1
|
Rodríguez MV, Sánchez DH, Glison N, Ríos CD, Demkura PV, Álvarez Correa CC, Fernández LG, Filippi CV, Heinz R, Pardo P, Rentería S, Guillaumet L, Benech‐Arnold RL. Introgression of dwarfing allele dw1 reduced seed dormancy and increased pre-harvest sprouting susceptibility in grain sorghum converted lines. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1783-1797. [PMID: 40089970 PMCID: PMC12018815 DOI: 10.1111/pbi.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 03/18/2025]
Abstract
Grain sorghum (Sorghum bicolor L. moench) stands as a globally significant cereal crop but the adversity of pre-harvest sprouting (PHS) caused by reduced grain dormancy and moist conditions prior to harvest remains unsolved. Here, we identified a dormancy QTL using a Redlan×IS9530 RIL population, where parent lines are low in tannins and early flowering but otherwise contrasting in grain dormancy and plant height. We phenotyped this population in 2 years with informative PHS-related traits (grain germination index, embryo sensitivity to abscisic acid and in one year the actual natural sprouting), revealing a robust dormancy QTL in chromosome 9 (qDOR-9). This signal overlapped with associations found for plant height (caused by the dw1 locus, used for decades in sorghum improvement) and time to flowering. The effect of qDOR-9 was validated with independent near isogenic lines carrying the IS9530 "dormant" allele while maintaining the Redlan dw1 "short" allele. Additional analyses on Yellow Milo, from which the dw1 allele originated, implied that a low dormancy allele close to dw1 was introduced to Redlan-as well as to many other currently productive lines-by breeding efforts aimed at decreasing plant height, thus illustrating a new instance of genome erosion canalised by crop breeding. However, the introgression of qDOR-9 could enhance PHS tolerance in cultivated dw1-carrying backgrounds without affecting plant stature.
Collapse
Affiliation(s)
- María Verónica Rodríguez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Fisiología Vegetal, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| | - Diego Hernán Sánchez
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Fisiología Vegetal, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| | - Nicolás Glison
- Laboratorio de Fisiología Vegetal, Departamento de Biología VegetalFacultad de Agronomía de la Universidad de la RepúblicaMontevideoUruguay
| | - Cristian Damián Ríos
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Cultivos Industriales, Departamento de Producción Vegetal, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| | - Patricia Verónica Demkura
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
| | - Cristian Camilo Álvarez Correa
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Cultivos Industriales, Departamento de Producción Vegetal, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| | - Luis Germán Fernández
- Instituto de Agrobiotecnología y Biología Molecular (INTA‐CONICET), formerly Instituto de Biotecnología, CICVyA, INTAHurlinghamBuenos AiresArgentina
- Present address:
AER Junín – INTA PergaminoJunínBuenos AiresArgentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular (INTA‐CONICET), formerly Instituto de Biotecnología, CICVyA, INTAHurlinghamBuenos AiresArgentina
- Present address:
Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay
| | - Ruth Heinz
- Instituto de Agrobiotecnología y Biología Molecular (INTA‐CONICET), formerly Instituto de Biotecnología, CICVyA, INTAHurlinghamBuenos AiresArgentina
- Present address:
Innovaciones Tecnológicas Agropecuarias S.A.Ciudad Autónoma de Buenos AiresArgentina
| | - Pedro Pardo
- Advanta Semillas SACI, Estación ExperimentalVenado TuertoArgentina
| | | | | | - Roberto Luis Benech‐Arnold
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA–CONICET)Ciudad Autónoma de Buenos AiresArgentina
- Cátedra de Cultivos Industriales, Departamento de Producción Vegetal, Facultad de Agronomía de la Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina
| |
Collapse
|
2
|
Rico-Medina A, Laibach N, Fontanet-Manzaneque JB, Blasco-Escámez D, Lozano-Elena F, Martignago D, Caño-Delgado AI. Molecular and physiological characterization of brassinosteroid receptor BRI1 mutants in Sorghum bicolor. THE NEW PHYTOLOGIST 2025; 246:1113-1127. [PMID: 40078107 DOI: 10.1111/nph.20443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025]
Abstract
The high sequence and structural similarities between BRASSINOSTEROID INSENSITIVE 1 (BRI1) brassinosteroid (BR) receptors of Arabidopsis (AtBRI1) and sorghum (SbBRI1) prompted us to study the functionally conserved roles of BRI1 in both organisms. Introducing sorghum SbBRI1 in Arabidopsis bri1 mutants restores defective growth and developmental phenotypes to wild-type levels. Sorghum mutants for SbBRI1 show defective BR sensitivity and impaired plant growth and development throughout the entire sorghum life cycle. Embryonic analysis of sorghum primary root techniques permits to trace back root growth and development to early stages in an unprecedented way, revealing the functionally conserved roles of the SbBRI1 receptor in BR perception during meristem development. RNA-seq analysis uncovers the downstream regulation of the SbBRI1 pathway in cell wall biogenesis during cell growth. Together, these results uncover that the sorghum SbBRI1 protein plays functionally conserved roles in plant growth and development, while encouraging the study of BR pathways in sorghum and its implications for improving resilience in cereal crops.
Collapse
Affiliation(s)
- Andrés Rico-Medina
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Natalie Laibach
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Juan B Fontanet-Manzaneque
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - David Blasco-Escámez
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Fidel Lozano-Elena
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Damiano Martignago
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| | - Ana I Caño-Delgado
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB (Cerdanyola del Vallès), 08193, Barcelona, Spain
| |
Collapse
|
3
|
Singh A, Newton L, Schnable JC, Thompson AM. Unveiling shared genetic regulators of plant architectural and biomass yield traits in the Sorghum Association Panel. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1625-1643. [PMID: 39798149 PMCID: PMC11981901 DOI: 10.1093/jxb/eraf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Sorghum is emerging as an ideal genetic model for designing high-biomass bioenergy crops. Biomass yield, a complex trait influenced by various plant architectural characteristics, is typically regulated by numerous genes. This study aimed to dissect the genetic regulators underlying 14 plant architectural traits and 10 biomass yield traits in the Sorghum Association Panel across two growing seasons. We identified 321 associated loci through genome-wide association studies (GWAS), involving 234 264 single nucleotide polymorphisms (SNPs). These loci include genes with known associations to biomass traits, such as maturity, dwarfing (Dw), and leafbladeless1, as well as several uncharacterized loci not previously linked to these traits. We also identified 22 pleiotropic loci associated with variation in multiple phenotypes. Three of these loci, located on chromosomes 3 (S03_15463061), 6 (S06_42790178; Dw2), and 9 (S09_57005346; Dw1), exerted significant and consistent effects on multiple traits across both growing seasons. Additionally, we identified three genomic hotspots on chromosomes 6, 7, and 9, each containing multiple SNPs associated with variation in plant architecture and biomass yield traits. Chromosome-wise correlation analyses revealed multiple blocks of positively associated SNPs located near or within the same genomic regions. Finally, genome-wide correlation-based network analysis showed that loci associated with flowering, plant height, leaf traits, plant density, and tiller number per plant were highly interconnected with other genetic loci influencing plant architectural and biomass yield traits. The pyramiding of favorable alleles related to these traits holds promise for enhancing the future development of bioenergy sorghum crops.
Collapse
Affiliation(s)
- Anuradha Singh
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Linsey Newton
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - James C Schnable
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Addie M Thompson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Wei J, Guo T, Mu Q, Alladassi BM, Mural RV, Boyles RE, Hoffmann L, Hayes CM, Sigmon B, Thompson AM, Salas‐Fernandez MG, Rooney WL, Kresovich S, Schnable JC, Li X, Yu J. Genetic and Environmental Patterns Underlying Phenotypic Plasticity in Flowering Time and Plant Height in Sorghum. PLANT, CELL & ENVIRONMENT 2025; 48:2727-2738. [PMID: 39415476 PMCID: PMC11893930 DOI: 10.1111/pce.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Phenotypic plasticity is the property of a genotype to produce different phenotypes under different environmental conditions. Understanding genetic and environmental factors behind phenotypic plasticity helps answer some longstanding biology questions and improve phenotype prediction. In this study, we investigated the phenotypic plasticity of flowering time and plant height with a set of diverse sorghum lines evaluated across 14 natural field environments. An environmental index was identified to quantitatively connect the environments. Reaction norms were then obtained with the identified indices for genetic dissection of phenotypic plasticity and performance prediction. Genome-wide association studies (GWAS) detected different sets of loci for reaction-norm parameters (intercept and slope), including 10 new genomic regions in addition to known maturity (Ma1) and dwarfing genes (Dw1, Dw2, Dw3, Dw4 and qHT7.1). Cross-validations under multiple scenarios showed promising results in predicting diverse germplasm in dynamic environments. Additional experiments conducted at four new environments, including one from a site outside of the geographical region of the initial environments, further validated the predictions. Our findings indicate that identifying the environmental index enriches our understanding of gene-environmental interplay underlying phenotypic plasticity, and that genomic prediction with the environmental dimension facilitates prediction-guided breeding for future environments.
Collapse
Affiliation(s)
- Jialu Wei
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Tingting Guo
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Qi Mu
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | | | - Ravi V. Mural
- Department of AgronomyHorticulture and Plant Science, South Dakota State UniversityBrookingsSouth DakotaUSA
| | - Richard E. Boyles
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Leo Hoffmann
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Chad M. Hayes
- USDA‐ARS, Plant Stress & Germplasm Development UnitLubbockTexasUSA
| | - Brandi Sigmon
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Addie M. Thompson
- Department of Plant Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | | | - William L. Rooney
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Stephen Kresovich
- Advanced Plant Technology ProgramClemson UniversityClemsonSouth CarolinaUSA
| | - James C. Schnable
- Center for Plant Science Innovation and Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Xianran Li
- USDA‐ARS, Wheat Health, Genetics and Quality Research UnitPullmanWashingtonUSA
| | - Jianming Yu
- Department of AgronomyIowa State UniversityAmesIowaUSA
| |
Collapse
|
5
|
Mu Q, Wei J, Longest HK, Liu H, Char SN, Hinrichsen JT, Tibbs‐Cortes LE, Schoenbaum GR, Yang B, Li X, Yu J. A MYB transcription factor underlying plant height in sorghum qHT7.1 and maize Brachytic 1 loci. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2172-2192. [PMID: 39485941 PMCID: PMC11629742 DOI: 10.1111/tpj.17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Manipulating plant height is an essential component of crop improvement. Plant height was generally reduced through breeding in wheat, rice, and sorghum to resist lodging and increase grain yield but kept high for bioenergy crops. Here, we positionally cloned a plant height quantitative trait locus (QTL) qHT7.1 as a MYB transcription factor controlling internode elongation, cell proliferation, and cell morphology in sorghum. A 740 bp transposable element insertion in the intronic region caused a partial mis-splicing event, generating a novel transcript that included an additional exon and a premature stop codon, leading to short plant height. The dominant allele had an overall higher expression than the recessive allele across development and internode position, while both alleles' expressions peaked at 46 days after planting and progressively decreased from the top to lower internodes. The orthologue of qHT7.1 was identified to underlie the brachytic1 (br1) locus in maize. A large insertion in exon 3 and a 160 bp insertion at the promoter region were identified in the br1 mutant, while an 18 bp promoter insertion was found to be associated with reduced plant height in a natural recessive allele. CRISPR/Cas9-induced gene knockout of br1 in two maize inbred lines showed significant plant height reduction. These findings revealed functional connections across natural, mutant, and edited alleles of this MYB transcription factor in sorghum and maize. This enriched our understanding of plant height regulation and enhanced our toolbox for fine-tuning plant height for crop improvement.
Collapse
Affiliation(s)
- Qi Mu
- Department of AgronomyIowa State UniversityAmes50011IowaUSA
- Department of Plant and Soil SciencesUniversity of DelawareNewark19716DelawareUSA
| | - Jialu Wei
- Department of AgronomyIowa State UniversityAmes50011IowaUSA
| | | | - Hua Liu
- Division of Plant Science and TechnologyBond Life Sciences Center, University of MissouriColumbia65211MissouriUSA
| | - Si Nian Char
- Division of Plant Science and TechnologyBond Life Sciences Center, University of MissouriColumbia65211MissouriUSA
| | | | - Laura E. Tibbs‐Cortes
- Department of AgronomyIowa State UniversityAmes50011IowaUSA
- USDA‐ARS, Wheat HealthGenetics & Quality ResearchPullman99164WashingtonUSA
- USDA‐ARSCorn Insects and Crop Genetics Research UnitAmes50011IowaUSA
| | | | - Bing Yang
- Division of Plant Science and TechnologyBond Life Sciences Center, University of MissouriColumbia65211MissouriUSA
- Donald Danforth Plant Science CenterSt. Louis63132MissouriUSA
| | - Xianran Li
- USDA‐ARS, Wheat HealthGenetics & Quality ResearchPullman99164WashingtonUSA
| | - Jianming Yu
- Department of AgronomyIowa State UniversityAmes50011IowaUSA
| |
Collapse
|
6
|
Guo B, Kim EJ, Zhu Y, Wang K, Russinova E. Shaping Brassinosteroid Signaling through Scaffold Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:1608-1617. [PMID: 38590034 DOI: 10.1093/pcp/pcae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Cellular responses to internal and external stimuli are orchestrated by intricate intracellular signaling pathways. To ensure an efficient and specific information flow, cells employ scaffold proteins as critical signaling organizers. With the ability to bind multiple signaling molecules, scaffold proteins can sequester signaling components within specific subcellular domains or modulate the efficiency of signal transduction. Scaffolds can also tune the output of signaling pathways by serving as regulatory targets. This review focuses on scaffold proteins associated with the plant GLYCOGEN SYNTHASE KINASE3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2), that serves as a key negative regulator of brassinosteroid (BR) signaling. Here, we summarize current understanding of how scaffold proteins actively shape BR signaling outputs and cross-talk in plant cells via interactions with BIN2.
Collapse
Affiliation(s)
- Boyu Guo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolgiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technolgiepark 71, Ghent 9052, Belgium
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Eun-Ji Kim
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolgiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technolgiepark 71, Ghent 9052, Belgium
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, 299 Bayi Road, Wuchang District, Wuhan 430072, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technolgiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technolgiepark 71, Ghent 9052, Belgium
| |
Collapse
|
7
|
Poppenberger B, Russinova E, Savaldi-Goldstein S. Brassinosteroids in Focus. PLANT & CELL PHYSIOLOGY 2024; 65:1495-1499. [PMID: 39470365 DOI: 10.1093/pcp/pcae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024]
Affiliation(s)
- Brigitte Poppenberger
- Biotechnology of Horticultural Crops, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Sigal Savaldi-Goldstein
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
8
|
Surina S, Yamagami A, Miyaji T, Chagan Z, Chung K, Mitsuda N, Nishida K, Tachibana R, Zhu Z, Miyakawa T, Shinozaki K, Sakuta M, Asami T, Nakano T. BIL9 Promotes Both Plant Growth via BR Signaling and Drought Stress Resistance by Binding with the Transcription Factor HDG11. PLANT & CELL PHYSIOLOGY 2024; 65:1640-1654. [PMID: 38242155 DOI: 10.1093/pcp/pcae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Drought stress is a major threat leading to global plant and crop losses in the context of the climate change crisis. Brassinosteroids (BRs) are plant steroid hormones, and the BR signaling mechanism in plant development has been well elucidated. Nevertheless, the specific mechanisms of BR signaling in drought stress are still unclear. Here, we identify a novel Arabidopsis gene, BRZ INSENSITIVE LONG HYPOCOTYL 9 (BIL9), which promotes plant growth via BR signaling. Overexpression of BIL9 enhances drought and mannitol stress resistance and increases the expression of drought-responsive genes. BIL9 protein is induced by dehydration and interacts with the HD-Zip IV transcription factor HOMEODOMAIN GLABROUS 11 (HDG11), which is known to promote plant resistance to drought stress, in vitro and in vivo. BIL9 enhanced the transcriptional activity of HDG11 for drought-stress-resistant genes. BIL9 is a novel BR signaling factor that enhances both plant growth and plant drought resistance.
Collapse
Affiliation(s)
- Surina Surina
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Tomoko Miyaji
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198 Japan
| | - Zhana Chagan
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - KwiMi Chung
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566 Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566 Japan
| | - Kaisei Nishida
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Ryo Tachibana
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Zhangliang Zhu
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198 Japan
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, 305-0074 Japan
| | - Masaaki Sakuta
- Department of Biological Sciences, Ochanomizu University, Bunkyo-Ku, Tokyo, 112-8610 Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, Tokyo University, Bunkyo-Ku, Tokyo, 113-8657 Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Sakyo-Ku, Kyoto, 606-8501 Japan
| |
Collapse
|
9
|
Wang P, Liang B, Li Z, Wang C, Zhang L, Lu X. Novel Allelic Mutations in Dw3 Gene That Affect the Height of Sorghum Plants. Int J Mol Sci 2024; 25:12000. [PMID: 39596067 PMCID: PMC11593585 DOI: 10.3390/ijms252212000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Breeding for dwarfing traits in sorghum is crucial. However, only three genes (Dw1-Dw3) that control plant height have been mapped. In this study, 634 sorghum cultivars were collected to investigate plant height and genotypes. Four were genotyped Dw1DW2Dw3 (wild type) but with different plant heights, and they were selected to construct two populations and map new dwarf genes. Bulked segregant analysis with whole-genome resequencing of the two populations identified the candidate gene in one same genomic region-on chromosome 7. Then, it was narrowed down to a region containing nine genes. Amino acid and DNA sequence analysis of the parent and offspring plants revealed that two novel allelic mutations in the Dw3 gene play a role in reducing the plant height-8R262 or 8R417, including 1 bp substitution and 2 bp deletions. Furthermore, we sequenced 19 cultivars that primarily exhibited a "one-dwarf" hybrid or wild-type and presumed another allelic mutation via the amino acid alignment of 8R019, 8R100, and 8R402, which was another one-base substitution. These results indicate that multiple types of allelic mutations in the Dw3 gene should be considered when identified or applied.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (P.W.); (B.L.)
| | - Bingbing Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (P.W.); (B.L.)
| | - Zhengjun Li
- Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (Z.L.); (C.W.)
| | - Chunyu Wang
- Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (Z.L.); (C.W.)
| | - Lixia Zhang
- Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (Z.L.); (C.W.)
| | - Xiaochun Lu
- Institute of Sorghum, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (Z.L.); (C.W.)
| |
Collapse
|
10
|
Liu F, Wodajo B, Xie P. Decoding the genetic blueprint: regulation of key agricultural traits in sorghum. ADVANCED BIOTECHNOLOGY 2024; 2:31. [PMID: 39883247 PMCID: PMC11709141 DOI: 10.1007/s44307-024-00039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 01/31/2025]
Abstract
Sorghum, the fifth most important crop globally, thrives in challenging environments such as arid, saline-alkaline, and infertile regions. This remarkable crop, one of the earliest crops domesticated by humans, offers high biomass and stress-specific properties that render it suitable for a variety of uses including food, feed, bioenergy, and biomaterials. What's truly exciting is the extensive phenotypic variation in sorghum, particularly in traits related to growth, development, and stress resistance. This inherent adaptability makes sorghum a game-changer in agriculture. However, tapping into sorghum's full potential requires unraveling the complex genetic networks that govern its key agricultural traits. Understanding these genetic mechanisms is paramount for improving traits such as yield, quality, and tolerance to drought and saline-alkaline conditions. This review provides a comprehensive overview of functionally characterized genes and regulatory networks associated with plant and panicle architectures, as well as stress resistance in sorghum. Armed with this knowledge, we can develop more resilient and productive sorghum varieties through cutting-edge breeding techniques like genome-wide selection, gene editing, and synthetic biology. These approaches facilitate the identification and manipulation of specific genes responsible for desirable traits, ultimately enhancing agricultural performance and adaptability in sorghum.
Collapse
Affiliation(s)
- Fangyuan Liu
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Baye Wodajo
- College of Natural and Computational Science, Woldia University, Po.box-400, Woldia, Ethiopia
| | - Peng Xie
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| |
Collapse
|
11
|
Kumar P, Gill HS, Singh M, Kaur K, Koupal D, Talukder S, Bernardo A, Amand PS, Bai G, Sehgal SK. Characterization of flag leaf morphology identifies a major genomic region controlling flag leaf angle in the US winter wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:205. [PMID: 39141073 PMCID: PMC11324803 DOI: 10.1007/s00122-024-04701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Multi-environmental characterization of flag leaf morphology traits in the US winter wheat revealed nine stable genomic regions for different flag leaf-related traits including a major region governing flag leaf angle. Flag leaf in wheat is the primary contributor to accumulating photosynthetic assimilates. Flag leaf morphology (FLM) traits determine the overall canopy structure and capacity to intercept the light, thus influencing photosynthetic efficiency. Hence, understanding the genetic control of these traits could be useful for breeding desirable ideotypes in wheat. We used a panel of 272 accessions from the hard winter wheat (HWW) region of the USA to investigate the genetic architecture of five FLM traits including flag leaf length (FLL), width (FLW), angle (FLANG), length-width ratio, and area using multilocation field experiments. Multi-environment GWAS using 14,537 single-nucleotide polymorphisms identified 36 marker-trait associations for different traits, with nine being stable across environments. A novel and major stable region for FLANG (qFLANG.1A) was identified on chromosome 1A accounting for 9-13% variation. Analysis of spatial distribution for qFLANG.1A in a set of 2354 breeding lines from the HWW region showed a higher frequency of allele associated with narrow leaf angle. A KASP assay was developed for allelic discrimination of qFLANG.1A and was used for its independent validation in a diverse set of spring wheat accessions. Furthermore, candidate gene analysis for two regions associated with FLANG identified seven putative genes of interest for each of the two regions. The present study enhances our understanding of the genetic control of FLM in wheat, particularly FLANG, and these results will be useful for dissecting the genes underlying canopy architecture in wheat facilitating the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Mandeep Singh
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Karanjot Kaur
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Dante Koupal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA
| | - Shyamal Talukder
- Department of Soil and Crop Sciences, Texas A&M University, Texas A&M AgriLife Research Center, Beaumont, TX, USA
| | - Amy Bernardo
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Paul St Amand
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Guihua Bai
- USDA-ARS, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
12
|
Liu F, Wodajo B, Zhao K, Tang S, Xie Q, Xie P. Unravelling sorghum functional genomics and molecular breeding: past achievements and future prospects. J Genet Genomics 2024:S1673-8527(24)00194-2. [PMID: 39053846 DOI: 10.1016/j.jgg.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Sorghum, renowned for its substantial biomass production and remarkable tolerance to various stresses, possesses extensive gene resources and phenotypic variations. A comprehensive understanding of the genetic basis underlying complex agronomic traits is essential for unlocking the potential of sorghum in addressing food and feed security and utilizing marginal lands. In this context, we provide an overview of the major trends in genomic resource studies focusing on key agronomic traits over the past decade, accompanied by a summary of functional genomic platforms. We also delve into the molecular functions and regulatory networks of impactful genes for important agricultural traits. Lastly, we discuss and synthesize the current challenges and prospects for advancing molecular design breeding by gene-editing and polymerization of the excellent alleles, with the aim of accelerating the development of desired sorghum varieties.
Collapse
Affiliation(s)
- Fangyuan Liu
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Baye Wodajo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Natural and Computational Science, Woldia University, Woldia, Po.box-400, Ethiopia.
| | - Kangxu Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Xie
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
13
|
Pereira LM, Maciel GM, Siquieroli ACS, Luz JMQ, Ribeiro ALA, de Oliveira CS, Pinto FG, Ikehara BRM. Introgression of the Self-Pruning Gene into Dwarf Tomatoes to Obtain Salad-Type Determinate Growth Lines. PLANTS (BASEL, SWITZERLAND) 2024; 13:1522. [PMID: 38891329 PMCID: PMC11174706 DOI: 10.3390/plants13111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
The use of dwarf plants in tomato breeding has provided several advantages. However, there are no identified dwarf plants (dd) containing the self-pruning habit (spsp). The aim of this work was to obtain future generations, characterize the germplasm, and select potential dwarf plants with a determinate growth habit to obtain Salad-type lines. The work was started by carrying out hybridization, followed by the first, second, and third backcrosses. Once F2BC3 seeds became available, the introgression of the self-pruning gene (spsp) into dwarf plants (dd) began. Three strains of normal architecture and a determinate growth habit were hybridized with two strains of dwarf size and an indeterminate growth habit, thus yielding four hybrids. Additionally, donor genotype UFU MC TOM1, the commercial cultivar Santa Clara, and the wild accession Solanum pennellii were used in the experiment. Agronomic traits, fruit quality, metabolomics, and acylsugars content were evaluated, and dwarf plants with a determinate growth habit were selected. Hybrid 3 exhibited the highest yields. Visual differences between determinate and indeterminate dwarf plant seedlings were observed. It is suggested to carry out five self-pollinations of the best dwarf plant determined and subsequent hybridization with homozygous lines of normal plant architecture and determinate growth habit to obtain hybrids.
Collapse
Affiliation(s)
- Lucas Medeiros Pereira
- Postgraduate Program in Agronomy, Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia 38410-337, Brazil; (L.M.P.); (A.L.A.R.)
| | | | | | - José Magno Queiroz Luz
- Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia 38410-337, Brazil;
| | - Ana Luisa Alves Ribeiro
- Postgraduate Program in Agronomy, Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia 38410-337, Brazil; (L.M.P.); (A.L.A.R.)
| | | | - Frederico Garcia Pinto
- Institute of Exact Sciences, Federal University of Viçosa, Rio Paranaíba 38810-000, Brazil; (F.G.P.); (B.R.M.I.)
| | - Brena Rodrigues Mota Ikehara
- Institute of Exact Sciences, Federal University of Viçosa, Rio Paranaíba 38810-000, Brazil; (F.G.P.); (B.R.M.I.)
| |
Collapse
|
14
|
Wolf ESA, Vela S, Wilker J, Davis A, Robert M, Infante V, Venado RE, Voiniciuc C, Ané JM, Vermerris W. Identification of genetic and environmental factors influencing aerial root traits that support biological nitrogen fixation in sorghum. G3 (BETHESDA, MD.) 2024; 14:jkad285. [PMID: 38096484 PMCID: PMC10917507 DOI: 10.1093/g3journal/jkad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/19/2023] [Indexed: 03/08/2024]
Abstract
Plant breeding and genetics play a major role in the adaptation of plants to meet human needs. The current requirement to make agriculture more sustainable can be partly met by a greater reliance on biological nitrogen fixation by symbiotic diazotrophic microorganisms that provide crop plants with ammonium. Select accessions of the cereal crop sorghum (Sorghum bicolor (L.) Moench) form mucilage-producing aerial roots that harbor nitrogen-fixing bacteria. Breeding programs aimed at developing sorghum varieties that support diazotrophs will benefit from a detailed understanding of the genetic and environmental factors contributing to aerial root formation. A genome-wide association study of the sorghum minicore, a collection of 242 landraces, and 30 accessions from the sorghum association panel was conducted in Florida and Wisconsin and under 2 fertilizer treatments to identify loci associated with the number of nodes with aerial roots and aerial root diameter. Sequence variation in genes encoding transcription factors that control phytohormone signaling and root system architecture showed significant associations with these traits. In addition, the location had a significant effect on the phenotypes. Concurrently, we developed F2 populations from crosses between bioenergy sorghums and a landrace that produced extensive aerial roots to evaluate the mode of inheritance of the loci identified by the genome-wide association study. Furthermore, the mucilage collected from aerial roots contained polysaccharides rich in galactose, arabinose, and fucose, whose composition displayed minimal variation among 10 genotypes and 2 fertilizer treatments. These combined results support the development of sorghums with the ability to acquire nitrogen via biological nitrogen fixation.
Collapse
Affiliation(s)
- Emily S A Wolf
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32609, USA
| | - Saddie Vela
- Plant Molecular and Cellular Biology Graduate Program, University of Florida, Gainesville, FL 32609, USA
| | - Jennifer Wilker
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Alyssa Davis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32610, USA
| | - Madalen Robert
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32609, USA
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Rafael E Venado
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | - Cătălin Voiniciuc
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32609, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32610, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
Yang L, Zhou Q, Sheng X, Chen X, Hua Y, Lin S, Luo Q, Yu B, Shao T, Wu Y, Chang J, Li Y, Tu M. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. Int J Mol Sci 2023; 24:14549. [PMID: 37833996 PMCID: PMC10573072 DOI: 10.3390/ijms241914549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of fossil fuels and global climate change have raised ever-increasing attention to sustainable development, global food security and the replacement of fossil fuels by renewable energy. Several C4 monocot grasses have excellent photosynthetic ability, stress tolerance and may rapidly produce biomass in marginal lands with low agronomic inputs, thus representing an important source of bioenergy. Among these grasses, Sorghum bicolor has been recognized as not only a promising bioenergy crop but also a research model due to its diploidy, simple genome, genetic diversity and clear orthologous relationship with other grass genomes, allowing sorghum research to be easily translated to other grasses. Although sorghum molecular genetic studies have lagged far behind those of major crops (e.g., rice and maize), recent advances have been made in a number of biomass-related traits to dissect the genetic loci and candidate genes, and to discover the functions of key genes. However, molecular and/or targeted breeding toward biomass-related traits in sorghum have not fully benefited from these pieces of genetic knowledge. Thus, to facilitate the breeding and bioenergy applications of sorghum, this perspective summarizes the bioenergy applications of different types of sorghum and outlines the genetic control of the biomass-related traits, ranging from flowering/maturity, plant height, internode morphological traits and metabolic compositions. In particular, we describe the dynamic changes of carbohydrate metabolism in sorghum internodes and highlight the molecular regulators involved in the different stages of internode carbohydrate metabolism, which affects the bioenergy utilization of sorghum biomass. We argue the way forward is to further enhance our understanding of the genetic mechanisms of these biomass-related traits with new technologies, which will lead to future directions toward tailored designing sorghum biomass traits suitable for different bioenergy applications.
Collapse
Affiliation(s)
- Lin Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Qin Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Xuan Sheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangqian Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Yuqing Hua
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Shuang Lin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Qiyun Luo
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Boju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Ti Shao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Yixiao Wu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Min Tu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| |
Collapse
|
16
|
Guden B, Yol E, Erdurmus C, Lucas SJ, Uzun B. Construction of a high-density genetic linkage map and QTL mapping for bioenergy-related traits in sweet sorghum [ Sorghum bicolor (L.) Moench]. FRONTIERS IN PLANT SCIENCE 2023; 14:1081931. [PMID: 37342135 PMCID: PMC10278949 DOI: 10.3389/fpls.2023.1081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 06/22/2023]
Abstract
Sorghum is an important but arguably undervalued cereal crop, grown in large areas in Asia and Africa due to its natural resilience to drought and heat. There is growing demand for sweet sorghum as a source of bioethanol as well as food and feed. The improvement of bioenergy-related traits directly affects bioethanol production from sweet sorghum; therefore, understanding the genetic basis of these traits would enable new cultivars to be developed for bioenergy production. In order to reveal the genetic architecture behind bioenergy-related traits, we generated an F2 population from a cross between sweet sorghum cv. 'Erdurmus' and grain sorghum cv. 'Ogretmenoglu'. This was used to construct a genetic map from SNPs discovered by double-digest restriction-site associated DNA sequencing (ddRAD-seq). F3 lines derived from each F2 individual were phenotyped for bioenergy-related traits in two different locations and their genotypes were analyzed with the SNPs to identify QTL regions. On chromosomes 1, 7, and 9, three major plant height (PH) QTLs (qPH1.1, qPH7.1, and qPH9.1) were identified, with phenotypic variation explained (PVE) ranging from 10.8 to 34.8%. One major QTL (qPJ6.1) on chromosome 6 was associated with the plant juice trait (PJ) and explained 35.2% of its phenotypic variation. For fresh biomass weight (FBW), four major QTLs (qFBW1.1, qFBW6.1, qFBW7.1, and qFBW9.1) were determined on chromosomes 1, 6, 7, and 9, which explained 12.3, 14.5, 10.6, and 11.9% of the phenotypic variation, respectively. Moreover, two minor QTLs (qBX3.1 and qBX7.1) of Brix (BX) were mapped on chromosomes 3 and 7, explaining 8.6 and 9.7% of the phenotypic variation, respectively. The QTLs in two clusters (qPH7.1/qBX7.1 and qPH7.1/qFBW7.1) overlapped for PH, FBW and BX. The QTL, qFBW6.1, has not been previously reported. In addition, eight SNPs were converted into cleaved amplified polymorphic sequences (CAPS) markers, which can be easily detected by agarose gel electrophoresis. These QTLs and molecular markers can be used for pyramiding and marker-assisted selection studies in sorghum, to develop advanced lines that include desirable bioenergy-related traits.
Collapse
Affiliation(s)
- Birgul Guden
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Engin Yol
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| | - Cengiz Erdurmus
- Department of Field Crops, West Mediterranean Agricultural Research Institute, Antalya, Türkiye
| | - Stuart James Lucas
- Sabanci University Nanotechnology Research and Application Centre, Sabanci University, Istanbul, Türkiye
| | - Bulent Uzun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
17
|
Ge F, Xie P, Wu Y, Xie Q. Genetic architecture and molecular regulation of sorghum domestication. ABIOTECH 2023; 4:57-71. [PMID: 37220542 PMCID: PMC10199992 DOI: 10.1007/s42994-022-00089-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/28/2022] [Indexed: 05/25/2023]
Abstract
Over time, wild crops have been domesticated by humans, and the knowledge gained from parallel selection and convergent domestication-related studies in cereals has contributed to current techniques used in molecular plant breeding. Sorghum (Sorghum bicolor (L.) Moench) is the world's fifth-most popular cereal crop and was one of the first crops cultivated by ancient farmers. In recent years, genetic and genomic studies have provided a better understanding of sorghum domestication and improvements. Here, we discuss the origin, diversification, and domestication processes of sorghum based on archeological discoveries and genomic analyses. This review also comprehensively summarized the genetic basis of key genes related to sorghum domestication and outlined their molecular mechanisms. It highlights that the absence of a domestication bottleneck in sorghum is the result of both evolution and human selection. Additionally, understanding beneficial alleles and their molecular interactions will allow us to quickly design new varieties by further de novo domestication.
Collapse
Affiliation(s)
- Fengyong Ge
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Peng Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
18
|
Takanashi H. Genetic control of morphological traits useful for improving sorghum. BREEDING SCIENCE 2023; 73:57-69. [PMID: 37168813 PMCID: PMC10165342 DOI: 10.1270/jsbbs.22069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 05/13/2023]
Abstract
Global climate change and global warming, coupled with the growing population, have raised concerns about sustainable food supply and bioenergy demand. Sorghum [Sorghum bicolor (L.) Moench] ranks fifth among cereals produced worldwide; it is a C4 crop with a higher stress tolerance than other major cereals and has a wide range of uses, such as grains, forage, and biomass. Therefore, sorghum has attracted attention as a promising crop for achieving sustainable development goals (SDGs). In addition, sorghum is a suitable genetic model for C4 grasses because of its high morphological diversity and relatively small genome size compared to other C4 grasses. Although sorghum breeding and genetic studies have lagged compared to other crops such as rice and maize, recent advances in research have identified several genes and many quantitative trait loci (QTLs) that control important agronomic traits in sorghum. This review outlines traits and genetic information with a focus on morphogenetic aspects that may be useful in sorghum breeding for grain and biomass utilization.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
19
|
Enyew M, Feyissa T, Carlsson AS, Tesfaye K, Hammenhag C, Seyoum A, Geleta M. Genome-wide analyses using multi-locus models revealed marker-trait associations for major agronomic traits in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2022; 13:999692. [PMID: 36275578 PMCID: PMC9585286 DOI: 10.3389/fpls.2022.999692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/14/2022] [Indexed: 06/01/2023]
Abstract
Globally, sorghum is the fifth most important cereal crop, and it is a major crop in Ethiopia, where it has a high genetic diversity. The country's sorghum gene pool contributes significantly to sorghum improvement worldwide. This study aimed to identify genomic regions and candidate genes associated with major agronomic traits in sorghum by using its genetic resources in Ethiopia for a genome-wide association study (GWAS). Phenotypic data of days to flowering (DTF), plant height (PH), panicle length (PALH), panicle width (PAWD), panicle weight (PAWT), and grain yield (GY) were collected from a GWAS panel comprising 324 sorghum accessions grown in three environments. SeqSNP, a targeted genotyping method, was used to genotype the panel using 5,000 gene-based single nucleotide polymorphism (SNP) markers. For marker-trait association (MTA) analyses, fixed and random model circulating probability unification (FarmCPU), and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) models were used. In all traits, high phenotypic variation was observed, with broad-sense heritability ranging from 0.32 (for GY) to 0.90 (for PALH). A population structure, principal component analysis, and kinship analysis revealed that the accessions could be divided into two groups. In total, 54 MTAs were identified, 11 of which were detected by both BLINK and farmCPU. MTAs identified for each trait ranged from five (PAWT and GY) to fourteen (PH) representing both novel and previously identified quantitative trait loci (QTLs). Three SNPs were associated with more than one trait, including a SNP within the Sobic.004G189200 gene that was associated with PH and PAWT. Major effect SNP loci, Sbi2393610 (PVE = 23.3%), Sbi10438246 (PVE = 35.2%), Sbi17789352 (PVE = 11.9%) and Sbi30169733 (PVE = 18.9%) on chromosomes 1, 3, 5 and 9 that showed strong association signals for PAWD, DTF, GY and PALH, respectively, were major findings of this study. The SNP markers and candidate genes identified in this study provide insights into the genetic control of grain yield and related agronomic traits, and once validated, the markers could be used in genomics-led breeding.
Collapse
Affiliation(s)
- Muluken Enyew
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Tileye Feyissa
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Anders S. Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Amare Seyoum
- National Sorghum Research Program, Crop Research Department, Melkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
20
|
Beyene G, Chauhan RD, Villmer J, Husic N, Wang N, Gebre E, Girma D, Chanyalew S, Assefa K, Tabor G, Gehan M, McGrone M, Yang M, Lenderts B, Schwartz C, Gao H, Gordon‐Kamm W, Taylor NJ, MacKenzie DJ. CRISPR/Cas9-mediated tetra-allelic mutation of the 'Green Revolution' SEMIDWARF-1 (SD-1) gene confers lodging resistance in tef (Eragrostis tef). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1716-1729. [PMID: 35560779 PMCID: PMC9398311 DOI: 10.1111/pbi.13842] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/28/2022] [Indexed: 05/17/2023]
Abstract
Tef is a staple food and a valuable cash crop for millions of people in Ethiopia. Lodging is a major limitation to tef production, and for decades, the development of lodging resistant varieties proved difficult with conventional breeding approaches. We used CRISPR/Cas9 to introduce knockout mutations in the tef orthologue of the rice SEMIDWARF-1 (SD-1) gene to confer semidwarfism and ultimately lodging resistance. High frequency recovery of transgenic and SD-1 edited tef lines was achieved in two tef cultivars by Agrobacterium-mediated delivery into young leaf explants of gene editing reagents along with transformation and regeneration enhancing morphogenic genes, BABY BOOM (BBM) and WUSCHEL2 (WUS2). All of the 23 lines analyzed by next-generation sequencing had at least two or more alleles of SD-1 mutated. Of these, 83% had tetra-allelic frameshift mutations in the SD-1 gene in primary tef regenerants, which were inherited in subsequent generations. Phenotypic data generated on T1 and T2 generations revealed that the sd-1 lines have reduced culm and internode lengths with no reduction in either panicle or peduncle lengths. These characteristics are comparable with rice sd-1 plants. Measurements of lodging, in greenhouse-grown plants, showed that sd-1 lines have significantly higher resistance to lodging at the heading stage compared with the controls. This is the first demonstration of the feasibility of high frequency genetic transformation and CRISPR/Cas9-mediated genome editing in this highly valuable but neglected crop. The findings reported here highlight the potential of genome editing for the improvement of lodging resistance and other important traits in tef.
Collapse
Affiliation(s)
- Getu Beyene
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Nada Husic
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | - Dejene Girma
- Ethiopian Institute of Agricultural ResearchAddis AbabaEthiopia
| | | | - Kebebew Assefa
- Ethiopian Institute of Agricultural ResearchAddis AbabaEthiopia
| | | | - Malia Gehan
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Takanashi H, Kajiya-Kanegae H, Nishimura A, Yamada J, Ishimori M, Kobayashi M, Yano K, Iwata H, Tsutsumi N, Sakamoto W. DOMINANT AWN INHIBITOR Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum. PLANT & CELL PHYSIOLOGY 2022; 63:901-918. [PMID: 35640621 DOI: 10.1093/pcp/pcac057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The awn, a needle-like structure extending from the tip of the lemma in grass species, plays a role in environmental adaptation and fitness. In some crops, awns appear to have been eliminated during domestication. Although numerous genes involved in awn development have been identified, several dominant genes that eliminate awns are also known to exist. For example, in sorghum (Sorghum bicolor), the dominant awn-inhibiting gene has been known since 1921; however, its molecular features remain uncharacterized. In this study, we conducted quantitative trait locus analysis and a genome-wide association study of awn-related traits in sorghum and identified DOMINANT AWN INHIBITOR (DAI), which encodes the ALOG family protein on chromosome 3. DAI appeared to be present in most awnless sorghum cultivars, likely because of its effectiveness. Detailed analysis of the ALOG protein family in cereals revealed that DAI originated from a duplication of its twin paralog (DAIori) on chromosome 10. Observations of immature awns in near-isogenic lines revealed that DAI inhibits awn elongation by suppressing both cell proliferation and elongation. We also found that only DAI gained a novel function to inhibit awn elongation through an awn-specific expression pattern distinct from that of DAIori. Interestingly, heterologous expression of DAI with its own promoter in rice inhibited awn elongation in the awned cultivar Kasalath. We found that DAI originated from gene duplication, providing an interesting example of gain-of-function that occurs only in sorghum but shares its functionality with rice and sorghum.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiromi Kajiya-Kanegae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Kouwa Nishi-Shimbashi Bldg. 5f, 2-14-1 Nishi-Shimbashi, Minato-ku, Tokyo 105-0003, Japan
| | - Asuka Nishimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Junko Yamada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Motoyuki Ishimori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masaaki Kobayashi
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kentaro Yano
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
22
|
Zhang Z, Pope M, Shakoor N, Pless R, Mockler TC, Stylianou A. Comparing Deep Learning Approaches for Understanding Genotype × Phenotype Interactions in Biomass Sorghum. Front Artif Intell 2022; 5:872858. [PMID: 35860344 PMCID: PMC9289439 DOI: 10.3389/frai.2022.872858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
We explore the use of deep convolutional neural networks (CNNs) trained on overhead imagery of biomass sorghum to ascertain the relationship between single nucleotide polymorphisms (SNPs), or groups of related SNPs, and the phenotypes they control. We consider both CNNs trained explicitly on the classification task of predicting whether an image shows a plant with a reference or alternate version of various SNPs as well as CNNs trained to create data-driven features based on learning features so that images from the same plot are more similar than images from different plots, and then using the features this network learns for genetic marker classification. We characterize how efficient both approaches are at predicting the presence or absence of a genetic markers, and visualize what parts of the images are most important for those predictions. We find that the data-driven approaches give somewhat higher prediction performance, but have visualizations that are harder to interpret; and we give suggestions of potential future machine learning research and discuss the possibilities of using this approach to uncover unknown genotype × phenotype relationships.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Computer Science, George Washington University, Washington, DC, United States
| | - Madison Pope
- Department of Computer Science, Saint Louis University, Saint Louis, MO, United States
| | - Nadia Shakoor
- Donald Danforth Plant Science Center, Mockler Lab, Saint Louis, MO, United States
| | - Robert Pless
- Department of Computer Science, George Washington University, Washington, DC, United States
| | - Todd C. Mockler
- Donald Danforth Plant Science Center, Mockler Lab, Saint Louis, MO, United States
| | - Abby Stylianou
- Department of Computer Science, Saint Louis University, Saint Louis, MO, United States
- *Correspondence: Abby Stylianou
| |
Collapse
|
23
|
Mu Q, Guo T, Li X, Yu J. Phenotypic plasticity in plant height shaped by interaction between genetic loci and diurnal temperature range. THE NEW PHYTOLOGIST 2022; 233:1768-1779. [PMID: 34870847 DOI: 10.1111/nph.17904] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Phenotypic plasticity is observed widely in plants and often studied with reaction norms for adult plant or end-of-season traits. Uncovering genetic, environmental and developmental patterns behind the observed phenotypic variation under natural field conditions is needed. Using a sorghum (Sorghum bicolor) genetic population evaluated for plant height in seven natural field conditions, we investigated the major pattern that differentiated these environments. We then examined the physiological relevance of the identified environmental index by investigating the developmental trajectory of the population with multistage height measurements in four additional environments and conducting crop growth modelling. We found that diurnal temperature range (DTR) during the rapid growth period of sorghum development was an effective environmental index. Three genetic loci (Dw1, Dw3 and qHT7.1) were consistently detected for individual environments, reaction-norm parameters across environments and growth-curve parameters through the season. Their genetic effects changed dynamically along the environmental gradient and the developmental stage. A conceptual model with three-dimensional reaction norms was proposed to showcase the interconnecting components: genotype, environment and development. Beyond genomic and environmental analyses, further integration of development and physiology at the whole-plant and molecular levels into complex trait dissection would enhance our understanding of mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Qi Mu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Tingting Guo
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Xianran Li
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
24
|
Silva TN, Thomas JB, Dahlberg J, Rhee SY, Mortimer JC. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:646-664. [PMID: 34644381 PMCID: PMC8793871 DOI: 10.1093/jxb/erab450] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/10/2021] [Indexed: 05/09/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop globally by harvested area and production. Its drought and heat tolerance allow high yields with minimal input. It is a promising biomass crop for the production of biofuels and bioproducts. In addition, as an annual diploid with a relatively small genome compared with other C4 grasses, and excellent germplasm diversity, sorghum is an excellent research species for other C4 crops such as maize. As a result, an increasing number of researchers are looking to test the transferability of findings from other organisms such as Arabidopsis thaliana and Brachypodium distachyon to sorghum, as well as to engineer new biomass sorghum varieties. Here, we provide an overview of sorghum as a multipurpose feedstock crop which can support the growing bioeconomy, and as a monocot research model system. We review what makes sorghum such a successful crop and identify some key traits for future improvement. We assess recent progress in sorghum transformation and highlight how transformation limitations still restrict its widespread adoption. Finally, we summarize available sorghum genetic, genomic, and bioinformatics resources. This review is intended for researchers new to sorghum research, as well as those wishing to include non-food and forage applications in their research.
Collapse
Affiliation(s)
- Tallyta N Silva
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jason B Thomas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
| | - Jeff Dahlberg
- Joint BioEnergy Institute, Emeryville, CA, USA
- UC-ANR-KARE, 9240 S. Riverbend Ave, Parlier, CA, USA
| | - Seung Y Rhee
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
- Correspondence: or
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, SA, Australia
- Correspondence: or
| |
Collapse
|
25
|
Xin Z, Wang M, Cuevas HE, Chen J, Harrison M, Pugh NA, Morris G. Sorghum genetic, genomic, and breeding resources. PLANTA 2021; 254:114. [PMID: 34739592 PMCID: PMC8571242 DOI: 10.1007/s00425-021-03742-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
Sorghum research has entered an exciting and fruitful era due to the genetic, genomic, and breeding resources that are now available to researchers and plant breeders. As the world faces the challenges of a rising population and a changing global climate, new agricultural solutions will need to be developed to address the food and fiber needs of the future. To that end, sorghum will be an invaluable crop species as it is a stress-resistant C4 plant that is well adapted for semi-arid and arid regions. Sorghum has already remained as a staple food crop in many parts of Africa and Asia and is critically important for animal feed and niche culinary applications in other regions, such as the United States. In addition, sorghum has begun to be developed into a promising feedstock for forage and bioenergy production. Due to this increasing demand for sorghum and its potential to address these needs, the continuous development of powerful community resources is required. These resources include vast collections of sorghum germplasm, high-quality reference genome sequences, sorghum association panels for genome-wide association studies of traits involved in food and bioenergy production, mutant populations for rapid discovery of causative genes for phenotypes relevant to sorghum improvement, gene expression atlas, and online databases that integrate all resources and provide the sorghum community with tools that can be used in breeding and genomic studies. Used in tandem, these valuable resources will ensure that the rate, quality, and collaborative potential of ongoing sorghum improvement efforts is able to rival that of other major crops.
Collapse
Affiliation(s)
- Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA.
| | - Mingli Wang
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - Hugo E Cuevas
- Tropical Agriculture Research Station, USDA-ARS, Mayagüez, 00680, Puerto Rico
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Melanie Harrison
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - N Ace Pugh
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Geoffrey Morris
- Crop Quantitative Genomics, Soil and Crop Sciences, Colorado State University, Plant Sciences Building, Fort Collins, CO, 80523, USA
| |
Collapse
|
26
|
Mural RV, Grzybowski M, Miao C, Damke A, Sapkota S, Boyles RE, Salas Fernandez MG, Schnable PS, Sigmon B, Kresovich S, Schnable JC. Meta-Analysis Identifies Pleiotropic Loci Controlling Phenotypic Trade-offs in Sorghum. Genetics 2021; 218:6294935. [PMID: 34100945 PMCID: PMC9335936 DOI: 10.1093/genetics/iyab087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 01/03/2023] Open
Abstract
Community association populations are composed of phenotypically and genetically diverse accessions. Once these populations are genotyped, the resulting marker data can be reused by different groups investigating the genetic basis of different traits. Because the same genotypes are observed and scored for a wide range of traits in different environments, these populations represent a unique resource to investigate pleiotropy. Here we assembled a set of 234 separate trait datasets for the Sorghum Association Panel, a group of 406 sorghum genotypes widely employed by the sorghum genetics community. Comparison of genome wide association studies conducted with two independently generated marker sets for this population demonstrate that existing genetic marker sets do not saturate the genome and likely capture only 35-43% of potentially detectable loci controlling variation for traits scored in this population. While limited evidence for pleiotropy was apparent in cross-GWAS comparisons, a multivariate adaptive shrinkage approach recovered both known pleiotropic effects of existing loci and new pleiotropic effects, particularly significant impacts of known dwarfing genes on root architecture. In addition, we identified new loci with pleiotropic effects consistent with known trade-offs in sorghum development. These results demonstrate the potential for mining existing trait datasets from widely used community association populations to enable new discoveries from existing trait datasets as new, denser genetic marker datasets are generated for existing community association populations.
Collapse
Affiliation(s)
- Ravi V Mural
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Marcin Grzybowski
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Chenyong Miao
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Alyssa Damke
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sirjan Sapkota
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634 USA.,Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA
| | - Richard E Boyles
- Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA.,Pee Dee Research and Education Center, Clemson University, Florence, SC 29532 USA
| | | | | | - Brandi Sigmon
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Stephen Kresovich
- Department of Plant and Environment Sciences, Clemson University, Clemson, SC 29634 USA.,Feed the Future Innovation Lab for Crop Improvement Cornell University, Ithaca, NY 14850 USA
| | - James C Schnable
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| |
Collapse
|
27
|
Genetic dissection of QTLs associated with spikelet-related traits and grain size in sorghum. Sci Rep 2021; 11:9398. [PMID: 33931706 PMCID: PMC8087780 DOI: 10.1038/s41598-021-88917-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Although spikelet-related traits such as size of anther, spikelet, style, and stigma are associated with sexual reproduction in grasses, no QTLs have been reported in sorghum. Additionally, there are only a few reports on sorghum QTLs related to grain size, such as grain length, width, and thickness. In this study, we performed QTL analyses of nine spikelet-related traits (length of sessile spikelet, pedicellate spikelet, pedicel, anther, style, and stigma; width of sessile spikelet and stigma; and stigma pigmentation) and six grain-related traits (length, width, thickness, length/width ratio, length/thickness ratio, and width/thickness ratio) using sorghum recombinant inbred lines. We identified 36 and 7 QTLs for spikelet-related traits and grain-related traits, respectively, and found that most sorghum spikelet organ length- and width-related traits were partially controlled by the dwarf genes Dw1 and Dw3. Conversely, we found that these Dw genes were not strongly involved in the regulation of grain size. The QTLs identified in this study aid in understanding the genetic basis of spikelet- and grain-related traits in sorghum.
Collapse
|
28
|
Kong W, Nabukalu P, Cox TS, Goff VH, Robertson JS, Pierce GJ, Lemke C, Compton R, Paterson AH. Quantitative trait mapping of plant architecture in two BC 1F 2 populations of Sorghum Bicolor × S. halepense and comparisons to two other sorghum populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1185-1200. [PMID: 33423085 DOI: 10.1007/s00122-020-03763-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Comparing populations derived, respectively, from polyploid Sorghum halepense and its progenitors improved knowledge of plant architecture and showed that S. halepense harbors genetic novelty of potential value for sorghum improvement Vegetative growth and the timing of the vegetative-to-reproductive transition are critical to a plant's fitness, directly and indirectly determining when and how a plant lives, grows and reproduces. We describe quantitative trait analysis of plant height and flowering time in the naturally occurring tetraploid Sorghum halepense, using two novel BC1F2 populations totaling 246 genotypes derived from backcrossing two tetraploid Sorghum bicolor x S. halepense F1 plants to a tetraploidized S. bicolor. Phenotyping for two years each in Bogart, GA and Salina, KS allowed us to dissect variance into narrow-sense genetic (QTLs) and environmental components. In crosses with a common S. bicolor BTx623 parent, comparison of QTLs in S. halepense, its rhizomatous progenitor S. propinquum and S. bicolor race guinea which is highly divergent from BTx623 permit inferences of loci at which new alleles have been associated with improvement of elite sorghums. The relative abundance of QTLs unique to the S. halepense populations may reflect its polyploidy and subsequent 'diploidization' processes often associated with the formation of genetic novelty, a possibility further supported by a high level of QTL polymorphism within sibling lines derived from a common S. halepense parent. An intriguing hypothesis for further investigation is that polyploidy of S. halepense following 96 million years of abstinence, coupled with natural selection during its spread to diverse environments across six continents, may provide a rich collection of novel alleles that offer potential opportunities for sorghum improvement.
Collapse
Affiliation(s)
- WenQian Kong
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - Pheonah Nabukalu
- The Land Institute, 2440 E Water Well Rd, Salina, KS, 67401, USA
| | - T S Cox
- The Land Institute, 2440 E Water Well Rd, Salina, KS, 67401, USA
| | - Valorie H Goff
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - Jon S Robertson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - Gary J Pierce
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - Cornelia Lemke
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - Rosana Compton
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Rd, Athens, GA, 30602, USA.
| |
Collapse
|
29
|
Numan M, Khan AL, Asaf S, Salehin M, Beyene G, Tadele Z, Ligaba-Osena A. From Traditional Breeding to Genome Editing for Boosting Productivity of the Ancient Grain Tef [ Eragrostis tef (Zucc.) Trotter]. PLANTS (BASEL, SWITZERLAND) 2021; 10:628. [PMID: 33806233 PMCID: PMC8066236 DOI: 10.3390/plants10040628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Tef (Eragrostis tef (Zucc.) Trotter) is a staple food crop for 70% of the Ethiopian population and is currently cultivated in several countries for grain and forage production. It is one of the most nutritious grains, and is also more resilient to marginal soil and climate conditions than major cereals such as maize, wheat and rice. However, tef is an extremely low-yielding crop, mainly due to lodging, which is when stalks fall on the ground irreversibly, and prolonged drought during the growing season. Climate change is triggering several biotic and abiotic stresses which are expected to cause severe food shortages in the foreseeable future. This has necessitated an alternative and robust approach in order to improve resilience to diverse types of stresses and increase crop yields. Traditional breeding has been extensively implemented to develop crop varieties with traits of interest, although the technique has several limitations. Currently, genome editing technologies are receiving increased interest among plant biologists as a means of improving key agronomic traits. In this review, the potential application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) technology in improving stress resilience in tef is discussed. Several putative abiotic stress-resilient genes of the related monocot plant species have been discussed and proposed as target genes for editing in tef through the CRISPR-Cas system. This is expected to improve stress resilience and boost productivity, thereby ensuring food and nutrition security in the region where it is needed the most.
Collapse
Affiliation(s)
- Muhammad Numan
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, Biotechnology and OMICs Laboratory, University of Nizwa, Nizwa 616, Oman; (A.L.K.); (S.A.)
| | - Sajjad Asaf
- Natural and Medical Sciences Research Center, Biotechnology and OMICs Laboratory, University of Nizwa, Nizwa 616, Oman; (A.L.K.); (S.A.)
| | - Mohammad Salehin
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| | - Getu Beyene
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA;
| | - Zerihun Tadele
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland;
| | - Ayalew Ligaba-Osena
- Laboratory of Molecular Biology and Biotechnology, Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA; (M.N.); (M.S.)
| |
Collapse
|
30
|
The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety. Sci Rep 2021; 11:4532. [PMID: 33633216 PMCID: PMC7907390 DOI: 10.1038/s41598-021-84020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
Heterosis helps increase the biomass of many crops; however, while models for its mechanisms have been proposed, it is not yet fully understood. Here, we use a QTL analysis of the progeny of a high-biomass sorghum F1 hybrid to examine heterosis. Five QTLs were identified for culm length and were explained using the dominance model. Five resultant homozygous dominant alleles were used to develop pyramided lines, which produced biomasses like the original F1 line. Cloning of one of the uncharacterised genes (Dw7a) revealed that it encoded a MYB transcription factor, that was not yet proactively used in modern breeding, suggesting that combining classic dw1or dw3, and new (dw7a) genes is an important breeding strategy. In conclusion, heterosis is explained in this situation by the dominance model and a combination of genes that balance the shortness and early flowering of the parents, to produce F1 seed yields.
Collapse
|
31
|
Govindarajulu R, Hostetler AN, Xiao Y, Chaluvadi SR, Mauro-Herrera M, Siddoway ML, Whipple C, Bennetzen JL, Devos KM, Doust AN, Hawkins JS. Integration of high-density genetic mapping with transcriptome analysis uncovers numerous agronomic QTL and reveals candidate genes for the control of tillering in sorghum. G3-GENES GENOMES GENETICS 2021; 11:6128573. [PMID: 33712819 PMCID: PMC8022972 DOI: 10.1093/g3journal/jkab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Phenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement. Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina sequencing and a bin-mapping approach, we generated ∼1920 bin markers spanning ∼875 cM. Phenotyping data were collected and analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domestication and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement to the sorghum community.
Collapse
Affiliation(s)
| | - Ashley N Hostetler
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Margarita Mauro-Herrera
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Muriel L Siddoway
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Katrien M Devos
- Department of Crop and Soil Sciences (Institute for Plant Breeding, Genetics and Genomics), and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer S Hawkins
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
32
|
Oliver J, Fan M, McKinley B, Zemelis‐Durfee S, Brandizzi F, Wilkerson C, Mullet JE. The AGCVIII kinase Dw2 modulates cell proliferation, endomembrane trafficking, and MLG/xylan cell wall localization in elongating stem internodes of Sorghum bicolor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1053-1071. [PMID: 33211340 PMCID: PMC7983884 DOI: 10.1111/tpj.15086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 05/31/2023]
Abstract
Stems of bioenergy sorghum (Sorghum bicolor L. Moench.), a drought-tolerant C4 grass, contain up to 50 nodes and internodes of varying length that span 4-5 m and account for approximately 84% of harvested biomass. Stem internode growth impacts plant height and biomass accumulation and is regulated by brassinosteroid signaling, auxin transport, and gibberellin biosynthesis. In addition, an AGCVIII kinase (Dw2) regulates sorghum stem internode growth, but the underlying mechanism and signaling network are unknown. Here we provide evidence that mutation of Dw2 reduces cell proliferation in internode intercalary meristems, inhibits endocytosis, and alters the distribution of heteroxylan and mixed linkage glucan in cell walls. Phosphoproteomic analysis showed that Dw2 signaling influences the phosphorylation of proteins involved in lipid signaling (PLDδ), endomembrane trafficking, hormone, light, and receptor signaling, and photosynthesis. Together, our results show that Dw2 modulates endomembrane function and cell division during sorghum internode growth, providing insight into the regulation of monocot stem development.
Collapse
Affiliation(s)
- Joel Oliver
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexas77843USA
| | - Mingzhu Fan
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
| | - Brian McKinley
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexas77843USA
| | - Starla Zemelis‐Durfee
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
| | - Federica Brandizzi
- MSU‐DOE Plant Research LabMichigan State UniversityEast LansingMichigan48824USA
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
| | - Curtis Wilkerson
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan48824USA
- Great Lakes Bioenergy Research CenterMichigan State UniversityEast LansingMichigan48824USA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichigan48824USA
| | - John E. Mullet
- Department of Biochemistry & BiophysicsTexas A&M UniversityCollege StationTexas77843USA
| |
Collapse
|
33
|
Yu KMJ, McKinley B, Rooney WL, Mullet JE. High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum. Sci Rep 2021; 11:46. [PMID: 33420129 PMCID: PMC7794234 DOI: 10.1038/s41598-020-79975-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
The stems of bioenergy sorghum hybrids at harvest are > 4 m long, contain > 40 internodes and account for ~ 80% of harvested biomass. In this study, bioenergy sorghum hybrids were grown at four planting densities (~ 20,000 to 132,000 plants/ha) under field conditions for 60 days to investigate the impact shading has on stem growth and biomass accumulation. Increased planting density induced a > 2-fold increase in sorghum internode length and a ~ 22% decrease in stem diameter, a typical shade avoidance response. Shade-induced internode elongation was due to an increase in cell length and number of cells spanning the length of internodes. SbGA3ox2 (Sobic.003G045900), a gene encoding the last step in GA biosynthesis, was expressed ~ 20-fold higher in leaf collar tissue of developing phytomers in plants grown at high vs. low density. Application of GA3 to bioenergy sorghum increased plant height, stem internode length, cell length and the number of cells spanning internodes. Prior research showed that sorghum plants lacking phytochrome B, a key photoreceptor involved in shade signaling, accumulated more GA1 and displayed shade avoidance phenotypes. These results are consistent with the hypothesis that increasing planting density induces expression of GA3-oxidase in leaf collar tissue, increasing synthesis of GA that stimulates internode elongation.
Collapse
Affiliation(s)
- Ka Man Jasmine Yu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - William L Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843-2128, USA
| | - John E Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA.
| |
Collapse
|
34
|
Dissecting the Genetic Architecture of Biofuel-Related Traits in a Sorghum Breeding Population. G3-GENES GENOMES GENETICS 2020; 10:4565-4577. [PMID: 33051261 PMCID: PMC7718745 DOI: 10.1534/g3.120.401582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In sorghum [Sorghum bicolor (L.) Moench], hybrid cultivars for the biofuel industry are desired. Along with selection based on testcross performance, evaluation of the breeding population per se is also important for the success of hybrid breeding. In addition to additive genetic effects, non-additive (i.e., dominance and epistatic) effects are expected to contribute to the performance of early generations. Unfortunately, studies on early generations in sorghum breeding programs are limited. In this study, we analyzed a breeding population for bioenergy sorghum, which was previously developed based on testcross performance, to compare genomic selection models both trained on and evaluated for the per se performance of the 3rd generation S0 individuals. Of over 200 ancestral inbred accessions in the base population, only 13 founders contributed to the 3rd generation as progenitors. Compared to the founders, the performances of the population per se were improved for target traits. The total genetic variance within the S0 generation progenies themselves for all traits was mainly additive, although non-additive variances contributed to each trait to some extent. For genomic selection, linear regression models explicitly considering all genetic components showed a higher predictive ability than other linear and non-linear models. Although the number and effect distribution of underlying loci was different among the traits, the influence of priors for marker effects was relatively small. These results indicate the importance of considering non-additive effects for dissecting the genetic architecture of early breeding generations and predicting the performance per se.
Collapse
|
35
|
Olatoye MO, Hu Z, Morris GP. Genome-wide mapping and prediction of plant architecture in a sorghum nested association mapping population. THE PLANT GENOME 2020; 13:e20038. [PMID: 33217207 DOI: 10.1002/tpg2.20038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Modifying plant architecture is often necessary for yield improvement and climate adaptation, but we lack understanding of the genotype-phenotype map for plant morphology in sorghum. Here, we use a nested association mapping (NAM) population that captures global allelic diversity of sorghum to characterize the genetics of leaf erectness, leaf width (at two stages), and stem diameter. Recombinant inbred lines (n = 2200) were phenotyped in multiple environments (35,200 observations) and joint linkage mapping was performed with ∼93,000 markers. Fifty-four QTL of small to large effect were identified for trait BLUPs (9-16 per trait) each explaining 0.4-4% of variation across the NAM population. While some of these QTL colocalize with sorghum homologs of grass genes (e.g., those involved in transcriptional regulation of hormone synthesis [rice SPINDLY] and transcriptional regulation of development [rice Ideal plant architecture1]), most QTL did not colocalize with an a priori candidate gene (92%). Genomic prediction accuracy was generally high in five-fold cross-validation (0.65-0.83), and varied from low to high in leave-one-family-out cross-validation (0.04-0.61). The findings provide a foundation to identify the molecular basis of architecture variation in sorghum and establish genomic-enabled breeding for improved plant architecture.
Collapse
Affiliation(s)
- Marcus O Olatoye
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- Current address: Department of Crop Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
36
|
Miao C, Xu Y, Liu S, Schnable PS, Schnable JC. Increased Power and Accuracy of Causal Locus Identification in Time Series Genome-wide Association in Sorghum. PLANT PHYSIOLOGY 2020; 183:1898-1909. [PMID: 32461303 PMCID: PMC7401099 DOI: 10.1104/pp.20.00277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/20/2020] [Indexed: 05/18/2023]
Abstract
The phenotypes of plants develop over time and change in response to the environment. New engineering and computer vision technologies track these phenotypic changes. Identifying the genetic loci regulating differences in the pattern of phenotypic change remains challenging. This study used functional principal component analysis (FPCA) to achieve this aim. Time series phenotype data were collected from a sorghum (Sorghum bicolor) diversity panel using a number of technologies including conventional color photography and hyperspectral imaging. This imaging lasted for 37 d and centered on reproductive transition. A new higher density marker set was generated for the same population. Several genes known to control trait variation in sorghum have been previously cloned and characterized. These genes were not confidently identified in genome-wide association analyses at single time points. However, FPCA successfully identified the same known and characterized genes. FPCA analyses partitioned the role these genes play in controlling phenotypes. Partitioning was consistent with the known molecular function of the individual cloned genes. These data demonstrate that FPCA-based genome-wide association studies can enable robust time series mapping analyses in a wide range of contexts. Moreover, time series analysis can increase the accuracy and power of quantitative genetic analyses.
Collapse
Affiliation(s)
- Chenyong Miao
- Quantitative Life Science Initiative, Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - Yuhang Xu
- Department of Applied Statistics and Operations Research, Bowling Green State University, Bowling Green, Ohio 43403
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | | | - James C Schnable
- Quantitative Life Science Initiative, Center for Plant Science Innovation, Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| |
Collapse
|
37
|
Kajiya-Kanegae H, Takanashi H, Fujimoto M, Ishimori M, Ohnishi N, Wacera W F, Omollo EA, Kobayashi M, Yano K, Nakano M, Kozuka T, Kusaba M, Iwata H, Tsutsumi N, Sakamoto W. RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. PLANT & CELL PHYSIOLOGY 2020; 61:1262-1272. [PMID: 32353144 DOI: 10.1093/pcp/pcaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] grown locally by Japanese farmers is generically termed Takakibi, although its genetic diversity compared with geographically distant varieties or even within Takakibi lines remains unclear. To explore the genomic diversity and genetic traits controlling biomass and other physiological traits in Takakibi, we focused on a landrace, NOG, in this study. Admixture analysis of 460 sorghum accessions revealed that NOG belonged to the subgroup that represented Asian sorghums, and it was only distantly related to American/African accessions including BTx623. In an attempt to dissect major traits related to biomass, we generated a recombinant inbred line (RIL) from a cross between BTx623 and NOG, and we constructed a high-density linkage map based on 3,710 single-nucleotide polymorphisms obtained by restriction-site-associated DNA sequencing of 213 RIL individuals. Consequently, 13 fine quantitative trait loci (QTLs) were detected on chromosomes 2, 3, 6, 7, 8 and 9, which included five QTLs for days to heading, three for plant height (PH) and total shoot fresh weight and two for Brix. Furthermore, we identified two dominant loci for PH as being identical to the previously reported dw1 and dw3. Together, these results corroborate the diversified genome of Japanese Takakibi, while the RIL population and high-density linkage map generated in this study will be useful for dissecting other important traits in sorghum.
Collapse
Affiliation(s)
- Hiromi Kajiya-Kanegae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8517, Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masaru Fujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Motoyuki Ishimori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Norikazu Ohnishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Fiona Wacera W
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Everlyne A Omollo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| | - Masaaki Kobayashi
- Department of Life Sciences Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kentaro Yano
- Department of Life Sciences Faculty of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571 Japan
| | - Michiharu Nakano
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Toshiaki Kozuka
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Makoto Kusaba
- Graduate School of Integral Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
38
|
Kiyosawa A, Yonemaru JI, Kawahigashi H, Goto K. Analysis of quantitative trait loci for fertility restoration in seven F 2 populations derived from sorghum F 1 hybrids bred in Japan. BREEDING SCIENCE 2020; 70:379-386. [PMID: 32714061 PMCID: PMC7372026 DOI: 10.1270/jsbbs.19144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
To clarify the genetic mechanisms of fertility restoration in sorghum F1 hybrids produced in Japan ('Ryokuryu', 'Hazuki', 'Haretaka', 'Natsuibuki', 'Hanaaoba', 'Akidachi' and 'Kazetachi'), we analyzed QTLs for fertility restoration using seven F2 populations derived from those hybrids. By QTL mapping with a series of SSR markers, we detected three major QTLs for fertility restoration. These data and the results of haplotype analysis of known fertility restorer (Rf) genes showed that qRf5, corresponding to the Rf5 locus, was the most widely used Rf gene for fertility restoration of sorghum F1 hybrids among the lines tested. Other major Rf genes detected were qRf8, corresponding to Rf1, and qRf2, corresponding to Rf2. QTLs for grain weight also corresponded to these Rf loci. A minor QTL, qRf3, may also affect restoration of fertility. Our data show that three major Rfs-Rf1, Rf2, and Rf5-were used in F1 hybrid sorghum production in Japan. This knowledge can be used to improve the efficiency of the F1 sorghum breeding program.
Collapse
Affiliation(s)
- Atsushi Kiyosawa
- Nagano Animal Industry Experiment Station, 10931-1 Kataoka, Shiojiri, Nagano 399-0711, Japan
| | - Jun-ichi Yonemaru
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Hiroyuki Kawahigashi
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Kazumi Goto
- Nagano Animal Industry Experiment Station, 10931-1 Kataoka, Shiojiri, Nagano 399-0711, Japan
| |
Collapse
|
39
|
Char SN, Wei J, Mu Q, Li X, Zhang ZJ, Yu J, Yang B. An Agrobacterium-delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:319-321. [PMID: 31374142 PMCID: PMC6953201 DOI: 10.1111/pbi.13229] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 05/24/2023]
Affiliation(s)
- Si Nian Char
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
| | - Jialu Wei
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Qi Mu
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Xianran Li
- Department of AgronomyIowa State UniversityAmesIAUSA
| | | | - Jianming Yu
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Bing Yang
- Division of Plant SciencesUniversity of MissouriColumbiaMOUSA
- Donald Danforth Plant Science CenterSt. LouisMOUSA
| |
Collapse
|
40
|
Habyarimana E, De Franceschi P, Ercisli S, Baloch FS, Dall’Agata M. Genome-Wide Association Study for Biomass Related Traits in a Panel of Sorghum bicolor and S. bicolor × S. halepense Populations. FRONTIERS IN PLANT SCIENCE 2020; 11:551305. [PMID: 33281836 PMCID: PMC7688983 DOI: 10.3389/fpls.2020.551305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/26/2020] [Indexed: 05/08/2023]
Abstract
The efficient use of sorghum as a renewable energy source requires high biomass yields and reduced agricultural inputs. Hybridization of Sorghum bicolor with wild Sorghum halepense can help meet both requirements, generating high-yielding and environment friendly perennial sorghum cultivars. Selection efficiency, however, needs to be improved to exploit the genetic potential of the derived recombinant lines and remove weedy and other wild traits. In this work, we present the results from a Genome-Wide Association Study conducted on a diversity panel made up of S. bicolor and an advanced population derived from S. bicolor × S. halepense multi-parent crosses. The objective was to identify genetic loci controlling biomass yield and biomass-relevant traits for breeding purposes. Plants were phenotyped during four consecutive years for dry biomass yield, dry mass fraction of fresh material, plant height and plant maturity. A genotyping-by-sequencing approach was implemented to obtain 92,383 high quality SNP markers used in this work. Significant marker-trait associations were uncovered across eight of the ten sorghum chromosomes, with two main hotspots near the end of chromosomes 7 and 9, in proximity of dwarfing genes Dw1 and Dw3. No significant marker was found on chromosomes 2 and 4. A large number of significant marker loci associated with biomass yield and biomass-relevant traits showed minor effects on respective plant characteristics, with the exception of seven loci on chromosomes 3, 8, and 9 that explained 5.2-7.8% of phenotypic variability in dry mass yield, dry mass fraction of fresh material, and maturity, and a major effect (R 2 = 16.2%) locus on chromosome 1 for dry mass fraction of fresh material which co-localized with a zinc-finger homeodomain protein possibly involved in the expression of the D (Dry stalk) locus. These markers and marker haplotypes identified in this work are expected to boost marker-assisted selection in sorghum breeding.
Collapse
Affiliation(s)
- Ephrem Habyarimana
- CREA Research Center for Cereal and Industrial Crops, Bologna, Italy
- *Correspondence: Ephrem Habyarimana,
| | | | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | | |
Collapse
|
41
|
Identification and Characterization of EI ( Elongated Internode) Gene in Tomato ( Solanum lycopersicum). Int J Mol Sci 2019; 20:ijms20092204. [PMID: 31060285 PMCID: PMC6540210 DOI: 10.3390/ijms20092204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
Internode length is an important agronomic trait affecting plant architecture and crop yield. However, few genes for internode elongation have been identified in tomato. In this study, we characterized an elongated internode inbred line P502, which is a natural mutant of the tomato cultivar 05T606. The mutant P502 exhibits longer internode and higher bioactive GA concentration compared with wild-type 05T606. Genetic analysis suggested that the elongated internode trait is controlled by quantitative trait loci (QTL). Then, we identified a major QTL on chromosome 2 based on molecular markers and bulked segregant analysis (BSA). The locus was designated as EI (Elongated Internode), which explained 73.6% genetic variance. The EI was further mapped to a 75.8-kb region containing 10 genes in the reference Heinz 1706 genome. One single nucleotide polymorphism (SNP) in the coding region of solyc02g080120.1 was identified, which encodes gibberellin 2-beta-dioxygenase 7 (SlGA2ox7). SlGA2ox7, orthologous to AtGA2ox7 and AtGA2ox8, is involved in the regulation of GA degradation. Overexpression of the wild EI gene in mutant P502 caused a dwarf phenotype with a shortened internode. The difference of EI expression levels was not significant in the P502 and wild-type, but the expression levels of GA biosynthetic genes including CPS, KO, KAO, GA20ox1, GA20ox2, GA20ox4, GA3ox1, GA2ox1, GA2ox2, GA2ox4, and GA2ox5, were upregulated in mutant P502. Our results may provide a better understanding of the genetics underlying the internode elongation and valuable information to improve plant architecture of the tomato.
Collapse
|
42
|
Hu Z, Olatoye MO, Marla S, Morris GP. An Integrated Genotyping-by-Sequencing Polymorphism Map for Over 10,000 Sorghum Genotypes. THE PLANT GENOME 2019; 12:180044. [PMID: 30951089 DOI: 10.3835/plantgenome2018.06.0044] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mining crop genomic variation can facilitate the genetic research of complex traits and molecular breeding. In sorghum [ L. (Moench)], several large-scale single nucleotide polymorphism (SNP) datasets have been generated using genotyping-by-sequencing of KI reduced representation libraries. However, data reuse has been impeded by differences in reference genome coordinates among datasets. To facilitate reuse of these data, we constructed and characterized an integrated 459,304-SNP dataset for 10,323 sorghum genotypes on the version 3.1 reference genome. The SNP distribution showed high enrichment in subtelomeric chromosome arms and in genic regions (48% of SNPs) and was highly correlated ( = 0.82) to the distribution of KI restriction sites. The genetic structure reflected population differences by botanical race, as well as familial structure among recombinant inbred lines (RILs). Faster linkage disequilibrium decay was observed in the diversity panel than in the RILs, as expected, given the greater opportunity for recombination in diverse populations. To validate the quality and utility of the integrated SNP dataset, we used genome-wide association studies (GWAS) of genebank phenotype data, precisely mapping several known genes (e.g and ) and identifying novel associations for other traits. We further validated the dataset with GWAS of new and published plant height and flowering time data in a nested association mapping population, precisely mapping known genes and identifying epistatic interactions underlying both traits. These findings validate this integrated SNP dataset as a useful genomics resource for sorghum genetics and breeding.
Collapse
|
43
|
Girma G, Nida H, Seyoum A, Mekonen M, Nega A, Lule D, Dessalegn K, Bekele A, Gebreyohannes A, Adeyanju A, Tirfessa A, Ayana G, Taddese T, Mekbib F, Belete K, Tesso T, Ejeta G, Mengiste T. A Large-Scale Genome-Wide Association Analyses of Ethiopian Sorghum Landrace Collection Reveal Loci Associated With Important Traits. FRONTIERS IN PLANT SCIENCE 2019; 10:691. [PMID: 31191590 PMCID: PMC6549537 DOI: 10.3389/fpls.2019.00691] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/08/2019] [Indexed: 05/20/2023]
Abstract
The eastern Africa region, Ethiopia and its surroundings, is considered as the center of origin and diversity for sorghum, and has contributed to global sorghum genetic improvement. The germplasm from this region harbors enormous genetic variation for various traits but little is known regarding the genetic architecture of most traits. Here, 1425 Ethiopian landrace accessions were phenotyped under field conditions for presence or absence of awns, panicle compactness and shape, panicle exsertion, pericarp color, glume cover, plant height and smut resistance under diverse environmental conditions in Ethiopia. In addition, F1 hybrids obtained from a subset of 1341 accessions crossed to an A1 cytoplasmic male sterile line, ATx623, were scored for fertility/sterility reactions. Subsequently, genotyping-by-sequencing generated a total of 879,407 SNPs from which 72,190 robust SNP markers were selected after stringent quality control (QC). Pairwise distance-based hierarchical clustering identified 11 distinct groups. Of the genotypes assigned to either one of the 11 sub-populations, 65% had high ancestry membership coefficient with the likelihood of more than 0.60 and the remaining 35% represented highly admixed accessions. A genome-wide association study (GWAS) identified loci and SNPs associated with aforementioned traits. GWAS based on compressed mixed linear model (CMLM) identified SNPs with significant association (FDR ≤ 0.05) to the different traits studied. The percentage of total phenotypic variation explained with significant SNPs across traits ranged from 2 to 43%. Candidate genes showing significant association with different traits were identified. The sorghum bHLH transcription factor, ABORTED MICROSPORES was identified as a strong candidate gene conditioning male fertility. Notably, sorghum CLAVATA1 receptor like kinase, known for regulation of plant growth, and the ETHYLENE RESPONSIVE TRANSCRIPTION FACTOR gene RAP2-7, known to suppress transition to flowering, were significantly associated with plant height. In addition, the YELLOW SEED1 like MYB transcription factor and TANNIN1 showed strong association with pericarp color validating previous observations. Overall, the genetic architecture of natural variation representing the complex Ethiopian sorghum germplasm was established. The study contributes to the characterization of genes and alleles controlling agronomic traits, and will serve as a source of markers for molecular breeding.
Collapse
Affiliation(s)
- Gezahegn Girma
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Habte Nida
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Amare Seyoum
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Moges Mekonen
- Chiro Agricultural Research Center, Ethiopian Institute of Agricultural Research, Chiro, Ethiopia
| | - Amare Nega
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Dagnachew Lule
- Bako Agricultural Research Center, Oromia Agricultural Research Institute, Bako, Ethiopia
| | - Kebede Dessalegn
- Bako Agricultural Research Center, Oromia Agricultural Research Institute, Bako, Ethiopia
| | - Alemnesh Bekele
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Adane Gebreyohannes
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Adedayo Adeyanju
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Alemu Tirfessa
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Getachew Ayana
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Taye Taddese
- Malkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Adama, Ethiopia
| | - Firew Mekbib
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Ketema Belete
- School of Plant Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Tesfaye Tesso
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
- *Correspondence: Gebisa Ejeta,
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Tesfaye Mengiste,
| |
Collapse
|
44
|
Casto AL, McKinley BA, Yu KMJ, Rooney WL, Mullet JE. Sorghum stem aerenchyma formation is regulated by SbNAC_D during internode development. PLANT DIRECT 2018; 2:e00085. [PMID: 31245693 PMCID: PMC6508845 DOI: 10.1002/pld3.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 05/10/2023]
Abstract
Sorghum bicolor is a drought-resilient C4 grass used for production of grain, forage, sugar, and biomass. Sorghum genotypes capable of accumulating high levels of stem sucrose have solid stems that contain low levels of aerenchyma. The D-locus on SBI06 modulates the extent of aerenchyma formation in sorghum stems and leaf midribs. A QTL aligned with this locus was identified and fine-mapped in populations derived from BTx623*IS320c, BTx623*R07007, and BTx623*Standard broomcorn. Analysis of coding polymorphisms in the fine-mapped D-locus showed that genotypes that accumulate low levels of aerenchyma encode a truncated NAC transcription factor (Sobic.006G147400, SbNAC_d1), whereas parental lines that accumulate higher levels of stem aerenchyma encode full-length NAC TFs (SbNAC-D). During vegetative stem development, aerenchyma levels are low in nonelongated stem internodes, internode growing zones, and nodes. Aerenchyma levels increase in recently elongated internodes starting at the top of the internode near the center of the stem. SbNAC_D was expressed at low levels in nonelongated internodes and internode growing zones and at higher levels in regions of stem internodes that form aerenchyma. SbXCP1, a gene encoding a cysteine protease involved in programmed cell death, was induced in SbNAC_D genotypes in parallel with aerenchyma formation in sorghum stems but not in SbNAC_d1 genotypes. Several sweet sorghum genotypes encode the recessive SbNAC_d1 allele and have low levels of stem aerenchyma. Based on these results, we propose that SbNAC_D is the D-gene identified by Hilton (1916) and that allelic variation in SbNAC_D modulates the extent of aerenchyma formation in sorghum stems.
Collapse
Affiliation(s)
- Anna L. Casto
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
- Molecular and Environmental Plant Sciences Graduate ProgramTexas A&M UniversityCollege StationTexas
| | - Brian A. McKinley
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| | - Ka Man Jasmine Yu
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
- Biochemistry and Biophysics Graduate ProgramTexas A&M UniversityCollege StationTexas
| | - William L. Rooney
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTexas
| | - John E. Mullet
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| |
Collapse
|
45
|
Genotyping by Sequencing of 393 Sorghum bicolor BTx623 × IS3620C Recombinant Inbred Lines Improves Sensitivity and Resolution of QTL Detection. G3-GENES GENOMES GENETICS 2018; 8:2563-2572. [PMID: 29853656 PMCID: PMC6071585 DOI: 10.1534/g3.118.200173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We describe a genetic map with a total of 381 bins of 616 genotyping by sequencing (GBS)-based SNP markers in a F6-F8 recombinant inbred line (RIL) population of 393 individuals derived from crossing S. bicolor BTx623 to S. bicolor IS3620C, a guinea line substantially diverged from BTx623. Five segregation distorted regions were found with four showing enrichment for S. bicolor alleles, suggesting possible selection during formation of this RIL population. A quantitative trait locus (QTL) study with this number of individuals, tripled relative to prior studies of this cross, provided resources, validated previous findings, and demonstrated improved power to detect plant height and flowering time related QTL relative to other published studies. An unexpected low correlation between flowering time and plant height permitted us to separate QTL for each trait and provide evidence against pleiotropy. Ten non- random syntenic regions conferring QTL for the same trait suggest that those QTL may represent alleles at genes functioning in the same manner since the 96 million year ago genome duplication that created these syntenic relationships, while syntenic regions conferring QTL for different trait may suggest sub-functionalization after duplication. Collectively, this study provides resources for marker-assisted breeding, as well as a framework for fine mapping and subsequent cloning of major genes for important traits such as plant height and flowering time in sorghum.
Collapse
|
46
|
Xia J, Zhao Y, Burks P, Pauly M, Brown PJ. A sorghum NAC gene is associated with variation in biomass properties and yield potential. PLANT DIRECT 2018; 2:e00070. [PMID: 31245734 PMCID: PMC6508854 DOI: 10.1002/pld3.70] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 05/13/2023]
Abstract
Sorghum bicolor is a C4 grass widely cultivated for grain, forage, sugar, and biomass. The sorghum Dry Stalk (D) locus controls a qualitative difference between juicy green (dd) and dry white (D-) stalks and midribs, and co-localizes with a quantitative trait locus for sugar yield. Here, we apply fine-mapping and genome-wide association study (GWAS) to identify a candidate gene underlying D, and use nearly isogenic lines (NILs) to characterize the transcriptional, compositional, and agronomic effects of variation at the D locus. The D locus was fine-mapped to a 36 kb interval containing four genes. One of these genes is a NAC transcription factor that contains a stop codon in the NAC domain in the recessive (dd) parent. Allelic variation at D affects grain yield, sugar yield, and biomass composition in NILs. Green midrib (dd) NILs show reductions in lignin in stalk tissue and produce higher sugar and grain yields under well-watered field conditions. Increased yield potential in dd NILs is associated with increased stalk mass and moisture, higher biomass digestibility, and an extended period of grain filling. Transcriptome profiling of midrib tissue at the 4-6 leaf stages, when NILs first become phenotypically distinct, reveals that dd NILs have increased expression of a miniature zinc finger (MIF) gene. MIF genes dimerize with and suppress zinc finger homeodomain (ZF-HD) transcription factors, and a ZF-HD gene is associated with midrib color variation in a GWAS analysis across 1,694 diverse sorghum inbreds. A premature stop codon in a NAC gene is the most likely candidate polymorphism underlying the sorghum D locus. More detailed understanding of the sorghum D locus could help improve agronomic potential in cereals.
Collapse
Affiliation(s)
- Jingnu Xia
- Department of Crop SciencesUniversity of Illinois at Urbana ChampaignUrbanaIllinois
- Present address:
Department of BiochemistryUniversity of OxfordOxfordUK
| | - Yunjun Zhao
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCalifornia
- Present address:
Brookhaven National LabUptonNew York
| | - Payne Burks
- Department of Crop SciencesUniversity of Illinois at Urbana ChampaignUrbanaIllinois
- Present address:
Chromatin Inc.LubbockTexas
| | - Markus Pauly
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCalifornia
- Present address:
Heinrich‐Heine UniversityDuesseldorfGermany
| | - Patrick J. Brown
- Department of Crop SciencesUniversity of Illinois at Urbana ChampaignUrbanaIllinois
- Present address:
University of California, DavisDavisCalifornia
| |
Collapse
|
47
|
Benech-Arnold RL, Rodríguez MV. Pre-harvest Sprouting and Grain Dormancy in Sorghum bicolor: What Have We Learned? FRONTIERS IN PLANT SCIENCE 2018; 9:811. [PMID: 29963067 PMCID: PMC6013939 DOI: 10.3389/fpls.2018.00811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/25/2018] [Indexed: 05/19/2023]
Abstract
The possibility of obtaining sorghum grains with quality to match the standards for a diversity of end-uses is frequently hampered by the susceptibility to pre-harvest sprouting (PHS) displayed by many elite genotypes. For these reasons, obtaining resistance to PHS is considered in sorghum breeding programs, particularly when the crop is expected to approach harvest maturity under rainy or damp conditions prevalence. As in other cereals, the primary cause for sprouting susceptibility is a low dormancy prior to crop harvest; in consequence, most research has focused in understanding the mechanisms through which the duration of dormancy is differentially controlled in genotypes with contrasting sprouting behavior. With this aim two tannin-less, red-grained inbred lines were used as a model system: IS9530 (sprouting resistant) and Redland B2 (sprouting susceptible). Redland B2 grains are able to germinate well before reaching physiological maturity (PM) while IS9530 ones can start to germinate at 40-45 days after pollination, well after PM. Results show that the anticipated dormancy loss displayed by Redland B2 grains is related reduced embryo sensitivity to abscisic acid (ABA) and increased levels of GA upon imbibition. In turn, transcriptional data showed that ABA signal transduction is impaired in Redland B2, which appears to have an impact on GA catabolism, thus affecting the overall GA/ABA balance that regulates germination. QTL analyses were conducted to test whether previous candidate genes were located in a dormancy QTL, but also to identify new genes involved in dormancy. These analyses yielded several dormancy QTL and one of them located in chromosome 9 (qGI-9) was consistently detected even across environments. Fine mapping is already in progress to narrow down the number of candidate genes in qGI-9.
Collapse
Affiliation(s)
- Roberto L. Benech-Arnold
- Cátedra de Cultivos Industriales, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María V. Rodríguez
- Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Cátedra de Fisiología Vegetal, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
48
|
Mating Design and Genetic Structure of a Multi-Parent Advanced Generation Intercross (MAGIC) Population of Sorghum ( Sorghum bicolor (L.) Moench). G3-GENES GENOMES GENETICS 2018; 8:331-341. [PMID: 29150594 PMCID: PMC5765360 DOI: 10.1534/g3.117.300248] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multi-parent advanced generation intercross (MAGIC) populations are powerful next-generation mapping resources. We describe here the mating design and structure of the first MAGIC population in sorghum, and test its utility for mapping. The population was developed by intercrossing 19 diverse founder lines through a series of paired crosses with a genetic male sterile (MS) source, followed by 10 generations of random mating. At the final stage of random mating, 1000 random fertile plants in the population were identified and subjected to six generations of selfing to produce 1000 immortal MAGIC inbred lines. The development of this sorghum MAGIC population took over 15 yr. Genotyping-by-sequencing (GBS) of a subset of 200 MAGIC lines identified 79,728 SNPs, spanning high gene-rich regions. Proportion of SNPs per chromosome ranged from 6 to 15%. Structure analyses produced no evidence of population stratification, portraying the desirability of this population for genome-wide association studies (GWAS). The 19 founders formed three clusters, each with considerable genetic diversity. Further analysis showed that 73% of founder alleles segregated in the MAGIC population. Linkage disequilibrium (LD) patterns depicted the MAGIC population to be highly recombined, with LD decaying to r2≤ 0.2 at 40 kb and down to r2≤ 0.1 at 220 kb. GWAS detected two known plant height genes, DWARF1 (chromosome 9) and DWARF3 (chromosome 7), and a potentially new plant height quantitative trait locus (QTL) (QTL-6) on chromosome 6. The MAGIC population was found to be rich in allelic content with high fragmentation of its genome, making it fit for both gene mapping and effective marker-assisted breeding.
Collapse
|
49
|
Mantilla-Perez MB, Salas Fernandez MG. Differential manipulation of leaf angle throughout the canopy: current status and prospects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5699-5717. [PMID: 29126242 DOI: 10.1093/jxb/erx378] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/01/2017] [Indexed: 05/20/2023]
Abstract
Leaf angle is defined as the inclination between the midrib of the leaf blade and the vertical stem of a plant. This trait has been identified as a key component in the development of high-yielding varieties of cereal species, particularly maize, rice, wheat, and sorghum. The effect of leaf angle on light interception efficiency, photosynthetic rate, and yield has been investigated since the 1960s, yet, significant knowledge gaps remain in understanding the genetic control of this complex trait. Recent advances in physiology and modeling have proposed a plant ideotype with varying leaf angles throughout the canopy. In this context, we present historical and recent evidence of: (i) the effect of leaf angle on photosynthetic efficiency and yield; (ii) the hormonal regulation of this trait; (iii) the current knowledge on its quantitative genetic control; and (iv) the opportunity to utilize high-throughput phenotyping methods to characterize leaf angle at multiple canopy levels. We focus on research conducted on grass species of economic importance, with similar plant architecture and growth patterns. Finally, we present the challenges and strategies plant breeders will need to embrace in order to manipulate leaf angle differentially throughout the canopy and develop superior crops for food, feed, and fuel production.
Collapse
|
50
|
Hura T, Dziurka M, Hura K, Ostrowska A, Dziurka K, Gadzinowska J. Wheat and rye genome confer specific phytohormone profile features and interplay under water stress in two phenotypes of triticale. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:494-509. [PMID: 28756347 DOI: 10.1016/j.plaphy.2017.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 05/04/2023]
Abstract
The aim of the experiment was to determine phytohormone profile of triticale and quality-based relationships between the analyzed groups of phytohormones. The study involved two triticale phenotypes, a long-stemmed one and a semi-dwarf one with Dw1 gene, differing in mechanisms of acclimation to drought and controlled by wheat or rye genome. Water deficit in the leaves triggered a specific phytohormone response in both winter triticale phenotypes attributable to the dominance of wheat (semi-dwarf cultivar) or rye (long-stemmed cultivar) genome. Rye genome in long-stemmed triticale was responsible for specific increase (tillering: gibberellic acid; heading: N6-isopentenyladenine, trans-zeatin-9-riboside, cis-zeatin-9-riboside; flowering: N6-isopentenyladenine, indolebutyric acid, salicylic acid) or decrease (heading: trans-zeatin) in the content of some phytohormones. Wheat genome in semi-dwarf triticale controlled a specific increase in trans-zeatin content at heading and anthesis in gibberellin A1 during anthesis. The greatest number of changes in the phytohormone levels was observed in the generative phase. In both triticale types, the pool of investigated phytohormones was dominated by abscisic acid and gibberellins. The semi-dwarf cultivar with Dw1 gene was less sensitive to gibberellins and its mechanisms of acclimation to water stress were mainly ABA-dependent. An increase in ABA and gibberellins during drought and predominance of these hormones in the total pool of analyzed phytohormones indicated their equal share in drought acclimation mechanisms in long-stemmed cultivar.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland.
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, Agricultural University, Podłużna 3, 30-239 Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland
| | - Kinga Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland
| | - Joanna Gadzinowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, 30-239 Kraków, Niezapominajek 21, Poland
| |
Collapse
|