levels were positively correlated with CPB time (r = 0.574, p < 0.001) and cross-clamp time (r = 0.54, p < 0.001). Multivariable analysis indicated that ΔCIRP (odds ratio: 1.003; 95% confidence interval: 1.000-1.006; p = 0.027) was an independent risk factor for postoperative AKI. Patients who underwent aortic dissection surgery had higher levels of CIRP and higher incidence of AKI than other patients. The incidence of AKI and duration of mechanical ventilation in patients whose serum CIRP levels more than 405 pg/mL were significantly higher than those less than 405 pg/mL (65.8 vs. 42.1%, p = 0.038; 23.1 ± 18.2 vs. 13.8 ± 9.2 hours, p = 0.007). CONCLUSION A large amount of CIRP was released during cardiac surgery. The secreted CIRP was associated with the increased risk of AKI after cardiac surgery.
Collapse
Affiliation(s)
- Wenyan Liu
- Department of Blood Purification, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Yan
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dan Han
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yongxin Li
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qian Wang
- Department of Operation and Anesthesia, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengfeng Liu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinglong Zheng
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
45
|
申 杰, 杨 迪, 陈 梦, 郭 新. [Effects of length and chemical modification on the activation of vascular endothelial cells induced by multi walled carbon nanotubes]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:439-446. [PMID: 34145842 PMCID: PMC8220036 DOI: 10.19723/j.issn.1671-167x.2021.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effects of multi-walled carbon nanotubes (MWCNTs) with different length or chemical modification on endothelial cell activation and to explore the role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. METHODS MWCNTs were characterized by dynamic light scattering (DLS) after being suspended in culture medium. The immortalized mouse cerebral microvascular endothelial cell line b.End3 was treated with short MWCNTs (S-MWCNT, 0.5 to 2 μm), long MWCNTs (L-MWCNT, 10 to 30 μm) and the above long MWCNTs functionalized by carboxyl-(L-MWCNT-COOH), amino-(L-MWCNT-NH2) or hydroxyl-(L-MWCNT-OH) modification. Cytotoxicity of MWCNTs in b.End3 cells was determined by cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay, and non-toxic low dose was selected for subsequent experiments. Effects of all types of MWCNTs on the endothelial activation of b.End3 were determined by the measurement of vascular cell adhesion molecule-1 (VCAM-1) concentration in cell supernatant and adhesion assay of human monocytic cell line THP-1 to b.End3.To further elucidate the mechanism involved, the protein expressions of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3(NLRP3) in cells treated with S-MWCNT, L-MWCNT and L-MWCNT-COOH were measured by Western blot. RESULTS At a higher concentration (125 μg/cm2) and treated for 24 h, all types of MWCNTs significantly inhibited viability of b.End3 cells. At a sub-toxic concentration (6.25 μg/cm2), all types of MWCNTs treated for 12 h significantly induced the activation of b.End3 cells, as evidenced by the elevated VCAM-1 release and THP-1 adhesion. Compared with S-MWCNT, L-MWCNT significantly promoted endothelial cell activation. L-MWCNT and L-MWCNT-COOH activated b.End3 cells to a similar extent. Furthermore, treatment with S-MWCNT, L-MWCNT and L-MWCNT-COOH increased NLRP3 expression in a time-dependent manner at 6.25 μg/cm2. Compared with S-MWCNT, cells treated with L-MWCNT for 4 h and 12 h exhibited significantly increased protein expressions of NLRP3. However, no significant differences were detected in the level of NLRP3 protein in cells treated with L-MWCNT and L-MWCNT-COOH. CONCLUSION Compared with the surface chemical modification, length changes of MWCNTs exerted more influence on endothelial cell activation, which may be related to the activation of NLRP3 inflammasome. Our study contributes further understanding of the impact of MWCNTs on endothelial cells, which may have implications for the improvement of safety evaluation of MWCNTs.
Collapse
Affiliation(s)
- 杰 申
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 迪 杨
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 梦圆 陈
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 新彪 郭
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
46
|
申 杰, 杨 迪, 陈 梦, 郭 新. [Effects of length and chemical modification on the activation of vascular endothelial cells induced by multi walled carbon nanotubes]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:439-446. [PMID: 34145842 PMCID: PMC8220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 04/03/2024]
Abstract
OBJECTIVE To investigate the effects of multi-walled carbon nanotubes (MWCNTs) with different length or chemical modification on endothelial cell activation and to explore the role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. METHODS MWCNTs were characterized by dynamic light scattering (DLS) after being suspended in culture medium. The immortalized mouse cerebral microvascular endothelial cell line b.End3 was treated with short MWCNTs (S-MWCNT, 0.5 to 2 μm), long MWCNTs (L-MWCNT, 10 to 30 μm) and the above long MWCNTs functionalized by carboxyl-(L-MWCNT-COOH), amino-(L-MWCNT-NH2) or hydroxyl-(L-MWCNT-OH) modification. Cytotoxicity of MWCNTs in b.End3 cells was determined by cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay, and non-toxic low dose was selected for subsequent experiments. Effects of all types of MWCNTs on the endothelial activation of b.End3 were determined by the measurement of vascular cell adhesion molecule-1 (VCAM-1) concentration in cell supernatant and adhesion assay of human monocytic cell line THP-1 to b.End3.To further elucidate the mechanism involved, the protein expressions of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3(NLRP3) in cells treated with S-MWCNT, L-MWCNT and L-MWCNT-COOH were measured by Western blot. RESULTS At a higher concentration (125 μg/cm2) and treated for 24 h, all types of MWCNTs significantly inhibited viability of b.End3 cells. At a sub-toxic concentration (6.25 μg/cm2), all types of MWCNTs treated for 12 h significantly induced the activation of b.End3 cells, as evidenced by the elevated VCAM-1 release and THP-1 adhesion. Compared with S-MWCNT, L-MWCNT significantly promoted endothelial cell activation. L-MWCNT and L-MWCNT-COOH activated b.End3 cells to a similar extent. Furthermore, treatment with S-MWCNT, L-MWCNT and L-MWCNT-COOH increased NLRP3 expression in a time-dependent manner at 6.25 μg/cm2. Compared with S-MWCNT, cells treated with L-MWCNT for 4 h and 12 h exhibited significantly increased protein expressions of NLRP3. However, no significant differences were detected in the level of NLRP3 protein in cells treated with L-MWCNT and L-MWCNT-COOH. CONCLUSION Compared with the surface chemical modification, length changes of MWCNTs exerted more influence on endothelial cell activation, which may be related to the activation of NLRP3 inflammasome. Our study contributes further understanding of the impact of MWCNTs on endothelial cells, which may have implications for the improvement of safety evaluation of MWCNTs.
Collapse
Affiliation(s)
- 杰 申
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 迪 杨
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 梦圆 陈
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| | - 新彪 郭
- />北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
47
|
Royster W, Jin H, Wang P, Aziz M. Extracellular CIRP decreases Siglec-G expression on B-1a cells skewing them towards a pro-inflammatory phenotype in sepsis. Mol Med 2021; 27:55. [PMID: 34058975 PMCID: PMC8165807 DOI: 10.1186/s10020-021-00318-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sepsis is a life-threatening disease syndrome caused by a dysregulated host response to infection and injury. Extracellular cold-inducible RNA-binding protein (eCIRP) acts as a damage-associated molecular pattern. Peritoneal cavity (PerC) B-1a cells attenuate inflammation and tissue injury by spontaneous releasing natural IgM and IL-10. Sialic acid-binding immunoglobulin-type lectin-G (Siglec-G) is a CD33-related receptor highly expressed in B-1a cells to serve critical immunoregulatory functions. In sepsis, B-1a cell numbers in PerC are decreased. We hypothesized that eCIRP causes the reduction of PerC B-1a cells and alters their function during sepsis. METHODS Sepsis was induced in WT and CIRP-/- mice by cecal ligation and puncture (CLP). PerC washout cells were collected and B-1a cells and Siglec-G were assessed by flow cytometry. Mice were i.p. injected with recombinant murine (rm) CIRP and after 20 h, Siglec-G expression in PerC B-1a cells were assessed. PerC B-1a cells were treated with rmCIRP for 4 h and Siglec-G expression was assessed. PerC B-1a cells were pre-treated with anti-Siglec-G Ab and then after stimulated with rmCIRP for 24 h, IL-6 levels in the culture supernatants were assessed. RESULTS eCIRP levels in the PerC were elevated in septic mice. In WT mice, the frequencies and numbers of total and Siglec-G+ B-1a cells in the PerC were significantly decreased in the CLP group compared to sham group, whereas in CIRP-/- mice, their frequencies and numbers in sepsis were significantly rescued compared to WT septic mice. Mice injected with rmCIRP showed decreased frequencies and numbers of total and Siglec-G+ PerC B-1a cells compared to PBS-injected mice. In vitro treatment of PerC B-1a cells with rmCIRP demonstrated significant reduction in Siglec-G mRNA and protein compared to PBS group. PerC B-1a cells treated with anti-Siglec-G Ab had significantly higher production of IL-6 in response to rmCIRP compared to IgG control. Anti-Siglec-G Ab treated B-1a cells co-cultured with macrophages produced significantly higher levels of IL-6, and TNF-α, and lower levels of IL-10 compared to IgG-treated B-1a cells and macrophage co-cultures stimulated with rmCIRP. CONCLUSION eCIRP reduces PerC B-1a cell pool and skews them to a pro-inflammatory phenotype by downregulating Siglec-G expression. Targeting eCIRP will retain Siglec-G expressing B-1a cells in the PerC and preserve their anti-inflammatory function in sepsis.
Collapse
Affiliation(s)
- William Royster
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA
- Department of Surgery, Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Hui Jin
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA.
- Department of Surgery, Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, 350 Community Dr, Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine At Hofstra/Northwell, Manhasset, NY, 11030, USA.
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA.
| |
Collapse
|
48
|
Ding R, Sun X, Yi B, Liu W, Kazama K, Xu X, Deshpande D, Liang C, Sun J. Nur77 Attenuates Inflammasome Activation by Inhibiting Caspase-1 Expression in Pulmonary Vascular Endothelial Cells. Am J Respir Cell Mol Biol 2021; 65:288-299. [PMID: 33971110 DOI: 10.1165/rcmb.2020-0524oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inflammasomes are intracellular multiprotein complexes that help trigger and maintain the inflammatory response as part of the innate immune system. Recently, it has been increasingly recognized that aberrant inflammasome activation is critically involved endothelial dysfunction in a variety of human diseases, such as atherosclerosis, acute lung injury (ALI), and type 2 diabetes. The molecular mechanisms underlying endothelial inflammasome activation, however, are not completely elucidated. In the present study, we identified orphan nuclear receptor Nur77 as a novel regulator in controlling inflammasome activation in vascular endothelial cells (ECs). We demonstrated that LPS-induced inflammasome activation was significantly inhibited by ectopic overexpression of Nur77, predominantly through transcriptionally suppression of caspase-1 expression in vascular ECs. Consistent with this observation, we found that LPS-induced inflammasome activation was significantly augmented in lung ECs isolated from Nur77 knockout (KO) mice. Mechanistically, we showed that Nur77-induced inhibition of caspase-1 expression was due to an inhibition of Interferon Regulatory Factor 1 (IRF1) expression and its subsequent binding to the caspase-1 promoter. Importantly, in a mouse model of LPS-induced acute lung injury (ALI), Nur77 KO led to a marked activation of caspase-1 in the lung, increased alveolar and circulating IL-1β levels, and exacerbated ALI, all of which were substantially inhibited by administration of caspase-1 inhibitor. Together, our results support an important role for Nur77 in controlling inflammasome activation in vascular ECs and suggest that Nur77 could be a novel therapeutic target for the treatment of human diseases associated with aberrant inflammasome activation, such as ALI and atherosclerosis.
Collapse
Affiliation(s)
- Ru Ding
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Xiaobo Sun
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Bing Yi
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Wennan Liu
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Kyosuke Kazama
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Xinyun Xu
- Changzheng Hospital, 56652, Shanghai, China
| | - Deepak Deshpande
- Thomas Jefferson University, 6559, Center for Translational Medicine, Philadelphia, Pennsylvania, United States
| | - Chun Liang
- Changzheng Hospital, 56652, Shanghai, China
| | - Jianxin Sun
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States;
| |
Collapse
|
49
|
Xu Q, Wang M, Guo H, Liu H, Zhang G, Xu C, Chen H. Emodin Alleviates Severe Acute Pancreatitis-Associated Acute Lung Injury by Inhibiting the Cold-Inducible RNA-Binding Protein (CIRP)-Mediated Activation of the NLRP3/IL-1 β/CXCL1 Signaling. Front Pharmacol 2021; 12:655372. [PMID: 33967799 PMCID: PMC8103163 DOI: 10.3389/fphar.2021.655372] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Severe acute pancreatitis (SAP) can lead to acute lung injury (ALI). This study investigated the therapeutic effect of emodin and its molecular mechanisms in a rat model of SAP-ALI. Methods: Forty male Sprague-Dawley rats were randomly divided into the groups: Control (CON), SAP (SAP), emodin (EMO), and C23 (C23). The latter three groups of rats were induced for SAP-ALI by retrograde injection of 5% sodium taurocholate into the biliary-pancreatic duct and were treated with vehicle, emodin or C23, respectively. One day post induction, their pancreatic and lung injury was assessed by histology and arterial blood gas analysis. In vitro, rat alveolar macrophages (NR8383 cells) were treated with recombinant rat CIRP in the presence or absence of TAK242 (a TLR4 inhibitor), C23 or emodin. The CIRP-mediated activation of the NLRP3/IL-1β/CXCL1 signaling in rat lungs and NR8383 cells was determined. Similarly, the role of IL-1β in the CIRP-induced CXCL1 expression was investigated. Results: Emodin treatment significantly reduced inflammation and tissue damages in the pancreatic and lung tissues in rats with SAP-ALI, accompanied by decreasing serum amylase, CIRP and IL-1β levels and improving lung function. Furthermore, emodin significantly mitigated the SAP-up-regulated CIRP expression in the pancreatic islets and lung tissues, and attenuated the SAP-activated NF-κB signaling, NLRP3 inflammasome formation and CXCL1 expression in lung resident macrophages as well as neutrophil infiltration in the lungs of rats. In addition, treatment with CIRP significantly activated the NF-κB signaling and NLRP3 inflammasome formation and induced IL-1β and CXCL1 expression and pyroptosis in NR8383 cells, which were abrogated by TAK242 and significantly mitigated by C23 or emodin. Moreover, CIRP only induced very lower levels of CXCL1 expression in IL-1β-silencing NR8383 cells and treatment with IL-1β induced CXCL1 expression in NR8383 cells in a dose and time-dependent manner. Conclusion: Emodin may inhibit the CIRP-activated NLRP3/IL-1β/CXCL1signaling to decrease neutrophil infiltration and ameliorate the SAP-ALI in rats.
Collapse
Affiliation(s)
- Qiushi Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengfei Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Huanhuan Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
50
|
Absence of Cold-Inducible RNA-Binding Protein (CIRP) Promotes Angiogenesis and Regeneration of Ischemic Tissue by Inducing M2-Like Macrophage Polarization. Biomedicines 2021; 9:biomedicines9040395. [PMID: 33916904 PMCID: PMC8067566 DOI: 10.3390/biomedicines9040395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/19/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP) is an intracellular RNA-chaperone and extracellular promoter of inflammation, which is increasingly expressed and released under conditions of hypoxia and cold stress. The functional relevance of CIRP for angiogenesis and regeneration of ischemic muscle tissue has never been investigated and is the topic of the present study. We investigated the role of CIRP employing CIRP deficient mice along with a hindlimb model of ischemia-induced angiogenesis. 1 and 7 days after femoral artery ligation or sham operation, gastrocnemius muscles of CIRP-deficient and wildtype mice were isolated and processed for (immuno-) histological analyses. CIRP deficient mice showed decreased ischemic tissue damage as evidenced by Hematoxylin and Eosin staining, whereas angiogenesis was enhanced as demonstrated by increased capillary/muscle fiber ratio and number of proliferating endothelial (CD31+/BrdU+) cells on day 7 after surgery. Moreover, CIRP deficiency resulted in a reduction of total leukocyte count (CD45+), neutrophils (myeloperoxidase, MPO+), neutrophil extracellular traps (NETs) (MPO+/CitH3+), and inflammatory M1-like polarized macrophages (CD68+/MRC1-), whereas the number of tissue regenerating M2-like polarized macrophages (CD68+/MRC1-) was increased in ischemic tissue samples. In summary, we show that the absence of CIRP ameliorates angiogenesis and regeneration of ischemic muscle tissue, most likely by influencing macrophage polarization in direction to regenerative M2-like macrophages.
Collapse
|