1
|
Liu YH, Liang JS, Chang MY, Hung PL, Tsai MH, Chou IJ, Hou JY, Lee WT, Lin KL. Dravet-like syndrome with PCDH19 mutations in Taiwan - A multicenter study. Pediatr Neonatol 2025; 66:230-234. [PMID: 39187419 DOI: 10.1016/j.pedneo.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 08/28/2024] Open
Abstract
OBJECTIVE Protocadherin-19 (PCDH19) epilepsy is a rare female restricted epilepsy syndrome with early onset seizures and developmental delay caused by a change or mutation of the PCDH19 gene on the X chromosome. SCN1A-negative patients with a Dravet-like phenotype may have a gene mutation in PCDH19. The aim of this case series was to characterize the phenotype of epileptic patients according to PCDH19 mutations, antiseizure medications, brain images and mutation types in Taiwan. METHODS We retrospectively reviewed the medical records of patients with PCDH19 epilepsy from July 2017 to December 2021 from multiple centers in Taiwan. We analyzed the patients' clinical data and genetic reports. RESULTS Fifteen female patients (age 3-23 years) were enrolled. Seizure onset was at 4 months to 2 years 7 months of age with generalized tonic-clonic or focal seizures. Seizure frequency tended to be in clusters rather than single longer seizures. The patients had varying degrees of intellectual disability, however 3 had no impairment. Two patients had abnormal brain images including mesial temporal sclerosis, subcortical and periventricular white matter lesions. On average, the patients received 4 antiseizure medications (range 3-6), including 9 patients who were seizure free, and 3 who received sodium channel blockers without aggravation. Missense and truncating variants (frameshift and nonsense variants) accounted for 40% and 46.7% of all mutations. The mutations of 13 patients were located on EC1 to EC4, and EC5 to cytoplasmic domain in 2 patients. SIGNIFICANCE PCDH19 epilepsy has distinct phenotypes and an unusual X-linked pattern of expression in which females manifest core symptoms. Psychiatric and behavioral problems are frequently part of the clinical picture. Patients are usually treated with a wide array of standard antiseizure medications, with no preferred antiseizure medication class. No strong correlations between phenotype and location of variant mutations were found in our patients.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jao-Shwann Liang
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Ming-Yuh Chang
- Department of Pediatric Neurology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Pi-Lien Hung
- Department of Pediatric Neurology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - I-Jun Chou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ju-Yin Hou
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wang-Tso Lee
- Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Kuang-Lin Lin
- Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Borghi R, Petrini S, Apollonio V, Trivisano M, Specchio N, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Altered cytoskeleton dynamics in patient-derived iPSC-based model of PCDH19 clustering epilepsy. Front Cell Dev Biol 2025; 12:1518533. [PMID: 39834389 PMCID: PMC11743388 DOI: 10.3389/fcell.2024.1518533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation. Here, we evaluate the consequences of altered PCDH19 function on microfilaments and microtubules organization, using a disease model obtained from patient-derived induced pluripotent stem cells. We show that iPSC-derived cortical neurons are characterized by altered cytoskeletal dynamics, suggesting that this protocadherin has a role in modulating stability of MFs and MTs. Consistently, the levels of acetylated-tubulin, which is related with stable MTs, are significantly increased in cortical neurons derived from the patient's iPSCs compared to control cells, supporting the idea that the altered dynamics of the MTs depends on their increased stability. Finally, performing live-imaging experiments using fluorescence recovery after photobleaching and by monitoring GFP-tagged end binding protein 3 (EB3) "comets," we observe an impairment of the plus-end polymerization speed in PCDH19-mutated cortical neurons, therefore confirming the impaired MT dynamics. In addition to altering the mitotic spindle formation, the present data unveil that PCDH19 dysfunction leads to altered cytoskeletal rearrangement, providing therapeutic targets and pharmacological options to treat this disorder.
Collapse
Affiliation(s)
- Rossella Borghi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Valentina Apollonio
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Jung J, Park J, Park S, Kim CH, Jung H. Protocadherin 19 regulates axon guidance in the developing Xenopus retinotectal pathway. Mol Brain 2024; 17:58. [PMID: 39175067 PMCID: PMC11342623 DOI: 10.1186/s13041-024-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Protocadherin 19 (Pcdh19) is a homophilic cell adhesion molecule and is involved in a variety of neuronal functions. Here, we tested whether Pcdh19 has a regulatory role in axon guidance using the developing Xenopus retinotectal system. We performed targeted microinjections of a translation blocking antisense morpholino oligonucleotide to knock down the expression of Pcdh19 selectively in the central nervous system. Knocking down Pcdh19 expression resulted in navigational errors of retinal ganglion cell (RGC) axons specifically at the optic chiasm. Instead of projecting to the contralateral optic tectum, RGC axons in the Pcdh19-depleted embryo misprojected ipsilaterally. Although incorrectly delivered into the ipsilateral brain hemisphere, these axons correctly reached the optic tectum. These data suggest that Pcdh19 has a critical role in preventing mixing of RGC axons originating from the opposite eyes at the optic chiasm, highlighting the importance of cell adhesion in bundling of RGC axons.
Collapse
Affiliation(s)
- Jane Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jugeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sihyeon Park
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
de Nys R, Gardner A, van Eyk C, Mincheva-Tasheva S, Thomas P, Bhattacharjee R, Jolly L, Martinez-Garay I, Fox IWJ, Kamath KS, Kumar R, Gecz J. Proteomic analysis of the developing mammalian brain links PCDH19 to the Wnt/β-catenin signalling pathway. Mol Psychiatry 2024; 29:2199-2210. [PMID: 38454084 PMCID: PMC11408250 DOI: 10.1038/s41380-024-02482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Clustering Epilepsy (CE) is a neurological disorder caused by pathogenic variants of the Protocadherin 19 (PCDH19) gene. PCDH19 encodes a protein involved in cell adhesion and Estrogen Receptor α mediated-gene regulation. To gain further insights into the molecular role of PCDH19 in the brain, we investigated the PCDH19 interactome in the developing mouse hippocampus and cortex. Combined with a meta-analysis of all reported PCDH19 interacting proteins, our results show that PCDH19 interacts with proteins involved in actin, microtubule, and gene regulation. We report CAPZA1, αN-catenin and, importantly, β-catenin as novel PCDH19 interacting proteins. Furthermore, we show that PCDH19 is a regulator of β-catenin transcriptional activity, and that this pathway is disrupted in CE individuals. Overall, our results support the involvement of PCDH19 in the cytoskeletal network and point to signalling pathways where PCDH19 plays critical roles.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Alison Gardner
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Clare van Eyk
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Stefka Mincheva-Tasheva
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Genome Editing Program, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Paul Thomas
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
- Genome Editing Program, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Rudrarup Bhattacharjee
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Lachlan Jolly
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Isabel Martinez-Garay
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ian W J Fox
- Division of Neuroscience, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Giansante G, Mazzoleni S, Zippo AG, Ponzoni L, Ghilardi A, Maiellano G, Lewerissa E, van Hugte E, Nadif Kasri N, Francolini M, Sala M, Murru L, Bassani S, Passafaro M. Neuronal network activity and connectivity are impaired in a conditional knockout mouse model with PCDH19 mosaic expression. Mol Psychiatry 2024; 29:1710-1725. [PMID: 36997609 PMCID: PMC11371655 DOI: 10.1038/s41380-023-02022-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
Mutations in PCDH19 gene, which encodes protocadherin-19 (PCDH19), cause Developmental and Epileptic Encephalopathy 9 (DEE9). Heterogeneous loss of PCDH19 expression in neurons is considered a key determinant of the disorder; however, how PCDH19 mosaic expression affects neuronal network activity and circuits is largely unclear. Here, we show that the hippocampus of Pcdh19 mosaic mice is characterized by structural and functional synaptic defects and by the presence of PCDH19-negative hyperexcitable neurons. Furthermore, global reduction of network firing rate and increased neuronal synchronization have been observed in different limbic system areas. Finally, network activity analysis in freely behaving mice revealed a decrease in excitatory/inhibitory ratio and functional hyperconnectivity within the limbic system of Pcdh19 mosaic mice. Altogether, these results indicate that altered PCDH19 expression profoundly affects circuit wiring and functioning, and provide new key to interpret DEE9 pathogenesis.
Collapse
Affiliation(s)
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Antonio G Zippo
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy
| | - Luisa Ponzoni
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
| | - Anna Ghilardi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Greta Maiellano
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | - Elly Lewerissa
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Eline van Hugte
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Nael Nadif Kasri
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition, and Behaviour, Department of Human Genetics, Department of Human Genetics Cognitive Neuroscience, Nijmegen, Netherlands
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milano, Italy
| | | | - Luca Murru
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy.
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy.
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854, Vedano al Lambro, Italy.
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126, Milano, Italy.
| |
Collapse
|
6
|
Kowkabi S, Yavarian M, Kaboodkhani R, Mohammadi M, Shervin Badv R. PCDH19-clustering epilepsy, pathophysiology and clinical significance. Epilepsy Behav 2024; 154:109730. [PMID: 38521028 DOI: 10.1016/j.yebeh.2024.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is an X-linked epilepsy disorder associated with intellectual disability (ID) and behavioral disturbances, which is caused by PCDH19 gene variants. PCDH19 pathogenic variant leads to epilepsy in heterozygous females, not in hemizygous males and the inheritance pattern is unusual. The hypothesis of cellular interference was described as a key pathogenic mechanism. According to that, males do not develop the disease because of the uniform expression of PCDH19 (variant or wild type) unless they have a somatic variation. We conducted a literature review on PCDH19-CE pathophysiology and concluded that other significant mechanisms could contribute to pathogenesis including: asymmetric cell division and heterochrony, female-related allopregnanolone deficiency, altered steroid gene expression, decreased Gamma-aminobutyric acid receptor A (GABAA) function, and blood-brain barrier (BBB) dysfunction. Being aware of these mechanisms helps us when we should decide which therapeutic option is more suitable for which patient.
Collapse
Affiliation(s)
- Safoura Kowkabi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran; Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Majid Yavarian
- Hematology Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Mahmood Mohammadi
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Child Neurology Division and Children's Epilepsy Monitoring Unit, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Niu W, Deng L, Mojica-Perez SP, Tidball AM, Sudyk R, Stokes K, Parent JM. Abnormal cell sorting and altered early neurogenesis in a human cortical organoid model of Protocadherin-19 clustering epilepsy. Front Cell Neurosci 2024; 18:1339345. [PMID: 38638299 PMCID: PMC11024992 DOI: 10.3389/fncel.2024.1339345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Protocadherin-19 (PCDH19)-Clustering Epilepsy (PCE) is a developmental and epileptic encephalopathy caused by loss-of-function variants of the PCDH19 gene on the X-chromosome. PCE affects females and mosaic males while male carriers are largely spared. Mosaic expression of the cell adhesion molecule PCDH19 due to random X-chromosome inactivation is thought to impair cell-cell interactions between mutant and wild type PCDH19-expressing cells to produce the disease. Progress has been made in understanding PCE using rodent models or patient induced pluripotent stem cells (iPSCs). However, rodents do not faithfully model key aspects of human brain development, and patient iPSC models are limited by issues with random X-chromosome inactivation. Methods To overcome these challenges and model mosaic PCDH19 expression in vitro, we generated isogenic female human embryonic stem cells with either HA-FLAG-tagged PCDH19 (WT) or homozygous PCDH19 knockout (KO) using genome editing. We then mixed GFP-labeled WT and RFP-labeled KO cells and generated human cortical organoids (hCOs). Results We found that PCDH19 is highly expressed in early (days 20-35) WT neural rosettes where it co-localizes with N-Cadherin in ventricular zone (VZ)-like regions. Mosaic PCE hCOs displayed abnormal cell sorting in the VZ with KO and WT cells completely segregated. This segregation remained robust when WT:KO cells were mixed at 2:1 or 1:2 ratios. PCE hCOs also exhibited altered expression of PCDH19 (in WT cells) and N-Cadherin, and abnormal deep layer neurogenesis. None of these abnormalities were observed in hCOs generated by mixing only WT or only KO (modeling male carrier) cells. Discussion Our results using the mosaic PCE hCO model suggest that PCDH19 plays a critical role in human VZ radial glial organization and early cortical development. This model should offer a key platform for exploring mechanisms underlying PCE-related cortical hyperexcitability and testing of potential precision therapies.
Collapse
Affiliation(s)
- Wei Niu
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Lu Deng
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Department of Rehabilitation, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Andrew M. Tidball
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Roksolana Sudyk
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Kyle Stokes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
| | - Jack M. Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Mincheva-Tasheva S, Pfitzner C, Kumar R, Kurtsdotter I, Scherer M, Ritchie T, Muhr J, Gecz J, Thomas PQ. Mapping combinatorial expression of non-clustered protocadherins in the developing brain identifies novel PCDH19-mediated cell adhesion properties. Open Biol 2024; 14:230383. [PMID: 38629124 PMCID: PMC11037505 DOI: 10.1098/rsob.230383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.
Collapse
Affiliation(s)
- Stefka Mincheva-Tasheva
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Chandran Pfitzner
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Idha Kurtsdotter
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Michaela Scherer
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Tarin Ritchie
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
- South Australian Health and Medical Research
Institute, Adelaide, 5000 ,
Australia
| | - Paul Q. Thomas
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| |
Collapse
|
9
|
de Nys R, van Eyk CL, Ritchie T, Møller RS, Scheffer IE, Marini C, Bhattacharjee R, Kumar R, Gecz J. Multiomic analysis implicates nuclear hormone receptor signalling in clustering epilepsy. Transl Psychiatry 2024; 14:65. [PMID: 38280856 PMCID: PMC10821879 DOI: 10.1038/s41398-024-02783-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/07/2024] [Accepted: 01/16/2024] [Indexed: 01/29/2024] Open
Abstract
Clustering Epilepsy (CE) is an epileptic disorder with neurological comorbidities caused by heterozygous variants of the X chromosome gene Protocadherin 19 (PCDH19). Recent studies have implicated dysregulation of the Nuclear Hormone Receptor (NHR) pathway in CE pathogenesis. To obtain a comprehensive overview of the impact and mechanisms of loss of PCDH19 function in CE pathogenesis, we have performed epigenomic, transcriptomic and proteomic analysis of CE relevant models. Our studies identified differential regulation and expression of Androgen Receptor (AR) and its targets in CE patient skin fibroblasts. Furthermore, our cell culture assays revealed the repression of PCDH19 expression mediated through ERα and the co-regulator FOXA1. We also identified a protein-protein interaction between PCDH19 and AR, expanding upon the intrinsic link between PCDH19 and the NHR pathway. Together, these results point to a novel mechanism of NHR signaling in the pathogenesis of CE that can be explored for potential therapeutic options.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Clare L van Eyk
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tarin Ritchie
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine (member of ERN EpiCARE), Danish Epilepsy Centre, Filadelfia, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ingrid E Scheffer
- Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Neurology, The Royal Children's Hospital, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Carla Marini
- Child Neurology and Psychiatry Unit Children's Hospital "G. Salesi" Azienda Ospedaliero-Universitaria delle Marche Ancona, Ancona, Italy
| | - Rudrarup Bhattacharjee
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Raman Kumar
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
10
|
Martinez AP, Chung AC, Huang S, Bisogni AJ, Lin Y, Cao Y, Williams EO, Kim JY, Yang JY, Lin DM. Pcdh19 mediates olfactory sensory neuron coalescence during postnatal stages and regeneration. iScience 2023; 26:108220. [PMID: 37965156 PMCID: PMC10641745 DOI: 10.1016/j.isci.2023.108220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
The mouse olfactory system regenerates constantly throughout life. While genes critical for the initial projection of olfactory sensory neurons (OSNs) to the olfactory bulb have been identified, what genes are important for maintaining the olfactory map during regeneration are still unknown. Here we show a mutation in Protocadherin 19 (Pcdh19), a cell adhesion molecule and member of the cadherin superfamily, leads to defects in OSN coalescence during regeneration. Surprisingly, lateral glomeruli were more affected and males in particular showed a more severe phenotype. Single cell analysis unexpectedly showed OSNs expressing the MOR28 odorant receptor could be subdivided into two major clusters. We showed that at least one protocadherin is differentially expressed between OSNs coalescing on the medial and lateral glomeruli. Moreover, females expressed a slightly different complement of genes from males. These features may explain the differential effects of mutating Pcdh19 on medial and lateral glomeruli in males and females.
Collapse
Affiliation(s)
- Andrew P. Martinez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Alexander C. Chung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Suihong Huang
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Adam J. Bisogni
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Yingxin Lin
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Yue Cao
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - Eric O. Williams
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Jin Y. Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Jean Y.H. Yang
- School of Mathematics and Statistics, F07 University of Sydney, NSW 2006, Australia
| | - David M. Lin
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
11
|
Mazzurco M, Pulvirenti G, Caccamo M, Presti S, Soma R, Salafia S, Praticò ER, Filosco F, Falsaperla R, Praticò AD. PCDH19-Related Epilepsies. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:312-319. [DOI: 10.1055/s-0041-1728641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractProtocadherin-19 (PCDH19) is considered one of the most relevant genes related to epilepsy. To date, more than 150 mutations have been identified as causative for PCDH19-female epilepsy (also known as early infantile epileptic encephalopathy-9, EIEE9), which is characterized by early onset epilepsy, intellectual disabilities, and behavioral disturbances. More recently, mosaic-males (i.e., exhibiting the variants in less than 25% of their cells) have been described as affected by infant-onset epilepsy associated with intellectual disability, as well as compulsive or aggressive behavior and autistic features. Although little is known about the physiological role of PCDH19 protein and the pathogenic mechanisms that lead to EIEE9, many reports and clinical observation seem to suggest a relevant role of this protein in the development of cellular hyperexcitability. However, a genotype–phenotype correlation is difficult to establish. The main feature of EIEE9 consists in early onset of seizures, which generally occur in clusters lasting 1 to 5 minutes and repeating up to 10 times a day for several days. Seizures tend to present during febrile episodes, similarly to the first phases of Dravet syndrome and PCDH19 variants have been found in ∼25% of females who present with features of Dravet syndrome and testing negative for SCN1A variants. There is no “standardized” treatment for PCDH19-related epilepsy and most of the patients receiving a combination of several drugs. In this review, we focus on the latest researches on these aspects, with regard to protein expression, its known functions, and the mechanisms by which the protein acts. The clinical phenotypes related to PCDH19 mutations are also discussed.
Collapse
Affiliation(s)
| | - Giulio Pulvirenti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Martina Caccamo
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Santiago Presti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rachele Soma
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | | | | | - Federica Filosco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Pancho A, Mitsogiannis MD, Aerts T, Dalla Vecchia M, Ebert LK, Geenen L, Noterdaeme L, Vanlaer R, Stulens A, Hulpiau P, Staes K, Van Roy F, Dedecker P, Schermer B, Seuntjens E. Modifying PCDH19 levels affects cortical interneuron migration. Front Neurosci 2022; 16:887478. [PMID: 36389226 PMCID: PMC9642031 DOI: 10.3389/fnins.2022.887478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2023] Open
Abstract
PCDH19 is a transmembrane protein and member of the protocadherin family. It is encoded by the X-chromosome and more than 200 mutations have been linked to the neurodevelopmental PCDH-clustering epilepsy (PCDH19-CE) syndrome. A disturbed cell-cell contact that arises when random X-inactivation creates mosaic absence of PCDH19 has been proposed to cause the syndrome. Several studies have shown roles for PCDH19 in neuronal proliferation, migration, and synapse function, yet most of them have focused on cortical and hippocampal neurons. As epilepsy can also be caused by impaired interneuron migration, we studied the role of PCDH19 in cortical interneurons during embryogenesis. We show that cortical interneuron migration is affected by altering PCDH19 dosage by means of overexpression in brain slices and medial ganglionic eminence (MGE) explants. We also detect subtle defects when PCDH19 expression was reduced in MGE explants, suggesting that the dosage of PCDH19 is important for proper interneuron migration. We confirm this finding in vivo by showing a mild reduction in interneuron migration in heterozygote, but not in homozygote PCDH19 knockout animals. In addition, we provide evidence that subdomains of PCDH19 have a different impact on cell survival and interneuron migration. Intriguingly, we also observed domain-dependent differences in migration of the non-targeted cell population in explants, demonstrating a non-cell-autonomous effect of PCDH19 dosage changes. Overall, our findings suggest new roles for the extracellular and cytoplasmic domains of PCDH19 and support that cortical interneuron migration is dependent on balanced PCDH19 dosage.
Collapse
Affiliation(s)
- Anna Pancho
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D. Mitsogiannis
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Marco Dalla Vecchia
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Lena K. Ebert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lieve Geenen
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
- Laboratory of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Division, Department of Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lut Noterdaeme
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ria Vanlaer
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Anne Stulens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Paco Hulpiau
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- BioInformatics Knowledge Center (BiKC), Howest University of Applied Sciences, Bruges, Belgium
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans Van Roy
- Department of Biomedical Molecular Biology, Ghent University, Inflammation Research Center, VIB, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peter Dedecker
- Laboratory for NanoBiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Eve Seuntjens
- Developmental Neurobiology Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Robens BK, Yang X, McGraw CM, Turner LH, Robens C, Thyme S, Rotenberg A, Poduri A. Mosaic and non-mosaic protocadherin 19 mutation leads to neuronal hyperexcitability in zebrafish. Neurobiol Dis 2022; 169:105738. [PMID: 35460869 PMCID: PMC9284424 DOI: 10.1016/j.nbd.2022.105738] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders. The X-linked gene PCDH19 is associated with sporadic and familial epilepsy in humans, typically with early-onset clustering seizures and intellectual disability in females but not in so-called 'carrier' males, suggesting that mosaic PCDH19 expression is required to produce epilepsy. To characterize the role of loss of PCDH19 function in epilepsy, we generated zebrafish with truncating pcdh19 variants. Evaluating zebrafish larvae for electrophysiological abnormalities, we observed hyperexcitability phenotypes in both mosaic and non-mosaic pcdh19+/- and pcdh19-/- mutant larvae. Thus, we demonstrate that the key feature of epilepsy-network hyperexcitability-can be modeled effectively in zebrafish, even though overt spontaneous seizure-like swim patterns were not observed. Further, zebrafish with non-mosaic pcdh19 mutation displayed reduced numbers of inhibitory interneurons suggesting a potential cellular basis for the observed hyperexcitability. Our findings in both mosaic and non-mosaic pcdh19 mutant zebrafish challenge the prevailing theory that mosaicism governs all PCDH19-related phenotypes and point to interneuron-mediated mechanisms underlying these phenotypes.
Collapse
Affiliation(s)
- Barbara K Robens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA; Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA
| | - Xinzhu Yang
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA; Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA
| | - Christopher M McGraw
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA; Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA.; Department of Neurology, Harvard Medical School, Boston, MA, USA; Division of Epilepsy, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Laura H Turner
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA; Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA
| | - Carsten Robens
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Summer Thyme
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander Rotenberg
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna Poduri
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA; Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital - Harvard Medical School, Boston, MA, USA.; Department of Neurology, Harvard Medical School, Boston, MA, USA; Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Lamers D, Landi S, Mezzena R, Baroncelli L, Pillai V, Cruciani F, Migliarini S, Mazzoleni S, Pasqualetti M, Passafaro M, Bassani S, Ratto GM. Perturbation of Cortical Excitability in a Conditional Model of PCDH19 Disorder. Cells 2022; 11:cells11121939. [PMID: 35741068 PMCID: PMC9222106 DOI: 10.3390/cells11121939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
PCDH19 epilepsy (DEE9) is an X-linked syndrome associated with cognitive and behavioral disturbances. Since heterozygous females are affected, while mutant males are spared, it is likely that DEE9 pathogenesis is related to disturbed cell-to-cell communication associated with mosaicism. However, the effects of mosaic PCDH19 expression on cortical networks are unknown. We mimicked the pathology of DEE9 by introducing a patch of mosaic protein expression in one hemisphere of the cortex of conditional PCDH19 knockout mice one day after birth. In the contralateral area, PCDH19 expression was unaffected, thus providing an internal control. In this model, we characterized the physiology of the disrupted network using local field recordings and two photon Ca2+ imaging in urethane anesthetized mice. We found transient episodes of hyperexcitability in the form of brief hypersynchronous spikes or bursts of field potential oscillations in the 9–25 Hz range. Furthermore, we observed a strong disruption of slow wave activity, a crucial component of NREM sleep. This phenotype was present also when PCDH19 loss occurred in adult mice, demonstrating that PCDH19 exerts a function on cortical circuitry outside of early development. Our results indicate that a focal mosaic mutation of PCDH19 disrupts cortical networks and broaden our understanding of DEE9.
Collapse
Affiliation(s)
- Didi Lamers
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Silvia Landi
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
| | - Roberta Mezzena
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Laura Baroncelli
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche (CNR), 56124 Pisa, Italy;
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Vinoshene Pillai
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Federica Cruciani
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
| | - Sara Migliarini
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Sara Mazzoleni
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Massimo Pasqualetti
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy; (S.M.); (M.P.)
| | - Maria Passafaro
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Silvia Bassani
- Institute of Neuroscience, CNR, 20854 Vedano al Lambro, Italy; (S.M.); (M.P.); (S.B.)
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy
| | - Gian Michele Ratto
- National Enterprise for NanoScience and NanoTchnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (D.L.); (S.L.); (R.M.); (V.P.); (F.C.)
- Correspondence:
| |
Collapse
|
15
|
Cwetsch AW, Ziogas I, Narducci R, Savardi A, Bolla M, Pinto B, Perlini LE, Bassani S, Passafaro M, Cancedda L. A rat model of a focal mosaic expression of PCDH19 replicates human brain developmental abnormalities and behaviors. Brain Commun 2022; 4:fcac091. [PMID: 35528232 PMCID: PMC9070467 DOI: 10.1093/braincomms/fcac091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
Protocadherin 19 gene-related epilepsy or protocadherin 19 clustering epilepsy is an infantile-onset epilepsy syndrome characterized by psychiatric (including autism-related), sensory, and cognitive impairment of varying degrees. Protocadherin 19 clustering epilepsy is caused by X-linked protocadherin 19 protein loss of function. Due to random X-chromosome inactivation, protocadherin 19 clustering epilepsy-affected females present a mosaic population of healthy and protocadherin 19-mutant cells. Unfortunately, to date, no current mouse model can fully recapitulate both the brain histological and behavioural deficits present in people with protocadherin 19 clustering epilepsy. Thus, the search for a proper understanding of the disease and possible future treatment is hampered. By inducing a focal mosaicism of protocadherin 19 expression using in utero electroporation in rats, we found here that protocadherin 19 signalling in specific brain areas is implicated in neuronal migration, heat-induced epileptic seizures, core/comorbid behaviours related to autism and cognitive function.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
- Instituto de Biotecnologia y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Ilias Ziogas
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Roberto Narducci
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| | - Maria Bolla
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura E Perlini
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | | | | | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| |
Collapse
|
16
|
Borghi R, Magliocca V, Trivisano M, Specchio N, Tartaglia M, Bertini E, Compagnucci C. Modeling PCDH19-CE: From 2D Stem Cell Model to 3D Brain Organoids. Int J Mol Sci 2022; 23:ijms23073506. [PMID: 35408865 PMCID: PMC8998847 DOI: 10.3390/ijms23073506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
PCDH19 clustering epilepsy (PCDH19-CE) is a genetic disease characterized by a heterogeneous phenotypic spectrum ranging from focal epilepsy with rare seizures and normal cognitive development to severe drug-resistant epilepsy associated with intellectual disability and autism. Unfortunately, little is known about the pathogenic mechanism underlying this disease and an effective treatment is lacking. Studies with zebrafish and murine models have provided insights on the function of PCDH19 during brain development and how its altered function causes the disease, but these models fail to reproduce the human phenotype. Induced pluripotent stem cell (iPSC) technology has provided a complementary experimental approach for investigating the pathogenic mechanisms implicated in PCDH19-CE during neurogenesis and studying the pathology in a more physiological three-dimensional (3D) environment through the development of brain organoids. We report on recent progress in the development of human brain organoids with a particular focus on how this 3D model may shed light on the pathomechanisms implicated in PCDH19-CE.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Marina Trivisano
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Nicola Specchio
- Department of Neurosciences, Rare and Complex Epilepsy Unit, Division of Neurology, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, 00165 Rome, Italy; (M.T.); (N.S.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Research Hospital, IRCCS, 00165 Rome, Italy; (R.B.); (V.M.); (M.T.); (E.B.)
- Correspondence:
| |
Collapse
|
17
|
de Nys R, Kumar R, Gecz J. Protocadherin 19 Clustering Epilepsy and Neurosteroids: Opportunities for Intervention. Int J Mol Sci 2021; 22:9769. [PMID: 34575929 PMCID: PMC8469663 DOI: 10.3390/ijms22189769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/23/2023] Open
Abstract
Steroids yield great influence on neurological development through nuclear hormone receptor (NHR)-mediated gene regulation. We recently reported that cell adhesion molecule protocadherin 19 (encoded by the PCDH19 gene) is involved in the coregulation of steroid receptor activity on gene expression. PCDH19 variants cause early-onset developmental epileptic encephalopathy clustering epilepsy (CE), with altered steroidogenesis and NHR-related gene expression being identified in these individuals. The implication of hormonal pathways in CE pathogenesis has led to the investigation of various steroid-based antiepileptic drugs in the treatment of this disorder, with mixed results so far. Therefore, there are many unmet challenges in assessing the antiseizure targets and efficiency of steroid-based therapeutics for CE. We review and assess the evidence for and against the implication of neurosteroids in the pathogenesis of CE and in view of their possible clinical benefit.
Collapse
Affiliation(s)
- Rebekah de Nys
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Raman Kumar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
| | - Jozef Gecz
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia; (R.d.N.); (R.K.)
- Robinson Research Institute, The University of Adelaide, Adelaide, SA 5006, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
18
|
Cellular and Behavioral Characterization of Pcdh19 Mutant Mice: subtle Molecular Changes, Increased Exploratory Behavior and an Impact of Social Environment. eNeuro 2021; 8:ENEURO.0510-20.2021. [PMID: 34272258 PMCID: PMC8362684 DOI: 10.1523/eneuro.0510-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/15/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Mutations in the X-linked cell adhesion protein PCDH19 lead to seizures, cognitive impairment, and other behavioral comorbidities when present in a mosaic pattern. Neither the molecular mechanisms underpinning this disorder nor the function of PCDH19 itself are well understood. By combining RNA in situ hybridization with immunohistochemistry and analyzing single-cell RNA sequencing datasets, we reveal Pcdh19 expression in cortical interneurons and provide a first account of the subtypes of neurons expressing Pcdh19/PCDH19, both in the mouse and the human cortex. Our quantitative analysis of the Pcdh19 mutant mouse exposes subtle changes in cortical layer composition, with no major alterations of the main axonal tracts. In addition, Pcdh19 mutant animals, particularly females, display preweaning behavioral changes, including reduced anxiety and increased exploratory behavior. Importantly, our experiments also reveal an effect of the social environment on the behavior of wild-type littermates of Pcdh19 mutant mice, which show alterations when compared with wild-type animals not housed with mutants.
Collapse
|
19
|
Borghi R, Magliocca V, Petrini S, Conti LA, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Dissecting the Role of PCDH19 in Clustering Epilepsy by Exploiting Patient-Specific Models of Neurogenesis. J Clin Med 2021; 10:jcm10132754. [PMID: 34201522 PMCID: PMC8268119 DOI: 10.3390/jcm10132754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
PCDH19-related epilepsy is a rare genetic disease caused by defective function of PCDH19, a calcium-dependent cell–cell adhesion protein of the cadherin superfamily. This disorder is characterized by a heterogeneous phenotypic spectrum, with partial and generalized febrile convulsions that are gradually increasing in frequency. Developmental regression may occur during disease progression. Patients may present with intellectual disability (ID), behavioral problems, motor and language delay, and a low motor tone. In most cases, seizures are resistant to treatment, but their frequency decreases with age, and some patients may even become seizure-free. ID generally persists after seizure remission, making neurological abnormalities the main clinical issue in affected individuals. An effective treatment is lacking. In vitro studies using patient-derived induced pluripotent stem cells (iPSCs) reported accelerated neural differentiation as a major endophenotype associated with PCDH19 mutations. By using this in vitro model system, we show that accelerated in vitro neurogenesis is associated with a defect in the cell division plane at the neural progenitors stage. We also provide evidence that altered PCDH19 function affects proper mitotic spindle orientation. Our findings identify an altered equilibrium between symmetric versus asymmetric cell division as a previously unrecognized mechanism contributing to the pathogenesis of this rare epileptic encephalopathy.
Collapse
Affiliation(s)
- Rossella Borghi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Valentina Magliocca
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Libenzio Adrian Conti
- Confocal Microscopy Core Facility, Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (L.A.C.)
| | - Sandra Moreno
- Department of Science, University “Roma Tre”, 00146 Rome, Italy;
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (R.B.); (V.M.); (E.B.); (M.T.)
- Correspondence:
| |
Collapse
|
20
|
Disrupted Excitatory Synaptic Contacts and Altered Neuronal Network Activity Underpins the Neurological Phenotype in PCDH19-Clustering Epilepsy (PCDH19-CE). Mol Neurobiol 2021; 58:2005-2018. [PMID: 33411240 DOI: 10.1007/s12035-020-02242-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
PCDH19-Clustering Epilepsy (PCDH19-CE) is an infantile onset disorder caused by mutation of the X-linked PCDH19 gene. Intriguingly, heterozygous females are affected while hemizygous males are not. While there is compelling evidence that this disorder stems from the coexistence of WT and PCDH19-null cells, the cellular mechanism underpinning the neurological phenotype remains unclear. Here, we investigate the impact of Pcdh19 WT and KO neuron mosaicism on synaptogenesis and network activity. Using our previously established knock-in and knock-out mouse models, together with CRISPR-Cas9 genome editing technology, we demonstrate a reduction in excitatory synaptic contacts between PCDH19-expressing and PCDH19-null neurons. Significantly altered neuronal morphology and neuronal network activities were also identified in the mixed populations. In addition, we show that in Pcdh19 heterozygous mice, where the coexistence of WT and KO neurons naturally occurs, aberrant contralateral axonal branching is present. Overall, our data show that mosaic expression of PCDH19 disrupts physiological neurite communication leading to abnormal neuronal activity, a hallmark of PCDH19-CE.
Collapse
|
21
|
Honig B, Shapiro L. Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition. Cell 2021; 181:520-535. [PMID: 32359436 DOI: 10.1016/j.cell.2020.04.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The ability of cells to organize into multicellular structures in precise patterns requires that they "recognize" one another with high specificity. We discuss recent progress in understanding the molecular basis of cell-cell recognition, including unique phenomena associated with neuronal interactions. We describe structures of select adhesion receptor complexes and their assembly into larger intercellular junction structures and discuss emerging principles that relate cell-cell organization to the binding specificities and energetics of adhesion receptors. Armed with these insights, advances in protein design and gene editing should pave the way for breakthroughs toward understanding the molecular basis of cell patterning in vivo.
Collapse
Affiliation(s)
- Barry Honig
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021; 120:28-47. [PMID: 33171144 PMCID: PMC7855816 DOI: 10.1016/j.neubiorev.2020.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Humans show reproducible sex-differences in cognition and psychopathology that may be contributed to by influences of gonadal sex-steroids and/or sex-chromosomes on regional brain development. Gonadal sex-steroids are well known to play a major role in sexual differentiation of the vertebrate brain, but far less is known regarding the role of sex-chromosomes. Our review focuses on this latter issue by bridging together two literatures that have to date been largely disconnected. We first consider "bottom-up" genetic and molecular studies focused on sex-chromosome gene content and regulation. This literature nominates specific sex-chromosome genes that could drive developmental sex-differences by virtue of their sex-biased expression and their functions within the brain. We then consider the complementary "top down" view, from magnetic resonance imaging studies that map sex- and sex chromosome effects on regional brain anatomy, and link these maps to regional gene-expression within the brain. By connecting these top-down and bottom-up approaches, we emphasize the potential role of X-linked genes in driving sex-biased brain development and outline key goals for future work in this field.
Collapse
Affiliation(s)
- Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, 20892, USA.
| | - Christine M Disteche
- Department of Pathology and Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Rakotomamonjy J, Sabetfakhri NP, McDermott SL, Guemez-Gamboa A. Characterization of seizure susceptibility in Pcdh19 mice. Epilepsia 2020; 61:2313-2320. [PMID: 32944953 DOI: 10.1111/epi.16675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE PCDH19-related epilepsy is characterized by a distinctive pattern of X-linked inheritance, where heterozygous females exhibit seizures and hemizygous males are asymptomatic. A cellular interference mechanism resulting from the presence of both wild-type and mutant PCDH19 neurons in heterozygous patients or mosaic carriers of PCDH19 variants has been hypothesized. We aim to investigate seizure susceptibility and progression in the Pchd19 mouse model. METHODS We assessed seizure susceptibility and progression in the Pcdh19 mouse model using three acute seizure induction paradigms. We first induced focal, clonic seizures using the 6-Hz psychomotor test. Mice were stimulated with increasing current intensities and graded according to a modified Racine scale. We next induced generalized seizures using flurothyl or pentylenetetrazol (PTZ), both γ-aminobutyric acid type A receptor function inhibitors, and recorded latencies to myoclonic and generalized tonic-clonic seizures. RESULTS Pcdh19 knockout and heterozygous females displayed increased seizure susceptibility across all current intensities in the 6-Hz psychomotor test, and increased severity overall. They also exhibited shorter latencies to generalized seizures following flurothyl, but not PTZ, seizure induction. Hemizygous males showed comparable seizure incidence and severity to their wild-type male littermates across all paradigms tested. SIGNIFICANCE The heightened susceptibility observed in Pcdh19 knockout females suggests additional mechanisms other than cellular interference are at play in PCDH19-related epilepsy. Further experiments are needed to understand the variability in seizure susceptibility so that this model can be best utilized toward development of future therapeutic strategies for PCDH19-related epilepsy.
Collapse
Affiliation(s)
- Jennifer Rakotomamonjy
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Niki P Sabetfakhri
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sean L McDermott
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alicia Guemez-Gamboa
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
24
|
Gecz J, Thomas PQ. Disentangling the paradox of the PCDH19 clustering epilepsy, a disorder of cellular mosaics. Curr Opin Genet Dev 2020; 65:169-175. [PMID: 32726744 DOI: 10.1016/j.gde.2020.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
PCDH19 Clustering Epilepsy (CE) is an intriguing early-onset seizure, autism and neurocognitive disorder with unique inheritance. The causative gene, PCDH19, is on the X-chromosome and encodes a cell-cell adhesion protein with restricted expression during brain development. Unlike other X-linked disorders, PCDH19-CE manifests in heterozygous females. Strikingly, hemizygous males are not affected. However, males with postzygotic somatic mutation in PCDH19 are affected and clinically similar to the affected females. PCDH19-CE is a disorder of cellular mosaicism. The coexistence of two different, but otherwise 'normal' cells in a PCDH19-CE individual, that is the wild type and the variant PCDH19 cells, has been proposed as the driving force of the disorder. This 'cellular interference' hypothesis could and has now been tested using sophisticated mouse models.
Collapse
Affiliation(s)
- Jozef Gecz
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia.
| | - Paul Q Thomas
- Adelaide Medical School and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; Precision Medicine, South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia.
| |
Collapse
|
25
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Lenge M, Marini C, Canale E, Napolitano A, De Masi S, Trivisano M, Mei D, Longo D, Rossi Espagnet MC, Lucenteforte E, Barba C, Specchio N, Guerrini R. Quantitative MRI-Based Analysis Identifies Developmental Limbic Abnormalities in PCDH19 Encephalopathy. Cereb Cortex 2020; 30:6039-6050. [PMID: 32582916 DOI: 10.1093/cercor/bhaa177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Protocadherin-19 (PCDH19) is a calcium dependent cell-adhesion molecule involved in neuronal circuit formation with prevalent expression in the limbic structures. PCDH19-gene mutations cause a developmental encephalopathy with prominent infantile onset focal seizures, variably associated with intellectual disability and autistic features. Diagnostic neuroimaging is usually unrevealing. We used quantitative MRI to investigate the cortex and white matter in a group of 20 PCDH19-mutated patients. By a statistical comparison between quantitative features in PCDH19 brains and in a group of age and sex matched controls, we found that patients exhibited bilateral reductions of local gyrification index (lGI) in limbic cortical areas, including the parahippocampal and entorhinal cortex and the fusiform and lingual gyri, and altered diffusivity features in the underlying white matter. In patients with an earlier onset of seizures, worse psychiatric manifestations and cognitive impairment, reductions of lGI and diffusivity abnormalities in the limbic areas were more pronounced. Developmental abnormalities involving the limbic structures likely represent a measurable anatomic counterpart of the reduced contribution of the PCDH19 protein to local cortical folding and white matter organization and are functionally reflected in the phenotypic features involving cognitive and communicative skills as well as local epileptogenesis.
Collapse
Affiliation(s)
- Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy.,Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy.,Clinical Trial Office, Children's Hospital A. Meyer-University of Florence, 50139 Florence, Italy
| | - Carla Marini
- Child Neuropsychiatry Unit, Maternal Child Department, University Hospital Ospedali Riuniti, 60100 Ancona, Italy
| | - Edoardo Canale
- Paediatric Neurology and Muscular Diseases Unit, IRCCS 'G. Gaslini' Institute, 16100 Genova, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Salvatore De Masi
- Clinical Trial Office, Children's Hospital A. Meyer-University of Florence, 50139 Florence, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Davide Mei
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Maria Camilla Rossi Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy.,NESMOS Department, Sapienza University, 00100 Rome, Italy
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Carmen Barba
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, 00100 Rome, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children's Hospital A. Meyer - University of Florence, 50139 Florence, Italy.,IRCCS Stella Maris Foundation, 56018 Pisa, Italy
| |
Collapse
|
27
|
PCDH19-Related Epilepsy Syndrome: A Comprehensive Clinical Review. Pediatr Neurol 2020; 105:3-9. [PMID: 32057594 DOI: 10.1016/j.pediatrneurol.2019.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
PCDH19-related epilepsy is a distinct childhood-onset epilepsy syndrome characterized by brief clusters of febrile and afebrile seizures with onset primarily before the age of three years, cognitive impairment, autistic traits, and behavioral abnormalities. PCDH19 gene is located in Xq22 and produces nonclustered delta protocadherin. This disorder primarily manifests in heterozygote females due to random X chromosome inactivation leading to somatic mosaicism and abnormal cellular interference between cells with and without delta-protocadherin. This article reviews the clinical features based on a comprehensive literature review (MEDLINE using PubMed and OvidSP vendors with appropriate keywords to incorporate recent evidence), personal practice, and experience. Significant progress has been made in the past 10 years, including identification of the gene responsible for the condition, characterization of clinical phenotypes, and development of animal models. More rigorous studies involving quality-of-life measures as well as standardized neuropsychiatric testing are necessary to understand the full spectrum of the disease. The recent discovery of allopregnanolone deficiency in patients with PCDH19-related epilepsy leads to opportunities in precision therapy. A phase 3 clinical study is currently active to evaluate the efficacy, safety, and tolerability of adjunctive ganaxolone (an allopregnanolone analog) therapy.
Collapse
|
28
|
Dunn PJ, Maher BH, Albury CL, Stuart S, Sutherland HG, Maksemous N, Benton MC, Smith RA, Haupt LM, Griffiths LR. Tiered analysis of whole-exome sequencing for epilepsy diagnosis. Mol Genet Genomics 2020; 295:751-763. [DOI: 10.1007/s00438-020-01657-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
29
|
Papandreou A, Danti FR, Spaull R, Leuzzi V, Mctague A, Kurian MA. The expanding spectrum of movement disorders in genetic epilepsies. Dev Med Child Neurol 2020; 62:178-191. [PMID: 31784983 DOI: 10.1111/dmcn.14407] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 12/27/2022]
Abstract
An ever-increasing number of neurogenetic conditions presenting with both epilepsy and atypical movements are now recognized. These disorders within the 'genetic epilepsy-dyskinesia' spectrum are clinically and genetically heterogeneous. Increased clinical awareness is therefore necessary for a rational diagnostic approach. Furthermore, careful interpretation of genetic results is key to establishing the correct diagnosis and initiating disease-specific management strategies in a timely fashion. In this review we describe the spectrum of movement disorders associated with genetically determined epilepsies. We also propose diagnostic strategies and putative pathogenic mechanisms causing these complex syndromes associated with both seizures and atypical motor control. WHAT THIS PAPER ADDS: Implicated genes encode proteins with very diverse functions. Pathophysiological mechanisms by which epilepsy and movement disorder phenotypes manifest are often not clear. Early diagnosis of treatable disorders is essential and next generation sequencing may be required.
Collapse
Affiliation(s)
- Apostolos Papandreou
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Federica Rachele Danti
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Robert Spaull
- Department of Paediatric Neurology, Bristol Royal Hospital for Children, Bristol, UK
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Amy Mctague
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
30
|
Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, Corradi A. Progress of Induced Pluripotent Stem Cell Technologies to Understand Genetic Epilepsy. Int J Mol Sci 2020; 21:ijms21020482. [PMID: 31940887 PMCID: PMC7013950 DOI: 10.3390/ijms21020482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
The study of the pathomechanisms by which gene mutations lead to neurological diseases has benefit from several cellular and animal models. Recently, induced Pluripotent Stem Cell (iPSC) technologies have made possible the access to human neurons to study nervous system disease-related mechanisms, and are at the forefront of the research into neurological diseases. In this review, we will focalize upon genetic epilepsy, and summarize the most recent studies in which iPSC-based technologies were used to gain insight on the molecular bases of epilepsies. Moreover, we discuss the latest advancements in epilepsy cell modeling. At the two dimensional (2D) level, single-cell models of iPSC-derived neurons lead to a mature neuronal phenotype, and now allow a reliable investigation of synaptic transmission and plasticity. In addition, functional characterization of cerebral organoids enlightens neuronal network dynamics in a three-dimensional (3D) structure. Finally, we discuss the use of iPSCs as the cutting-edge technology for cell therapy in epilepsy.
Collapse
Affiliation(s)
- Bruno Sterlini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
| | - Floriana Fruscione
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Largo P. Daneo 3, 16132 Genoa, Italy;
| | - Simona Baldassari
- Unità Operativa Complessa Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini, Genova Italy, Via G. Gaslini 5, 16147 Genoa, Italy;
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Largo P. Daneo 3, 16132 Genoa, Italy;
- Unità Operativa Complessa Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini, Genova Italy, Via G. Gaslini 5, 16147 Genoa, Italy;
- Correspondence: (F.Z.); (A.C.)
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- Correspondence: (F.Z.); (A.C.)
| |
Collapse
|
31
|
Yang L, Liu J, Su Q, Li Y, Yang X, Xu L, Tong L, Li B. Novel and de novo mutation of PCDH19 in Girls Clustering Epilepsy. Brain Behav 2019; 9:e01455. [PMID: 31714027 PMCID: PMC6908879 DOI: 10.1002/brb3.1455] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND PCDH19 has become the second most relevant gene in epilepsy after SCN1A. Seizures often provoked by fever. METHODS We screened 152 children with fever-sensitive epilepsy for gene detection. Their clinical information was followed up. RESULTS We found eight PCDH19 point mutations (four novel and four reported) and one whole gene deletion in 10 female probands (seven sporadic cases and three family cases) who also had cluster seizures. The common clinical features of 16 patients in 10 families included fever-sensitive and cluster seizures, mainly focal or tonic-clonic seizures, and absence of status epilepticus, normal intelligence, or mild-to-moderate cognitive impairment, the onset age ranges from 5 months to 20 years. Only four patients had multiple or focal transient discharges in interictal EEG. Focal seizures originating in the frontal region were recorded in four patients, two from the parietal region, and one from the occipital region. CONCLUSION PCDH19 mutation can be inherited or de novo. The clinical spectrum of PCDH19 mutation includes PCDH19 Girls Clustering Epilepsy with or without mental retardation, psychosis, and asymptomatic male. The onset age of PCDH19 Girls Clustering Epilepsy can range from infancy to adulthood. Sisters in the same family may be sensitive to the same antiepileptic drugs. And our report expands the mutation spectrum of PCDH19 Girls Clustering Epilepsy.
Collapse
Affiliation(s)
- Li Yang
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China.,Department of Pediatrics, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Jing Liu
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Quanping Su
- Central Laboratory, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Yufen Li
- Department of Pediatrics, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Liyun Xu
- Department of Pediatrics, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Lili Tong
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China
| | - Baomin Li
- Department of Pediatrics, Qilu Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
32
|
Lim J, Ryu J, Kang S, Noh HJ, Kim CH. Autism-like behaviors in male mice with a Pcdh19 deletion. Mol Brain 2019; 12:95. [PMID: 31747920 PMCID: PMC6864969 DOI: 10.1186/s13041-019-0519-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/30/2019] [Indexed: 01/08/2023] Open
Abstract
Mutations in protocadherin 19 (PCDH19), which is on the X-chromosome, cause the brain disease Epilepsy in Females with Mental Retardation (EFMR). EFMR is also often associated with autism-like symptoms. In mice and humans, epilepsy occurs only in heterozygous females who have a mixture of PCDH19 wild-type (WT) and mutant cells caused by random X-inactivation; it does not occur in hemizygous PCDH19 mutant males. This unique inheritance pattern strongly suggests the underlying disease mechanism operates via interference between WT and mutant cells rather than being a result of complete loss of PCDH19 functions. Although it remains unclear whether the other symptoms of EFMR also conform to this unique genotype-phenotype relationship, PCDH19 mutant males were recently reported to demonstrate autism-like symptoms. We, therefore, used a Pcdh19 knockout (KO) mouse model to ask whether a complete lack of PCDH19 causes autism-like behaviors. Consistent with the autism observed in EFMR females, we found Pcdh19 heterozygous KO female mice (with mosaic expression of PCDH19) show defects in sociability in the 3-chamber test. Surprisingly, hemizygous Pcdh19 KO male mice (without any PCDH19 expression) exhibit impaired sociability in the 3-chamber test and reduced social interactions in the reciprocal social interaction test. We also observed that, compared to WT mice, mutant mice display more repetitive behaviors, including self-grooming and rearing. These findings indicate that hemizygous Pcdh19 KO male mice show autism-like phenotypes.
Collapse
Affiliation(s)
- Jisoo Lim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jiin Ryu
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Shinwon Kang
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyun Jong Noh
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Chul Hoon Kim
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
33
|
Lv X, Ren SQ, Zhang XJ, Shen Z, Ghosh T, Xianyu A, Gao P, Li Z, Lin S, Yu Y, Zhang Q, Groszer M, Shi SH. TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex. Nat Commun 2019; 10:3946. [PMID: 31477701 PMCID: PMC6718393 DOI: 10.1038/s41467-019-11854-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/06/2019] [Indexed: 11/09/2022] Open
Abstract
Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate progenitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex. TBR2 removal leads to a significant reduction in neuronal, but not glial, output of individual radial glial progenitors as revealed by mosaic analysis with double markers. Moreover, in the absence of TBR2, clonally related excitatory neurons become more laterally dispersed and their preferential synapse development is impaired. Interestingly, TBR2 directly regulates the expression of Protocadherin 19 (PCDH19), and simultaneous PCDH19 expression rescues neurogenesis and neuronal organization defects caused by TBR2 removal. Together, these results suggest that TBR2 coordinates neurogenesis expansion and precise microcircuit assembly via PCDH19 in the mammalian cortex.
Collapse
Affiliation(s)
- Xiaohui Lv
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Si-Qiang Ren
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xin-Jun Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Zhongfu Shen
- IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tanay Ghosh
- Inserm, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, Paris, 75005, France.,Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Anjin Xianyu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Peng Gao
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhizhong Li
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Susan Lin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yang Yu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Qiangqiang Zhang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Matthias Groszer
- Inserm, UMR-S839, Sorbonne Université, Institut du Fer à Moulin, Paris, 75005, France
| | - Song-Hai Shi
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,IDG/McGovern Institute for Brain Research, Tsinghua-Peking Joint Center for Life Sciences, Beijing Frontier Research Center of Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Graduate Program in Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Berg DJ, Kartheiser K, Leyrer M, Saali A, Berson DM. Transcriptomic Signatures of Postnatal and Adult Intrinsically Photosensitive Ganglion Cells. eNeuro 2019; 6:ENEURO.0022-19.2019. [PMID: 31387875 PMCID: PMC6712207 DOI: 10.1523/eneuro.0022-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/21/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are rare mammalian photoreceptors essential for non-image-forming vision functions, such as circadian photoentrainment and the pupillary light reflex. They comprise multiple subtypes distinguishable by morphology, physiology, projections, and levels of expression of melanopsin (Opn4), their photopigment. The molecular programs that distinguish ipRGCs from other ganglion cells and ipRGC subtypes from one another remain elusive. Here, we present comprehensive gene expression profiles of early postnatal and adult mouse ipRGCs purified from two lines of reporter mice that mark different sets of ipRGC subtypes. We find dozens of novel genes highly enriched in ipRGCs. We reveal that Rasgrp1 and Tbx20 are selectively expressed in subsets of ipRGCs, though these molecularly defined groups imperfectly match established ipRGC subtypes. We demonstrate that the ipRGCs regulating circadian photoentrainment are diverse at the molecular level. Our findings reveal unexpected complexity in gene expression patterns across mammalian ipRGC subtypes.
Collapse
Affiliation(s)
- Daniel J Berg
- Molecular Biology, Cellular Biology, and Biochemistry Program, Brown University, Providence, Rhode Island 02912
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | | | - Megan Leyrer
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Alexandra Saali
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
35
|
Pederick DT, Richards KL, Piltz SG, Kumar R, Mincheva-Tasheva S, Mandelstam SA, Dale RC, Scheffer IE, Gecz J, Petrou S, Hughes JN, Thomas PQ. Abnormal Cell Sorting Underlies the Unique X-Linked Inheritance of PCDH19 Epilepsy. Neuron 2019; 97:59-66.e5. [PMID: 29301106 DOI: 10.1016/j.neuron.2017.12.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/24/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
X-linked diseases typically exhibit more severe phenotypes in males than females. In contrast, protocadherin 19 (PCDH19) mutations cause epilepsy in heterozygous females but spare hemizygous males. The cellular mechanism responsible for this unique pattern of X-linked inheritance is unknown. We show that PCDH19 contributes to adhesion specificity in a combinatorial manner such that mosaic expression of Pcdh19 in heterozygous female mice leads to striking sorting between cells expressing wild-type (WT) PCDH19 and null PCDH19 in the developing cortex, correlating with altered network activity. Complete deletion of PCDH19 in heterozygous mice abolishes abnormal cell sorting and restores normal network activity. Furthermore, we identify variable cortical malformations in PCDH19 epilepsy patients. Our results highlight the role of PCDH19 in determining cell adhesion affinities during cortical development and the way segregation of WT and null PCDH19 cells is associated with the unique X-linked inheritance of PCDH19 epilepsy.
Collapse
Affiliation(s)
- Daniel T Pederick
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kay L Richards
- Florey Institute of Neuroscience and Mental Health and Department of Medicine Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sandra G Piltz
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Stefka Mincheva-Tasheva
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Simone A Mandelstam
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Radiology, The University of Melbourne, Melbourne, VIC 3010, Australia; Department of Medical Imaging, Royal Children's Hospital, Florey Neurosciences Institute, Parkville, VIC 3052, Australia
| | - Russell C Dale
- Institute for Neuroscience and Muscle Research, University of Sydney, Sydney, NSW 2006, Australia
| | - Ingrid E Scheffer
- Florey Institute of Neuroscience and Mental Health and Department of Medicine Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia; The University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, VIC 3084, Australia
| | - Jozef Gecz
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; School of Medicine and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health and Department of Medicine Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - James N Hughes
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Q Thomas
- School of Biological Sciences and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; School of Medicine and Robinson Research Institute, The University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia.
| |
Collapse
|
36
|
Bassani S, Cwetsch AW, Gerosa L, Serratto GM, Folci A, Hall IF, Mazzanti M, Cancedda L, Passafaro M. The female epilepsy protein PCDH19 is a new GABAAR-binding partner that regulates GABAergic transmission as well as migration and morphological maturation of hippocampal neurons. Hum Mol Genet 2019; 27:1027-1038. [PMID: 29360992 PMCID: PMC5886308 DOI: 10.1093/hmg/ddy019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023] Open
Abstract
The PCDH19 gene (Xp22.1) encodes the cell-adhesion protein protocadherin-19 (PCDH19) and is responsible for a neurodevelopmental pathology characterized by female-limited epilepsy, cognitive impairment and autistic features, the pathogenic mechanisms of which remain to be elucidated. Here, we identified a new interaction between PCDH19 and GABAA receptor (GABAAR) alpha subunits in the rat brain. PCDH19 shRNA-mediated downregulation reduces GABAAR surface expression and affects the frequency and kinetics of miniature inhibitory postsynaptic currents (mIPSCs) in cultured hippocampal neurons. In vivo, PCDH19 downregulation impairs migration, orientation and dendritic arborization of CA1 hippocampal neurons and increases rat seizure susceptibility. In sum, these data indicate a role for PCDH19 in GABAergic transmission as well as migration and morphological maturation of neurons.
Collapse
Affiliation(s)
| | - Andrzej W Cwetsch
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Laura Gerosa
- CNR Institute of Neuroscience, Milan 20129, Italy
| | | | | | | | - Michele Mazzanti
- Department of Bioscience, University of Milan, Milan 20133, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa 16163, Italy.,Telethon Dulbecco Institute, Milan, Italy
| | | |
Collapse
|
37
|
Gerosa L, Francolini M, Bassani S, Passafaro M. The Role of Protocadherin 19 (PCDH19) in Neurodevelopment and in the Pathophysiology of Early Infantile Epileptic Encephalopathy-9 (EIEE9). Dev Neurobiol 2019; 79:75-84. [PMID: 30431232 DOI: 10.1002/dneu.22654] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/15/2023]
Abstract
PCDH19 is considered one of the most clinically relevant genes in epilepsy, second only to SCN1A. To date about 150 mutations have been identified as causative for PCDH19-female epilepsy (also known as early infantile epileptic encephalopathy-9, EIEE9), which is characterized by early onset epilepsy, intellectual disabilities, and behavioral disturbances. Although little is known about the physiological role of PCDH19 and the pathogenic mechanisms that lead to EIEE9, in this review, we will present latest researches focused on these aspects, underlining protein expression, its known functions and the mechanisms by which the protein acts, with particular interest in PCDH19 extracellular and intracellular roles in neurons.
Collapse
Affiliation(s)
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | | | | |
Collapse
|
38
|
Niazi R, Fanning EA, Depienne C, Sarmady M, Abou Tayoun AN. A mutation update for the PCDH19 gene causing early-onset epilepsy in females with an unusual expression pattern. Hum Mutat 2019; 40:243-257. [PMID: 30582250 DOI: 10.1002/humu.23701] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/26/2018] [Accepted: 12/18/2018] [Indexed: 11/08/2022]
Abstract
The PCDH19 gene consists of six exons encoding a 1,148 amino acid transmembrane protein, Protocadherin 19, which is involved in brain development. Heterozygous pathogenic variants in this gene are inherited in an unusual X-linked dominant pattern in which heterozygous females are affected, while hemizygous males are typically unaffected, although they pass on the pathogenic variant to each affected daughter. PCDH19-related disorder is known to cause early-onset epilepsy in females characterized by seizure clusters exacerbated by fever and in most cases, onset is within the first year of life. This condition was initially described in 1971 and in 2008 PCDH19 was identified as the underlying genetic etiology. This condition is the result of pathogenic loss-of-function variants that may be de novo or inherited from an affected mother or unaffected father and cellular interference has been hypothesized to be the culprit. Heterozygous females are symptomatic because of the presence of both wild-type and mutant cells that interfere with one another due to the production of different surface proteins, whereas nonmosaic hemizygous males produce a homogenous population of cells. Here, we review novel pathogenic variants in the PCDH19 gene since 2012 to date, and summarize any genotype-phenotype correlations.
Collapse
Affiliation(s)
- Rojeen Niazi
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth A Fanning
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris, 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, Paris, France.,IGBMC, CNRS UMR 7104/INSERM U964/Université de Strasbourg, Illkirch, France
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
39
|
Trivisano M, Pietrafusa N, Terracciano A, Marini C, Mei D, Darra F, Accorsi P, Battaglia D, Caffi L, Canevini MP, Cappelletti S, Cesaroni E, de Palma L, Costa P, Cusmai R, Giordano L, Ferrari A, Freri E, Fusco L, Granata T, Martino T, Mastrangelo M, Bova SM, Parmeggiani L, Ragona F, Sicca F, Striano P, Specchio LM, Tondo I, Zambrelli E, Zamponi N, Zanus C, Boniver C, Vecchi M, Avolio C, Dalla Bernardina B, Bertini E, Guerrini R, Vigevano F, Specchio N. Defining the electroclinical phenotype and outcome of PCDH19-related epilepsy: A multicenter study. Epilepsia 2018; 59:2260-2271. [PMID: 30451291 DOI: 10.1111/epi.14600] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE PCDH19-related epilepsy is an epileptic syndrome with infantile onset, characterized by clustered and fever-induced seizures, often associated with intellectual disability (ID) and autistic features. The aim of this study was to analyze a large cohort of patients with PCDH19-related epilepsy and better define the epileptic phenotype, genotype-phenotype correlations, and related outcome-predicting factors. METHODS We retrospectively collected genetic, clinical, and electroencephalogram (EEG) data of 61 patients with PCDH19-related epilepsy followed at 15 epilepsy centers. All consecutively performed EEGs were analyzed, totaling 551. We considered as outcome measures the development of ID, autistic spectrum disorder (ASD), and seizure persistence. The analyzed variables were the following: gender, age at onset, age at study, genetic variant, fever sensitivity, seizure type, cluster occurrence, status epilepticus, EEG abnormalities, and cognitive and behavioral disorders. Receiver operating characteristic curve analysis was performed to evaluate the age at which seizures might decrease in frequency. RESULTS At last follow-up (median = 12 years, range = 1.9-42.1 years), 48 patients (78.7%) had annual seizures/clusters, 13 patients (21.3%) had monthly to weekly seizures, and 12 patients (19.7%) were seizure-free for ≥2 years. Receiver operating characteristic analysis showed a significant decrease of seizure frequency after the age of 10.5 years (sensitivity = 81.0%, specificity = 70.0%). Thirty-six patients (59.0%) had ID and behavioral disturbances. ASD was present in 31 patients. An earlier age at epilepsy onset emerged as the only predictive factor for ID (P = 0.047) and ASD (P = 0.014). Conversely, age at onset was not a predictive factor for seizure outcome (P = 0.124). SIGNIFICANCE We found that earlier age at epilepsy onset is related to a significant risk for ID and ASD. Furthermore, long-term follow-up showed that after the age of 10 years, seizures decrease in frequency and cognitive and behavioral disturbances remain the primary clinical problems.
Collapse
Affiliation(s)
- Marina Trivisano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Nicola Pietrafusa
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Carla Marini
- Pediatric Neurology Unit and Laboratories, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Davide Mei
- Pediatric Neurology Unit and Laboratories, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Francesca Darra
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | | | | | - Lorella Caffi
- Neuropsychiatric Unit, University of Bergamo, Bergamo, Italy
| | - Maria P Canevini
- Epilepsy Center, San Paolo Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Simona Cappelletti
- Unit of Clinical Psychology, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Luca de Palma
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paola Costa
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Raffaella Cusmai
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lucio Giordano
- Child Neuropsychiatric Unit, Civilian Hospital, Brescia, Italy
| | - Annarita Ferrari
- Department of Developmental Neuroscience, Clinical Neurophysiology Laboratory, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Lucia Fusco
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Tommaso Martino
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Massimo Mastrangelo
- Pediatric Neurology Unit, Vittore Buzzi Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Stefania M Bova
- Pediatric Neurology Unit, Vittore Buzzi Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Lucio Parmeggiani
- Department of Neuropediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Federico Sicca
- Department of Developmental Neuroscience, Clinical Neurophysiology Laboratory, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, G. Gaslini Institute, University of Genoa, Genoa, Italy
| | - Luigi M Specchio
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | - Ilaria Tondo
- Unit of Clinical Psychology, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Zambrelli
- Epilepsy Center, San Paolo Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Nelia Zamponi
- Child Neuropsychiatric Unit, University of Ancona, Ancona, Italy
| | - Caterina Zanus
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Clementina Boniver
- Child Neurology and Clinical Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Marilena Vecchi
- Child Neurology and Clinical Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Carlo Avolio
- Clinic of Nervous System Diseases, University of Foggia, Foggia, Italy
| | | | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital Meyer-University of Florence, Florence, Italy
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- Neurology Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
40
|
Abstract
The cadherin superfamily comprises a large, diverse collection of cell surface receptors that are expressed in the nervous system throughout development and have been shown to be essential for the proper assembly of the vertebrate nervous system. As our knowledge of each family member has grown, it has become increasingly clear that the functions of various cadherin subfamilies are intertwined: they can be present in the same protein complexes, impinge on the same developmental processes, and influence the same signaling pathways. This interconnectedness may illustrate a central way in which core developmental events are controlled to bring about the robust and precise assembly of neural circuitry.
Collapse
Affiliation(s)
- James D Jontes
- Department of Neuroscience, Ohio State University, Ohio 43210
| |
Collapse
|
41
|
Homan CC, Pederson S, To TH, Tan C, Piltz S, Corbett MA, Wolvetang E, Thomas PQ, Jolly LA, Gecz J. PCDH19 regulation of neural progenitor cell differentiation suggests asynchrony of neurogenesis as a mechanism contributing to PCDH19 Girls Clustering Epilepsy. Neurobiol Dis 2018; 116:106-119. [PMID: 29763708 DOI: 10.1016/j.nbd.2018.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/25/2018] [Accepted: 05/09/2018] [Indexed: 01/12/2023] Open
Abstract
PCDH19-Girls Clustering Epilepsy (PCDH19-GCE) is a childhood epileptic encephalopathy characterised by a spectrum of neurodevelopmental problems. PCDH19-GCE is caused by heterozygous loss-of-function mutations in the X-chromosome gene, Protocadherin 19 (PCDH19) encoding a cell-cell adhesion molecule. Intriguingly, hemizygous males are generally unaffected. As PCDH19 is subjected to random X-inactivation, heterozygous females are comprised of a mosaic of cells expressing either the normal or mutant allele, which is thought to drive pathology. Despite being the second most prevalent monogeneic cause of epilepsy, little is known about the role of PCDH19 in brain development. In this study we show that PCDH19 is highly expressed in human neural stem and progenitor cells (NSPCs) and investigate its function in vitro in these cells of both mouse and human origin. Transcriptomic analysis of mouse NSPCs lacking Pcdh19 revealed changes to genes involved in regulation of neuronal differentiation, and we subsequently show that loss of Pcdh19 causes increased NSPC neurogenesis. We reprogramed human fibroblast cells harbouring a pathogenic PCDH19 mutation into human induced pluripotent stem cells (hiPSC) and employed neural differentiation of these to extend our studies into human NSPCs. As in mouse, loss of PCDH19 function caused increased neurogenesis, and furthermore, we show this is associated with a loss of human NSPC polarity. Overall our data suggests a conserved role for PCDH19 in regulating mammalian cortical neurogenesis and has implications for the pathogenesis of PCDH19-GCE. We propose that the difference in timing or "heterochrony" of neuronal cell production originating from PCDH19 wildtype and mutant NSPCs within the same individual may lead to downstream asynchronies and abnormalities in neuronal network formation, which in-part predispose the individual to network dysfunction and epileptic activity.
Collapse
Affiliation(s)
- Claire C Homan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Stephen Pederson
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Thu-Hien To
- Bioinformatics Hub, School of Biological Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Chuan Tan
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia
| | - Sandra Piltz
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Mark A Corbett
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland 4072, Australia
| | - Paul Q Thomas
- Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia
| | - Lachlan A Jolly
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia.
| | - Jozef Gecz
- School of Medicine, The University of Adelaide, Adelaide 5005, Australia; Robinson Research Institute, The University of Adelaide, Adelaide 5006, Australia; School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia; South Australian Health and Medical Research Institute, Adelaide 5000, Australia.
| |
Collapse
|
42
|
|
43
|
Trivisano M, Specchio N. Focal cortical dysplasia in genetic epilepsy: new insights from PCDH19-related epilepsy. Dev Med Child Neurol 2018; 60:11-12. [PMID: 29135025 DOI: 10.1111/dmcn.13615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Marina Trivisano
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy
| | - Nicola Specchio
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy
| |
Collapse
|
44
|
Kurian M, Korff CM, Ranza E, Bernasconi A, Lübbig A, Nangia S, Ramelli GP, Wohlrab G, Nordli DR, Bast T. Focal cortical malformations in children with early infantile epilepsy and PCDH19 mutations: case report. Dev Med Child Neurol 2018; 60:100-105. [PMID: 29064093 DOI: 10.1111/dmcn.13595] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2017] [Indexed: 02/03/2023]
Abstract
UNLABELLED In this case report we assess the occurrence of cortical malformations in children with early infantile epilepsy associated with variants of the gene protocadherin 19 (PCDH19). We describe the clinical course, and electrographic, imaging, genetic, and neuropathological features in a cohort of female children with pharmacoresistant epilepsy. All five children (mean age 10y) had an early onset of epilepsy during infancy and a predominance of fever sensitive seizures occurring in clusters. Cognitive impairment was noted in four out of five patients. Radiological evidence of cortical malformations was present in all cases and, in two patients, validated by histology. Sanger sequencing and Multiplex Ligation-dependent Probe Amplification analysis of PCDH19 revealed pathogenic variants in four patients. In one patient, array comparative genomic hybridization showed a microdeletion encompassing PCDH19. We propose molecular testing and analysis of PCDH19 in patients with pharmacoresistant epilepsy, with onset in early infancy, seizures in clusters, and fever sensitivity. Structural lesions are to be searched in patients with PCDH19 pathogenic variants. Further, PCDH19 analysis should be considered in epilepsy surgery evaluation even in the presence of cerebral structural lesions. WHAT THIS PAPER ADDS Focal cortical malformations and monogenic epilepsy syndromes may coexist. Structural lesions are to be searched for in patients with protocadherin 19 (PCDH19) pathogenic variants with refractory focal seizures.
Collapse
Affiliation(s)
- Mary Kurian
- Pediatric Neurology Unit, Child and Adolescent Department, University Hospitals, Geneva, Switzerland
| | - Christian M Korff
- Pediatric Neurology Unit, Child and Adolescent Department, University Hospitals, Geneva, Switzerland
| | - Emmanuelle Ranza
- Service of Medical Genetics, University Hospitals, Geneva, Switzerland
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, Department of Neurology and McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Anja Lübbig
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Vogtareuth, Germany
| | - Srishti Nangia
- Department of Pediatrics, Division of Child Neurology, Weill Cornell Medical College, New York, NY, USA.,New York Presbyterian Hospital, New York, NY, USA
| | - Gian Paolo Ramelli
- Pediatric Department of Southern Switzerland, San Giovanni Hospital, Bellinzona, Switzerland
| | - Gabriele Wohlrab
- Pediatric Neurology Unit, University Children's Hospital, Zurich, Switzerland
| | | | | |
Collapse
|
45
|
Schaarschuch A, Hertel N. Expression profile of N-cadherin and protocadherin-19 in postnatal mouse limbic structures. J Comp Neurol 2017; 526:663-680. [DOI: 10.1002/cne.24359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Anne Schaarschuch
- Institute of Anatomy I, Friedrich Schiller University School of Medicine, Jena University Hospital; Jena Germany
| | - Nicole Hertel
- Institute of Anatomy I, Friedrich Schiller University School of Medicine, Jena University Hospital; Jena Germany
| |
Collapse
|
46
|
Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci 2017; 74:4133-4157. [PMID: 28631008 PMCID: PMC5643215 DOI: 10.1007/s00018-017-2572-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
The protocadherins (Pcdhs), which make up the most diverse group within the cadherin superfamily, were first discovered in the early 1990s. Data implicating the Pcdhs, including ~60 proteins encoded by the tandem Pcdha, Pcdhb, and Pcdhg gene clusters and another ~10 non-clustered Pcdhs, in the regulation of neural development have continually accumulated, with a significant expansion of the field over the past decade. Here, we review the many roles played by clustered and non-clustered Pcdhs in multiple steps important for the formation and function of neural circuits, including dendrite arborization, axon outgrowth and targeting, synaptogenesis, and synapse elimination. We further discuss studies implicating mutation or epigenetic dysregulation of Pcdh genes in a variety of human neurodevelopmental and neurological disorders. With recent structural modeling of Pcdh proteins, the prospects for uncovering molecular mechanisms of Pcdh extracellular and intracellular interactions, and their role in normal and disrupted neural circuit formation, are bright.
Collapse
Affiliation(s)
- Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
47
|
Hayashi S, Inoue Y, Hattori S, Kaneko M, Shioi G, Miyakawa T, Takeichi M. Loss of X-linked Protocadherin-19 differentially affects the behavior of heterozygous female and hemizygous male mice. Sci Rep 2017; 7:5801. [PMID: 28724954 PMCID: PMC5517645 DOI: 10.1038/s41598-017-06374-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/12/2017] [Indexed: 11/09/2022] Open
Abstract
Mutations in the X-linked gene Protocadherin-19 (Pcdh19) cause female-limited epilepsy and mental retardation in humans. Although Pcdh19 is known to be a homophilic cell-cell adhesion molecule, how its mutations bring about female-specific disorders remains elusive. Here, we report the effects of Pcdh19 knockout in mice on their development and behavior. Pcdh19 was expressed in various brain regions including the cerebral cortex and hippocampus. Although Pcdh19-positive cells were evenly distributed in layer V of wild-type cortices, their distribution became a mosaic in Pcdh19 heterozygous female cortices. In cortical and hippocampal neurons, Pcdh19 was localized along their dendrites, showing occasional accumulation on synapses. Pcdh19 mutants, however, displayed no detectable abnormalities in dendrite and spine morphology of layer V neurons. Nevertheless, Pcdh19 hemizygous males and heterozygous females showed impaired behaviors including activity defects under stress conditions. Notably, only heterozygous females exhibited decreased fear responses. In addition, Pcdh19 overexpression in wild-type cortices led to ectopic clustering of Pcdh19-positive neurons. These results suggest that Pcdh19 is required for behavioral control in mice, but its genetic loss differentially affects the male and female behavior, as seen in human, and they also support the hypothesis that the mosaic expression of Pcdh19 in brains perturbs neuronal interactions.
Collapse
Affiliation(s)
- Shuichi Hayashi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Yoko Inoue
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Mari Kaneko
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan.,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigonaka, Okazaki, Aichi, 444-8787, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
48
|
Male patients affected by mosaic PCDH19 mutations: five new cases. Neurogenetics 2017; 18:147-153. [PMID: 28669061 PMCID: PMC5522515 DOI: 10.1007/s10048-017-0517-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/16/2017] [Indexed: 11/04/2022]
Abstract
Pathogenic variants in the PCDH19 gene are associated with epilepsy, intellectual disability (ID) and behavioural disturbances. Only heterozygous females and mosaic males are affected, likely due to a disease mechanism named cellular interference. Until now, only four affected mosaic male patients have been described in literature. Here, we report five additional male patients, of which four are older than the oldest patient reported so far. All reported patients were selected for genetic testing because of developmental delay and/or epilepsy. Custom-targeted next generation sequencing gene panels for epilepsy genes were used. Clinical data were collected from medical records. All patients were mosaic in blood for likely pathogenic variants in the PCDH19 gene. In most, clinical features were very similar to the female phenotype, with normal development before seizure onset, which occurred between 5 and 10 months of age, clustering of seizures and sensitivity to fever. Four out of five patients had mild to severe ID and behavioural problems. We reaffirm the similarity between male and female PCDH19-related phenotypes, now also in a later phase of the disorder (ages 10–14 years).
Collapse
|