1
|
Chang O, Cheon S, Semenova N, Azad N, Iyer AK, Yakisich JS. Prolonged Low-Dose Administration of FDA-Approved Drugs for Non-Cancer Conditions: A Review of Potential Targets in Cancer Cells. Int J Mol Sci 2025; 26:2720. [PMID: 40141362 PMCID: PMC11942989 DOI: 10.3390/ijms26062720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Though not specifically designed for cancer therapy, several FDA-approved drugs such as metformin, aspirin, and simvastatin have an effect in lowering the incidence of cancer. However, there is a great discrepancy between in vitro concentrations needed to eliminate cancer cells and the plasma concentration normally tolerated within the body. At present, there is no universal explanation for this discrepancy and several mechanisms have been proposed including targeting cancer stem cells (CSCs) or cellular senescence. CSCs are cells with the ability of self-renewal and differentiation known to be resistant to chemotherapy. Senescence is a response to damage and stress, characterized by permanent cell-cycle arrest and apoptotic resistance. Although, for both situations, there are few examples where low concentrations of the FDA-approved drugs were the most effective, there is no satisfactory data to support that either CSCs or cellular senescence are the target of these drugs. In this review, we concisely summarize the most used FDA-approved drugs for non-cancer conditions as well as their potential mechanisms of action in lowering cancer incidence. In addition, we propose that prolonged low-dose administration (PLDA) of specific FDA-approved drugs can be useful for effectively preventing metastasis formation in selected patients.
Collapse
Affiliation(s)
- Olivia Chang
- Governor’s School for Science and Technology, Hampton, VA 23666, USA; (O.C.); (S.C.)
| | - Sarah Cheon
- Governor’s School for Science and Technology, Hampton, VA 23666, USA; (O.C.); (S.C.)
| | - Nina Semenova
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| | - Neelam Azad
- The Office of the Vice President for Research, Hampton University, Hampton, VA 23668, USA;
| | - Anand Krishnan Iyer
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Hampton, VA 23668, USA; (N.S.); (A.K.I.)
| |
Collapse
|
2
|
Dasgupta D, Patel A. Enhancing diabetes therapy with pH-sensitive co-delivery of metformin hydrochloride and glipizide using MCM-48-based dual drug delivery system. RSC Adv 2025; 15:7191-7199. [PMID: 40052104 PMCID: PMC11883462 DOI: 10.1039/d5ra00204d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Monotherapy in diabetes management is losing interest due to its ineffectiveness in achieving optimal glycaemic control in a significant proportion of diabetic patients. Therefore, combined therapy is increasingly preferred by clinicians, which offers enhanced effectiveness and a better safety profile for managing the condition. The present work deals with the designing of a dual drug nanocarrier based on MCM-48 and 12-tungtophosphoric acid (TPA) for the co-delivery of Glipizide (GLP) and Metformin Hydrochloride (MTF) as well as its characterization using various techniques. An in vitro release study was carried out at two different pHs (pH 1.2 and pH 7.4) at 37 °C under stirring conditions which was further supported by an in vitro dissolution study carried out using a USP Type II dissolution apparatus. The obtained results were compared with that of the marketed available formulation, Glirum-MF, and the designed nanocarrier showed a better controlled release of both the drugs in comparison with the conventional drug. Additionally, considering the anticancer properties of both the drugs, MTT assay indicated that the carrier is non-toxic while the drug loaded nanocarrier shows apoptosis against HepG2 cells.
Collapse
Affiliation(s)
- Debatrayee Dasgupta
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara 390002 India
| | - Anjali Patel
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda Vadodara 390002 India
| |
Collapse
|
3
|
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024; 14:1479. [PMID: 39595655 PMCID: PMC11591849 DOI: 10.3390/biom14111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for various cancers, with the impact of anti-diabetic therapies on cancer progression differing across malignancies. Among these therapies, metformin has gained attention for its potential anti-cancer effects, primarily through modulation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway and the induction of autophagy. Beyond metformin, other conventional anti-diabetic treatments, such as insulin, sulfonylureas (SUs), pioglitazone, and dipeptidyl peptidase-4 (DPP-4) inhibitors, have also been examined for their roles in cancer biology, though findings are often inconclusive. More recently, novel medications, like glucagon-like peptide-1 (GLP-1) receptor agonists, dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists, and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, have revolutionized DM management by not only improving glycemic control but also delivering substantial cardiovascular and renal benefits. Given their diverse metabolic effects, including anti-obesogenic properties, these novel agents are now under meticulous investigation for their potential influence on tumorigenesis and cancer advancement. This review aims to offer a comprehensive exploration of the evolving landscape of glucose-lowering treatments and their implications in cancer biology. It critically evaluates experimental evidence surrounding the molecular mechanisms by which these medications may modulate oncogenic signaling pathways and reshape the tumor microenvironment (TME). Furthermore, it assesses translational research and clinical trials to gauge the practical relevance of these findings in real-world settings. Finally, it explores the potential of anti-diabetic medications as adjuncts in cancer treatment, particularly in enhancing the efficacy of chemotherapy, minimizing toxicity, and addressing resistance within the framework of immunotherapy.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece
| |
Collapse
|
4
|
Filippi A, Aurelian J, Mocanu MM. Analysis of the Gene Networks and Pathways Correlated with Tissue Differentiation in Prostate Cancer. Int J Mol Sci 2024; 25:3626. [PMID: 38612439 PMCID: PMC11011430 DOI: 10.3390/ijms25073626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Prostate cancer (PCa) is the most prevalent non-cutaneous cancer in men. Early PCa detection has been made possible by the adoption of screening methods based on the serum prostate-specific antigen and Gleason score (GS). The aim of this study was to correlate gene expression with the differentiation level of prostate adenocarcinomas, as indicated by GS. We used data from The Cancer Genome Atlas (TCGA) and included 497 prostate cancer patients, 52 of which also had normal tissue sample sequencing data. Gene ontology analysis revealed that higher GSs were associated with greater responses to DNA damage, telomere lengthening, and cell division. Positive correlation was found with transcription factor activator of the adenovirus gene E2 (E2F) and avian myelocytomatosis viral homolog (MYC) targets, G2M checkpoints, DNA repair, and mitotic spindles. Immune cell deconvolution revealed high M0 macrophage counts and an increase in M2 macrophages dependent on the GS. The molecular pathways most correlated with GSs were cell cycle, RNA transport, and calcium signaling (depleted). A combinatorial approach identified a set of eight genes able to differentiate by k-Nearest Neighbors (kNN) between normal tissues, low-Gleason tissues, and high-Gleason tissues with high accuracy. In conclusion, our study could be a step forward to better understanding the link between gene expression and PCa progression and aggressiveness.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Justin Aurelian
- Department of Specific Disciplines, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050653 Bucharest, Romania
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
5
|
Mohammed S, Mahmood T, Shamim A, Ahsan F, Shariq M, Parveen S, Waseem R, Singh A. Encyclopaedic Review of Glipizide Pre-clinical and Clinical Status. Drug Res (Stuttg) 2024; 74:123-132. [PMID: 38408478 DOI: 10.1055/a-2237-8566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Glipizide is an oral glucose-lowering medication that is beneficial for the treatment of type 2 diabetes. This study compiles exhaustively all accessible information on glipizide, from preclinical to clinical studies. Glipizide may be used in concert with TRAIL to treat cancer cells; in vitro studies have shown that it suppresses angiogenesis and vasculogenesis while shielding cells from glycation-induced damage. Anticonvulsant effects and modifications in the pharmacokinetics of other medications, such as Divalproex Sodium, were seen in glipizide in vivo experiments. Propranolol amplifies glipizide's hypoglycemic effect briefly in normal animals but consistently enhances it in diabetic ones. In the treatment of cancer and neurodegenerative poly(Q) illnesses, glipizide has demonstrated to offer potential therapeutic advantages. It is ineffective in preventing DENA-induced liver cancer and may cause DNA damage over time. The way glipizide interacts with genetic variants may increase the risk of hypoglycemia. Combining Syzygium cumini and ARBE to glipizide may enhance glycemic and lipid control in type 2 diabetes. Individuals with coronary artery disease who take glipizide or glyburide have an increased risk of death. The risk of muscular responses and acute pancreatitis is minimal when glipizide and dulaglutide are combined. In conclusion, glipizide has shown promising therapeutic efficacy across a variety of disorders.
Collapse
Affiliation(s)
- Saad Mohammed
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Arshiya Shamim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Shariq
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Saba Parveen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Rufaida Waseem
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Moon DO. Exploring the Role of Surface and Mitochondrial ATP-Sensitive Potassium Channels in Cancer: From Cellular Functions to Therapeutic Potentials. Int J Mol Sci 2024; 25:2129. [PMID: 38396807 PMCID: PMC10888650 DOI: 10.3390/ijms25042129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels are found in plasma membranes and mitochondria. These channels are a type of ion channel that is regulated by the intracellular concentration of adenosine triphosphate (ATP) and other nucleotides. In cell membranes, they play a crucial role in linking metabolic activity to electrical activity, especially in tissues like the heart and pancreas. In mitochondria, KATP channels are involved in protecting cells against ischemic damage and regulating mitochondrial function. This review delves into the role of KATP channels in cancer biology, underscoring their critical function. Notably responsive to changes in cellular metabolism, KATP channels link metabolic states to electrical activity, a feature that becomes particularly significant in cancer cells. These cells, characterized by uncontrolled growth, necessitate unique metabolic and signaling pathways, differing fundamentally from normal cells. Our review explores the intricate roles of KATP channels in influencing the metabolic and ionic balance within cancerous cells, detailing their structural and operational mechanisms. We highlight the channels' impact on cancer cell survival, proliferation, and the potential of KATP channels as therapeutic targets in oncology. This includes the challenges in targeting these channels due to their widespread presence in various tissues and the need for personalized treatment strategies. By integrating molecular biology, physiology, and pharmacology perspectives, the review aims to enhance the understanding of cancer as a complex metabolic disease and to open new research and treatment avenues by focusing on KATP channels. This comprehensive approach provides valuable insights into the potential of KATP channels in developing innovative cancer treatments.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
7
|
Li S, Wang Y, Zhang D, Wang H, Cui X, Zhang C, Xin Y. Gliclazide Reduces Colitis-Associated Colorectal Cancer Formation by Deceasing Colonic Inflammation and Regulating AMPK-NF-κB Signaling Pathway. Dig Dis Sci 2024; 69:453-462. [PMID: 38103106 PMCID: PMC10861754 DOI: 10.1007/s10620-023-08211-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Gliclazide is a potential anti-cancer drug candidate for preventing carcinogenesis. However, the effect of gliclazide on colitis-associated colorectal cancer remains unknown. AIMS We aimed to evaluate whether gliclazide plays a protective role in colitis-associated colorectal cancer and the underlying molecular mechanism. METHODS The administration of azoxymethane (AOM) followed by dextran sulfate sodium (DSS) aimed to induce colitis-associated colorectal cancer in mice. C57BL mice were gavaged with gliclazide (6 mg/kg by gavage 5 days a week) for 12 weeks immediately following AOM administration. After sacrificing the mice, colon tissues were measured for tumor number and tumor burden. The proliferation- and inflammation-related molecular mechanisms were explored. RESULTS The administration of gliclazide significantly reduced the tumor number and tumor burden in mice. Cell proliferation decreased in the gliclazide group compared with the control group, as indicated by reduced Ki-67 expression. Furthermore, gliclazide alleviated colonic inflammation, significantly decreased pro-inflammatory factor TNF-α levels and increased anti-inflammatory factor IL-10 levels in vivo. In vivo and vitro, it was shown that gliclazide increased the level of phospho-AMPK (p-AMPK) and inhibited NF-κB activity. Further studies demonstrated that the inhibition of NF-κB activity induced by gliclazide was mediated by p-AMPK in vitro. CONCLUSIONS Gliclazide effectively alleviated colonic inflammation and prevented colonic carcinogenesis in an AOM-DSS mouse model by modulating the AMPK-NF-κB signaling pathway. Thus, gliclazide holds potential as a chemopreventive agent for colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Shuai Li
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yanan Wang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Dongdong Zhang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Hongjuan Wang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiujie Cui
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Chenchen Zhang
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yu Xin
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
- The Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Romo-Perez A, Domínguez-Gómez G, Chávez-Blanco AD, González-Fierro A, Correa-Basurto J, Dueñas-González A. PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal. Curr Med Chem 2024; 31:3265-3285. [PMID: 37287286 DOI: 10.2174/0929867330666230607104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO). OBJECTIVE Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer. RESULTS Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs. CONCLUSION We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma D Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Aurora González-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - José Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alfonso Dueñas-González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Al-Hamaly MA, Cox AH, Haney MG, Zhang W, Arvin EC, Sampathi S, Wimsett M, Liu C, Blackburn JS. Zebrafish drug screening identifies Erlotinib as an inhibitor of Wnt/β-catenin signaling and self-renewal in T-cell acute lymphoblastic leukemia. Biomed Pharmacother 2024; 170:116013. [PMID: 38104416 PMCID: PMC10833092 DOI: 10.1016/j.biopha.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
The Wnt/β-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential. However, the clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex cross-talk of Wnt signaling with other pathways. In this study, we leveraged a zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/β-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development. The efficacy of the top hit, Erlotinib, extended to human cells, where it blocked Wnt/β-catenin signaling downstream of the destruction complex. Notably, Erlotinib treatment reduced self-renewal in human T-cell Acute Lymphoblastic Leukemia cells, which rely on active β-catenin signaling for maintenance of leukemia-initiating cells. Erlotinib also reduced leukemia-initiating cell frequency and delayed disease formation in zebrafish models. This study underscores zebrafish's translational potential in drug discovery and repurposing and highlights a new use for Erlotinib as a Wnt inhibitor for cancers driven by aberrant Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Majd A Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40356, United States; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States
| | - Anna H Cox
- College of Medicine, University of Kentucky, Lexington, KY 40536, United States; Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Meghan G Haney
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Wen Zhang
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Emma C Arvin
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Shilpa Sampathi
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Mary Wimsett
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Chunming Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States; Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States
| | - Jessica S Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States; Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40356, United States.
| |
Collapse
|
10
|
Guo X, Huang Z, Ge Q, Yang L, Liang D, Huang Y, Jiang Y, Pathak JL, Wang L, Ge L. Glipizide Alleviates Periodontitis Pathogenicity via Inhibition of Angiogenesis, Osteoclastogenesis and M1/M2 Macrophage Ratio in Periodontal Tissue. Inflammation 2023; 46:1917-1931. [PMID: 37289398 DOI: 10.1007/s10753-023-01850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
New consensus indicates type 2 diabetes mellitus (T2DM) and periodontitis as comorbidity and may share common pathways of disease progression. Sulfonylureas have been reported to improve the periodontal status in periodontitis patients. Glipizide, a sulfonylurea widely used in the treatment of T2DM, has also been reported to inhibit inflammation and angiogenesis. The effect of glipizide on the pathogenicity of periodontitis, however, has not been studied. We developed ligature-induced periodontitis in mice and treated them with different concentrations of glipizide and then analyzed the level of periodontal tissue inflammation, alveolar bone resorption, and osteoclast differentiation. Inflammatory cell infiltration and angiogenesis were analyzed using immunohistochemistry, RT-qPCR, and ELISA. Transwell assay and Western bolt analyzed macrophage migration and polarization. 16S rRNA sequencing analyzed the effect of glipizide on the oral microbial flora. mRNA sequencing of bone marrow-derived macrophages (BMMs) stimulated by P. gingivalis lipopolysaccharide (Pg-LPS) after treatment with glipizide was analyzed. Glipizide decreases alveolar bone resorption, periodontal tissue degradation, and the number of osteoclasts in periodontal tissue affected by periodontitis (PAPT). Glipizide-treated periodontitis mice showed reduced micro-vessel density and leukocyte/macrophage infiltration in PAPT. Glipizide significantly inhibited osteoclast differentiation in vitro experiments. Glipizide treatment did not affect the oral microbiome of periodontitis mice. mRNA sequencing and KEGG analysis showed that glipizide activated PI3K/AKT signaling in LPS-stimulated BMMs. Glipizide inhibited the LPS-induced migration of BMMs but promoted M2/M1 macrophage ratio in LPS-induced BMMs via activation of PI3K/AKT signaling. In conclusion, glipizide inhibits angiogenesis, macrophage inflammatory phenotype, and osteoclastogenesis to alleviate periodontitis pathogenicity suggesting its' possible application in the treatment of periodontitis and diabetes comorbidity.
Collapse
Affiliation(s)
- Xueqi Guo
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Zhijun Huang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Qing Ge
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Luxi Yang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Dongliang Liang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Yinyin Huang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Yiqin Jiang
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Janak Lal Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China
| | - Lijing Wang
- School of Life Sciences and Biopharmaceutics, Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Linhu Ge
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510182, Guangdong, China.
| |
Collapse
|
11
|
Al-Hamaly MA, Cox AH, Haney MG, Zhang W, Arvin EC, Sampathi S, Wimsett M, Liu C, Blackburn JS. Zebrafish Drug Screening Identifies Erlotinib as an Inhibitor of Wnt/β-Catenin Signaling and Self-Renewal in T-cell Acute Lymphoblastic Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555200. [PMID: 37693603 PMCID: PMC10491167 DOI: 10.1101/2023.08.28.555200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The Wnt/β-catenin pathway's significance in cancer initiation, progression, and stem cell biology underscores its therapeutic potential, yet clinical application of Wnt inhibitors remains limited due to challenges posed by off-target effects and complex crosstalk with other pathways. In this study, we leveraged the zebrafish model to perform a robust and rapid drug screening of 773 FDA-approved compounds to identify Wnt/β-catenin inhibitors with minimal toxicity. Utilizing zebrafish expressing a Wnt reporter, we identified several drugs that suppressed Wnt signaling without compromising zebrafish development. The efficacy of the top hit, Erlotinib, extended to human cells, where it blocked Wnt/β-catenin signaling downstream of the destruction complex. Notably, Erlotinib treatment reduced self-renewal in human T-cell Acute Lymphoblastic Leukemia cells, which are known to rely on active β-catenin signaling for maintenance of leukemia-initiating cells. Erlotinib also reduced leukemia-initiating cell frequency and delayed disease formation in zebrafish models. This study underscores zebrafish's translational potential in drug discovery and repurposing, and highlights a new use for Erlotinib as a Wnt inhibitor for cancers driven by aberrant Wnt/β-catenin signaling. Highlights Zebrafish-based drug screening offers an inexpensive and robust platform for identifying compounds with high efficacy and low toxicity in vivo . Erlotinib, an Epidermal Growth Factor Receptor (EGFR) inhibitor, emerged as a potent and promising Wnt inhibitor with effects in both zebrafish and human cell-based Wnt reporter assays.The identification of Erlotinib as a Wnt inhibitor underscores the value of repurposed drugs in developing targeted therapies to disrupt cancer stemness and improve clinical outcomes.
Collapse
|
12
|
Tandon S, Sarkar S. Glipizide ameliorates human poly(Q) mediated neurotoxicity by upregulating insulin signalling in Drosophila disease models. Biochem Biophys Res Commun 2023; 645:88-96. [PMID: 36680941 DOI: 10.1016/j.bbrc.2023.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Increasing reports suggest insulin signalling pathway as a putative drug target against polyglutamine [poly(Q)] disorders, such as Huntington's disease (HD), Spinocerebellar ataxias (SCA) 1, 2, 3 etc. However, studies on drug-based stimulation of insulin signalling cascade to mitigate poly(Q) pathogenesis are lacking. In our study, we adopted an evidence-based approach to examine if some established insulin stimulating drug can be utilized to restrict poly(Q) aetiology in Drosophila disease models. For the first time, we report that glipizide, an FDA approved anti-diabetic drug upregulates insulin signalling in poly(Q) expressing tissues and restricts formation of inclusion bodies and neurodegeneration. Moreover, it reinstates the chromatin architecture by improving histone acetylation, which is otherwise abrogated due to poly(Q) toxicity. In view of the functional conservation of insulin signalling pathway in Drosophila and humans, our finding strongly suggests that glipizide can be repurposed as an effective treatment strategy against the neurodegenerative poly(Q) disorders. Also, with appropriate validation studies in mammalian disease models, glipizide could be subsequently considered for the clinical trials in human patients.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India.
| |
Collapse
|
13
|
Malik J, Ahmed S, Momin SS, Shaikh S, Alafnan A, Alanazi J, Said Almermesh MH, Anwar S. Drug Repurposing: A New Hope in Drug Discovery for Prostate Cancer. ACS OMEGA 2023; 8:56-73. [PMID: 36643505 PMCID: PMC9835086 DOI: 10.1021/acsomega.2c05821] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/24/2022] [Indexed: 06/12/2023]
Abstract
Prostate cancer (PCA), the most common cancer in men, accounted for 1.3 million new incidences in 2018. An increase in incidences is an issue of concern that should be addressed. Of all the reported prostate cancers, 85% were detected in stages III and IV, making them difficult to treat. Conventional drugs gradually lose their efficacy due to the developed resistance against them, thus requiring newer therapeutic agents to be used as monotherapy or combination. Recent research regarding treatment options has attained remarkable speed and development. Therefore, in this context, drug repurposing comes into the picture, which is defined as the "investigation of the off-patent, approved and marketed drugs for a novel therapeutic indication" which saves at least 30% of the time and cost, reducing the cost of treatment for patients, which usually runs high in cancer patients. The anticancer property of cardiac glycosides in cancers was tested in the early 1980s. The trend then shifts toward treating prostate cancer by repurposing other cardiovascular drugs. The current review mainly emphasizes the advantageous antiprostate cancer profile of conventional CVS drugs like cardiac glycosides, RAAS inhibitors, statins, heparin, and beta-blockers with underlying mechanisms.
Collapse
Affiliation(s)
- Jonaid
Ahmad Malik
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Guwahati 781003, India
- Biomedical
Engineering, Indian Institute of Technology
(IIT), Ropar, Punjab 140001, India
| | - Sakeel Ahmed
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Sadiya Sikandar Momin
- Department
of Pharmaceutics, Annasaheb Dange College of B. Pharmacy, Ashta, Shivaji University, Sangli, Maharastra 416301, India
| | - Sijal Shaikh
- Sandip Institute
of Pharmaceutical Sciences, Savitribai Phule
Pune University, Nashik, Maharashtra 422213, India
| | - Ahmed Alafnan
- Department
of Pharmacology and Toxicology, University
of Hail, Hail 81422, Saudi Arabia
| | - Jowaher Alanazi
- Department
of Pharmacology and Toxicology, University
of Hail, Hail 81422, Saudi Arabia
| | | | - Sirajudheen Anwar
- Department
of Pharmacology and Toxicology, University
of Hail, Hail 81422, Saudi Arabia
| |
Collapse
|
14
|
Bahmad HF, Demus T, Moubarak MM, Daher D, Alvarez Moreno JC, Polit F, Lopez O, Merhe A, Abou-Kheir W, Nieder AM, Poppiti R, Omarzai Y. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Med Sci (Basel) 2022; 10:15. [PMID: 35225948 PMCID: PMC8883996 DOI: 10.3390/medsci10010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men. Common treatments include active surveillance, surgery, or radiation. Androgen deprivation therapy and chemotherapy are usually reserved for advanced disease or biochemical recurrence, such as castration-resistant prostate cancer (CRPC), but they are not considered curative because PCa cells eventually develop drug resistance. The latter is achieved through various cellular mechanisms that ultimately circumvent the pharmaceutical's mode of action. The need for novel therapeutic approaches is necessary under these circumstances. An alternative way to treat PCa is by repurposing of existing drugs that were initially intended for other conditions. By extrapolating the effects of previously approved drugs to the intracellular processes of PCa, treatment options will expand. In addition, drug repurposing is cost-effective and efficient because it utilizes drugs that have already demonstrated safety and efficacy. This review catalogues the drugs that can be repurposed for PCa in preclinical studies as well as clinical trials.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Timothy Demus
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
- CNRS, IBGC, UMR5095, Universite de Bordeaux, F-33000 Bordeaux, France
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Francesca Polit
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Olga Lopez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ali Merhe
- Department of Urology, Jackson Memorial Hospital, University of Miami, Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
| | - Alan M. Nieder
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Yumna Omarzai
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
15
|
Yang L, Ge Q, Ye Z, Wang L, Wang L, Mashrah MA, Pathak JL. Sulfonylureas for Treatment of Periodontitis-Diabetes Comorbidity-Related Complications: Killing Two Birds With One Stone. Front Pharmacol 2021; 12:728458. [PMID: 34539410 PMCID: PMC8440798 DOI: 10.3389/fphar.2021.728458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Periodontitis is one of the most prevalent oral inflammatory diseases leading to teeth loss and oral health problems in adults. Periodontitis mainly affects periodontal tissue by affecting the host immune system and bone homeostasis. Moreover, periodontitis is associated with various systemic diseases. Diabetes is a metabolic disease with systemic effects. Both periodontitis and diabetes are common inflammatory diseases, and comorbidity of two diseases is linked to exacerbation of the pathophysiology of both diseases. Since bacterial dysbiosis is mainly responsible for periodontitis, antibiotics are widely used drugs to treat periodontitis in clinics. However, the outcomes of antibiotic treatments in periodontitis are not satisfactory. Therefore, the application of anti-inflammatory drugs in combination with antibiotics could be a treatment option for periodontitis-diabetes comorbidity. Anti-diabetic drugs usually have anti-inflammatory properties and have shown beneficial effects on periodontitis. Sulfonylureas, insulin secretagogues, are the earliest and most widely used oral hypoglycemic drugs used for type-2 diabetes. Studies have found that sulfonylurea drugs can play a certain role in the mitigation of periodontitis and inflammation. This article reviews the effects of sulfonylurea drugs on the mitigation of periodontitis-diabetes comorbidity-related inflammation, bone loss, and vascular growth as well as the involved molecular mechanisms. We discuss the possibility of a new application of sulfonylureas (old drug) to treat periodontitis-diabetes comorbidity.
Collapse
Affiliation(s)
- Luxi Yang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Ge
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhitong Ye
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mubarak Ahmed Mashrah
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
16
|
Mao G, Zheng S, Li J, Liu X, Zhou Q, Cao J, Zhang Q, Zheng L, Wang L, Qi C. Glipizide Combined with ANP Suppresses Breast Cancer Growth and Metastasis by Inhibiting Angiogenesis through VEGF/VEGFR2 Signaling. Anticancer Agents Med Chem 2021; 22:1735-1741. [PMID: 34515012 DOI: 10.2174/1871520621666210910085733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is one of the most common cancers worldwide among women, and angiogenesis has an important effect on its growth and metastasis. Glipizide, which is a widely used drug for type 2 diabetes mellitus, has been reported to inhibit tumor growth and metastasis by upregulating the expression of natriuretic peptide receptor A (NPRA). Atrial natriuretic peptide (ANP), the receptor of NPRA, plays an important role in angiogenesis. The purpose of this study was to explore the effect of glipizide combined with ANP on breast cancer growth and metastasis. METHODS To investigate the effect of glipizide combined with ANP on breast cancer, glipizide, ANP or glipizide combined with ANP was intraperitoneally injected into MMTV-PyMT mice. To explore whether the anticancer efficacy of glipizide combined with ANP was correlated with angiogenesis, a tube formation assay was performed. RESULTS Glipizide combined with ANP was found to inhibit breast cancer growth and metastasis in MMTV-PyMT mice, which spontaneously develop breast cancer. Furthermore, the inhibitory effect of ANP combined with glipizide was better than that of glipizide alone. ANP combined with glipizide significantly inhibited tube formation of human umbilical vein endothelial cells (HUVECs) by suppressing vascular endothelial growth factor (VEGF)/VEGFR2 (vascular endothelial growth factor receptor 2) signaling. CONCLUSIONS These results demonstrate that glipizide combined with ANP has a greater potential than glipizide alone to be repurposed as effective agents for the treatment of breast cancer by targeting tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Guanquan Mao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Shuting Zheng
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Jinlian Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Xiaohua Liu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Qin Zhou
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Jinghua Cao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Qianqian Zhang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Lingyun Zheng
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| | - Cuiling Qi
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006. China
| |
Collapse
|
17
|
Hong G, Kim J, Oh H, Yun S, Kim CM, Jeong Y, Yun W, Shim J, Jang I, Kim C, Jin S. Production of Multiple Cell-Laden Microtissue Spheroids with a Biomimetic Hepatic-Lobule-Like Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102624. [PMID: 34286875 PMCID: PMC11469225 DOI: 10.1002/adma.202102624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Indexed: 05/11/2023]
Abstract
The construction of an in vitro 3D cellular model to mimic the human liver is highly desired for drug discovery and clinical applications, such as patient-specific treatment and cell-based therapy in regenerative medicine. However, current bioprinting strategies are limited in their ability to generate multiple cell-laden microtissues with biomimetic structures. This study presents a method for producing hepatic-lobule-like microtissue spheroids using a bioprinting system incorporating a precursor cartridge and microfluidic emulsification system. The multiple cell-laden microtissue spheroids can be successfully generated at a speed of approximately 45 spheroids min-1 and with a uniform diameter. Hepatic and endothelial cells are patterned in a microtissue spheroid with the biomimetic structure of a liver lobule. The spheroids allow long-term culture with high cell viability, and the structural integrity is maintained longer than that of non-structured spheroids. Furthermore, structured spheroids show high MRP2, albumin, and CD31 expression levels. In addition, the in vivo study reveals that structured microtissue spheroids are stably engrafted. These results demonstrate that the method provides a valuable 3D structured microtissue spheroid model with lobule-like constructs and liver functions.
Collapse
Affiliation(s)
- Gyusik Hong
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
| | - Jin Kim
- Laboratory Animal MedicineCollege of Veterinary MedicineSeoul National University1, Gwanak‐roGwanak‐guSeoul08826Republic of Korea
- College of Veterinary MedicineKonkuk University120, Neungdong‐ro, Gwangjin‐guSeoul05029Republic of Korea
| | - Hyeongkwon Oh
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
| | - Seokhwan Yun
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
| | - Chul Min Kim
- Department of MechatronicsGyeongsang National University33, Dongjin‐roJinju52725Republic of Korea
| | - Yun‐Mi Jeong
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
| | - Won‐Soo Yun
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
- Research InstituteT&R Biofab. Co. Ltd242 Pangyo‐roSeongnamGyeonggi13487Republic of Korea
| | - Jin‐Hyung Shim
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
- Research InstituteT&R Biofab. Co. Ltd242 Pangyo‐roSeongnamGyeonggi13487Republic of Korea
| | - Ilho Jang
- Research InstituteT&R Biofab. Co. Ltd242 Pangyo‐roSeongnamGyeonggi13487Republic of Korea
| | - C‐Yoon Kim
- College of Veterinary MedicineKonkuk University120, Neungdong‐ro, Gwangjin‐guSeoul05029Republic of Korea
| | - Songwan Jin
- Department of Mechanical EngineeringKorea Polytechnic University237 Sangidaehak‐roSiheung‐si15073Republic of Korea
- Research InstituteT&R Biofab. Co. Ltd242 Pangyo‐roSeongnamGyeonggi13487Republic of Korea
| |
Collapse
|
18
|
Knura M, Garczorz W, Borek A, Drzymała F, Rachwał K, George K, Francuz T. The Influence of Anti-Diabetic Drugs on Prostate Cancer. Cancers (Basel) 2021; 13:cancers13081827. [PMID: 33921222 PMCID: PMC8068793 DOI: 10.3390/cancers13081827] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidences of prostate cancer (PC) and diabetes are increasing, with a sustained trend. The occurrence of PC and type 2 diabetes mellitus (T2DM) is growing with aging. The correlation between PC occurrence and diabetes is noteworthy, as T2DM is correlated with a reduced risk of incidence of prostate cancer. Despite this reduction, diabetes mellitus increases the mortality in many cancer types, including prostate cancer. The treatment of T2DM is based on lifestyle changes and pharmacological management. Current available drugs, except insulin, are aimed at increasing insulin secretion (sulfonylureas, incretin drugs), improving insulin sensitivity (biguanides, thiazolidinediones), or increasing urinary glucose excretion (gliflozin). Comorbidities should be taken into consideration during the treatment of T2DM. This review describes currently known information about the mechanism and impact of commonly used antidiabetic drugs on the incidence and progression of PC. Outcomes of pre-clinical studies are briefly presented and their correlations with available clinical trials have also been observed. Available reports and meta-analyses demonstrate that most anti-diabetic drugs do not increase the risk during the treatment of patients with PC. However, some reports show a potential advantage of treatment of T2DM with specific drugs. Based on clinical reports, use of metformin should be considered as a therapeutic option. Moreover, anticancer properties of metformin were augmented while combined with GLP-1 analogs.
Collapse
|
19
|
Emami NC, Cavazos TB, Rashkin SR, Cario CL, Graff RE, Tai CG, Mefford JA, Kachuri L, Wan E, Wong S, Aaronson D, Presti J, Habel LA, Shan J, Ranatunga DK, Chao CR, Ghai NR, Jorgenson E, Sakoda LC, Kvale MN, Kwok PY, Schaefer C, Risch N, Hoffmann TJ, Van Den Eeden SK, Witte JS. A Large-Scale Association Study Detects Novel Rare Variants, Risk Genes, Functional Elements, and Polygenic Architecture of Prostate Cancer Susceptibility. Cancer Res 2021; 81:1695-1703. [PMID: 33293427 PMCID: PMC8137514 DOI: 10.1158/0008-5472.can-20-2635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
To identify rare variants associated with prostate cancer susceptibility and better characterize the mechanisms and cumulative disease risk associated with common risk variants, we conducted an integrated study of prostate cancer genetic etiology in two cohorts using custom genotyping microarrays, large imputation reference panels, and functional annotation approaches. Specifically, 11,984 men (6,196 prostate cancer cases and 5,788 controls) of European ancestry from Northern California Kaiser Permanente were genotyped and meta-analyzed with 196,269 men of European ancestry (7,917 prostate cancer cases and 188,352 controls) from the UK Biobank. Three novel loci, including two rare variants (European ancestry minor allele frequency < 0.01, at 3p21.31 and 8p12), were significant genome wide in a meta-analysis. Gene-based rare variant tests implicated a known prostate cancer gene (HOXB13), as well as a novel candidate gene (ILDR1), which encodes a receptor highly expressed in prostate tissue and is related to the B7/CD28 family of T-cell immune checkpoint markers. Haplotypic patterns of long-range linkage disequilibrium were observed for rare genetic variants at HOXB13 and other loci, reflecting their evolutionary history. In addition, a polygenic risk score (PRS) of 188 prostate cancer variants was strongly associated with risk (90th vs. 40th-60th percentile OR = 2.62, P = 2.55 × 10-191). Many of the 188 variants exhibited functional signatures of gene expression regulation or transcription factor binding, including a 6-fold difference in log-probability of androgen receptor binding at the variant rs2680708 (17q22). Rare variant and PRS associations, with concomitant functional interpretation of risk mechanisms, can help clarify the full genetic architecture of prostate cancer and other complex traits. SIGNIFICANCE: This study maps the biological relationships between diverse risk factors for prostate cancer, integrating different functional datasets to interpret and model genome-wide data from over 200,000 men with and without prostate cancer.See related commentary by Lachance, p. 1637.
Collapse
Affiliation(s)
- Nima C Emami
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Taylor B Cavazos
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
| | - Sara R Rashkin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Clinton L Cario
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Caroline G Tai
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Joel A Mefford
- Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Eunice Wan
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Simon Wong
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - David Aaronson
- Department of Urology, Kaiser Oakland Medical Center, Oakland, California
| | - Joseph Presti
- Department of Urology, Kaiser Oakland Medical Center, Oakland, California
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Jun Shan
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Dilrini K Ranatunga
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Chun R Chao
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Nirupa R Ghai
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Mark N Kvale
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Pui-Yan Kwok
- Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Neil Risch
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Thomas J Hoffmann
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Stephen K Van Den Eeden
- Division of Research, Kaiser Permanente Northern California, Oakland, California
- Department of Urology, University of California San Francisco, San Francisco, California
| | - John S Witte
- Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, California.
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
- Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Department of Urology, University of California San Francisco, San Francisco, California
| |
Collapse
|
20
|
Cao J, Liu X, Yang Y, Wei B, Li Q, Mao G, He Y, Li Y, Zheng L, Zhang Q, Li J, Wang L, Qi C. Decylubiquinone suppresses breast cancer growth and metastasis by inhibiting angiogenesis via the ROS/p53/ BAI1 signaling pathway. Angiogenesis 2020; 23:325-338. [PMID: 32020421 DOI: 10.1007/s10456-020-09707-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023]
Abstract
Breast cancer is one of the most common cancers worldwide with a rising incidence, and is the leading cause of cancer-related death among females. Angiogenesis plays an important role in breast cancer growth and metastasis. In this study, we identify decylubiquinone (DUb), a coenzyme Q10 analog, as a promising anti-breast cancer agent through suppressing tumor-induced angiogenesis. We screened a library comprising FDA-approved drugs and found that DUb significantly inhibits blood vessel formation using in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. DUb was further identified to inhibit angiogenesis in the rat aortic ring and Matrigel plug assay. Moreover, DUb was found to suppress breast cancer growth and metastasis in the MMTV-PyMT transgenic mouse and human xenograft tumor models. To explore whether the anticancer efficacy of DUb was directly corrected with tumor-induced angiogenesis, the MDA-MB-231 breast cancer assay on the CAM was performed. Interestingly, DUb significantly inhibits the angiogenesis of breast cancer on the CAM. Brain angiogenesis inhibitor 1 (BAI1), a member of the G protein-coupled receptor (GPCR) adhesion subfamily, has an important effect on the inhibition of angiogenesis. Further studies demonstrate that DUb suppresses the formation of tubular structures by regulating the reactive oxygen species (ROS)/p53/BAI1 signaling pathway. These results uncover a novel finding that DUb has the potential to be an effective agent for the treatment of breast cancer by inhibiting tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Jinghua Cao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Xiaohua Liu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yang Yang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Qianming Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Guanquan Mao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yajun He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yuanyuan Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Lingyun Zheng
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Qianqian Zhang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Cuiling Qi
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
21
|
Li Q, Cao J, He Y, Liu X, Mao G, Wei B, Liao S, Zhang Q, Li J, Zheng L, Wang L, Qi C. R5, a neutralizing antibody to Robo1, suppresses breast cancer growth and metastasis by inhibiting angiogenesis via down-regulating filamin A. Exp Cell Res 2020; 387:111756. [PMID: 31811830 DOI: 10.1016/j.yexcr.2019.111756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Breast cancer (BC) is one of the most common cancers among women in both developed and developing countries with a rising incidence. Using the MMTV-PyMT transgenic mouse model and xenografted breast cancer model, we found that R5, a neutralizing antibody to Robo1, significantly inhibited BC growth and metastasis. Angiogenesis is involved in the growth and metastasis of BC. Interestingly, R5 significantly decreases microvessel density in BC tissues, and inhibits blood vessel formation and development in in vivo chick embryo chorioallantoic membrane (CAM), yolk sac membrane (YSM) and Matrigel plug models. To investigate whether its anti-breast cancer efficacy is ascribed to its direct antiangiogenic properties, xenografted breast cancer model on CAM was established. Furthermore, R5 significantly reduces the tube formation of the vascular plexus on xenografted breast tumor on CAM. R5 also suppresses the migration and the tubular structure formation of human umbilical vein endothelial cells (HUVECs) by down-regulating the expression of filamin A (FLNA). These findings show that R5 has the potential to be a promising agent for the treatment of BC by suppressing the tumor-induced angiogenesis.
Collapse
Affiliation(s)
- Qianming Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jinghua Cao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yajun He
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaohua Liu
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Guanquan Mao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Bo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Shiyan Liao
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qianqian Zhang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangchao Li
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lingyun Zheng
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lijing Wang
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Cuiling Qi
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Hirata Y, Shiota M, Kobayashi T, Kashiwagi E, Takeuchi A, Inokuchi J, Tatsugami K, Eto M. Prognostic significance of diabetes mellitus and dyslipidemia in men receiving androgen-deprivation therapy for metastatic prostate cancer. Prostate Int 2019; 7:166-170. [PMID: 31970142 PMCID: PMC6962726 DOI: 10.1016/j.prnil.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/14/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
Objective The outcome of the androgen-deprivation therapy (ADT) may be affected by metabolic diseases such as diabetes mellitus (DM) and dyslipidemia and/or by their treatments. We aimed to evaluate the prognostic impact of these disorders and corresponding medications in Japanese men treated with ADT for prostate cancer. Methods This study retrospectively included 121 patients with metastatic prostate cancer who were treated with primary ADT at our hospital between 2001 and 2013. All patients received primary ADT with castration and/or an antiandrogen agent (bicalutamide or flutamide). Associations between clinicopathological factors, metabolic disease profiles, medication use, and prognosis (progression-free survival [PFS] and overall survival [OS]) were evaluated by univariate and multivariate analysis. Results The median follow-up time was 54.9 months, and the median PFS and OS were 23.9 months and 73.0 months, respectively. High serum glucose levels at baseline (hazard ratio [HR], 95% confidence interval [CI]: 2.12, 1.16–3.76; P = 0.015), and concurrent DM (HR, 95% CI: 2.07, 1.06–3.94; P = 0.034) were significantly associated with poorer OS after adjustment for age, prostate-specific antigen levels at diagnosis, Gleason score, and clinical stage. Treatment with sulfonylurea drugs was significantly associated with a reduced risk of disease progression in men with DM (HR, 95% CI: 0.36, 0.12–0.90; P = 0.028). Conclusions Impaired glucose tolerance and treatment with sulfonylureas have prognostic significance in prostate cancer. These findings demonstrate the importance of managing DM during ADT and point to a possible favorable effect of sulfonylureas on prostate cancer.
Collapse
Affiliation(s)
- Yu Hirata
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Kobayashi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Kashiwagi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ario Takeuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsunori Tatsugami
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
23
|
Hendriks AM, Schrijnders D, Kleefstra N, de Vries EGE, Bilo HJG, Jalving M, Landman GWD. Sulfonylurea derivatives and cancer, friend or foe? Eur J Pharmacol 2019; 861:172598. [PMID: 31408647 DOI: 10.1016/j.ejphar.2019.172598] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with a higher risk of cancer and cancer-related mortality. Increased blood glucose and insulin levels in T2DM patients may be, at least in part, responsible for this effect. Indeed, lowering glucose and/or insulin levels pharmacologically appears to reduce cancer risk and progression, as has been demonstrated for the biguanide metformin in observational studies. Studies investigating the influence of sulfonylurea derivatives (SUs) on cancer risk have provided conflicting results, partly due to comparisons with metformin. Furthermore, little attention has been paid to within-class differences in systemic and off-target effects of the SUs. The aim of this systematic review is to discuss the available preclinical and clinical evidence on how the different SUs influence cancer development and risk. Databases including PubMed, Cochrane, Database of Abstracts on Reviews and Effectiveness, and trial registries were systematically searched for available clinical and preclinical evidence on within-class differences of SUs and cancer risk. The overall preclinical and clinical evidence suggest that the influence of SUs on cancer risk in T2DM patients differs between the various SUs. Potential mechanisms include differing affinities for the sulfonylurea receptors and thus differential systemic insulin exposure and off-target anti-cancer effects mediated for example through potassium transporters and drug export pumps. Preclinical evidence supports potential anti-cancer effects of SUs, which are of interest for further studies and potentially repurposing of SUs. At this time, the evidence on differences in cancer risk between SUs is not strong enough to guide clinical decision making.
Collapse
Affiliation(s)
- Anne M Hendriks
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dennis Schrijnders
- Langerhans Medical Research Group, Zwolle, the Netherlands; Diabetes Center, Isala Hospital, Zwolle, the Netherlands
| | | | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henk J G Bilo
- Diabetes Center, Isala Hospital, Zwolle, the Netherlands; Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Gijs W D Landman
- Langerhans Medical Research Group, Zwolle, the Netherlands; Department of Internal Medicine, Gelre Hospital, Apeldoorn, the Netherlands
| |
Collapse
|
24
|
Zanin R, Pegoraro S, Ros G, Ciani Y, Piazza S, Bossi F, Bulla R, Zennaro C, Tonon F, Lazarevic D, Stupka E, Sgarra R, Manfioletti G. HMGA1 promotes breast cancer angiogenesis supporting the stability, nuclear localization and transcriptional activity of FOXM1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:313. [PMID: 31311575 PMCID: PMC6636010 DOI: 10.1186/s13046-019-1307-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Background Breast cancer is the most common malignancy in women worldwide. Among the breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive and the most difficult to treat. One of the master regulators in TNBC progression is the architectural transcription factor HMGA1. This study aimed to further explore the HMGA1 molecular network to identify molecular mechanisms involved in TNBC progression. Methods RNA from the MDA-MB-231 cell line, silenced for HMGA1 expression, was sequenced and, with a bioinformatic analysis, molecular partners HMGA1 could cooperate with in regulating common downstream gene networks were identified. Among the putative partners, the FOXM1 transcription factor was selected. The relationship occurring between HMGA1 and FOXM1 was explored by qRT-PCR, co-immunoprecipitation and protein stability assays. Subsequently, the transcriptional activity of HMGA1 and FOXM1 was analysed by luciferase assay on the VEGFA promoter. The impact on angiogenesis was assessed in vitro, evaluating the tube formation ability of endothelial cells exposed to the conditioned medium of MDA-MB-231 cells silenced for HMGA1 and FOXM1 and in vivo injecting MDA-MB-231 cells, silenced for the two factors, in zebrafish larvae. Results Here, we discover FOXM1 as a novel molecular partner of HMGA1 in regulating a gene network implicated in several breast cancer hallmarks. HMGA1 forms a complex with FOXM1 and stabilizes it in the nucleus, increasing its transcriptional activity on common target genes, among them, VEGFA, the main inducer of angiogenesis. Furthermore, we demonstrate that HMGA1 and FOXM1 synergistically drive breast cancer cells to promote tumor angiogenesis both in vitro in endothelial cells and in vivo in a zebrafish xenograft model. Moreover, using a dataset of breast cancer patients we show that the co-expression of HMGA1, FOXM1 and VEGFA is a negative prognostic factor of distant metastasis-free survival and relapse-free survival. Conclusions This study reveals FOXM1 as a crucial interactor of HMGA1 and proves that their cooperative action supports breast cancer aggressiveness, by promoting tumor angiogenesis. Therefore, the possibility to target HMGA1/FOXM1 in combination should represent an attractive therapeutic option to counteract breast cancer angiogenesis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1307-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rossella Zanin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy.
| | - Gloria Ros
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Yari Ciani
- Laboratorio Nazionale CIB, Area Science Park, Padriciano 99, Trieste, Italy.,Present address: Department of Cellular, Computational and Integrative Biology - (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology - (CIBIO), University of Trento, Via Sommarive 9, 38123, Povo, Trento, Italy
| | - Fleur Bossi
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) "Burlo Garofolo", via dell'Istria 65/1, 34134, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Cristina Zennaro
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Federica Tonon
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elia Stupka
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Present address: Life Sciences Business Health Catalyst, Cambridge, Via Sommarive 9, 38123, USA
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | | |
Collapse
|
25
|
Turanli B, Grøtli M, Boren J, Nielsen J, Uhlen M, Arga KY, Mardinoglu A. Drug Repositioning for Effective Prostate Cancer Treatment. Front Physiol 2018; 9:500. [PMID: 29867548 PMCID: PMC5962745 DOI: 10.3389/fphys.2018.00500] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
Drug repositioning has gained attention from both academia and pharmaceutical companies as an auxiliary process to conventional drug discovery. Chemotherapeutic agents have notorious adverse effects that drastically reduce the life quality of cancer patients so drug repositioning is a promising strategy to identify non-cancer drugs which have anti-cancer activity as well as tolerable adverse effects for human health. There are various strategies for discovery and validation of repurposed drugs. In this review, 25 repurposed drug candidates are presented as result of different strategies, 15 of which are already under clinical investigation for treatment of prostate cancer (PCa). To date, zoledronic acid is the only repurposed, clinically used, and approved non-cancer drug for PCa. Anti-cancer activities of existing drugs presented in this review cover diverse and also known mechanisms such as inhibition of mTOR and VEGFR2 signaling, inhibition of PI3K/Akt signaling, COX and selective COX-2 inhibition, NF-κB inhibition, Wnt/β-Catenin pathway inhibition, DNMT1 inhibition, and GSK-3β inhibition. In addition to monotherapy option, combination therapy with current anti-cancer drugs may also increase drug efficacy and reduce adverse effects. Thus, drug repositioning may become a key approach for drug discovery in terms of time- and cost-efficiency comparing to conventional drug discovery and development process.
Collapse
Affiliation(s)
- Beste Turanli
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kazim Y. Arga
- Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Tuccori M, Convertino I, Galiulo MT, Marino A, Capogrosso-Sansone A, Blandizzi C. Diabetes drugs and the incidence of solid cancers: a survey of the current evidence. Expert Opin Drug Saf 2017; 16:1133-1148. [PMID: 28748718 DOI: 10.1080/14740338.2017.1361401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The evaluation of the relationship between the use of antidiabetic drug and the occurrence of cancer is extremely challenging, both from the clinical and pharmacoepidemiological standpoint. This narrative review described the current evidence supporting a relationship between the use of antidiabetic drugs and the incidence of solid cancers. Areas covered: Data from pharmacoepidemiological studies on cancer incidence were presented for the main antidiabetic drugs and drug classes, including human insulin and insulin analogues, metformin, sulfonylureas, glinides, alpha-glucosidase inhibitors, thiazolidinediones, incretin mimetics, and sodium glucose co-transporter 2 inhibitors. The relationship between the use of antidiabetics and the incidence of solid cancer was described in strata by any cancer and by organ-specific cancer and by drug and by drug classes. Information supporting biological evidence and putative mechanisms were also provided. Expert opinion: The history of exploration of the relationship between antidiabetic drugs and the risk of solid cancers has showed several issues. Unrecognized biases and misinterpretations of study results have had important consequences that delayed the identification of actual risk and benefits of the use of antidiabetic drugs associated with cancer occurrence or progression. The lesson learned from the past should address the future research in this area, since in the majority of cases findings are controversial and confirmatory studies are warranted.
Collapse
Affiliation(s)
- Marco Tuccori
- a Unit of Adverse Drug Reaction Monitoring , University Hospital of Pisa , Pisa , Italy
| | - Irma Convertino
- b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Maria Teresa Galiulo
- b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | - Alessandra Marino
- b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| | | | - Corrado Blandizzi
- a Unit of Adverse Drug Reaction Monitoring , University Hospital of Pisa , Pisa , Italy.,b Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| |
Collapse
|