1
|
Zhao G, Yang L, Ge Y, Qiu Z, Tang D, Fang Y, Ban Q, Yang CS, Zhang J. Tea drinking effectively improves symptoms of diabetes and prevents hepatorenal damage in mice. Food Res Int 2025; 211:116502. [PMID: 40356150 DOI: 10.1016/j.foodres.2025.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025]
Abstract
Since type 2 diabetic patients often develop resistance to metformin as the progresses of diabetes, and almost all type 1 diabetic patients need receive insulin injection for hyperglycemia control. It is important to explore novel strategies with different mechanisms for diabetes management. Glucose-induced osmotic diuresis, known as polyuria, is the first clinical symptom in severe type 2 diabetes mellitus (T2DM) and type 1 diabetes mellitus (T1DM). Drinking green tea or black tea effectively mitigates diabetic symptoms including polyuria, polydipsia, polyphagia and hyperglycemia in db/db mice via regulating renal aquaporin 2 and urine transporter A1 (UT-A1), in favor renal water reabsorption. This unique mechanism of action of tea could be useful for the treatment of diabetes in humans. In this study, we found that drinking Large-leaf yellow tea (LYT) for 5 weeks effectively ameliorated polyuria, polydipsia, polyphagia, hyperglycemia and excessive body weight gain, as well as upregulated renal water reabsorption associated proteins, including protein kinase C-alpha (PKC-α), membrane PKC-α and glycosylated UT-A1 in db/db mice. Four-days experiment were also confirmed the rapidly response of these proteins in favor renal water reabsorption and the amelioration of diabetic symptoms by LYT. We also found that green tea drinking effectively mitigated symptoms of diabetes in a mouse model for T1DM via upregulating these proteins. Moreover, green tea drinking prevented hepatorenal damage caused by hyperglycemia as suggested by the reduced levels of aspartate aminotransferase and creatinine in serum and the enhanced antioxidant defense system in liver and kidney. These results suggest the possible application of tea or tea constitutes in the clinical treatment of severe T2DM and T1DM, and the kidney is the target organ.
Collapse
Affiliation(s)
- Guangshan Zhao
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, PR China; Innovative Research Team (in Science and Technology) in University of Henan Province, College of Food Science & Technology, Henan Agricultural University, Zhengzhou, Henan, PR China
| | - Lumin Yang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Yueting Ge
- Dabie Mountain Laboratory, Xinyang Normal University, Xinyang, Henan, PR China
| | - Zhengyang Qiu
- Innovative Research Team (in Science and Technology) in University of Henan Province, College of Food Science & Technology, Henan Agricultural University, Zhengzhou, Henan, PR China
| | - Dong Tang
- Food Laboratory of Zhongyuan, Luohe, Henan, PR China
| | - Yuying Fang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Qiuyan Ban
- Department of Tea Science, College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, PR China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, PR China.
| | - Jinsong Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei, Anhui, PR China; International Joint Research Laboratory of Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei, Anhui, PR China.
| |
Collapse
|
2
|
Dehzad MJ, Ghalandari H, Fahimzad FS, Maghsoudi Z, Makhtoomi M, Nouri M, Askarpour M. Effects of green tea supplementation on obesity indices and adipokines in adults: a grade-assessed systematic review and dose-response meta-analysis of randomised controlled trials. Int J Food Sci Nutr 2025:1-30. [PMID: 40326418 DOI: 10.1080/09637486.2025.2496400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 02/18/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND In this systematic review and meta-analysis, the impact of green tea supplementation on measurement/indices of adiposity was investigated. METHODS Using predefined keywords, online databases (PubMed, Scopus, Web of Science Core Collection, and Google Scholar) were searched for relevant studies, published from inception up to February 2024. Data were extracted and registered. Subgroup analyses and the investigation of linear and non-linear associations were carried out. RESULTS Green tea supplementation reduced BW (WMD: -0.74 kg; 95% CI: -0.97, -0.51), BMI (WMD: -0.29 kg/m2; 95% CI: -0.38, -0.19), WC (WMD: -1.04 cm; 95% CI: -1.55, -0.53), BFP (WMD: -0.65%; 95% CI: -1.03, -0.27), and leptin (WMD: -0.92 ng/ml; 95% CI: -1.71, -0.14), but did not change adiponectin levels (WMD: 0.20 µg/ml; 95% CI: -0.17, 0.57). CONCLUSION Supplementation with green tea seems to be effective in reducing excess adiposity.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sadat Fahimzad
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maede Makhtoomi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Moein Askarpour
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Dehzad MJ, Ghalandari H, Nouri M, Makhtoomi M, Askarpour M. Effects of green tea supplementation on antioxidant status and inflammatory markers in adults: a grade-assessed systematic review and dose-response meta-analysis of randomised controlled trials. J Nutr Sci 2025; 14:e25. [PMID: 40160899 PMCID: PMC11950708 DOI: 10.1017/jns.2025.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/10/2025] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Green tea, a plant rich in bioactive compounds, has been highlighted for its beneficial effects. In the present systematic review and meta-analysis of randomised controlled trials (RCTs), the impact of green tea on inflammatory and oxidative markers is investigated. Using pre-defined keywords, online databases (PubMed, Scopus, Web of Science Core Collection, and Google Scholar) were searched for relevant articles, published from inception up to February 2024. The outcomes included C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), total antioxidant capacity (TAC), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPX). Analyses of subgroups, linear, and non-linear associations were also carried out. Out of 1264 records initially retrieved, 38 RCTs were included. Supplementation with green tea improved the following indicators: IL-1β (weighted mean difference (WMD): -0.10 pg/mL; 95% CI: -0.15, -0.06), MDA (WMD: -0.40 mcmol/L; 95 % CI: -0.63, -0.18), TAC (WMD: 0.09 mmol/L; 95% CI: 0.05, 0.13), SOD (WMD: 17.21 u/L; 95% CI: 3.24, 31.19), and GPX (WMD: 3.90 u/L; 95% CI: 1.85, 5.95); but failed to improve others, including CRP (WMD: 0.01 mg/L; 95% CI: -0.14, 0.15), IL-6 (WMD: -0.34 pg/mL; 95% CI:-0.94, 0.26), and TNF-α (WMD: -0.07 pg/mL; 95% CI: -0.42, 0.28). Supplementation with green tea can improve the body's oxidative status. However, the results showed no significant effect of green tea on inflammatory markers, except for IL-1β. Further studies are needed to determine the effectiveness of green tea, particularly on inflammatory status.
Collapse
Affiliation(s)
- Mohammad Jafar Dehzad
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Ghalandari
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Student Research Committee, Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maede Makhtoomi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Askarpour
- Student Research Committee, Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, Fatima AF, Nallasivan PK, Chhabra GS, Sayeed M, Alshehri MA, Rab SO, Khan SL, Emran TB. Polyphenols in wound healing: unlocking prospects with clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2459-2485. [PMID: 39453503 DOI: 10.1007/s00210-024-03538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Wound healing is a multifaceted, complex process that factors like aging, metabolic diseases, and infections may influence. The potentiality of polyphenols, natural compounds, has shown anti-inflammatory and antimicrobial properties in promoting wound healing and their potential applications in wound management. The studies reviewed indicate that polyphenols have multiple mechanisms that promote wound healing. This involves enhancing antioxidant defenses, reducing oxidative stress, modulating inflammatory responses, improving healing times, reducing infection rates, and enhancing tissue regeneration in clinical trials and in vivo and in vitro studies. Polyphenols have been proven to be effective in managing hard-to-heal wounds, especially in diabetic and elderly populations. Polyphenols have shown significant benefits in promoting angiogenesis and stimulating collagen synthesis. Polyphenol treatment has been demonstrated to have therapeutic effects in wound healing and chronic wound management. Their ability to regulate key healing processes makes them suitable for new wound care products and treatments. Future research should enhance formulations and delivery methods to optimize polyphenols' bioavailability and therapeutic efficacy in wound management approaches.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Baishakhi Sutradhar
- Department of Microbiology, Gono University (Bishwabidyalay), Nolam, Mirzanagar, Savar, Dhaka, 1344, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam Down Town University, Gandhi Nagar, Sankar Madhab Path, Panikhaiti, Guwahati, Assam, 781026, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies & Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate Campus, Kodagu, Karnataka, India
| | - Ayesha Farhath Fatima
- Department of Pharmaceutics, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad, India
| | - P Kumar Nallasivan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari, Coimbatore, Tamilnadu, India
| | - Gurmeet Singh Chhabra
- Department Pharmaceutical Chemistry, Indore Institute of Pharmacy, Opposite Indian Institute of Management Rau, Pithampur Road, Indore, Madhya Pradesh, India
| | - Mohammed Sayeed
- Department of Pharmacology, School of Pharmacy, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
5
|
Bhupesh S, Chauhan N, Jyoti V, Ankit K, Sonia S, Bhupendra S. A Narrative Review of Signaling Pathway and Treatment Options for Diabetic Nephropathy. Curr Mol Med 2025; 25:113-131. [PMID: 37497682 DOI: 10.2174/1566524023666230727093911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Diabetic nephropathy is a progressive kidney disease that frequently results in end-stage renal disorders and is characterized by proteinuria, albuminuria, decreased filtration, and renal fibrosis. Despite the fact that there are a number of therapeutic alternatives available, DN continues to be the main contributor to end-stage renal disease. Therefore, significant innovation is required to enhance outcomes in DN patients. METHODS Information was collected from online search engines like, Google Scholar, Web of Science, PubMed, Scopus, and Sci-Hub databases using keywords like diabetes, nephropathy, kidney disease, autophagy, etc. Results: Natural compounds have anti-inflammatory and antioxidant properties and impact various signaling pathways. They ameliorate kidney damage by decreasing oxidative stress, inflammatory process, and fibrosis and enhance the antioxidant system, most likely by activating and deactivating several signaling pathways. This review focuses on the role of metabolic memory and various signaling pathways involved in the pathogenesis of DN and therapeutic approaches available for the management of DN. Special attention is given to the various pathways modulated by the phytoconstituents.
Collapse
Affiliation(s)
- Semwal Bhupesh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Neha Chauhan
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Verma Jyoti
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Kumar Ankit
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Sonia
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| | - Singh Bhupendra
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. 281406, India
| |
Collapse
|
6
|
Josa E, Barril G, Ruperto M. Potential Effects of Bioactive Compounds of Plant-Based Foods and Medicinal Plants in Chronic Kidney Disease and Dialysis: A Systematic Review. Nutrients 2024; 16:4321. [PMID: 39770942 PMCID: PMC11678173 DOI: 10.3390/nu16244321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The bioactive components of plant foods and medicinal plants have attracted interest due to their potential impact on the progression of chronic kidney disease (CKD) and outcomes. OBJECTIVE This study aimed to conduct a critical and quantitative systematic review of randomized clinical trials (RCTs) investigating the potential effects of selected phytochemicals from plant-based foods and medicinal plants in CKD and dialysis patients. METHODS The review included studies that related plant-based bioactive compounds (curcumin, propolis, sulforaphane, betalain, catechins, rhein, emodin, aloe-emodin, flavonoids, and triptolide) and medicinal plants (green tea, rhubarb, Astragalus membranaceus, and Tripterygium wilfordii Hook F) in CKD and dialysis patients. A literature search was conducted in PubMed, LILACS, Embase, Scopus, and WOS between December 2022 and October 2024. This review was performed according to the PRISMA flowchart and was registered in PROSPERO (595162). RESULTS In the eight RCTs conducted with curcumin, anti-inflammatory, antioxidant, and microbiota-modulating properties were reported. As for propolis, in three RCTs, anti-inflammatory, anti-proteinuric, and renal-protective properties were reported. Sulforaphane in one RCT showed antioxidant and cardiovascular benefits, and in another RCT no effects were observed. In one RCT, genistein was shown to be a potential anti-inflammatory agent and improved nutritional status. Allicin in two RCTs showed cardioprotective, antioxidant, anti-inflammatory, and lipid-lowering effects. Finally, beetroot showed a vasodilator effect in one RCT. As for the medicinal plants, green tea, rhubarb, Astragalus membranaceus, and Tripterygium Wilfordii Hook F, in six RCTs they showed antioxidant, anti-inflammatory, cardioprotective, antiproteinuric, and renoprotective properties. CONCLUSIONS These results suggest that bioactive compounds of plant-based foods and medicinal plants have promising effects in terms of preventing or treating CKD progression and appear to improve inflammation and antioxidant capacity and support cardiovascular benefits and renoprotective effects; however, it is recommended that further studies be carried out.
Collapse
Affiliation(s)
- Esmeralda Josa
- Department of Nutrition and Bromatology, Universidad Complutense de Madrid, Av. Complutense, s/n, Moncloa—Aravaca, 28040 Madrid, Spain;
| | - Guillermina Barril
- Fundación Investigaciones Biomédicas, C. Pollensa, 2, Las Rozas de Madrid, 28290 Madrid, Spain;
| | - Mar Ruperto
- Department of Pharmaceutical & Health Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Madrid, Spain
| |
Collapse
|
7
|
Jia MJ, Liu XN, Liang YC, Liu DL, Li HL. The effect of green tea on patients with type 2 diabetes mellitus: A meta-analysis. Medicine (Baltimore) 2024; 103:e39702. [PMID: 39809182 PMCID: PMC11596636 DOI: 10.1097/md.0000000000039702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND To systematically evaluate the effect of green tea on patients with type 2 diabetes. METHODS A computer search Cochrane, PubMed, Embase, CNKI, Wanfang, VIP, and other Chinese and English databases were conducted for randomized controlled trials of green tea in the treatment of patients with type 2 diabetes. The duration of these trials spanned from the establishment of the database to January 10, 2024. The obtained data were subjected to meta-analysis using Stata15.1 software. A total of 15 articles were included, encompassing 722 patients. RESULTS The meta-analysis results showed that compared to the control group, green tea intervention significantly improved the improvement of fasting blood glucose (SMD = -0.41, 95% CI: -0.67 to -0.19, P = .001), glycated hemoglobin (SMD = -0.68, 95% CI: -1.15 to 0.21, P = .004) and insulin resistance index (SMD = -0.70, 95% CI: -1.18 to -0.22, P = .005) in the experimental group compared to the control group. The differences were statistically significant (P < .05). CONCLUSION Green tea significantly improves fasting blood glucose, glycated hemoglobin and insulin resistance in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Ming-Jie Jia
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xing-Ning Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Ying-Chao Liang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - De-Liang Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Hui-Lin Li
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Ayusso LL, Girol AP, Ribeiro Souza H, Yoshikawa AH, de Azevedo LR, Carlos CP, Volpini RA, Schor N, Burdmann EA. The anti-inflammatory properties of green tea extract protect against gentamicin-induced kidney injury. Biomed Pharmacother 2024; 179:117267. [PMID: 39173271 DOI: 10.1016/j.biopha.2024.117267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
We assessed in vivo the protective effects and underlying antioxidant and anti-inflammatory properties of dry green tee extract (GTE) on glomerular and tubular kidney function and structure in an experimental model of gentamicin (GEN)-induced nephrotoxicity. Wistar rats were divided into four groups and treated daily for 10 days. The control group received distilled water; the GTE group received 20 μg/g body weight (BW) GTE by gavage; the GEN group received 100 mg/g BW GEN intraperitoneally; and the GEN+GTE group received GTE and GEN simultaneously, as described above. At the beginning and end of treatment, the serum creatinine, fractional excretion of sodium and potassium, and plasma heme oxygenase (HO)-1 levels and oxidative stress (OS) were assessed. At the end of the experiment, kidney fragments were collected for histological evaluation and immunohistochemical studies of cyclooxygenase (COX)-2 and nuclear factor (NF)kB. The levels of interleukin (IL)-1b, IL-4, IL-6, IL-10 and monocyte chemotactic protein (MCP)-1 were measured in kidney tissue. The results showed that GTE attenuated significantly kidney structural injury and prevented GEN-induced kidney functional injury (glomerular and tubular function). GTE significantly attenuated the kidney tissue increase of the proinflammatory mediators NF-kB, COX2, IL-1b and MCP-1 and significantly increased the kidney expression of the anti-inflammatory cytokines IL-6 and IL-10. However, GTE did not prevent OS increase in GEN-treated animals. In conclusion, GTE protected against GEN nephrotoxicity, likely due to direct blockade of the inflammatory cascade, which might had occurred independently of its antioxidant effect.
Collapse
Affiliation(s)
- Luis L Ayusso
- Division of Nephrology, University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil.
| | - Ana P Girol
- Experimental and Clinical Research Center (CEPEC), University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil; Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP 15054-000, Brazil; Structural and Functional Biology Graduate Program, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04023-900, Brazil.
| | - Helena Ribeiro Souza
- Experimental and Clinical Research Center (CEPEC), University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil.
| | - Ariane H Yoshikawa
- Experimental and Clinical Research Center (CEPEC), University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil.
| | - Lucas R de Azevedo
- Experimental and Clinical Research Center (CEPEC), University Center Padre Albino (UNIFIPA), Catanduva, SP 15809144, Brazil.
| | - Carla P Carlos
- Experimental Research Laboratory, School of Medicine, (FACERES), São José do Rio Preto, SP 15090305, Brazil.
| | - Rildo A Volpini
- LIM 12, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246903, Brazil.
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, SP 04023062, Brazil
| | - Emmanuel A Burdmann
- LIM 12, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246903, Brazil.
| |
Collapse
|
9
|
Zhong S, Wang N, Zhang C. Podocyte Death in Diabetic Kidney Disease: Potential Molecular Mechanisms and Therapeutic Targets. Int J Mol Sci 2024; 25:9035. [PMID: 39201721 PMCID: PMC11354906 DOI: 10.3390/ijms25169035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Cell deaths maintain the normal function of tissues and organs. In pathological conditions, the abnormal activation or disruption of cell death often leads to pathophysiological effects. Diabetic kidney disease (DKD), a significant microvascular complication of diabetes, is linked to high mortality and morbidity rates, imposing a substantial burden on global healthcare systems and economies. Loss and detachment of podocytes are key pathological changes in the progression of DKD. This review explores the potential mechanisms of apoptosis, necrosis, autophagy, pyroptosis, ferroptosis, cuproptosis, and podoptosis in podocytes, focusing on how different cell death modes contribute to the progression of DKD. It recognizes the limitations of current research and presents the latest basic and clinical research studies targeting podocyte death pathways in DKD. Lastly, it focuses on the future of targeting podocyte cell death to treat DKD, with the intention of inspiring further research and the development of therapeutic strategies.
Collapse
Grants
- 82370728, 81974097, 82170773, 82100729, 82100794, 82200808, 82200841, 81800610, 82300843, 82300851, 82300786 National Natural Science Foundation of China
- 2023BCB034 Key Research and Development Program of Hubei Province
- 2021YFC2500200 National Key Research and Development Program of China
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.Z.); (N.W.)
| |
Collapse
|
10
|
Peng X, Ni H, Kuang B, Wang Z, Hou S, Gu S, Gong N. Sirtuin 3 in renal diseases and aging: From mechanisms to potential therapies. Pharmacol Res 2024; 206:107261. [PMID: 38917912 DOI: 10.1016/j.phrs.2024.107261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The longevity protein sirtuins (SIRTs) belong to a family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases. In mammals, SIRTs comprise seven members (SIRT1-7) which are localized to different subcellular compartments. As the most prominent mitochondrial deacetylases, SIRT3 is known to be regulated by various mechanisms and participate in virtually all aspects of mitochondrial homeostasis and metabolism, exerting significant impact on multiple organs. Notably, the kidneys possess an abundance of mitochondria that provide substantial energy for filtration and reabsorption. A growing body of evidence now supports the involvement of SIRT3 in several renal diseases, including acute kidney injury, chronic kidney disease, and diabetic nephropathy; notably, these diseases are all associated with aging. In this review, we summarize the emerging role of SIRT3 in renal diseases and aging, and highlights the intricate mechanisms by which SIRT3 exerts its effects. In addition, we highlight the potential therapeutic significance of modulating SIRT3 and provide valuable insights into the therapeutic role of SIRT3 in renal diseases to facilitate clinical application.
Collapse
Affiliation(s)
- Xuan Peng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Haiqiang Ni
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Baicheng Kuang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhiheng Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuaiheng Hou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shiqi Gu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
11
|
Luo Y, Zhang Z, Zheng W, Zeng Z, Fan L, Zhao Y, Huang Y, Cao S, Yu S, Shen L. Molecular Mechanisms of Plant Extracts in Protecting Aging Blood Vessels. Nutrients 2024; 16:2357. [PMID: 39064801 PMCID: PMC11279783 DOI: 10.3390/nu16142357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Plant Extracts (PE) are natural substances extracted from plants, rich in various bioactive components. Exploring the molecular mechanisms and interactions involved in the vascular protective effects of PE is beneficial for the development of further strategies to protect aging blood vessels. For this review, the content was obtained from scientific databases such as PubMed, China National Knowledge Infrastructure (CNKI), and Google Scholar up to July 2024, using the search terms "Plant extracts", "oxidative stress", "vascular aging", "endothelial dysfunction", "ROS", and "inflammation". This review highlighted the effects of PE in protecting aging blood vessels. Through pathways such as scavenging reactive oxygen species, activating antioxidant signaling pathways, enhancing respiratory chain complex activity, inhibiting mitochondrial-reactive oxygen species generation, improving nitric oxide bioavailability, downregulating the secretion of inflammatory factors, and activating sirtuins 1 and Nrf2 signaling pathways, it can improve vascular structural and functional changes caused by age-related oxidative stress, mitochondrial dysfunction, and inflammation due to aging, thereby reducing the incidence of age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Yuxin Luo
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Zeru Zhang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Weijian Zheng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Zhi Zeng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Lei Fan
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yuquan Zhao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Yixin Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Suizhong Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Shumin Yu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| | - Liuhong Shen
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Teaching Animal Hospital, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (Z.Z.); (W.Z.); (Z.Z.); (L.F.); (Y.Z.); (Y.H.); (S.C.); (S.Y.)
| |
Collapse
|
12
|
de Oliveira Assis FS, Vasconcellos GL, Lopes DJP, de Macedo LR, Silva M. Effect of Green Tea Supplementation on Inflammatory Markers among Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis. Prev Nutr Food Sci 2024; 29:106-117. [PMID: 38974590 PMCID: PMC11223924 DOI: 10.3746/pnf.2024.29.2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 07/09/2024] Open
Abstract
Several randomized controlled trials (RCTs) have investigated the potential benefits of green tea on the inflammatory process in metabolic syndrome (MetS). However, the results are inconclusive and inconsistent. In the present study, we performed a literature review and meta-analysis to evaluate the effect of green tea supplementation on inflammatory markers [e.g., tumor necrosis factor-α (TNF-α), C-reactive protein (CRP), and interleukin-6 (IL-6)] among patients with MetS and related disorders. We systematically searched for relevant publications up to March 2022 in the PubMed, Scopus, Web of Science, and SciELO databases. The review was registered with PROSPERO (CRD42022320345). Mean differences with 95% confidence intervals were pooled on the basis of the random effects model to compare the effects of green tea with placebo. We used meta-regression and subgroup analyses to determine the cause of heterogeneity and performed study quality assessment using the Grading of Recommendations Assessment, Development, and Evaluation method. We assessed publication bias using funnel plots and Egger's tests. Out of the total 15 RCTs that were included in this systematic review, 12 were chosen for the meta-analysis. The results revealed that green tea significantly decreased TNF-α levels but did not affect CRP and IL-6 levels. Subgroup analysis showed that green tea supplementation in studies lasting ≤8 weeks significantly increased CRP levels. Furthermore, meta-regression analysis demonstrated a significant association between increasing IL-6 concentration and treatment duration. According to our meta-analysis, green tea was shown to considerably lower circulating TNF-α levels. To confirm these findings, carefully planned trials are required.
Collapse
Affiliation(s)
| | - Gabriel Lima Vasconcellos
- Department of Medicine, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares 35020-360, Brazil
| | - Diego José Pereira Lopes
- Department of Medicine, Universidade Federal de Juiz de Fora, Campus Governador Valadares, Governador Valadares 35020-360, Brazil
| | | | - Maísa Silva
- Department of Basic Life Sciences, Universidade Federal de Juiz de Fora, Governador Valadares 35020-360, Brazil
| |
Collapse
|
13
|
Rahayu I, Arfian N, Kustanti CY, Wahyuningsih MSH. The effectiveness of antioxidant agents in delaying progression of diabetic nephropathy: A systematic review of randomized controlled trials. BIOIMPACTS : BI 2024; 15:30129. [PMID: 39963561 PMCID: PMC11830129 DOI: 10.34172/bi.30129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 02/20/2025]
Abstract
Introduction Oxidative stress plays a central role in the pathophysiology of diabetes mellitus and its complications, including diabetic nephropathy. Excessive production of reactive oxygen species (ROS) alters renal metabolic pathways, leading to inflammation, endothelial dysfunction, and fibrosis, ultimately resulting in end-stage renal disease (ESRD). Studies have shown that exogenous antioxidants can improve the pathophysiological condition of patients with diabetic nephropathy. Objective: This systematic review aims to investigate the types of antioxidant agents that inhibit the development of diabetic nephropathy and the effectiveness of antioxidant agent interventions to repair kidney structure and function. Methods A systematic review of randomized controlled trials that examined the role of antioxidants in improving diabetic nephropathy was conducted. The literature search was performed on PubMed, ScienceDirect, and EBSCO. The inclusion criteria covered articles on the antioxidant activity of herbal extracts and compounds that inhibit the progression of diabetic nephropathy in humans. In addition, the articles were written in English and published between 2012 and 2022. The reporting of the systematic review followed the Preferred Reporting Elements for Systematic Review and Meta-Analysis (PRISMA) guideline. The full texts of all potentially relevant systematic reviews were assessed for quality using the Risk of Bias 2 (RoB 2) tool. Results A total of 2,367 articles were identified in the three databases, of which only 15 articles met the inclusion criteria. Antioxidant agents that inhibit diabetic nephropathy can be classified as single antioxidants (silymarin, baicalin, epigallocatechin gallate, vitamin E, selenium, curcumin, α-lipoic acid, and tocotrienol-rich vitamin E) and combined antioxidants (α-lipoic acid with vitamin B6, and resveratrol with losartan). Antioxidant agents have been shown to reduce oxidative stress and inflammation, but their role in the progression of fibrosis remains unclear. The oxidative stress marker MDA was significantly reduced by silymarin, curcumin, vitamin E, tocotrienol-rich vitamin E, selenium, ALA, vitamin B, resveratrol and losartan. Silymarin was found to be the most effective (-3.43 µmol/L; 6.02 to 0.83). Compared to silymarin and epigallocatechin gallate, vitamin E was more effective (at -35.4 ng/L; P < 0.001) in reducing inflammation by decreasing TNF-α levels. In addition, tocotrienol-rich vitamin E, silymarin, baicalin, and selenium showed a decrease TGF-β levels, but did not show statistically significant differences between the placebo and intervention groups. Conclusion Potential antioxidant agents, such as flavonoids, vitamins, fatty acids, and antioxidant minerals, were examined in this systematic review. These agents contribute to reducing markers of oxidative stress and hyperglycemia-induced inflammation. Although several antioxidants play a role in reducing fibrosis markers, the effect does not appear to be statistically significant.
Collapse
Affiliation(s)
- Ika Rahayu
- Doctoral Program of Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Universitas Kristen Krida Wacana, Jakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center for Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Christina Yeni Kustanti
- Sekolah Tinggi Ilmu Kesehatan Bethesda Yakkum, Yogyakarta, Indonesia
- Lotus Care, Private Clinic for Wound and Palliative Care, Homecare, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Center for Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Asbaghi O, Rezaei Kelishadi M, Larky DA, Bagheri R, Amirani N, Goudarzi K, Kargar F, Ghanavati M, Zamani M. The effects of green tea extract supplementation on body composition, obesity-related hormones and oxidative stress markers: a grade-assessed systematic review and dose-response meta-analysis of randomised controlled trials. Br J Nutr 2024; 131:1125-1157. [PMID: 38031409 DOI: 10.1017/s000711452300260x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Research indicates that green tea extract (GTE) supplementation is beneficial for a range of conditions, including several forms of cancer, CVD and liver diseases; nevertheless, the existing evidence addressing its effects on body composition, oxidative stress and obesity-related hormones is inconclusive. This systematic review and meta-analysis aimed to investigate the effects of GTE supplementation on body composition (body mass (BM), body fat percentage (BFP), fat mass (FM), BMI, waist circumference (WC)), obesity-related hormones (leptin, adiponectin and ghrelin) and oxidative stress (malondialdehyde (MDA) and total antioxidant capacity (TAC)) markers. We searched proper databases, including PubMed/Medline, Scopus and Web of Science, up to July 2022 to recognise published randomised controlled trials (RCT) that investigated the effects of GTE supplementation on the markers mentioned above. A random effects model was used to carry out a meta-analysis. The heterogeneity among the studies was assessed using the I2 index. Among the initial 11 286 studies identified from an electronic database search, fifty-nine studies involving 3802 participants were eligible to be included in this meta-analysis. Pooled effect sizes indicated that BM, BFP, BMI and MDA significantly reduced following GTE supplementation. In addition, GTE supplementation increased adiponectin and TAC, with no effects on FM, leptin and ghrelin. Certainty of evidence across outcomes ranged from low to high. Our results suggest that GTE supplementation can attenuate oxidative stress, BM, BMI and BFP, which are thought to negatively affect human health. Moreover, GTE as a nutraceutical dietary supplement can increase TAC and adiponectin.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Damoon Ashtary Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kargar
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, P.O.19395-4741, Iran
| | - Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
El-Fatatry BM, El-Haggar SM, Ibrahim OM, Shalaby KH. Repurposing fexofenadine as a promising candidate for diabetic kidney disease: randomized clinical trial. Int Urol Nephrol 2024; 56:1395-1402. [PMID: 37741921 PMCID: PMC10923951 DOI: 10.1007/s11255-023-03804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
PURPOSE Diabetic kidney disease (DKD) is a devastating complication of diabetes mellitus. Inflammation and histamine are potentially involved in the disease progression. This study aimed to evaluate the role of fexofenadine in patients with DKD. METHODS From January 2020 to February 2022, out of 123 patients screened for eligibility, 61 patients completed the study. Patients were randomized into two groups, the fexofenadine group (n = 30): received ramipril plus fexofenadine, and the control group (n = 31): received ramipril only for six months. Changes in urinary albumin to creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were considered primary outcomes. Measurements of urinary cyclophilin A, monocyte chemoattractant protein-1 (MCP-1), 8-hydroxy-2' deoxyguanosine (8-OHdG), and podocalyxin (PCX) were considered secondary outcomes. The study was prospectively registered on clinicaltrial.gov on January 13, 2020, with identification code NCT04224428. RESULTS At the end of the study, fexofenadine reduced UACR by 16% (95% CI, - 23.4% to - 9.3%) versus a noticeable rise of 11% (95% CI, 4.1% to 17.8%) in UACR in the control group, (p < 0.001). No significant difference in eGFR was revealed between the two groups. However, the control group showed a significant decrease of - 3.5% (95% CI, - 6.6% to - 0.3%) in eGFR, compared to its baseline value. This reduction was not reported in the fexofenadine group. Fexofenadine use was associated with a significant decline in MCP-1, 8-OHdG, and PCX compared to baseline values. CONCLUSION Fexofenadine is a possible promising adjuvant therapy in patients with DKD. Further large-scale trials are needed to confirm our preliminary results.
Collapse
Affiliation(s)
- Basma Mahrous El-Fatatry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Al-Guiesh Street, Tanta, 31527, Egypt.
| | - Sahar Mohamed El-Haggar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Professor of Clinical Pharmacy, Tanta University, Al-Geish Street, Tanta, Egypt
| | - Osama Mohamed Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Professor of Clinical Pharmacy, Tanta University, Al-Geish Street, Tanta, Egypt
| | - Khaled Hamed Shalaby
- Department of Internal Medicine, Faculty of Medicine, Lecturer of Internal Medicine, Tanta University, Al-Geish Street, Tanta, Egypt
| |
Collapse
|
16
|
Mitra P, Jana S, Roy S. Insights into the Therapeutic uses of Plant Derive Phytocompounds onDiabetic Nephropathy. Curr Diabetes Rev 2024; 20:e230124225973. [PMID: 38265383 DOI: 10.2174/0115733998273395231117114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 01/25/2024]
Abstract
Diabetic nephropathy (DN) is one of the primary consequences of diabetes mellitus, affecting many people worldwide and is the main cause of death under the age of sixty. Reactive oxygen species (ROS) production rises during hyperglycemia and is crucial to the development of diabetic complications. Advanced glycation end products (AGEs) are produced excessively in a diabetic state and are accumulated in the kidney, where they change renal architecture and impair renal function. Another important targeted pathway for the formation of DN includes nuclear factor kappa-B (NF-kB), Nuclear factor E2-related factor 2 (Nrf2), NLR family pyrin domain containing 3 (NLRP3), protein kinase B/mammalian target of rapamycin (Akt/mTOR), and autophagy. About 40% of individuals with diabetes eventually acquire diabetic kidney disease and end-stage renal disease that needs hemodialysis, peritoneal dialysis, or kidney transplantation to survive. The current state of acceptable therapy for this kidney ailment is limited. The studies revealed that some naturally occurring bioactive substances might shield the kidney by controlling oxidative stress, renal fibrosis, inflammation, and autophagy. In order to provide new potential therapeutic lead bioactive compounds for contemporary drug discovery and clinical management of DN, this review was designed to examine the various mechanistic pathways by which conventional plants derive phytocompounds that are effective for the control and treatment of DN.
Collapse
Affiliation(s)
- Palash Mitra
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, Paschim Medinipur, West Bengal, India
| | - Sahadeb Jana
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, Paschim Medinipur, West Bengal, India
| | - Suchismita Roy
- Nutrition Research Laboratory, Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore 721129, India
| |
Collapse
|
17
|
Yazdanpanah Z, Salehi-Abargouei A, Mozaffari Z, Hemayati R. The effect of green tea ( Camellia sinensis) on lipid profiles and renal function in people with type 2 diabetes and nephropathy: a randomized controlled clinical trial. Front Nutr 2023; 10:1253275. [PMID: 38162524 PMCID: PMC10755896 DOI: 10.3389/fnut.2023.1253275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Diabetic nephropathy is one of the most important microvascular complications of diabetes. Despite the modern treatments, herbs or medicinal plants have gained wide attention. One of these herbs is green tea (Camellia sinensis), which may have an impact on renal function, lipid profiles, and HbA1c. However, the evidence for this is unclear and limited. The present study aimed to evaluate the effect of different doses of green tea on these parameters in type 2 diabetes patients (T2DM) with nephropathy. Methods Sixty-six individuals with T2DM nephropathy (aged 30-70 years) were randomly assigned to receive three cups of green tea/day (n = 22), two cups of green tea/day (n = 22), and the control group (n = 22) for 12 weeks. Lipid profiles, glycated hemoglobin A1c (HbA1c), and renal markers were measured before and after intervention. Data were analyzed using SPSS software version 23. One-way analysis of variance (ANOVA), least significant difference (LSD) post hoc, and analysis of covariance were used to compare quantitative variables. Results In total, 64 participants completed the study. Consuming three cups of infusion green tea per day (7.5 gr) led to a significant reduction in serum levels of total cholesterol (p = 0.009) and HbA1c (p = 0.006) and increased in high-density lipoprotein cholesterol (HDL-C) (p = 0.02) compared with the control group who did not drink green tea. However, no significant differences were observed for other variables. Conclusion In general, it was found that drinking three cups of green tea infusion (7.5 gr) per day produced beneficial effects on some lipid profiles and HbA1c without any adverse effects on renal function in patients with T2DM nephropathy. More studies are needed to fully elucidate these findings. Clinical trial registration Iranian Registry of Clinical Trials (www.irct.ir) under registry number: IRCT2014020114538N2.
Collapse
Affiliation(s)
- Zeinab Yazdanpanah
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zohre Mozaffari
- Department of Internal Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roya Hemayati
- Department of Internal Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
18
|
Colombijn JM, Hooft L, Jun M, Webster AC, Bots ML, Verhaar MC, Vernooij RW. Antioxidants for adults with chronic kidney disease. Cochrane Database Syst Rev 2023; 11:CD008176. [PMID: 37916745 PMCID: PMC10621004 DOI: 10.1002/14651858.cd008176.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is a significant risk factor for cardiovascular disease (CVD) and death. Increased oxidative stress in people with CKD has been implicated as a potential causative factor. Antioxidant therapy decreases oxidative stress and may consequently reduce cardiovascular morbidity and death in people with CKD. This is an update of a Cochrane review first published in 2012. OBJECTIVES To examine the benefits and harms of antioxidant therapy on death and cardiovascular and kidney endpoints in adults with CKD stages 3 to 5, patients undergoing dialysis, and kidney transplant recipients. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies until 15 November 2022 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov. SELECTION CRITERIA We included all randomised controlled trials investigating the use of antioxidants, compared with placebo, usual or standard care, no treatment, or other antioxidants, for adults with CKD on cardiovascular and kidney endpoints. DATA COLLECTION AND ANALYSIS Titles and abstracts were screened independently by two authors who also performed data extraction using standardised forms. Results were pooled using random effects models and expressed as risk ratios (RR) or mean difference (MD) with 95% confidence intervals (CI). Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS We included 95 studies (10,468 randomised patients) that evaluated antioxidant therapy in adults with non-dialysis-dependent CKD (31 studies, 5342 patients), dialysis-dependent CKD (41 studies, 3444 patients) and kidney transplant recipients (21 studies, 1529 patients). Two studies enrolled dialysis and non-dialysis patients (153 patients). Twenty-one studies assessed the effects of vitamin antioxidants, and 74 assessed the effects of non-vitamin antioxidants. Overall, the quality of included studies was moderate to low or very low due to unclear or high risk of bias for randomisation, allocation concealment, blinding, and loss to follow-up. Compared with placebo, usual care, or no treatment, antioxidant therapy may have little or no effect on cardiovascular death (8 studies, 3813 patients: RR 0.94, 95% CI 0.64 to 1.40; I² = 33%; low certainty of evidence) and probably has little to no effect on death (any cause) (45 studies, 7530 patients: RR 0.95, 95% CI 0.82 to 1.11; I² = 0%; moderate certainty of evidence), CVD (16 studies, 4768 patients: RR 0.79, 95% CI 0.63 to 0.99; I² = 23%; moderate certainty of evidence), or loss of kidney transplant (graft loss) (11 studies, 1053 patients: RR 0.88, 95% CI 0.67 to 1.17; I² = 0%; moderate certainty of evidence). Compared with placebo, usual care, or no treatment, antioxidants had little to no effect on the slope of urinary albumin/creatinine ratio (change in UACR) (7 studies, 1286 patients: MD -0.04 mg/mmol, 95% CI -0.55 to 0.47; I² = 37%; very low certainty of evidence) but the evidence is very uncertain. Antioxidants probably reduced the progression to kidney failure (10 studies, 3201 patients: RR 0.65, 95% CI 0.41 to 1.02; I² = 41%; moderate certainty of evidence), may improve the slope of estimated glomerular filtration rate (change in eGFR) (28 studies, 4128 patients: MD 3.65 mL/min/1.73 m², 95% CI 2.81 to 4.50; I² = 99%; low certainty of evidence), but had uncertain effects on the slope of serum creatinine (change in SCr) (16 studies, 3180 patients: MD -13.35 µmol/L, 95% CI -23.49 to -3.23; I² = 98%; very low certainty of evidence). Possible safety concerns are an observed increase in the risk of infection (14 studies, 3697 patients: RR 1.30, 95% CI 1.14 to 1.50; I² = 3%; moderate certainty of evidence) and heart failure (6 studies, 3733 patients: RR 1.40, 95% CI 1.11 to 1.75; I² = 0; moderate certainty of evidence) among antioxidant users. Results of studies with a low risk of bias or longer follow-ups generally were comparable to the main analyses. AUTHORS' CONCLUSIONS We found no evidence that antioxidants reduced death or improved kidney transplant outcomes or proteinuria in patients with CKD. Antioxidants likely reduce cardiovascular events and progression to kidney failure and may improve kidney function. Possible concerns are an increased risk of infections and heart failure among antioxidant users. However, most studies were of suboptimal quality and had limited follow-up, and few included people undergoing dialysis or kidney transplant recipients. Furthermore, the large heterogeneity in interventions hampers drawing conclusions on the efficacy and safety of individual agents.
Collapse
Affiliation(s)
- Julia Mt Colombijn
- Department of Nephrology and Hypertension, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lotty Hooft
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Min Jun
- The George Institute for Global Health, UNSW, Sydney, Australia
| | - Angela C Webster
- Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Westmead Applied Research Centre, The University of Sydney at Westmead, Westmead, Australia
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Transplant and Renal Medicine, Westmead Hospital, Westmead, Australia
| | - Michiel L Bots
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University of Utrecht, Utrecht, Netherlands
| | - Robin Wm Vernooij
- Department of Nephrology and Hypertension, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
19
|
Santiago-Balmaseda E, Segura-Cobos D, Garín-Aguilar ME, San Miguel-Chávez R, Cristóbal-Luna JM, Madrigal-Santillán E, Gutierrez-Rebolledo GA, Chamorro-Cevallos GA, Pérez-Pastén-Borja R. Chiranthodendron pentadactylon Larreat ( Sterculiaceae), a Potential Nephroprotector against Oxidative Damage Provoked by STZ-Induced Hyperglycemia in Rats. PLANTS (BASEL, SWITZERLAND) 2023; 12:3572. [PMID: 37896035 PMCID: PMC10610294 DOI: 10.3390/plants12203572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Chiranthodendron pentadactylon, known in Mexico as the "tree of the little hands", flower's infusion is used to treat kidney failure associated with diseases such as diabetes. The aim of this work is to evaluate the antioxidant effect of the methanolic extract of its flowers on oxidative damage in kidneys caused by streptozotocin in rats. METHODS The extract phytochemical profile was performed with HPLC. Antioxidant potential in vitro was determined with DPPH and total phenolic tests; antioxidant evaluation in vivo was performed in diabetic rats administered daily via the intragastric route (100 and 200 mg/kg) for 6 weeks; serum glucose/creatinine, food/water consumption, and urinary volume were measured. Relative weight, protein/DNA ratios and oxidative stress were measured in renal tissue. RESULTS The extract showed 20.53% of total phenolic content and IC50 of 18.05 µg/mL in DPPH, and this was associated with ferulic acid, phloretin and α-amyrin. Both doses showed a moderate decrease in the protein/DNA ratio in renal tissue, and the same behavior was observed for total urinary protein loss and serum creatinine, while the best antioxidant effect was exerted by a lower dose, which increased catalase activity and decreased lipid peroxidation in the kidneys. CONCLUSIONS Results demonstrated that C. pentadactylon methanolic flower's extract improves renal function through antioxidant mechanisms during experimental diabetes.
Collapse
Affiliation(s)
- Eira Santiago-Balmaseda
- Laboratorio de Toxicología Molecular, Escuela Nacional de Ciencias Biologicas, Campus Unidad Profesional Adolfo Lopez Mateos, Instituto Politecnico Nacional, Ave. Wilfrido Massieu w/n and Closed Street Manuel Stampa, Col. Industrial Vallejo, Mexico City 07700, Mexico;
- Laboratorio de Amibas Anfizoicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de México. Ave. Barrios 1, Col. Reyes Iztacala, Tlalnepantla de Baz 54090, Mexico;
| | - David Segura-Cobos
- Laboratorio de Amibas Anfizoicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de México. Ave. Barrios 1, Col. Reyes Iztacala, Tlalnepantla de Baz 54090, Mexico;
| | - María Eugenia Garín-Aguilar
- Laboratorio de Farmacobiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de México. Ave. Barrios 1, Col. Reyes Iztacala, Tlalnepantla de Baz 54090, Mexico;
| | - Rubén San Miguel-Chávez
- Posgrado en Botanica, Campus Montecillo, Colegio de Postgraduados, Mexico-Texcoco Highway Km 35.6, Texcoco Estado de México 56230, Mexico;
| | - José Melesio Cristóbal-Luna
- Laboratorio de Toxicologia de la Reproduccion, Escuela Nacional de Ciencias Biologicas, Campus Unidad Profesional Adolfo Lopez Mateos, Instituto Politecnico Nacional, Ave. Wilfrido Massieu w/n and Closed Street Manuel Stampa, Col. Industrial Vallejo, Mexico City 07700, Mexico;
| | - Eduardo Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Campus Unidad Profesional Casco de Santo Tomas, Instituto Politécnico Nacional, Ave. Salvador Díaz Mirón w/n and Closed Street Plan de San Luis, Col. Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Gabriel Alfonso Gutierrez-Rebolledo
- Laboratorio de Toxicología Molecular, Escuela Nacional de Ciencias Biologicas, Campus Unidad Profesional Adolfo Lopez Mateos, Instituto Politecnico Nacional, Ave. Wilfrido Massieu w/n and Closed Street Manuel Stampa, Col. Industrial Vallejo, Mexico City 07700, Mexico;
- Laboratorio de Toxicologia de la Reproduccion, Escuela Nacional de Ciencias Biologicas, Campus Unidad Profesional Adolfo Lopez Mateos, Instituto Politecnico Nacional, Ave. Wilfrido Massieu w/n and Closed Street Manuel Stampa, Col. Industrial Vallejo, Mexico City 07700, Mexico;
| | - Germán Alberto Chamorro-Cevallos
- Laboratorio de Toxicologia de la Reproduccion, Escuela Nacional de Ciencias Biologicas, Campus Unidad Profesional Adolfo Lopez Mateos, Instituto Politecnico Nacional, Ave. Wilfrido Massieu w/n and Closed Street Manuel Stampa, Col. Industrial Vallejo, Mexico City 07700, Mexico;
| | - Ricardo Pérez-Pastén-Borja
- Laboratorio de Toxicología Molecular, Escuela Nacional de Ciencias Biologicas, Campus Unidad Profesional Adolfo Lopez Mateos, Instituto Politecnico Nacional, Ave. Wilfrido Massieu w/n and Closed Street Manuel Stampa, Col. Industrial Vallejo, Mexico City 07700, Mexico;
| |
Collapse
|
20
|
Zhao G, Teng J, Dong R, Ban Q, Yang L, Du K, Wang Y, Pu H, Yang CS, Ren Z. Alleviating effects and mechanisms of action of large-leaf yellow tea drinking on diabetes and diabetic nephropathy in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Liu T, Jin Q, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Regulation of autophagy by natural polyphenols in the treatment of diabetic kidney disease: therapeutic potential and mechanism. Front Endocrinol (Lausanne) 2023; 14:1142276. [PMID: 37635982 PMCID: PMC10448531 DOI: 10.3389/fendo.2023.1142276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a leading cause of end-stage renal disease worldwide. Autophagy plays an important role in maintaining cellular homeostasis in renal physiology. In DKD, the accumulation of advanced glycation end products induces decreased renal autophagy-related protein expression and transcription factor EB (TFEB) nuclear transfer, leading to impaired autophagy and lysosomal function and blockage of autophagic flux. This accelerates renal resident cell injury and apoptosis, mediates macrophage infiltration and phenotypic changes, ultimately leading to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB and lysosomal repair. This review summarizes the characteristics of autophagy in DKD, and the potential application and mechanisms of some known natural polyphenols as autophagy regulators in DKD, with the goal of contributing to a deeper understanding of natural polyphenol mechanisms in the treatment of DKD and promoting the development of their applications. Finally, we point out the limitations of polyphenols in current DKD research and provide an outlook for their future research.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
23
|
El-Fatatry BM, El-Haggar SM, Ibrahim OM, Shalaby KH. Niclosamide from an anthelmintic drug to a promising adjuvant therapy for diabetic kidney disease: randomized clinical trial. Diabetol Metab Syndr 2023; 15:22. [PMID: 36793092 PMCID: PMC9933377 DOI: 10.1186/s13098-023-00995-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a serious complication that begins with albuminuria and often leads to a rapid progressive decline in renal function. Niclosamide is a potent inhibitor of the Wnt/β-catenin pathway, which controls the expression of multiple genes of the renin-angiotensin-aldosterone system (RAAS), which in turn is influences the progression of DKD. This study was conducted to evaluate the effect of niclosamide as adjuvant therapy on DKD. METHODS Out of 127 patients screened for eligibility, 60 patients completed the study. After randomization, 30 patients in the niclosamide arm received ramipril plus niclosamide, and 30 patients in the control arm received ramipril only for 6 months. The primary outcomes were the changes in urinary albumin to creatinine ratio (UACR), serum creatinine, and estimated glomerular filtration rate (eGFR). The secondary outcomes were measurements of urinary matrix metalloproteinase-7 (MMP-7), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and podocalyxin (PCX). Comparisons between the two arms were done using student t-test. Correlation analysis was done using Pearson correlation. RESULTS Niclosamide decreased UACR by 24% (95% CI - 30 to - 18.3%) while there was a rise in UACR in the control arm by 11% (95% CI 4 to 18.2%) after 6 months (P < 0.001). Moreover, a significant reduction in MMP-7 and PCX was noticed in the niclosamide arm. Regression analysis revealed a strong association between MMP-7, which is a noninvasive biomarker predicting the activity of the Wnt/β-catenin signaling, and UACR. A 1 mg/dL decline in MMP-7 level was associated with a 25 mg/g lowering in UACR (B = 24.95, P < 0.001). CONCLUSION The addition of niclosamide to patients with diabetic kidney disease receiving an angiotensin-converting enzyme inhibitor significantly reduces albumin excretion. Further larger-scale trials are needed to confirm our results. TRIAL REGISTRATION The study was prospectively registered on clinicaltrial.gov on March 23, 2020, with identification code NCT04317430.
Collapse
Affiliation(s)
- Basma Mahrous El-Fatatry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, El-Guiesh Street, Tanta, 31527, Egypt.
| | - Sahar Mohamed El-Haggar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, El-Guiesh Street, Tanta, 31527, Egypt
| | - Osama Mohamed Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tanta University, El-Guiesh Street, Tanta, 31527, Egypt
| | - Khaled Hamed Shalaby
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
24
|
Ashtary-Larky D, Niknam S, Alaeian MJ, Nadery M, Afrisham R, Fouladvand F, Ojani Z, Ghohpayeh MZ, Zamani M, Asbaghi O. The effect of green tea on blood pressure in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. J Herb Med 2023. [DOI: 10.1016/j.hermed.2022.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Zamani M, Kelishadi MR, Ashtary-Larky D, Amirani N, Goudarzi K, Torki IA, Bagheri R, Ghanavati M, Asbaghi O. The effects of green tea supplementation on cardiovascular risk factors: A systematic review and meta-analysis. Front Nutr 2023; 9:1084455. [PMID: 36704803 PMCID: PMC9871939 DOI: 10.3389/fnut.2022.1084455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Purpose A bulk of observational studies have revealed the protective role of green tea supplementation in cardiovascular diseases. The current systematic review and meta-analysis study aimed to establish the effects of green tea supplementation on cardiovascular risk factors including lipid profile, blood pressure, glycemic control markers and CRP. Methods A systematic literature search of randomized clinical trials (RCTs) that investigated the effects of green tea supplementation and cardiovascular risk factors was undertaken in online databases including PubMed/Medline, Scopus, Web of Science, and Embase using a combination of green tea and cardiovascular risk factors search terms. Meta-analyses were carried out using a random-effects model. The I2 index was used to assess the heterogeneity of RCTs. Results Among the initial 11,286 studies that were identified from electronic databases search, 55 eligible RCTs with 63 effect sizes were eligible. Results from the random effects meta-analysis showed that GTE supplementation significantly reduced TC (WMD = -7.62; 95% CI: -10.51, -4.73; P = < 0.001), LDL-C (WMD = -5.80; 95% CI: -8.30, -3.30; P = < 0.001), FBS (WMD = -1.67; 95% CI: -2.58, -0.75; P = < 0.001), HbA1c (WMD = -0.15; 95% CI: -0.26, -0.04; P = 0.008), DBP (WMD = -0.87; 95% CI: -1.45, -0.29; P = 0.003), while increasing HDL-C (WMD = 1.85; 95% CI: 0.87, 2.84; P = 0.010). Subgroup analyses based on the duration of supplementation (≥ 12 vs. < 12 weeks), dose of green tea extract (GTE) (≥1,000 vs. < 1,000 mg/d), sex (male, female, and both), baseline serum levels of lipid profile, and glycemic control factors demonstrated different results for some risk factors. Conclusion The current study suggests improvements in the lipid and glycemic profiles following green tea supplementation. These findings support previous evidence showing the health benefits of green tea supplementation on cardiometabolic risk factors.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niusha Amirani
- Faculty of Medicine, Alborz University of Medical Sciences, Tehran, Iran
| | - Kian Goudarzi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Sun Y, Jin D, Zhang Z, Zhang Y, Zhang Y, Kang X, Jiang L, Tong X, Lian F. Effects of antioxidants on diabetic kidney diseases: mechanistic interpretations and clinical assessment. Chin Med 2023; 18:3. [PMID: 36624538 PMCID: PMC9827645 DOI: 10.1186/s13020-022-00700-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is more prevalent with an increase in diabetes mellitus. Oxidative stress is a major factor in the occurrence and progression of DKD. Defending against oxidative stress and restoring antioxidant defense might be key to preventing and treating DKD. The purpose of this article is to provide an explanation of how oxidative stress affects DKD, conduct a systematic review and meta-analysis on DKD, and examine the effect of antioxidants on the disease. An analysis of 19 randomized controlled trials showed that the use of antioxidants could reduce UAE (albumin excretion rate) in patients with DKD (SMD: - 0.31; 95% CI [- 0.47, - 0.14], I2 = 0%), UACR (urine albumin/creatinine ratio) (SMD: - 0.60; 95% CI [- 1.15, - 0.06], I2 = 89%), glycosylated hemoglobin (hbA1c) (MD: - 0.61; 95% CI [- 1.00, - 0.21], I2 = 93%) and MDA (malonaldehyde) (SMD:-1.05; 95% CI [- 1.87, - 0.23], I2 = 94%), suggesting that antioxidants seemed to have therapeutic effects in patients with DKD, especially in reducing proteinuria and hbA1c. The purpose of this study is to provide new targets and ideas for drug research and clinical treatment of DKD.
Collapse
Affiliation(s)
- Yuting Sun
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053 China
| | - De Jin
- grid.469513.c0000 0004 1764 518XHangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- grid.440665.50000 0004 1757 641XCollege of Chinese Medicine, Changchun University of Chinese Medicine, ChangchunJilin, 130117 China
| | - Yuehong Zhang
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053 China
| | - Yuqing Zhang
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053 China
| | - Xiaomin Kang
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053 China
| | - Linlin Jiang
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053 China
| | - Xiaolin Tong
- grid.464297.aInstitute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- grid.464297.aGuang’anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053 China
| |
Collapse
|
27
|
Polyphenols: a route from bioavailability to bioactivity addressing potential health benefits to tackle human chronic diseases. Arch Toxicol 2023; 97:3-38. [PMID: 36260104 DOI: 10.1007/s00204-022-03391-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/26/2022] [Indexed: 02/07/2023]
Abstract
Chronic pathologies or non-communicable diseases (NCDs) include cardiovascular diseases, metabolic syndrome, neurological diseases, respiratory disorders and cancer. They are the leading global cause of human mortality and morbidity. Given their chronic nature, NCDs represent a growing social and economic burden, hence urging the need for ameliorating the existing preventive strategies, and for finding novel tackling therapies. NCDs are highly correlated with unhealthy lifestyle habits (such as high-fat and high-glucose diet, or sedentary life). In general, lifestyle approaches that might improve these habits, including dietary consumption of fresh vegetables, fruits and fibers, may contrast NCD symptoms and prolong life expectancy of affected people. Polyphenols (PPLs) are plant-derived molecules with demonstrated biological activities in humans, which include: radical scavenging and anti-oxidant activities, capability to modulate inflammation, as well as human enzymes, and even to bind nuclear receptors. For these reasons, PPLs are currently tested, both preclinically and clinically, as dietary adjuvants for the prevention and treatment of NCDs. In this review, we describe the human metabolism and bioactivity of PPLs. Also, we report what is currently known about PPLs interaction with gastro-intestinal enzymes and gut microbiota, which allows their biotransformation in many different metabolites with several biological functions. The systemic bioactivity of PPLs and the newly available PPL-delivery nanosystems are also described in detail. Finally, the up-to-date clinical studies assessing both safety and efficacy of dietary PPLs in individuals with different NCDs are hereby reported. Overall, the clinical results support the notion that PPLs from fruits, vegetables, but also from leaves or seeds extracts, are safe and show significant positive results in ameliorating symptoms and improving the whole quality of life of people with NCDs.
Collapse
|
28
|
Siregar RS, Ramayani OR, Haris D, Lelo A, Jusuf NK, Eyanoer PC, Rusda M, Amin MM. Comparison of Gambier Extract (Uncaria Gambier Robx) and Angiotensin Receptor Blocker on Proteinuria Reduction and Antioxidants - Enhancement in Nephrotic Rat Models. Med Arch 2023; 77:422-427. [PMID: 38313113 PMCID: PMC10834053 DOI: 10.5455/medarh.2023.77.422-427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
Background Proteinuria is a significant clinical manifestation that causes edema in several diseases, including Nephrotic Syndrome (NS). Untreated proteinuria is strongly linked to the progression of kidney failure. One of the adjuvant therapies could be used to reduce proteinuria such as Angiotensin Receptor Blocker (ARB) including Losartan®. Gambier is a traditional medicinal plant widely known for its antioxidant effects. Catechin, a compound contained in Gambier Extract (GE), has been used to reduce microalbuminuria in diabetics. However, its application in NS has not been widely studied. Objective This study compared the effects of GE and ARB in reducing proteinuria and increasing antioxidant activity levels, as well as reported histopathological findings in the nephrotic Wistar rat model. Methods An experimental design study with a control group and a posttest was conducted. The experimental animals were divided into four groups: the control group (K1), the group with puromycin aminonucleoside (PAN) injection (K2), the group with PAN injection + GE (K3), and the group with PAN injection + Losartan® (K4). The standard GE used was Sarie Uncariae® by Toyo Brothers, PT while the ARB (Losartan®) was obtained from Novell, PT. Protein urine, the activity level of total superoxide dismutase (T-SOD), and malondialdehyde (MDA) were assessed using the colorimetric method. Renal histopathology was assessed based on Rollerman's criteria. Results Gambier extract significantly reduced proteinuria, as depicted by a decrease in protein/volume urine (p = 0.009), increased antioxidant activity, as illustrated by an elevation in T-SOD activity levels (p = 0.007), and tended to decrease MDA levels compared to Losartan®. Based on histopathological findings, GE tended to reduce the percentage of kidney damage in rats induced by puromycin. Conclusion Gambier extract has been shown a higher antioxidant effect by increasing T-SOD activity levels, reducing proteinuria and also exhibiting a tendency to diminish kidney damage.
Collapse
Affiliation(s)
- Rosmayanti S Siregar
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Sumatera Utara, Indonesia
- Department of Pediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Oke Rina Ramayani
- Department of Pediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Delyuzar Haris
- Department of Anatomy Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Aznan Lelo
- Department of Pharmacology & Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Nelva Karmila Jusuf
- Department of Dermatology & Venereology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Putri Chairani Eyanoer
- Department of Community and Preventive Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Rusda
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Sumatera Utara, Indonesia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Mustafa Mahmud Amin
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Sumatera Utara, Indonesia
- Department of Psychiatry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
29
|
Wan C, Ouyang J, Li M, Rengasamy KRR, Liu Z. Effects of green tea polyphenol extract and epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit Rev Food Sci Nutr 2022; 64:5719-5747. [PMID: 36533409 DOI: 10.1080/10408398.2022.2157372] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.
Collapse
Affiliation(s)
- Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ouyang
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
30
|
Alsawaf S, Alnuaimi F, Afzal S, Thomas RM, Chelakkot AL, Ramadan WS, Hodeify R, Matar R, Merheb M, Siddiqui SS, Vazhappilly CG. Plant Flavonoids on Oxidative Stress-Mediated Kidney Inflammation. BIOLOGY 2022; 11:biology11121717. [PMID: 36552226 PMCID: PMC9774981 DOI: 10.3390/biology11121717] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The kidney is susceptible to reactive oxygen species-mediated cellular injury resulting in glomerulosclerosis, tubulointerstitial fibrosis, tubular cell apoptosis, and senescence, leading to renal failure, and is a significant cause of death worldwide. Oxidative stress-mediated inflammation is a key player in the pathophysiology of various renal injuries and diseases. Recently, flavonoids' role in alleviating kidney diseases has been reported with an inverse correlation between dietary flavonoids and kidney injuries. Flavonoids are plant polyphenols possessing several health benefits and are distributed in plants from roots to leaves, flowers, and fruits. Dietary flavonoids have potent antioxidant and free-radical scavenging properties and play essential roles in disease prevention. Flavonoids exert a nephroprotective effect by improving antioxidant status, ameliorating excessive reactive oxygen species (ROS) levels, and reducing oxidative stress, by acting as Nrf2 antioxidant response mediators. Moreover, flavonoids play essential roles in reducing chemical toxicity. Several studies have demonstrated the effects of flavonoids in reducing oxidative stress, preventing DNA damage, reducing inflammatory cytokines, and inhibiting apoptosis-mediated cell death, thereby preventing or improving kidney injuries/diseases. This review covers the recent nephroprotective effects of flavonoids against oxidative stress-mediated inflammation in the kidney and their clinical advancements in renal therapy.
Collapse
Affiliation(s)
- Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Fatema Alnuaimi
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Saba Afzal
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Rinku Mariam Thomas
- Department of Mathematics and Natural Sciences, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | | | - Wafaa S. Ramadan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Rachel Matar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Maxime Merheb
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
| | - Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield AL10 9AB, UK
| | - Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah P.O. Box 10021, United Arab Emirates
- Correspondence: ; Tel.: +971-7-246-8842
| |
Collapse
|
31
|
Sharma V, Patial V. Peroxisome proliferator-activated receptor gamma and its natural agonists in the treatment of kidney diseases. Front Pharmacol 2022; 13:991059. [PMID: 36339586 PMCID: PMC9634118 DOI: 10.3389/fphar.2022.991059] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022] Open
Abstract
Kidney disease is one of the leading non-communicable diseases related to tremendous health and economic burden globally. Diabetes, hypertension, obesity and cardiovascular conditions are the major risk factors for kidney disease, followed by infections, toxicity and autoimmune causes. The peroxisome proliferator-activated receptor gamma (PPAR-γ) is a ligand-activated nuclear receptor that plays an essential role in kidney physiology and disease. The synthetic agonists of PPAR-γ shows a therapeutic effect in various kidney conditions; however, the associated side effect restricts their use. Therefore, there is an increasing interest in exploring natural products with PPARγ-activating potential, which can be a promising solution to developing effective and safe treatment of kidney diseases. In this review, we have discussed the role of PPAR-γ in the pathophysiology of kidney disease and the potential of natural PPAR-γ agonists in treating various kidney diseases, including acute kidney injury, diabetic kidney disease, obesity-induced nephropathy, hypertension nephropathy and IgA nephropathy. PPAR-γ is a potential target for the natural PPAR-γ agonists against kidney disease; however, more studies are required in this direction.
Collapse
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| |
Collapse
|
32
|
The Role of Diacylglycerol Kinase in the Amelioration of Diabetic Nephropathy. Molecules 2022; 27:molecules27206784. [PMID: 36296376 PMCID: PMC9607625 DOI: 10.3390/molecules27206784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
The drastic increase in the number of patients with diabetes and its complications is a global issue. Diabetic nephropathy, the leading cause of chronic kidney disease, significantly affects patients’ quality of life and medical expenses. Furthermore, there are limited drugs for treating diabetic nephropathy patients. Impaired lipid signaling, especially abnormal protein kinase C (PKC) activation by de novo-synthesized diacylglycerol (DG) under high blood glucose, is one of the causes of diabetic nephropathy. DG kinase (DGK) is an enzyme that phosphorylates DG and generates phosphatidic acid, i.e., DGK can inhibit PKC activation under diabetic conditions. Indeed, it has been proven that DGK activation ameliorates diabetic nephropathy. In this review, we summarize the involvement of PKC and DGK in diabetic nephropathy as therapeutic targets, and its mechanisms, by referring to our recent study.
Collapse
|
33
|
Chen B, Zhang W, Lin C, Zhang L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mitochondrial Diseases. Int J Mol Sci 2022; 23:ijms231911569. [PMID: 36232871 PMCID: PMC9569714 DOI: 10.3390/ijms231911569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the main sites for oxidative phosphorylation and synthesis of adenosine triphosphate in cells, and are known as cellular power factories. The phrase "secondary mitochondrial diseases" essentially refers to any abnormal mitochondrial function other than primary mitochondrial diseases, i.e., the process caused by the genes encoding the electron transport chain (ETC) proteins directly or impacting the production of the machinery needed for ETC. Mitochondrial diseases can cause adenosine triphosphate (ATP) synthesis disorder, an increase in oxygen free radicals, and intracellular redox imbalance. It can also induce apoptosis and, eventually, multi-system damage, which leads to neurodegenerative disease. The catechin compounds rich in tea have attracted much attention due to their effective antioxidant activity. Catechins, especially acetylated catechins such as epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), are able to protect mitochondria from reactive oxygen species. This review focuses on the role of catechins in regulating cell homeostasis, in which catechins act as a free radical scavenger and metal ion chelator, their protective mechanism on mitochondria, and the protective effect of catechins on mitochondrial deoxyribonucleic acid (DNA). This review highlights catechins and their effects on mitochondrial functional metabolic networks: regulating mitochondrial function and biogenesis, improving insulin resistance, regulating intracellular calcium homeostasis, and regulating epigenetic processes. Finally, the indirect beneficial effects of catechins on mitochondrial diseases are also illustrated by the warburg and the apoptosis effect. Some possible mechanisms are shown graphically. In addition, the bioavailability of catechins and peracetylated-catechins, free radical scavenging activity, mitochondrial activation ability of the high-molecular-weight polyphenol, and the mitochondrial activation factor were also discussed.
Collapse
|
34
|
Ntamo Y, Jack B, Ziqubu K, Mazibuko-Mbeje SE, Nkambule BB, Nyambuya TM, Mabhida SE, Hanser S, Orlando P, Tiano L, Dludla PV. Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties. Crit Rev Food Sci Nutr 2022; 64:87-109. [PMID: 35916835 DOI: 10.1080/10408398.2022.2104805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epigallocatechin gallate (EGCG) is one of the most abundant and powerful flavonoids contained in green tea. Because of the global increase in green tea consumption, there has been a general interest in understanding its health benefits, including its bioactive compounds like EGCG. Indeed, preclinical evidence already indicates that EGCG demonstrated a strong antioxidant and anti-inflammatory properties that could be essential in protecting against metabolic syndrome. The current review explores clinical evidence reporting on the beneficial effects of EGCG supplementation in obese subjects or patients with diverse metabolic complications that include type 2 diabetes and cardiovascular disease. The discussion incorporates the impact of different formulations of EGCG, as well as the effective doses and treatment duration. Importantly, besides highlighting the potential use of EGCG as a nutraceutical, the current review also discusses crucial evidence related to its pharmaceutical development as an agent to hinder metabolic diseases, including its bioavailability and metabolism profile, as well as its well-known biological properties.
Collapse
Affiliation(s)
- Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
| | | | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Sihle E Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Sidney Hanser
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, South Africa
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| |
Collapse
|
35
|
Noureddine B, Mostafa E, Mandal SC. Ethnobotanical, pharmacological, phytochemical, and clinical investigations on Moroccan medicinal plants traditionally used for the management of renal dysfunctions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115178. [PMID: 35278608 DOI: 10.1016/j.jep.2022.115178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Renal disease is a significant public health concern that affects people all over the world. The main limitations of conventional therapy are the adverse reaction on human health and the expensive cost of drugs. Indeed, it is necessary to develop new therapeutic strategies that are less expensive and have fewer side effects. As a consequence of their natural compounds, medicinal plants can be used as an alternative therapy to cure various ailments including kidney diseases. OBJECTIVE of the study: This review paper has two principal goals: (1) to inventory and describe the plants and their ancestral use by Moroccan society to cure renal problems, (2) to link traditional use with scientific confirmations (preclinical and clinical). METHODS To analyze pharmacological effects, phytochemical, and clinical trials of plants, selected for renal therapy, a bibliographical search was undertaken by examining ethnobotanical investigations conducted in Morocco between 1991 and 2019 and consulting peer-reviewed papers from all over the world. RESULTS Approximately 290 plant species, spanning 81 families and 218 genera have been reported as being utilized by Moroccans to manage renal illness. The most frequently mentioned species in Morocco were Herniaria hirsuta subsp. cinerea (DC.), Petroselinum crispum (Mill.) Fuss and Rosmarinus officinalis L. The leaves were the most frequently used plant parts, followed by the whole plant. Decoction and infusion were the most popular methods of preparation. A record of 71 plant species was studied in vitro and/or in vivo for their therapeutic efficacy against kidney disorders, including 10 plants attempting to make it to the clinical stage. Twenty compounds obtained from 15 plants have been studied for the treatment of kidney diseases. CONCLUSION Medicinal herbs could be a credible alternative therapy for renal illness. However, additional controlled trials are required to confirm their efficiency in patients with kidney failure. Overall, this work could be used as a database for future exploration.
Collapse
Affiliation(s)
- Bencheikh Noureddine
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Elachouri Mostafa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology, and Health, Faculty of Sciences, Mohammed First University, Oujda, Morocco.
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Division of Pharmacognosy, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
36
|
Zhong O, Hu J, Wang J, Tan Y, Hu L, Lei X. Antioxidant for treatment of diabetic complications: A meta-analysis and systematic review. J Biochem Mol Toxicol 2022; 36:e23038. [PMID: 35307907 DOI: 10.1002/jbt.23038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/07/2022] [Accepted: 03/02/2022] [Indexed: 01/01/2023]
Abstract
Antioxidants may provide a complementary treatment for patients with chronic diseases. Nevertheless, studies that have measured the effects of antioxidant on diabetes complications have provided conflicting results. This study aimed to elucidate the association between antioxidant and diabetic complications and to develop robust evidence for clinical decisions by systematic reviews and meta-analysis. PubMed, Embase, The Cochrane Library, Web of Science, Scopus databases were searched to collect clinical studies related to the efficacy of antioxidants in the treatment of diabetes complications from inception to May 5, 2021. Statistical meta-analyses were performed using the RevMan 5.4 software. Stata16 software was used to detect publication bias. The data of diabetic nephropathy (DN), diabetic nonalcoholic fatty liver disease (NAFLD), and diabetic periodontitis were collected to analyze the effect of antioxidant on diabetes and the above three complications. The meta-analysis results showed that antioxidant treatment was associated with significantly changes in the fasting plasma glucose (FPG) (standardized mean difference [SMD]: - 0.21 [95% confidence interval [CI]: - 0.33, -0.10], p < 0.001), hemoglobin A1c (HbA1c) (MD: - 0.41 [95% CI: - 0.63, -0.18], p < 0.001), total antioxidant capacity (TAC) (SMD: 0.44 [95% CI: 0.24, 0.63], p < 0.001) and malondialdehyde (MDA) (SMD: - 0.82 [95% CI: - 1.24, -0.41], p < 0.001) than the control group. Antioxidant supplements have the potential to treat three complications of diabetes. In conclusion, the meta-analysis results indicate that antioxidant treatment is effective clinically for diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Ou Zhong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jialin Hu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyuan Wang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongpeng Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linlin Hu
- Reproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiaocan Lei
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
37
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
38
|
Ferrara L, Joksimovic M, Angelo SD. Could Polyphenolic Food Intake Help in the Control of Type 2 Diabetes? A Narrative Review of the Last Evidence. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220317140717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Diabetes is one of the largest global public health concerns, imposing a heavy global burden on public health as well as socio-economic development, and about 90% of adults with this condition have type 2 diabetes (T2D).
Introduction:
Beyond the hereditary factor, there are several risk factors connected to the development of this syndrome; the lifestyles play, increasingly, a predominant role in the development of the metabolic complications related to T2D and a significant role in the onset of this syndrome is played from an unbalanced diet. Polyphenolic food is plant-based food including vegetables, fruits, whole grains, tea, coffee, and nuts. In recent years, there is growing evidence that plant-foods polyphenols, due to their biological properties, may be nutraceuticals and supplementary treatments for various aspects of T2D. Polyphenols may influence glycemia and T2D through hypoglycemic properties as reduction of insulin resistance, reduced fasting blood glucose, and glycosylated hemoglobin value. Based on several in vitro, animal models and some human studies, is has been detected that polyphenol-rich products modulate carbohydrate and lipid metabolism, attenuate hyperglycemia, dyslipidemia, and insulin resistance, improve adipose tissue metabolism, and alleviate oxidative stress and stress-sensitive signaling pathways and inflammatory processes.
Methods:
This manuscript summarizes human clinical trials issued within the last 5 years linking dietary polyphenols to T2D, with a focus on polyphenolic-foods typical of the Mediterranean diet.
Results:
Polyphenolic food can also prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy, and retinopathy.
Conclusion:
Further investigations as other human clinical studies are needed to obtain the best dose and duration of supplementation with polyphenolic food in T2D patients.
Collapse
Affiliation(s)
- Luigi Ferrara
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | | | - Stefania D' Angelo
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| |
Collapse
|
39
|
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022; 12:biom12030403. [DOI: 10.3390/biom12030403] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathies are kidney diseases that are driven by podocyte injury with proteinuria and proteinuria-related symptoms as the main clinical presentations. Albeit podocytopathies are the major contributors to end-stage kidney disease, the underlying molecular mechanisms of podocyte injury remain to be elucidated. Mitochondrial oxidative stress is associated with kidney diseases, and increasing evidence suggests that oxidative stress plays a vital role in the pathogenesis of podocytopathies. Accumulating evidence has placed mitochondrial oxidative stress in the focus of cell death research. Excessive generated reactive oxygen species over antioxidant defense under pathological conditions lead to oxidative damage to cellular components and regulate cell death in the podocyte. Conversely, exogenous antioxidants can protect podocyte from cell death. This review provides an overview of the role of mitochondrial oxidative stress in podocytopathies and discusses its role in the cell death of the podocyte, aiming to identify the novel targets to improve the treatment of patients with podocytopathies.
Collapse
|
40
|
Fernandes I, Oliveira J, Pinho A, Carvalho E. The Role of Nutraceutical Containing Polyphenols in Diabetes Prevention. Metabolites 2022; 12:metabo12020184. [PMID: 35208257 PMCID: PMC8878446 DOI: 10.3390/metabo12020184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Research in pharmacological therapy has led to the availability of many antidiabetic agents. New recommendations for precision medicine and particularly precision nutrition may greatly contribute to the control and especially to the prevention of diabetes. This scenario greatly encourages the search for novel non-pharmaceutical molecules. In line with this, the daily and long-term consumption of diets rich in phenolic compounds, together with a healthy lifestyle, may have a protective role against the development of type 2 diabetes. In the framework of the described studies, there is clear evidence that the bio accessibility, bioavailability, and the gut microbiota are indeed affected by: the way phenolic compounds are consumed (acutely or chronically; as pure compounds, extracts, or in-side a whole meal) and the amount and the type of phenolic compounds (ex-tractable or non-extractable/macromolecular antioxidants, including non-bioavailable polyphenols and plant matrix complexed structures). In this review, we report possible effects of important, commonly consumed, phenolic-based nutraceuticals in pre-clinical and clinical diabetes studies. We highlight their mechanisms of action and their potential effects in health promotion. Translation of this nutraceutical-based approach still requires more and larger clinical trials for better elucidation of the mechanism of action toward clinical applications.
Collapse
Affiliation(s)
- Iva Fernandes
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
| | - Joana Oliveira
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Correspondence: (J.O.); (E.C.)
| | - Aryane Pinho
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, 3004-504 Coimbra, Portugal; or
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, 3004-504 Coimbra, Portugal; or
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
- APDP—Portuguese Diabetes Association, 1250-189 Lisbon, Portugal
- Correspondence: (J.O.); (E.C.)
| |
Collapse
|
41
|
|
42
|
Jiménez-Castilla L, Marín-Royo G, Orejudo M, Opazo-Ríos L, Caro-Ordieres T, Artaiz I, Suárez-Cortés T, Zazpe A, Hernández G, Gómez-Guerrero C, Egido J. Nephroprotective Effects of Synthetic Flavonoid Hidrosmin in Experimental Diabetic Nephropathy. Antioxidants (Basel) 2021; 10:1920. [PMID: 34943023 PMCID: PMC8750193 DOI: 10.3390/antiox10121920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus (DM) is a high-impact disease commonly characterized by hyperglycemia, inflammation, and oxidative stress. Diabetic nephropathy (DN) is a common diabetic microvascular complication and the leading cause of chronic kidney disease worldwide. This study investigates the protective effects of the synthetic flavonoid hidrosmin (5-O-(beta-hydroxyethyl) diosmin) in experimental DN induced by streptozotocin injection in apolipoprotein E deficient mice. Oral administration of hidrosmin (300 mg/kg/day, n = 11) to diabetic mice for 7 weeks markedly reduced albuminuria (albumin-to-creatinine ratio: 47 ± 11% vs. control) and ameliorated renal pathological damage and expression of kidney injury markers. Kidneys of hidrosmin-treated mice exhibited lower content of macrophages and T cells, reduced expression of cytokines and chemokines, and attenuated inflammatory signaling pathways. Hidrosmin treatment improved the redox balance by reducing prooxidant enzymes and enhancing antioxidant genes, and also decreased senescence markers in diabetic kidneys. In vitro, hidrosmin dose-dependently reduced the expression of inflammatory and oxidative genes in tubuloepithelial cells exposed to either high-glucose or cytokines, with no evidence of cytotoxicity at effective concentrations. In conclusion, the synthetic flavonoid hidrosmin exerts a beneficial effect against DN by reducing inflammation, oxidative stress, and senescence pathways. Hidrosmin could have a potential role as a coadjutant therapy for the chronic complications of DM.
Collapse
Affiliation(s)
- Luna Jiménez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Gema Marín-Royo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
| | - Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
| | - Teresa Caro-Ordieres
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Inés Artaiz
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Tatiana Suárez-Cortés
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Arturo Zazpe
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Gonzalo Hernández
- Department of Research, Development, and Innovation, FAES Farma, 48940 Leioa, Spain; (T.C.-O.); (I.A.); (T.S.-C.); (A.Z.); (G.H.)
| | - Carmen Gómez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (L.J.-C.); (G.M.-R.); (M.O.); (J.E.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
43
|
M V, Wang K. Dietary natural products as a potential inhibitor towards advanced glycation end products and hyperglycemic complications: A phytotherapy approaches. Biomed Pharmacother 2021; 144:112336. [PMID: 34678719 DOI: 10.1016/j.biopha.2021.112336] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 12/14/2022] Open
Abstract
Natural products exist in various natural foods such as plants, herbs, fruits, and vegetables. Furthermore, marine life offers potential natural products with significant biological activity. The biochemical reaction is known as advanced glycation end products (AGEs) occurs in the human body. On the other hand, foods are capable of a wide range of processing conditions resulting in the generation of exogenous AGEs adducts. Protein glycation and the formation of advanced glycation end products both contribute to the pathogenesis of hyperglycemic complications. AGEs also play a pivotal role in microvascular and macrovascular complications progression by receptors for advanced glycation end products (RAGE). RAGE activate by AGEs leads to up-regulation of transcriptional factor NF-kB and inflammatory genes. Around the globe, researchers are working in various approaches for therapeutical implications on controlling AGEs mediated disease complications. In this regard, one of the potential promising agents observed with a wide range of AGEs inhibition by food-derived natural products. Current biotechnological tools have been turned to natural products or phytochemicals to manufacture the molecules without compromising their functionality. Metabolic engineering and bioinformatics perspectives have recently enabled the generation of a few potent metabolites with anti-diabetic activity. As the primary focus, this review article will also discuss multidisciplinary approaches that emphasize current advances in anti-diabetic therapeutic action and future perspectives of natural products.
Collapse
Affiliation(s)
- Vijaykrishnaraj M
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
44
|
Avila-Carrasco L, García-Mayorga EA, Díaz-Avila DL, Garza-Veloz I, Martinez-Fierro ML, González-Mateo GT. Potential Therapeutic Effects of Natural Plant Compounds in Kidney Disease. Molecules 2021; 26:molecules26206096. [PMID: 34684678 PMCID: PMC8541433 DOI: 10.3390/molecules26206096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: The blockade of the progression or onset of pathological events is essential for the homeostasis of an organism. Some common pathological mechanisms involving a wide range of diseases are the uncontrolled inflammatory reactions that promote fibrosis, oxidative reactions, and other alterations. Natural plant compounds (NPCs) are bioactive elements obtained from natural sources that can regulate physiological processes. Inflammation is recognized as an important factor in the development and evolution of chronic renal damage. Consequently, any compound able to modulate inflammation or inflammation-related processes can be thought of as a renal protective agent and/or a potential treatment tool for controlling renal damage. The objective of this research was to review the beneficial effects of bioactive natural compounds on kidney damage to reveal their efficacy as demonstrated in clinical studies. Methods: This systematic review is based on relevant studies focused on the impact of NPCs with therapeutic potential for kidney disease treatment in humans. Results: Clinical studies have evaluated NPCs as a different way to treat or prevent renal damage and appear to show some benefits in improving OS, inflammation, and antioxidant capacity, therefore making them promising therapeutic tools to reduce or prevent the onset and progression of KD pathogenesis. Conclusions: This review shows the promising clinical properties of NPC in KD therapy. However, more robust clinical trials are needed to establish their safety and therapeutic effects in the area of renal damage.
Collapse
Affiliation(s)
- Lorena Avila-Carrasco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
- Correspondence: ; Tel.: +52-492-8926556
| | - Elda Araceli García-Mayorga
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Daisy L. Díaz-Avila
- Academic Unit of Human Medicine and Health Sciences, Therapeutic and Pharmacology Department, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (E.A.G.-M.); (D.L.D.-A.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Carretera Zacatecas-Guadalajara Km.6, Ejido la Escondida, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Guadalupe T González-Mateo
- Research Institute of La Paz (IdiPAZ), University Hospital La Paz, 28046 Madrid, Spain;
- Molecular Biology Research, Centre Severo Ochoa, Spanish Council for Scientific Research (CSIC), 28049 Madrid, Spain
| |
Collapse
|
45
|
Maleki Dana P, Sadoughi F, Mansournia MA, Mirzaei H, Asemi Z, Yousefi B. Targeting Wnt signaling pathway by polyphenols: implication for aging and age-related diseases. Biogerontology 2021; 22:479-494. [PMID: 34480268 DOI: 10.1007/s10522-021-09934-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Age is an important risk factor for different diseases. The same mechanisms that promote aging are involved in the development and progression of age-associated diseases. Polyphenols are organic compounds found in fruits and vegetables. Due to their beneficial properties (e.g. antioxidant and anti-inflammatory), polyphenols have been extensively used for treating chronic diseases. To exert their functions, polyphenols target various molecular mechanisms and signaling pathways, such as mTOR, NF-κB, and Wnt/β-catenin. Wnt signaling is a critical pathway for developmental processes. Besides, dysregulation of this signaling pathway has been observed in various diseases. Several investigations have been conducted on Wnt inhibitors at pre-clinical stages, showing promising results. Herein, we review the studies dealing with the role of polyphenols in targeting the Wnt signaling pathways in aging processes and age-associated diseases, including cancer, diabetes, Alzheimer's disease, osteoporosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
46
|
Ladeira LCM, Dos Santos EC, Santos TA, da Silva J, Lima GDDA, Machado-Neves M, da Silva RC, Freitas MB, Maldonado IRDSC. Green tea infusion prevents diabetic nephropathy aggravation in recent-onset type 1 diabetes regardless of glycemic control. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114032. [PMID: 33737142 DOI: 10.1016/j.jep.2021.114032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea, traditionally used as antidiabetic medicine, positively affects the diabetic nephropathy. It was assumed that these beneficial effects were due to the hypoglycemiant capacity of the tea, wich reduces the glycemic overload and, consequently, the advanced glycation end products rate and oxidative damage. However, these results are still controversial, since tea is not always able to exert a hypoglycemic action, as demonstrated by previous studies. AIM Investigate if green tea infusion can generate positive outcomes for the kidney independently of glycemic control, using a model of severe type 1 diabetes. MATERIAL AND METHODS We treated streptozotocin type 1 diabetic young rats with 100 mg/kg of green tea, daily, for 42 days, and evaluated the serum and tissue markers for stress and function. We also analyzed the ion dynamics in the organ and the morphological alterations promoted by diabetes and green tea treatment. Besides, we analyzed, by an in silico approach, the interactions of the green tea main catechins with the proteins expressed in the kidney. RESULTS Our findings reveal that the components of green tea can interact with the proteins participating in cell signaling pathways that regulate energy metabolism, including glucose and glycogen synthesis, glucose reabsorption, hypoxia management, and cell death by apoptosis. Such interaction reduces glycogen accumulation in the organ, and protects the DNA. These results also reflect in a preserved glomerulus morphology, with improvement in pathological features, and suggesting a prevention of kidney function impairment. CONCLUSION Our results show that such benefits are achieved regardless of the blood glucose status, and are not dependent on the reduction of hyperglycemia.
Collapse
Affiliation(s)
| | | | - Talita Amorim Santos
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Janaina da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Institut de Recherche en Santé, Environnement et Travail, Université de Rennes, Rennes, France.
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Renê Chagas da Silva
- Departamento de Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | | | | |
Collapse
|
47
|
Serina JJC, Castilho PCMF. Using polyphenols as a relevant therapy to diabetes and its complications, a review. Crit Rev Food Sci Nutr 2021; 62:8355-8387. [PMID: 34028316 DOI: 10.1080/10408398.2021.1927977] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is currently a worldwide health concern. Hyperglycemia, hypertension, obesity, and oxidative stress are the major risk factors that inevitably lead to all the complications from diabetes. These complications severely impact the quality of life of patients, and they can be managed, reduced, or even reverted by several polyphenols, plant extracts and foods rich in these compounds. The goal of this review is to approach diabetes not as a single condition but rather an interconnected combination of risk factors and complications. This work shows that polyphenols have multi target action and effects and they have been systematically proven to be relevant in the reduction of each risk factor and improvement of associated complication.
Collapse
|
48
|
de Oliveira WQ, Neri-Numa IA, Arruda HS, Lopes AT, Pelissari FM, Barros FFC, Pastore GM. Special emphasis on the therapeutic potential of microparticles with antidiabetic effect: Trends and possible applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Akhter S. Low to no cost remedies for the management of diabetes mellitus; global health concern. J Diabetes Metab Disord 2021; 20:951-962. [PMID: 34178869 DOI: 10.1007/s40200-021-00783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
Purpose Diabetes mellitus (DM) is a chronic non-communicable endocrine and metabolic disease that is thought to be the fastest emerging health challenge of the twenty-first century. Presently, 90% of diabetic population is handicapped with T2-DM, and the majority of pre-diabetes on the way to T2-DM progression. By keeping in view, a review article has been compiled to highlight the significance of value aided effective, low-cost, safe, and useful remedies that could easily be accessible to the global community in order to moderate the possibility of DM and related complications. Methods Literature search for this review was carried out using scientific databases including PubMed, EBSCO, Scopus, Web of science, and google scholar. Whilst, value aided articles were selected on the basis of their therapeutic potential, safety profile and outreach. Results Escalating research data validated that herbal remedies and physical activities significantly prevents hyperglycemia, hyperlipidemia, and other complications in people with T2-DM. Conclusion Globally, nearly half-billion individuals are living with diabetes. Therefore, it is urged to embrace herbal remedies and physical mediation in our daily routine in order to tackle such devastating disorder.
Collapse
Affiliation(s)
- Shireen Akhter
- Executive Development Center, Sukkur IBA University, Sukkur, Sindh 65200 Pakistan.,Biotech, Sukkur IBA University, Sukkur, Sindh 65200 Pakistan
| |
Collapse
|
50
|
Johnson JB, Broszczak DA, Mani JS, Anesi J, Naiker M. A cut above the rest: oxidative stress in chronic wounds and the potential role of polyphenols as therapeutics. J Pharm Pharmacol 2021; 74:485-502. [PMID: 33822141 DOI: 10.1093/jpp/rgab038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The pathophysiology of chronic wounds typically involves redox imbalance and inflammation pathway dysregulation, often with concomitant microbial infection. Endogenous antioxidants such as glutathione and tocopherols are notably reduced or absent, indicative of significant oxidative imbalance. However, emerging evidence suggests that polyphenols could be effective agents for the amelioration of this condition. This review aims to summarise the current state of knowledge surrounding redox imbalance in the chronic wound environment and the potential use of polyphenols for the treatment of chronic wounds. KEY FINDINGS Polyphenols provide a multi-faceted approach towards the treatment of chronic wounds. Firstly, their antioxidant activity allows direct neutralisation of harmful free radicals and reactive oxygen species, assisting in restoring redox balance. Upregulation of pro-healing and anti-inflammatory gene pathways and enzymes by specific polyphenols further acts to reduce redox imbalance and promote wound healing actions, such as proliferation, extracellular matrix deposition and tissue remodelling. Finally, many polyphenols possess antimicrobial activity, which can be beneficial for preventing or resolving infection of the wound site. SUMMARY Exploration of this diverse group of natural compounds may yield effective and economical options for the prevention or treatment of chronic wounds.
Collapse
Affiliation(s)
- Joel B Johnson
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Janice S Mani
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| | - Jack Anesi
- School of Science, Psychology and Sport, Federation University Australia, Ballarat, Victoria, Australia
| | - Mani Naiker
- School of Health, Medical and Applied Science, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia.,Centre for Indigenous Health Equity Research, CQUniversity, Bruce Hwy, North Rockhampton, Queensland, Australia
| |
Collapse
|