1
|
Sun J, Lee K, Kutseikin S, Guerrero A, Rius B, Madhavan A, Buasakdi C, Cheong KN, Chatterjee P, Rosen DA, Yoon L, Ardejani MS, Mendoza A, Rosarda JD, Saez E, Kelly JW, Wiseman RL. Identification of a Selective Pharmacologic IRE1/XBP1s Activator with Enhanced Tissue Exposure. ACS Chem Biol 2025; 20:993-1003. [PMID: 40231944 DOI: 10.1021/acschembio.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) has emerged as a promising strategy to mitigate etiologically diverse diseases. Despite this promise, few compounds are available to selectively activate IRE1/XBP1s signaling to probe the biologic and therapeutic implications of this pathway in human disease. Recently, we identified the compound IXA4 as a highly selective activator of protective IRE1/XBP1s signaling. While IXA4 has proven useful for increasing IRE1/XBP1s signaling in cultured cells and mouse liver, the utility of this compound is restricted by its limited activity in other tissues. To broaden our ability to pharmacologically interrogate the impact of IRE1/XBP1s signaling in vivo, we sought to identify IRE1/XBP1s activators with greater tissue activity than IXA4. We reanalyzed 'hits' from the high throughput screen used to identify IXA4, selecting compounds from structural classes not previously pursued. We then performed global RNAseq to confirm that these compounds showed transcriptome-wide selectivity for IRE1/XBP1s activation. Functional profiling revealed compound IXA62 as a selective IRE1/XBP1s activator that reduced Aβ secretion from CHO7PA2 cells and enhanced glucose-stimulated insulin secretion from rat insulinoma cells, mimicking the effects of IXA4 in these assays. IXA62 robustly and selectively activated IRE1/XBP1s signaling in the liver of mice dosed compound intraperitoneally or orally. In treated mice, IXA62 showed broader tissue activity, relative to IXA4, inducing expression of IRE1/XBP1s target genes in additional tissues such as kidney and lung. Collectively, our results designate IXA62 as a selective IRE1/XBP1s signaling activating compound with enhanced tissue activity, which increases our ability to pharmacologically probe the biologic significance and potential therapeutic utility of enhancing adaptive IRE1/XBP1s signaling in vivo.
Collapse
Affiliation(s)
- Jie Sun
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Kyunga Lee
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Sergei Kutseikin
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Adrian Guerrero
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Bibiana Rius
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Aparajita Madhavan
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Chavin Buasakdi
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Ka-Neng Cheong
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Priyadarshini Chatterjee
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Dorian A Rosen
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Leonard Yoon
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Maziar S Ardejani
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Alejandra Mendoza
- Department of Immunology and Microbial Science, Scripps Research, La Jolla, California 92037, United States
| | - Jessica D Rosarda
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Enrique Saez
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California 92037, United States
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
2
|
Shishova A, Ivin Y, Gladneva E, Fominykh K, Dyugay I, Gmyl A. Modulation of Ire1-Xbp1 Defense Pathway in Encephalomyocarditis Virus-Infected HeLa Cells. Viruses 2025; 17:360. [PMID: 40143290 PMCID: PMC11946305 DOI: 10.3390/v17030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
A key contributor to the pathogenicity of viruses is their interaction with cellular defense mechanisms, including UPR (unfolded protein response) that counteracts the accumulation of misfolded proteins in the endoplasmic reticulum (known as ER stress). One of the UPR branches is mediated by the IRE1 (inositol-requiring enzyme 1) protein, which possesses protein kinase and RNase activities that facilitate the unconventional cytoplasmic splicing of XBP1 mRNA, leading to the upregulation of the XBP1 transcription factor. In this study, we demonstrate that Encephalomyocarditis Virus (Cardiovirus rueckerti) is able to suppress IRE1-dependent XBP1 activation. HeLa cells infection with EMCV resulted in the modulation of phosphorylated IRE1 levels throughout the infection cycle. Viral infection did not result in the accumulation of spliced XBP1 mRNA. Moreover, the addition of a chemical inducer of ER stress (dithiothreitol) to infected cells led to a markedly lower accumulation of spliced XBP1 mRNA as compared to the level of this mRNA in inducer-treated mock-infected cells. Thus, our results demonstrate the ability of picornaviruses to modulate another defensive activity of the host cell.
Collapse
Affiliation(s)
- Anna Shishova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
- Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 117418 Moscow, Russia
| | - Yury Ivin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ekaterina Gladneva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ksenia Fominykh
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Ilya Dyugay
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| | - Anatoly Gmyl
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), 108819 Moscow, Russia; (Y.I.); (E.G.); (K.F.); (I.D.)
| |
Collapse
|
3
|
Luchetti N, Smith KM, Matarrese MAG, Loppini A, Filippi S, Chiodo L. A statistical mechanics investigation of unfolded protein response across organisms. Sci Rep 2024; 14:27658. [PMID: 39532983 PMCID: PMC11557608 DOI: 10.1038/s41598-024-79086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Living systems rely on coordinated molecular interactions, especially those related to gene expression and protein activity. The Unfolded Protein Response is a crucial mechanism in eukaryotic cells, activated when unfolded proteins exceed a critical threshold. It maintains cell homeostasis by enhancing protein folding, initiating quality control, and activating degradation pathways when damage is irreversible. This response functions as a dynamic signaling network, with proteins as nodes and their interactions as edges. We analyze these protein-protein networks across different organisms to understand their intricate intra-cellular interactions and behaviors. In this work, analyzing twelve organisms, we assess how fundamental measures in network theory can individuate seed proteins and specific pathways across organisms. We employ network robustness to evaluate and compare the strength of the investigated protein-protein interaction networks, and the structural controllability of complex networks to find and compare the sets of driver nodes necessary to control the overall networks. We find that network measures are related to phylogenetics, and advanced network methods can identify main pathways of significance in the complete Unfolded Protein Response mechanism.
Collapse
Affiliation(s)
- Nicole Luchetti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy.
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Viale Regina Elena 291, Rome, 00161, Italy.
| | - Keith M Smith
- Computer and Information Sciences, University of Strathclyde, 26 Richmond Street, Glasgow, G1 1XH, United Kingdom
| | - Margherita A G Matarrese
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Alessandro Loppini
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Simonetta Filippi
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy.
- National Institute of Optics, National Research Council, Largo Enrico Fermi 6, Florence, 50125, Italy.
- International Center for Relativistic Astrophysics Network, Piazza della Repubblica 10, Pescara, 65122, Italy.
| | - Letizia Chiodo
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, Rome, 00128, Italy
| |
Collapse
|
4
|
Kamath MM, Adams EM, Lightfoot JD, Wells BL, Fuller KK. The mammalian Ire1 inhibitor, 4µ8C, exhibits broad anti- Aspergillus activity in vitro and in a treatment model of fungal keratitis. Front Cell Infect Microbiol 2024; 14:1477463. [PMID: 39600871 PMCID: PMC11588707 DOI: 10.3389/fcimb.2024.1477463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Objective The fungal unfolded protein response consists of a two-component relay in which the ER-bound sensor, IreA, splices and activates the mRNA of the transcription factor, HacA. Previously, we demonstrated that hacA is essential for Aspergillus fumigatus virulence in a murine model of fungal keratitis (FK), suggesting the pathway could serve as a therapeutic target. Here we investigate the antifungal properties of known inhibitors of the mammalian Ire1 protein both in vitro and in a treatment model of FK. Methods The antifungal activity of Ire1 inhibitors was tested against conidia of several A. fumigatus isolates by a broth microdilution assay and against fungal biofilm by XTT reduction. The influence of 4μ8C on hacA mRNA splicing in A. fumigatus was assessed through gel electrophoresis and qRT-PCR of UPR regulatory genes. The toxicity and antifungal profile of 4μ8C in the cornea was assessed by applying drops to uninfected or A. fumigatus-infected corneas 3 times daily starting 4 hours post-inoculation. Corneas were evaluated daily through slit-lamp imaging and optical coherence tomography, or at endpoint through histology or fungal burden quantification via colony forming units. Results Among six Ire1 inhibitors screened, the endonuclease inhibitor 4μ8C displayed the strongest antifungal profile with an apparent fungicidal action. The compound both blocked conidial germination and hyphal metabolism of A. fumigatus Af293 in the same concentration range that blocked hacA splicing and UPR gene induction (60-120 µM). Topical treatment of sham-inoculated corneas with 0.5 and 2.5 mM 4μ8C did not impact corneal clarity, but did transiently inhibit epithelialization of corneal ulcers. Relative to vehicle-treated Af293-infected corneas, treatment with 0.5 and 2.5 mM drug resulted in a 50% and >90% reduction in fungal load, respectively, the latter of which corresponded to an absence of clinical signs of infection or corneal pathology. Conclusion The in vitro data suggest that 4μ8C displays antifungal activity against A. fumigatus through the specific inhibition of IreA. Topical application of the compound to the murine cornea can furthermore block the establishment of infection, suggesting this class of drugs can be developed as novel antifungals that improve visual outcomes in FK patients.
Collapse
Affiliation(s)
- Manali M. Kamath
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Emily M. Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jorge D. Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Becca L. Wells
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kevin K. Fuller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Macauslane KL, Pegg CL, Short KR, Schulz BL. Modulation of endoplasmic reticulum stress response pathways by respiratory viruses. Crit Rev Microbiol 2024; 50:750-768. [PMID: 37934111 DOI: 10.1080/1040841x.2023.2274840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Acute respiratory infections (ARIs) are amongst the leading causes of death and disability, and the greatest burden of disease impacts children, pregnant women, and the elderly. Respiratory viruses account for the majority of ARIs. The unfolded protein response (UPR) is a host homeostatic defence mechanism primarily activated in response to aberrant endoplasmic reticulum (ER) resident protein accumulation in cell stresses including viral infection. The UPR has been implicated in the pathogenesis of several respiratory diseases, as the respiratory system is particularly vulnerable to chronic and acute activation of the ER stress response pathway. Many respiratory viruses therefore employ strategies to modulate the UPR during infection, with varying effects on the host and the pathogens. Here, we review the specific means by which respiratory viruses affect the host UPR, particularly in association with the high production of viral glycoproteins, and the impact of UPR activation and subversion on viral replication and disease pathogenesis. We further review the activation of UPR in common co-morbidities of ARIs and discuss the therapeutic potential of modulating the UPR in virally induced respiratory diseases.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
6
|
Kamath MM, Adams EM, Lightfoot JD, Wells BL, Fuller KK. The mammalian Ire1 inhibitor, 4μ8C, exhibits broad anti- Aspergillus activity in vitro and in a treatment model of fungal keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607189. [PMID: 39149375 PMCID: PMC11326231 DOI: 10.1101/2024.08.08.607189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Objective The fungal unfolded protein response consists of a two-component relay in which the ER-bound sensor, IreA, splices and activates the mRNA of the transcription factor, HacA. Previously, we demonstrated that hacA is essential for Aspergillus fumigatus virulence in a murine model of fungal keratitis (FK), suggesting the pathway could serve as a therapeutic target. Here we investigate the antifungal properties of known inhibitors of the mammalian Ire1 protein both in vitro and in a treatment model of FK. Methods The antifungal activity of Ire1 inhibitors was tested against conidia of several A. fumigatus isolates by a microbroth dilution assay and against fungal biofilm by XTT reduction. The influence of 4μ8C on hacA mRNA splicing in A. fumigatus was assessed through gel electrophoresis and qRT-PCR of UPR regulatory genes. The toxicity and antifungal profile of 4μ8C in the cornea was assessed by applying drops to uninfected or A. fumigatus-infected corneas 3 times daily starting 4 hours post-inoculation. Corneas were evaluated daily through slit-lamp imaging and optical coherence tomography, or at endpoint through histology or fungal burden quantification via colony forming units. Results Among six Ire1 inhibitors screened, the endonuclease inhibitor 4μ8C displayed the strongest antifungal profile with an apparent fungicidal action. The compound both blocked conidial germination and hyphal metabolism of A. fumigatus Af293 in the same concentration range that blocked hacA splicing and UPR gene induction (60-120 μM). Topical treatment of sham-inoculated corneas with 0.5 and 2.5 mM 4μ8C did not impact corneal clarity, but did transiently inhibit epithelialization of corneal ulcers. Relative to vehicle-treated Af293-infected corneas, treatment with 0.5 and 2.5 mM drug resulted in a 50% and >90% reduction in fungal load, respectively, the latter of which corresponded to an absence of clinical signs of infection or corneal pathology. Conclusion The in vitro data suggest that 4μ8C displays antifungal activity against A. fumigatus through the specific inhibition of IreA. Topical application of the compound to the murine cornea can furthermore block the establishment of infection, suggesting this class of drugs can be developed as novel antifungals that improve visual outcomes in FK patients.
Collapse
Affiliation(s)
- Manali M. Kamath
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Emily M. Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jorge D. Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Becca L. Wells
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kevin K. Fuller
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
7
|
Carrillo R, Iwai K, Albertson A, Dang G, Christopher DA. Protein disulfide isomerase-9 interacts with the lumenal region of the transmembrane endoplasmic reticulum stress sensor kinase, IRE1, to modulate the unfolded protein response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1389658. [PMID: 38817940 PMCID: PMC11137178 DOI: 10.3389/fpls.2024.1389658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
Environmental stressors disrupt secretory protein folding and proteostasis in the endoplasmic reticulum (ER), leading to ER stress. The unfolded protein response (UPR) senses ER stress and restores proteostasis by increasing the expression of ER-resident protein folding chaperones, such as protein disulfide isomerases (PDIs). In plants, the transmembrane ER stress sensor kinase, IRE1, activates the UPR by unconventionally splicing the mRNA encoding the bZIP60 transcription factor, triggering UPR gene transcription. The induced PDIs catalyze disulfide-based polypeptide folding to restore the folding capacity in the ER; however, the substrates with which PDIs interact are largely unknown. Here, we demonstrate that the Arabidopsis PDI-M subfamily member, PDI9, modulates the UPR through interaction with IRE1. This PDI9-IRE1 interaction was largely dependent on Cys63 in the first dithiol redox active domain of PDI9, and Cys233 and Cys107 in the ER lumenal domain of IRE1A and IRE1B, respectively. In vitro and in vivo, PDI9 coimmunoprecipitated with IRE1A and IRE1B. Moreover, the PDI9:RFP and Green Fluorescence Protein (GFP):IRE1 fusions exhibited strong interactions as measured by fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) when coexpressed in mesophyll protoplasts. The UPR-responsive PDI9 promoter:mCherry reporter and the UPR-dependent splicing of the bZIP60 intron from the mRNA of the 35S::bZIP60-intron:GFP reporter were both significantly induced in the pdi9 mutants, indicating a derepression and hyperactivation of UPR. The inductions of both reporters were substantially attenuated in the ire1a-ire1b mutant. We propose a model in which PDI9 modulates the UPR through two competing activities: secretory protein folding and via interaction with IRE1 to maintain proteostasis in plants.
Collapse
Affiliation(s)
| | | | | | | | - David A. Christopher
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
8
|
Wagner N, Musiychuk K, Shoji Y, Tottey S, Streatfield SJ, Fischer R, Yusibov V. Basic leucine zipper transcription activators - tools to improve production and quality of human erythropoietin in Nicotiana benthamiana. Biotechnol J 2024; 19:e2300715. [PMID: 38797727 DOI: 10.1002/biot.202300715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Human erythropoietin (hEPO) is one of the most in-demand biopharmaceuticals, however, its production is challenging. When produced in a plant expression system, hEPO results in extensive plant tissue damage and low expression. It is demonstrated that the modulation of the plant protein synthesis machinery enhances hEPO production. Co-expression of basic leucine zipper transcription factors with hEPO prevents plant tissue damage, boosts expression, and increases hEPO solubility. bZIP28 co-expression up-regulates genes associated with the unfolded protein response, indicating that the plant tissue damage caused by hEPO expression is due to the native protein folding machinery being overwhelmed and that this can be overcome by co-expressing bZIP28.
Collapse
Affiliation(s)
- Nazgul Wagner
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Konstantin Musiychuk
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| | - Yoko Shoji
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| | - Stephen Tottey
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| | - Stephen J Streatfield
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| | - Rainer Fischer
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Vidadi Yusibov
- Biotechnology Division, Fraunhofer USA Inc., Center Mid-Atlantic, Newark, Delaware, USA
| |
Collapse
|
9
|
Bestepe F, Fritsche C, Lakhotiya K, Niosi CE, Ghanem GF, Martin GL, Pal-Ghosh R, Becker-Greene D, Weston J, Hollan I, Risnes I, Rynning SE, Solheim LH, Feinberg MW, Blanton RM, Icli B. Deficiency of miR-409-3p improves myocardial neovascularization and function through modulation of DNAJB9/p38 MAPK signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:995-1009. [PMID: 37332476 PMCID: PMC10276151 DOI: 10.1016/j.omtn.2023.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
Angiogenesis is critical for tissue repair following myocardial infarction (MI), which is exacerbated under insulin resistance or diabetes. MicroRNAs are regulators of angiogenesis. We examined the metabolic regulation of miR-409-3p in post-infarct angiogenesis. miR-409-3p was increased in patients with acute coronary syndrome (ACS) and in a mouse model of acute MI. In endothelial cells (ECs), miR-409-3p was induced by palmitate, while vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) decreased its expression. Overexpression of miR-409-3p decreased EC proliferation and migration in the presence of palmitate, whereas inhibition had the opposite effects. RNA sequencing (RNA-seq) profiling in ECs identified DNAJ homolog subfamily B member 9 (DNAJB9) as a target of miR-409-3p. Overexpression of miR-409-3p decreased DNAJB9 mRNA and protein expression by 47% and 31% respectively, while enriching DNAJB9 mRNA by 1.9-fold after Argonaute2 microribonucleoprotein immunoprecipitation. These effects were mediated through p38 mitogen-activated protein kinase (MAPK). Ischemia-reperfusion (I/R) injury in EC-specific miR-409-3p knockout (KO) mice (miR-409ECKO) fed a high-fat, high-sucrose diet increased isolectin B4 (53.3%), CD31 (56%), and DNAJB9 (41.5%). The left ventricular ejection fraction (EF) was improved by 28%, and the infarct area was decreased by 33.8% in miR-409ECKO compared with control mice. These findings support an important role of miR-409-3p in the angiogenic EC response to myocardial ischemia.
Collapse
Affiliation(s)
- Furkan Bestepe
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Colette Fritsche
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Kartik Lakhotiya
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Carolyn E. Niosi
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - George F. Ghanem
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Gregory L. Martin
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Ruma Pal-Ghosh
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Dakota Becker-Greene
- Cardiovascular Division, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James Weston
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Ivana Hollan
- Department of Health Sciences, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Ivar Risnes
- Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
| | - Stein Erik Rynning
- Department of Heart Diseases, Haukeland University Hospital, Bergen, Norway
| | | | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert M. Blanton
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Basak Icli
- Molecular Cardiology Research Institute, Department of Medicine, Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|
10
|
Pardo J, Wai CM, Harman M, Nguyen A, Kremling KA, Romay MC, Lepak N, Bauerle TL, Buckler ES, Thompson AM, VanBuren R. Cross-species predictive modeling reveals conserved drought responses between maize and sorghum. Proc Natl Acad Sci U S A 2023; 120:e2216894120. [PMID: 36848555 PMCID: PMC10013860 DOI: 10.1073/pnas.2216894120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/30/2023] [Indexed: 03/01/2023] Open
Abstract
Drought tolerance is a highly complex trait controlled by numerous interconnected pathways with substantial variation within and across plant species. This complexity makes it difficult to distill individual genetic loci underlying tolerance, and to identify core or conserved drought-responsive pathways. Here, we collected drought physiology and gene expression datasets across diverse genotypes of the C4 cereals sorghum and maize and searched for signatures defining water-deficit responses. Differential gene expression identified few overlapping drought-associated genes across sorghum genotypes, but using a predictive modeling approach, we found a shared core drought response across development, genotype, and stress severity. Our model had similar robustness when applied to datasets in maize, reflecting a conserved drought response between sorghum and maize. The top predictors are enriched in functions associated with various abiotic stress-responsive pathways as well as core cellular functions. These conserved drought response genes were less likely to contain deleterious mutations than other gene sets, suggesting that core drought-responsive genes are under evolutionary and functional constraints. Our findings support a broad evolutionary conservation of drought responses in C4 grasses regardless of innate stress tolerance, which could have important implications for developing climate resilient cereals.
Collapse
Affiliation(s)
- Jeremy Pardo
- Department of Horticulture, Michigan State University, East Lansing, MI48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI48824
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
| | - Ching Man Wai
- Department of Horticulture, Michigan State University, East Lansing, MI48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI48824
| | - Maxwell Harman
- Department of Horticulture, Michigan State University, East Lansing, MI48824
| | - Annie Nguyen
- Department of Horticulture, Michigan State University, East Lansing, MI48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI48824
| | - Karl A. Kremling
- Institute for Genomic Diversity, Cornell University, Ithaca, NY14853
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Maria Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY14853
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Nicholas Lepak
- Agricultural Research Service, US Department of Agriculture, Ithaca, NY14853
| | - Taryn L. Bauerle
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Edward S. Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY14853
- School of Integrative Plant Science, Cornell University, Ithaca, NY14853
- Agricultural Research Service, US Department of Agriculture, Ithaca, NY14853
| | - Addie M. Thompson
- Plant Resilience Institute, Michigan State University, East Lansing, MI48824
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI48824
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI48824
| |
Collapse
|
11
|
Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, Goodman AG, Noh SM, Peters JW, Shaw DK. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. mBio 2022; 13:e0070322. [PMID: 35862781 PMCID: PMC9426425 DOI: 10.1128/mbio.00703-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Collapse
Affiliation(s)
- Lindsay C. Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kristin L. Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jessica K. Ujczo
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
12
|
Li H, Kang M, Sun S, Gao J, Jia Z, Cao X. Cloning and expressions of chop in loach (Misgurnus anguillicaudatus) and its response to hydrogen peroxide (H 2O 2) stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:659-668. [PMID: 35396647 PMCID: PMC8993585 DOI: 10.1007/s10695-022-01067-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
C/EBP [CCAAT/enhancer-binding protein]-homologous protein gene (chop) which plays an important role in endoplasmic reticulum stress-induced apoptosis was investigated here by RACE and qPCR in an aquaculture animal for the first time. The full-length cDNA sequence of loach (Misgurnus anguillicaudatus) chop was 2533 bp, encoding 266 amino acids. The expression level of loach chop changed during different early life stages, with the highest expression at the 8-cell stage. Among different tissues, loach chop predominantly was expressed in gill, spleen, and gonad. We performed a hydrogen peroxide (H2O2, a common-used disinfectant) stress trial to explore the role of loach chop, with three different concentrations (0 μM, 50 μM, and 100 μM) of H2O2. The 100-μM dose was lethal for half the population but the other concentrations did not result in mortality. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) in loach gill, liver, and spleen decreased with extended stress time and increased H2O2 concentration. The expression levels of gill chop in loaches from the 100-μM group were significantly higher than those from the other two treatment groups at 12 and 24 h of exposure. atf4 and bax, two proapoptotic genes, were significantly upregulated in gills of loaches from the 100-μM group compared to the other two groups 18 h and 24 h after treatment. bcl2, an antiapoptotic gene, presented an opposite trend. These results indicated a close relationship between H2O2 stress and fish apoptosis with loach chop playing an important role in H2O2 stress response.
Collapse
Affiliation(s)
- Hui Li
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Minxin Kang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Shouxiang Sun
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Jian Gao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, CAFS, No. 42 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China.
| | - Xiaojuan Cao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
13
|
Dana AH, Alejandro SP. Role of sulforaphane in endoplasmic reticulum homeostasis through regulation of the antioxidant response. Life Sci 2022; 299:120554. [PMID: 35452639 DOI: 10.1016/j.lfs.2022.120554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/09/2023]
Abstract
Nowadays, the nutraceutical agent sulforaphane (SFN) shows great versatility in turning on different cellular responses. Mainly, this isothiocyanate acts as a master regulator of cellular homeostasis due to its antioxidant response and cytoplasmic, mitochondrial, and endoplasmic reticulum (ER) protein modulation. Even more, SFN acts as an effective strategy to counteract oxidative stress, apoptosis, and ER stress, among others as seen in different injury models. Particularly, ER stress is buffered by the unfolded protein response (UPR) activation, which is the first instance in orchestrating the recovery of ER function. Interestingly, different studies highlight a close interrelationship between ER stress and oxidative stress, two events driven by the accumulation of reactive oxygen species (ROS). This response inevitably perpetuates itself and acts as a vicious cycle that triggers the development of different pathologies, such as cardiovascular diseases, neurodegenerative diseases, and others. Accordingly, it is vital to target ER stress and oxidative stress to increase the effectiveness of clinical therapies used to treat these diseases. Therefore, our study is focused on the role of SFN in preserving cellular homeostasis balance by regulating the ER stress response through the Nrf2-modulated antioxidant pathway.
Collapse
Affiliation(s)
- Arana-Hidalgo Dana
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Silva-Palacios Alejandro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
14
|
Simoni EB, Oliveira CC, Fraga OT, Reis PAB, Fontes EPB. Cell Death Signaling From Endoplasmic Reticulum Stress: Plant-Specific and Conserved Features. FRONTIERS IN PLANT SCIENCE 2022; 13:835738. [PMID: 35185996 PMCID: PMC8850647 DOI: 10.3389/fpls.2022.835738] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 05/06/2023]
Abstract
The endoplasmic reticulum (ER) stress response is triggered by any condition that disrupts protein folding and promotes the accumulation of unfolded proteins in the lumen of the organelle. In eukaryotic cells, the evolutionarily conserved unfolded protein response is activated to clear unfolded proteins and restore ER homeostasis. The recovery from ER stress is accomplished by decreasing protein translation and loading into the organelle, increasing the ER protein processing capacity and ER-associated protein degradation activity. However, if the ER stress persists and cannot be reversed, the chronically prolonged stress leads to cellular dysfunction that activates cell death signaling as an ultimate attempt to survive. Accumulating evidence implicates ER stress-induced cell death signaling pathways as significant contributors for stress adaptation in plants, making modulators of ER stress pathways potentially attractive targets for stress tolerance engineering. Here, we summarize recent advances in understanding plant-specific molecular mechanisms that elicit cell death signaling from ER stress. We also highlight the conserved features of ER stress-induced cell death signaling in plants shared by eukaryotic cells.
Collapse
|
15
|
Kundu S, Saadi F, Sengupta S, Antony GR, Raveendran VA, Kumar R, Kamble MA, Sarkar L, Burrows A, Pal D, Sen GC, Sarma JD. DJ-1-Nrf2 axis is activated upon murine β-coronavirus infection in the CNS. BRAIN DISORDERS 2021; 4:100021. [PMID: 34514445 PMCID: PMC8418700 DOI: 10.1016/j.dscb.2021.100021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/03/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses have emerged as alarming pathogens owing to their inherent ability of genetic variation and cross-species transmission. Coronavirus infection burdens the endoplasmic reticulum (ER.), causes reactive oxygen species production and induces host stress responses, including unfolded protein response (UPR) and antioxidant system. In this study, we have employed a neurotropic murine β-coronavirus (M-CoV) infection in the Central Nervous System (CNS) of experimental mice model to study the role of host stress responses mediated by interplay of DJ-1 and XBP1. DJ-1 is an antioxidant molecule with established functions in neurodegeneration. However, its regulation in virus-induced cellular stress response is less explored. Our study showed that M-CoV infection activated the glial cells and induced antioxidant and UPR genes during the acute stage when the viral titer peaks. As the virus particles decreased and acute neuroinflammation diminished at day ten p.i., a significant up-regulation in UPR responsive XBP1, antioxidant DJ-1, and downstream signaling molecules, including Nrf2, was recorded in the brain tissues. Additionally, preliminary in silico analysis of the binding between the DJ-1 promoter and a positively charged groove of XBP1 is also investigated, thus hinting at a mechanism behind the upregulation of DJ-1 during MHV-infection. The current study thus attempts to elucidate a novel interplay between the antioxidant system and UPR in the outcome of coronavirus infection.
Collapse
Affiliation(s)
- Soumya Kundu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Fareeha Saadi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Sourodip Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Gisha Rose Antony
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Vineeth A Raveendran
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Rahul Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Mithila Ashok Kamble
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Lucky Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Amy Burrows
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| | - Ganes C Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| |
Collapse
|
16
|
Brocca L, Zuccaro M, Frugis G, Mainieri D, Marrano C, Ragni L, Klein EM, Vitale A, Pedrazzini E. Two γ-zeins induce the unfolded protein response. PLANT PHYSIOLOGY 2021; 187:1428-1444. [PMID: 34618077 PMCID: PMC8566291 DOI: 10.1093/plphys/kiab367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The rapid, massive synthesis of storage proteins that occurs during seed development stresses endoplasmic reticulum (ER) homeostasis, which activates the ER unfolded protein response (UPR). However, how different storage proteins contribute to UPR is not clear. We analyzed vegetative tissues of transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing the common bean (Phaseolus vulgaris) soluble vacuolar storage protein PHASEOLIN (PHSL) or maize (Zea mays) prolamins (27-kDa γ-zein or 16-kDa γ-zein) that participate in forming insoluble protein bodies in the ER. We show that 16-kDa γ-zein significantly activates the INOSITOL REQUIRING ENZYME1/BASIC LEUCINE ZIPPER 60 (bZIP60) UPR branch-but not the bZIP28 branch or autophagy-leading to induction of major UPR-controlled genes that encode folding helpers that function inside the ER. Protein blot analysis of IMMUNOGLOBULIN-BINDING PROTEIN (BIP) 1 and 2, BIP3, GLUCOSE REGULATED PROTEIN 94 (GRP94), and ER-localized DNAJ family 3A (ERDJ3A) polypeptides confirmed their higher accumulation in the plant expressing 16-kDa γ-zein. Expression of 27-kDa γ-zein significantly induced only BIP3 and ERDJ3A transcription even though an increase in GRP94 and BIP1/2 polypeptides also occurred in this plant. These results indicate a significant but weaker effect of 27-kDa γ-zein compared to 16-kDa γ-zein, which corresponds with the higher availability of 16-kDa γ-zein for BIP binding, and indicates subtle protein-specific modulations of plant UPR. None of the analyzed genes was significantly induced by PHSL or by a mutated, soluble form of 27-kDa γ-zein that traffics along the secretory pathway. Such variability in UPR induction may have influenced the evolution of storage proteins with different tissue and subcellular localization.
Collapse
Affiliation(s)
- Lorenzo Brocca
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Melania Zuccaro
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Monterotondo Scalo, Roma 00016, Italy
| | - Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Claudia Marrano
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Laura Ragni
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Eva Maria Klein
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Milano 20133, Italy
| |
Collapse
|
17
|
Gebert M, Sobolewska A, Bartoszewska S, Cabaj A, Crossman DK, Króliczewski J, Madanecki P, Dąbrowski M, Collawn JF, Bartoszewski R. Genome-wide mRNA profiling identifies X-box-binding protein 1 (XBP1) as an IRE1 and PUMA repressor. Cell Mol Life Sci 2021; 78:7061-7080. [PMID: 34636989 PMCID: PMC8558229 DOI: 10.1007/s00018-021-03952-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
Accumulation of misfolded proteins in ER activates the unfolded protein response (UPR), a multifunctional signaling pathway that is important for cell survival. The UPR is regulated by three ER transmembrane sensors, one of which is inositol-requiring protein 1 (IRE1). IRE1 activates a transcription factor, X-box-binding protein 1 (XBP1), by removing a 26-base intron from XBP1 mRNA that generates spliced XBP1 mRNA (XBP1s). To search for XBP1 transcriptional targets, we utilized an XBP1s-inducible human cell line to limit XBP1 expression in a controlled manner. We also verified the identified XBP1-dependent genes with specific silencing of this transcription factor during pharmacological ER stress induction with both an N-linked glycosylation inhibitor (tunicamycin) and a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) (thapsigargin). We then compared those results to the XBP1s-induced cell line without pharmacological ER stress induction. Using next‐generation sequencing followed by bioinformatic analysis of XBP1-binding motifs, we defined an XBP1 regulatory network and identified XBP1 as a repressor of PUMA (a proapoptotic gene) and IRE1 mRNA expression during the UPR. Our results indicate impairing IRE1 activity during ER stress conditions accelerates cell death in ER-stressed cells, whereas elevating XBP1 expression during ER stress using an inducible cell line correlated with a clear prosurvival effect and reduced PUMA protein expression. Although further studies will be required to test the underlying molecular mechanisms involved in the relationship between these genes with XBP1, these studies identify a novel repressive role of XBP1 during the UPR.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Aleksandra Sobolewska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Cabaj
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - David K Crossman
- Department of Genetics, Heflin Center for Genomic Science, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jarosław Króliczewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Piotr Madanecki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdansk, Poland.
| |
Collapse
|
18
|
Danyukova T, Schöneck K, Pohl S. Site-1 and site-2 proteases: A team of two in regulated proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119138. [PMID: 34619164 DOI: 10.1016/j.bbamcr.2021.119138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
The site-1 and site-2 proteases (S1P and S2P) were identified over 20 years ago, and the functions of both have been addressed in numerous studies ever since. Whereas S1P processes a set of substrates independently of S2P, the latter acts in concert with S1P in a mechanism, called regulated intramembrane proteolysis, that controls lipid metabolism and response to unfolded proteins. This review summarizes the molecular roles that S1P and S2P jointly play in these processes. As S1P and S2P deficiencies mainly affect connective tissues, yet with varying phenotypes, we discuss the segregated functions of S1P and S2P in terms of cell homeostasis and maintenance of the connective tissues. In addition, we provide experimental data that point at S2P, but not S1P, as a critical regulator of cell adaptation to proteotoxicity or lipid imbalance. Therefore, we hypothesize that S2P can also function independently of S1P activity.
Collapse
Affiliation(s)
- Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Kenneth Schöneck
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
19
|
Qiang X, Liu X, Wang X, Zheng Q, Kang L, Gao X, Wei Y, Wu W, Zhao H, Shan W. Susceptibility factor RTP1 negatively regulates Phytophthora parasitica resistance via modulating UPR regulators bZIP60 and bZIP28. PLANT PHYSIOLOGY 2021; 186:1269-1287. [PMID: 33720348 PMCID: PMC8608195 DOI: 10.1093/plphys/kiab126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/23/2021] [Indexed: 05/03/2023]
Abstract
The unfolded protein response (UPR) is a conserved stress adaptive signaling pathway in eukaryotic organisms activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR can be elicited in the course of plant defense, playing important roles in plant-microbe interactions. The major signaling pathways of plant UPR rely on the transcriptional activity of activated forms of ER membrane-associated stress sensors bZIP60 and bZIP28, which are transcription factors that modulate expression of UPR genes. In this study, we report the plant susceptibility factor Resistance to Phytophthora parasitica 1 (RTP1) is involved in ER stress sensing and rtp1-mediated resistance against P. parasitica is synergistically regulated with UPR, as demonstrated by the simultaneous strong induction of UPR and ER stress-associated immune genes in Arabidopsis thaliana rtp1 mutant plants during the infection by P. parasitica. We further demonstrate RTP1 contributes to stabilization of the ER membrane-associated bZIP60 and bZIP28 through manipulating the bifunctional protein kinase/ribonuclease IRE1-mediated bZIP60 splicing activity and interacting with bZIP28. Consequently, we find rtp1bzip60 and rtp1bzip28 mutant plants exhibit compromised resistance accompanied with attenuated induction of ER stress-responsive immune genes and reduction of callose deposition in response to P. parasitica infection. Taken together, we demonstrate RTP1 may exert negative modulating roles in the activation of key UPR regulators bZIP60 and bZIP28, which are required for rtp1-mediated plant resistance to P. parasitica. This facilitates our understanding of the important roles of stress adaptive UPR and ER stress in plant immunity.
Collapse
Affiliation(s)
- Xiaoyu Qiang
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Xingshao Liu
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Xiaoxue Wang
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Qing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University,
Yangling, Shaanxi 712100, China
| | - Lijuan Kang
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Xianxian Gao
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Yushu Wei
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Wenjie Wu
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
| | - Hong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University,
Yangling, Shaanxi 712100, China
| | - Weixing Shan
- College of Agronomy, Northwest A&F University, Yangling,
Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F
University, Yangling, Shaanxi 712100, China
- Author for communication:
| |
Collapse
|
20
|
The Structure, Activation and Signaling of IRE1 and Its Role in Determining Cell Fate. Biomedicines 2021; 9:biomedicines9020156. [PMID: 33562589 PMCID: PMC7914947 DOI: 10.3390/biomedicines9020156] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Inositol-requiring enzyme type 1 (IRE1) is a serine/threonine kinase acting as one of three branches of the Unfolded Protein Response (UPR) signaling pathway, which is activated upon endoplasmic reticulum (ER) stress conditions. It is known to be capable of inducing both pro-survival and pro-apoptotic cellular responses, which are strictly related to numerous human pathologies. Among others, IRE1 activity has been confirmed to be increased in cancer, neurodegeneration, inflammatory and metabolic disorders, which are associated with an accumulation of misfolded proteins within ER lumen and the resulting ER stress conditions. Emerging evidence suggests that genetic or pharmacological modulation of IRE1 may have a significant impact on cell viability, and thus may be a promising step forward towards development of novel therapeutic strategies. In this review, we extensively describe the structural analysis of IRE1 molecule, the molecular dynamics associated with IRE1 activation, and interconnection between it and the other branches of the UPR with regard to its potential use as a therapeutic target. Detailed knowledge of the molecular characteristics of the IRE1 protein and its activation may allow the design of specific kinase or RNase modulators that may act as drug candidates.
Collapse
|
21
|
Friedrich A, Beare PA, Schulze-Luehrmann J, Cordsmeier A, Pazen T, Sonnewald S, Lührmann A. The Coxiella burnetii effector protein CaeB modulates endoplasmatic reticulum (ER) stress signalling and is required for efficient replication in Galleria mellonella. Cell Microbiol 2021; 23:e13305. [PMID: 33355405 DOI: 10.1111/cmi.13305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 01/02/2023]
Abstract
The obligate intracellular pathogen Coxiella burnetii is the causative agent of the zoonosis Q fever. C. burnetii infection can have severe outcomes due to the development of chronic infection. To establish and maintain an infection, C. burnetii depends on a functional type IVB secretion system (T4BSS) and, thus, on the translocation of effector proteins into the host cell. Here, we showed that the C. burnetii T4BSS effector protein CaeB targets the conserved endoplasmatic reticulum (ER) stress sensor IRE1 during ER stress in mammalian and plant cells. CaeB-induced upregulation of IRE1 RNase activity was essential for CaeB-mediated inhibition of ER stress-induced cell death. Our data reveal a novel role for CaeB in ER stress signalling modulation and demonstrate that CaeB is involved in pathogenicity in vivo. Furthermore, we provide evidence that C. burnetii infection leads to modulation of the ER stress sensors IRE1 and PERK, but not ATF6 during ER stress. While the upregulation of the RNase activity of IRE1 during ER stress depends on CaeB, modulation of PERK is CaeB independent, suggesting that C. burnetii encodes several factors influencing ER stress during infection.
Collapse
Affiliation(s)
- Anja Friedrich
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.,Lehrstuhl für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Cordsmeier
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Pazen
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sophia Sonnewald
- Lehrstuhl für Biochemie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
23
|
Grandjean JMD, Madhavan A, Cech L, Seguinot BO, Paxman RJ, Smith E, Scampavia L, Powers ET, Cooley CB, Plate L, Spicer TP, Kelly JW, Wiseman RL. Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat Chem Biol 2020; 16:1052-1061. [PMID: 32690944 PMCID: PMC7502540 DOI: 10.1038/s41589-020-0584-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Activation of the IRE1/XBP1s signaling arm of the unfolded protein response (UPR) is a promising strategy to correct defects in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. However, no pharmacologic activators of this pathway identified to date are suitable for ER proteostasis remodeling through selective activation of IRE1/XBP1s signaling. Here, we use high-throughput screening to identify non-toxic compounds that induce ER proteostasis remodeling through IRE1/XBP1s activation. We employ transcriptional profiling to stringently confirm that our prioritized compounds selectively activate IRE1/XBP1s signaling without activating other cellular stress-responsive signaling pathways. Furthermore, we demonstrate that our compounds improve ER proteostasis of destabilized variants of amyloid precursor protein (APP) through an IRE1-dependent mechanism and reduce APP-associated mitochondrial toxicity in cellular models. These results establish highly selective IRE1/XBP1s activating compounds that can be widely employed to define the functional importance of IRE1/XBP1s activity for ER proteostasis regulation in the context of health and disease.
Collapse
Affiliation(s)
- Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Aparajita Madhavan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren Cech
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Bryan O Seguinot
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Emery Smith
- Scripps Research Molecular Screening Center, The Scripps Research Institute, Jupiter, FL, USA
| | - Louis Scampavia
- Scripps Research Molecular Screening Center, The Scripps Research Institute, Jupiter, FL, USA
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Lars Plate
- Departments of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Timothy P Spicer
- Scripps Research Molecular Screening Center, The Scripps Research Institute, Jupiter, FL, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
24
|
Expression and function of an Hac1-regulated multi-copy xylanase gene in Saccharomyces cerevisiae. Sci Rep 2020; 10:11686. [PMID: 32669586 PMCID: PMC7363925 DOI: 10.1038/s41598-020-68570-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/25/2020] [Indexed: 11/28/2022] Open
Abstract
Saccharomyces cerevisiae-based expression systems, which rely on safe, food-grade strains, are low cost, simple to operate, and can be used for large-scale fermentation. However, low levels of foreign protein expression by S. cerevisiae have limited their widespread application. The ability of the endoplasmic reticulum (ER) to fold and process foreign proteins is an important factor restricting the expression of foreign proteins. In the current study, the effects of transcription factor Hac1p, which is involved in the unfolded protein response pathway, on S. cerevisiae-based expression of xylanase gene xynB from Aspergillus niger were examined. Overlap extension polymerase chain reaction (PCR), rDNA integration and droplet digital PCR technology were used to generate a S. cerevisiae strain (S8) containing eight copies of xynB, allowing high-yield secretory expression of xylanase. The effects of subsequent overexpression of HAC1 in strain S8 on the expression of genes associated with protein folding in the ER were then examined using the GeXP system. Results confirmed the constitutive secretory expression of the multiple copies of xynB following rDNA-based integration of the expression cassette, with a maximum xylanase yield of 325 U/mL. However, overexpression of HAC1 further improved xylanase production by strain S8, resulting in a yield of 381 U/mL.
Collapse
|
25
|
Czékus Z, Csíkos O, Ördög A, Tari I, Poór P. Effects of Jasmonic Acid in ER Stress and Unfolded Protein Response in Tomato Plants. Biomolecules 2020; 10:biom10071031. [PMID: 32664460 PMCID: PMC7407312 DOI: 10.3390/biom10071031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Endoplasmic reticulum (ER) stress elicits a protective mechanism called unfolded protein response (UPR) to maintain cellular homeostasis, which can be regulated by defence hormones. In this study, the physiological role of jasmonic acid (JA) in ER stress and UPR signalling has been investigated in intact leaves of tomato plants. Exogenous JA treatments not only induced the transcript accumulation of UPR marker gene SlBiP but also elevated transcript levels of SlIRE1 and SlbZIP60. By the application of JA signalling mutant jai1 plants, the role of JA in ER stress sensing and signalling was further investigated. Treatment with tunicamycin (Tm), the inhibitor of N-glycosylation of secreted glycoproteins, increased the transcript levels of SlBiP. Interestingly, SlIRE1a and SlIRE1b were significantly lower in jai1. In contrast, the transcript accumulation of Bax Inhibitor-1 (SlBI1) and SlbZIP60 was higher in jai1. To evaluate how a chemical chaperone modulates Tm-induced ER stress, plants were treated with sodium 4-phenylbutyrate, which also decreased the Tm-induced increase in SlBiP, SlIRE1a, and SlBI1 transcripts. In addition, it was found that changes in hydrogen peroxide content, proteasomal activity, and lipid peroxidation induced by Tm is regulated by JA, while nitric oxide was not involved in ER stress and UPR signalling in leaves of tomato.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
- Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Orsolya Csíkos
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (Z.C.); (O.C.); (A.Ö.); (I.T.)
- Correspondence:
| |
Collapse
|
26
|
Bitencourt TA, Lang EAS, Sanches PR, Peres NTA, Oliveira VM, Fachin AL, Rossi A, Martinez-Rossi NM. HacA Governs Virulence Traits and Adaptive Stress Responses in Trichophyton rubrum. Front Microbiol 2020; 11:193. [PMID: 32153523 PMCID: PMC7044415 DOI: 10.3389/fmicb.2020.00193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
The ability of fungi to sense environmental stressors and appropriately respond is linked to secretory system functions. The dermatophyte infection process depends on an orchestrated signaling regulation that triggers the transcription of genes responsible for adherence and penetration of the pathogen into host-tissue. A high secretion system is activated to support the host-pathogen interaction and assures maintenance of the dermatophyte infection. The gateway of secretion machinery is the endoplasmic reticulum (ER), which is the primary site for protein folding and transport. Current studies have shown that ER stress that affects adaptive responses is primarily regulated by UPR and supports fungal pathogenicity; this has been assessed for yeasts and Aspergillus fumigatus, in regard to how these fungi cope with host environmental stressors. Fungal UPR consists of a transmembrane kinase sensor (Ire1/IreA) and a downstream target Hac1/HacA. The active form of Hac is achieved via non-spliceosomal intron removal promoted by endonuclease activity of Ire1/IreA. Here, we assessed features of HacA and its involvement in virulence and susceptibility in Trichophyton rubrum. Our results showed that exposure to antifungals and ER-stressing agents initiated the activation of HacA from T. rubrum. Interestingly, the activation occurs when a 20 nt fragment is removed from part of the exon-2 and part of intron-2, which in turn promotes the arisen of the DNA binding site motif and a dimer interface domain. Further, we found changes in the cell wall and cellular membrane composition in the ΔhacA mutant as well as an increase in susceptibility toward azole and cell wall disturbing agents. Moreover, the ΔhacA mutant presented significant defects in important virulence traits like thermotolerance and growth on keratin substrates. For instance, the development of the ΔhacA mutant was impaired in co-culture with keratinocytes or human nail fragments. Changes in the pro-inflammatory cytokine release were verified for the ΔhacA mutant during the co-culture assay, which might be related to differences in pathogen-associated molecular patterns (PAMPs) in the cell wall. Together, these results suggested that HacA is an integral part of T. rubrum physiology and virulence, implying that it is an important molecular target for antidermatophytic therapy.
Collapse
Affiliation(s)
- Tamires A. Bitencourt
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Elza A. S. Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nalu T. A. Peres
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanderci M. Oliveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Lúcia Fachin
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Kerr SR, Katz SG. Activation of the Unfolded Protein Response Pathway in Cytotoxic T Cells: A Comparison Between in vitro Stimulation, Infection, and the Tumor Microenvironment. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:675-685. [PMID: 31866782 PMCID: PMC6913815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IRE1α is an extremely conserved intracellular receptor that regulates one branch of the unfolded protein response (UPR). Homologs of IRE1α are found virtually throughout all eukaryotes. This receptor plays a pivotal role in a cell's reaction to stress, determining whether to take compensatory measures and survive or undergo apoptosis and die. While the role of the unfolded protein response in lower organisms and secretory cells has been comprehensively studied, the precise role of IRE1α in the context of cytotoxic T cells has only begun to be elucidated within the past decade. This review discusses what is known about IRE1α and the unfolded protein response in cytotoxic T cells within the context of development, pathogen response, and cancer cell growth.
Collapse
Affiliation(s)
| | - Samuel G. Katz
- To whom all correspondence should be addressed: Samuel G. Katz, M.D., Ph.D., Yale University School of Medicine, 310 Cedar Street, LH315B, New Haven, CT, 06520; Tel: 203-785-2757, Fax: 203-785-6127,
| |
Collapse
|
28
|
Studencka-Turski M, Çetin G, Junker H, Ebstein F, Krüger E. Molecular Insight Into the IRE1α-Mediated Type I Interferon Response Induced by Proteasome Impairment in Myeloid Cells of the Brain. Front Immunol 2019; 10:2900. [PMID: 31921161 PMCID: PMC6932173 DOI: 10.3389/fimmu.2019.02900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
Proteostasis is critical for cells to maintain the balance between protein synthesis, quality control, and degradation. This is particularly important for myeloid cells of the central nervous system as their immunological function relies on proper intracellular protein turnover by the ubiquitin-proteasome system. Accordingly, disruption of proteasome activity due to, e.g., loss-of-function mutations within genes encoding proteasome subunits, results in systemic autoinflammation. On the molecular level, pharmacological inhibition of proteasome results in endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR) as well as an induction of type I interferons (IFN). Nevertheless, our understanding as to whether and to which extent UPR signaling regulates type I IFN response is limited. To address this issue, we have tested the effects of proteasome dysfunction upon treatment with proteasome inhibitors in primary murine microglia and microglia-like cell line BV-2. Our data show that proteasome impairment by bortezomib is a stimulus that activates all three intracellular ER-stress transducers activation transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and inositol-requiring protein 1 alpha (IRE1α), causing a full activation of the UPR. We further demonstrate that impaired proteasome activity in microglia cells triggers an induction of IFNβ1 in an IRE1-dependent manner. An inhibition of the IRE1 endoribonuclease activity significantly attenuates TANK-binding kinase 1-mediated activation of type I IFN. Moreover, interfering with TANK-binding kinase 1 activity also compromised the expression of C/EBP homologous protein 10, thereby emphasizing a multilayered interplay between UPR and type IFN response pathway. Interestingly, the induced protein kinase R-like endoplasmic reticulum kinase-activation transcription factor 4-C/EBP homologous protein 10 and IRE1-X-box-binding protein 1 axes caused a significant upregulation of proinflammatory cytokine interleukin 6 expression that exacerbates STAT1/STAT3 signaling in cells with dysfunctional proteasomes. Altogether, these findings indicate that proteasome impairment disrupts ER homeostasis and triggers a complex interchange between ER-stress sensors and type I IFN signaling, thus inducing in myeloid cells a state of chronic inflammation.
Collapse
Affiliation(s)
- Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Gonca Çetin
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Heike Junker
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
The Multifaceted Roles of Plant Hormone Salicylic Acid in Endoplasmic Reticulum Stress and Unfolded Protein Response. Int J Mol Sci 2019; 20:ijms20235842. [PMID: 31766401 PMCID: PMC6928836 DOI: 10.3390/ijms20235842] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Different abiotic and biotic stresses lead to the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress. In response to ER stress, cells activate various cytoprotective responses, enhancing chaperon synthesis, protein folding capacity, and degradation of misfolded proteins. These responses of plants are called the unfolded protein response (UPR). ER stress signaling and UPR can be regulated by salicylic acid (SA), but the mode of its action is not known in full detail. In this review, the current knowledge on the multifaceted role of SA in ER stress and UPR is summarized in model plants and crops to gain a better understanding of SA-regulated processes at the physiological, biochemical, and molecular levels.
Collapse
|
30
|
Functional Diversification of ER Stress Responses in Arabidopsis. Trends Biochem Sci 2019; 45:123-136. [PMID: 31753702 DOI: 10.1016/j.tibs.2019.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) is responsible for the synthesis of one-third of the cellular proteome and is constantly challenged by physiological and environmental situations that can perturb its homeostasis and lead to the accumulation of misfolded secretory proteins, a condition referred to as ER stress. In response, the ER evokes a set of intracellular signaling processes, collectively known as the unfolded protein response (UPR), which are designed to restore biosynthetic capacity of the ER. As single-cell organisms evolved into multicellular life, the UPR complexity has increased to suit their growth and development. In this review, we discuss recent advances in the understanding of the UPR, emphasizing conserved UPR elements between plants and metazoans and highlighting unique plant-specific features.
Collapse
|
31
|
Wen Bin Goh W, Thalappilly S, Thibault G. Moving beyond the current limits of data analysis in longevity and healthy lifespan studies. Drug Discov Today 2019; 24:2273-2285. [PMID: 31499187 DOI: 10.1016/j.drudis.2019.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/03/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022]
Abstract
Living longer with sustainable quality of life is becoming increasingly important in aging populations. Understanding associative biological mechanisms have proven daunting, because of multigenicity and population heterogeneity. Although Big Data and Artificial Intelligence (AI) could help, naïve adoption is ill advised. We hold the view that model organisms are better suited for big-data analytics but might lack relevance because they do not immediately reflect the human condition. Resolving this hurdle and bridging the human-model organism gap will require some finesse. This includes improving signal:noise ratios by appropriate contextualization of high-throughput data, establishing consistency across multiple high-throughput platforms, and adopting supporting technologies that provide useful in silico and in vivo validation strategies.
Collapse
Affiliation(s)
- Wilson Wen Bin Goh
- Bio-Data Science and Education Research Group, School of Biological Sciences, Nanyang Technological University, 637551, Singapore.
| | - Subhash Thalappilly
- Lipid Regulation and Cell Stress Research Group, School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Guillaume Thibault
- Lipid Regulation and Cell Stress Research Group, School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Institute of Molecular and Cell Biology, A*STAR, 138673, Singapore.
| |
Collapse
|
32
|
Xia X. Translation Control of HAC1 by Regulation of Splicing in Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:ijms20122860. [PMID: 31212749 PMCID: PMC6627864 DOI: 10.3390/ijms20122860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Hac1p is a key transcription factor regulating the unfolded protein response (UPR) induced by abnormal accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. The accumulation of unfolded/misfolded proteins is sensed by protein Ire1p, which then undergoes trans-autophosphorylation and oligomerization into discrete foci on the ER membrane. HAC1 pre-mRNA, which is exported to the cytoplasm but is blocked from translation by its intron sequence looping back to its 5’UTR to form base-pair interaction, is transported to the Ire1p foci to be spliced, guided by a cis-acting bipartite element at its 3’UTR (3’BE). Spliced HAC1 mRNA can be efficiently translated. The resulting Hac1p enters the nucleus and activates, together with coactivators, a large number of genes encoding proteins such as protein chaperones to restore and maintain ER homeostasis and secretary protein quality control. This review details the translation regulation of Hac1p production, mediated by the nonconventional splicing, in the broad context of translation control and summarizes the evolution and diversification of the UPR signaling pathway among fungal, metazoan and plant lineages.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada.
| |
Collapse
|
33
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks. Proc Natl Acad Sci U S A 2019; 116:7963-7972. [PMID: 30923110 DOI: 10.1073/pnas.1812413116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is one of the most abundant and enigmatic enzymes of the CNS. Based on existing UCH-L1 knockout models, UCH-L1 is thought to be required for the maintenance of axonal integrity, but not for neuronal development despite its high expression in neurons. Several lines of evidence suggest a role for UCH-L1 in mUB homeostasis, although the specific in vivo substrate remains elusive. Since the precise mechanisms underlying UCH-L1-deficient neurodegeneration remain unclear, we generated a transgenic mouse model of UCH-L1 deficiency. By performing biochemical and behavioral analyses we can show that UCH-L1 deficiency causes an acceleration of sensorimotor reflex development in the first postnatal week followed by a degeneration of motor function starting at periadolescence in the setting of normal cerebral mUB levels. In the first postnatal weeks, neuronal protein synthesis and proteasomal protein degradation are enhanced, with endoplasmic reticulum stress, and energy depletion, leading to proteasomal impairment and an accumulation of nondegraded ubiquitinated protein. Increased protein turnover is associated with enhanced mTORC1 activity restricted to the postnatal period in UCH-L1-deficient brains. Inhibition of mTORC1 with rapamycin decreases protein synthesis and ubiquitin accumulation in UCH-L1-deficient neurons. Strikingly, rapamycin treatment in the first 8 postnatal days ameliorates the neurological phenotype of UCH-L1-deficient mice up to 16 weeks, suggesting that early control of protein homeostasis is imperative for long-term neuronal survival. In summary, we identified a critical presymptomatic period during which UCH-L1-dependent enhanced protein synthesis results in neuronal strain and progressive loss of neuronal function.
Collapse
|
34
|
George Z, Omosun Y, Azenabor AA, Goldstein J, Partin J, Joseph K, Ellerson D, He Q, Eko F, McDonald MA, Reed M, Svoboda P, Stuchlik O, Pohl J, Lutter E, Bandea C, Black CM, Igietseme JU. The molecular mechanism of induction of unfolded protein response by Chlamydia. Biochem Biophys Res Commun 2019; 508:421-429. [PMID: 30503337 PMCID: PMC6343654 DOI: 10.1016/j.bbrc.2018.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022]
Abstract
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.
Collapse
Affiliation(s)
- Zenas George
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Yusuf Omosun
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Jason Goldstein
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - James Partin
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Kahaliah Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Debra Ellerson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Qing He
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | - Francis Eko
- Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Matthew Reed
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pavel Svoboda
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Olga Stuchlik
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Jan Pohl
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | | - Claudiu Bandea
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Joseph U Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
35
|
Castellana S, Mazza T, Capocefalo D, Genov N, Biagini T, Fusilli C, Scholkmann F, Relógio A, Hogenesch JB, Mazzoccoli G. Systematic Analysis of Mouse Genome Reveals Distinct Evolutionary and Functional Properties Among Circadian and Ultradian Genes. Front Physiol 2018; 9:1178. [PMID: 30190679 PMCID: PMC6115496 DOI: 10.3389/fphys.2018.01178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/06/2018] [Indexed: 02/02/2023] Open
Abstract
In living organisms, biological clocks regulate 24 h (circadian) molecular, physiological, and behavioral rhythms to maintain homeostasis and synchrony with predictable environmental changes, in particular with those induced by Earth’s rotation on its axis. Harmonics of these circadian rhythms having periods of 8 and 12 h (ultradian) have been documented in several species. In mouse liver, harmonics of the 24-h period of gene transcription hallmarked genes oscillating with a frequency two or three times faster than circadian periodicity. Many of these harmonic transcripts enriched pathways regulating responses to environmental stress and coinciding preferentially with subjective dawn and dusk. At this time, the evolutionary history of genes with rhythmic expression is still poorly known and the role of length-of-day changes due to Earth’s rotation speed decrease over the last four billion years is totally ignored. We hypothesized that ultradian and stress anticipatory genes would be more evolutionarily conserved than circadian genes and background non-oscillating genes. To investigate this issue, we performed broad computational analyses of genes/proteins oscillating at different frequency ranges across several species and showed that ultradian genes/proteins, especially those oscillating with a 12-h periodicity, are more likely to be of ancient origin and essential in mice. In summary, our results show that genes with ultradian transcriptional patterns are more likely to be phylogenetically conserved and associated with the primeval and inevitable dawn/dusk transitions.
Collapse
Affiliation(s)
- Stefano Castellana
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Daniele Capocefalo
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Nikolai Genov
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin and Humboldt University of Berlin, Berlin, Germany.,Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tommaso Biagini
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Caterina Fusilli
- Bioinformatics Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| | - Felix Scholkmann
- Research Office for Complex Physical and Biological Systems (ROCoS), Zürich, Switzerland.,Department of Neonatology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité - Universitätsmedizin Berlin and Humboldt University of Berlin, Berlin, Germany.,Molekulares Krebsforschungszentrum (MKFZ), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - John B Hogenesch
- Divisions of Human Genetics and Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Gianluigi Mazzoccoli
- Division of Internal Medicine and Chronobiology Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, Italy
| |
Collapse
|
36
|
The Unfolded Protein Response Pathway in the Yeast Kluyveromyces lactis. A Comparative View among Yeast Species. Cells 2018; 7:cells7080106. [PMID: 30110882 PMCID: PMC6116095 DOI: 10.3390/cells7080106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/04/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells have evolved signalling pathways that allow adaptation to harmful conditions that disrupt endoplasmic reticulum (ER) homeostasis. When the function of the ER is compromised in a condition known as ER stress, the cell triggers the unfolded protein response (UPR) in order to restore ER homeostasis. Accumulation of misfolded proteins due to stress conditions activates the UPR pathway. In mammalian cells, the UPR is composed of three branches, each containing an ER sensor (PERK, ATF6 and IRE1). However, in yeast species, the only sensor present is the inositol-requiring enzyme Ire1. To cope with unfolded protein accumulation, Ire1 triggers either a transcriptional response mediated by a transcriptional factor that belongs to the bZIP transcription factor family or an mRNA degradation process. In this review, we address the current knowledge of the UPR pathway in several yeast species: Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida glabrata, Cryptococcus neoformans, and Candida albicans. We also include unpublished data on the UPR pathway of the budding yeast Kluyveromyces lactis. We describe the basic components of the UPR pathway along with similarities and differences in the UPR mechanism that are present in these yeast species.
Collapse
|
37
|
Abdullah A, Ravanan P. The unknown face of IRE1α - Beyond ER stress. Eur J Cell Biol 2018; 97:359-368. [PMID: 29747876 DOI: 10.1016/j.ejcb.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
IRE1α (Inositol Requiring kinase Enzyme 1 alpha), a transmembrane protein localized to the endoplasmic reticulum (ER) is a master regulator of the unfolded protein response (UPR) pathway. The fate determining steps during ER stress-induced apoptosis are greatly attributed to IRE1α's endoribonuclease and kinase activities. Apart from its role as a chief executioner in ER stress, recent studies have shown that upon activation in the presence or absence of ER stress, IRE1α executes multiple cellular processes such as differentiation, immune response, progression and repression of the cell cycle. Besides its crucial role in protein misfolding, the versatile contributions of IRE1α in other cellular functions are greatly unknown. In this review, we have discussed the structural conservation of IRE1 among eukaryotes, the mechanisms underlying its activation and the recent understandings of the non-apoptotic functions of IRE1 other than ER stress-induced cell death.
Collapse
Affiliation(s)
- Ahmad Abdullah
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
38
|
Nawkar GM, Lee ES, Shelake RM, Park JH, Ryu SW, Kang CH, Lee SY. Activation of the Transducers of Unfolded Protein Response in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:214. [PMID: 29515614 DOI: 10.3389/fpls.2018.00214/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 05/24/2023]
Abstract
Maintenance of homeostasis of the endoplasmic reticulum (ER) ensures the balance between loading of nascent proteins and their secretion. Certain developmental conditions or environmental stressors affect protein folding causing ER stress. The resultant ER stress is mitigated by upregulating a set of stress-responsive genes in the nucleus modulating the mechanism of the unfolded protein response (UPR). In plants, the UPR is mediated by two major pathways; by the proteolytic processing of bZIP17/28 and by the IRE1-mediated splicing of bZIP60 mRNA. Recent studies have shown the involvement of plant-specific NAC transcription factors in UPR regulation. The molecular mechanisms activating plant-UPR transducers are only recently being unveiled. This review focuses on important structural features involved in the activation of the UPR transducers like bZIP17/28/60, IRE1, BAG7, and NAC017/062/089/103. Also, we discuss the activation of the UPR pathways, including BAG7-bZIP28 and IRE1-bZIP60, in detail, together with the NAC-TFs, which adds a new paradigm to the plant UPR.
Collapse
Affiliation(s)
- Ganesh M Nawkar
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Eun Seon Lee
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Rahul M Shelake
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Joung Hun Park
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Seoung Woo Ryu
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Chang Ho Kang
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21 Plus) and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
39
|
Nawkar GM, Lee ES, Shelake RM, Park JH, Ryu SW, Kang CH, Lee SY. Activation of the Transducers of Unfolded Protein Response in Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:214. [PMID: 29515614 PMCID: PMC5826264 DOI: 10.3389/fpls.2018.00214] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 05/19/2023]
Abstract
Maintenance of homeostasis of the endoplasmic reticulum (ER) ensures the balance between loading of nascent proteins and their secretion. Certain developmental conditions or environmental stressors affect protein folding causing ER stress. The resultant ER stress is mitigated by upregulating a set of stress-responsive genes in the nucleus modulating the mechanism of the unfolded protein response (UPR). In plants, the UPR is mediated by two major pathways; by the proteolytic processing of bZIP17/28 and by the IRE1-mediated splicing of bZIP60 mRNA. Recent studies have shown the involvement of plant-specific NAC transcription factors in UPR regulation. The molecular mechanisms activating plant-UPR transducers are only recently being unveiled. This review focuses on important structural features involved in the activation of the UPR transducers like bZIP17/28/60, IRE1, BAG7, and NAC017/062/089/103. Also, we discuss the activation of the UPR pathways, including BAG7-bZIP28 and IRE1-bZIP60, in detail, together with the NAC-TFs, which adds a new paradigm to the plant UPR.
Collapse
|
40
|
Li Y, Xiong R, Bernards M, Wang A. Recruitment of Arabidopsis RNA Helicase AtRH9 to the Viral Replication Complex by Viral Replicase to Promote Turnip Mosaic Virus Replication. Sci Rep 2016; 6:30297. [PMID: 27456972 PMCID: PMC4960543 DOI: 10.1038/srep30297] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 02/02/2023] Open
Abstract
Positive-sense RNA viruses have a small genome with very limited coding capacity and are highly dependent on host components to fulfill their life cycle. Recent studies have suggested that DEAD-box RNA helicases play vital roles in many aspects of RNA metabolism. To explore the possible role of the RNA helicases in viral infection, we used the Turnip mosaic virus (TuMV)-Arabidopsis pathosystem. The Arabidopsis genome encodes more than 100 putative RNA helicases (AtRH). Over 41 Arabidopsis T-DNA insertion mutants carrying genetic lesions in the corresponding 26 AtRH genes were screened for their requirement in TuMV infection. TuMV infection assays revealed that virus accumulation significantly decreased in the Arabidopsis mutants of three genes, AtRH9, AtRH26, and PRH75. In the present work, AtRH9 was further characterized. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays showed that AtRH9 interacted with the TuMV NIb protein, the viral RNA-dependent RNA polymerase. Moreover, the subcellular distribution of AtRH9 was altered in the virus-infected cells, and AtRH9 was recruited to the viral replication complex. These results suggest that Arabidopsis AtRH9 is an important component of the TuMV replication complex, possibly recruited via its interaction with NIb.
Collapse
Affiliation(s)
- Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Ruyi Xiong
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Mark Bernards
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.,Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
41
|
Jan Bergmann T, Brambilla Pisoni G, Molinari M. Quality control mechanisms of protein biogenesis: proteostasis dies hard. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2016.4.456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|