1
|
Xu H, Zhang S, Song K, Yang H, Yin J, Huang Y. Droplet-based 3D bioprinting for drug delivery and screening. Adv Drug Deliv Rev 2025; 217:115486. [PMID: 39667692 DOI: 10.1016/j.addr.2024.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Recently, the conventional criterion of "one-size-fits-all" is not qualified for each individual patient, requiring precision medicine for enhanced therapeutic effects. Besides, drug screening is a high-cost and time-consuming process which requires innovative approaches to facilitate drug development rate. Benefiting from consistent technical advances in 3D bioprinting techniques, droplet-based 3D bioprinting techniques have been broadly utilized in pharmaceutics due to the noncontact printing mechanism and precise control on the deposition position of droplets. More specifically, cell-free/cell-laden bioinks which are deposited for the fabrication of drug carriers/3D tissue constructs have been broadly utilized for precise drug delivery and high throughput drug screening, respectively. This review summarizes the mechanism of various droplet-based 3D bioprinting techniques and the most up-to-date applications in drug delivery and screening and discusses the potential improvements of droplet-based 3D bioprinting techniques from both technical and material aspects. Through technical innovations, materials development, and the assistance from artificial intelligence, the formation process of drug carriers will be more stable and accurately controlled guaranteeing precise drug delivery. Meanwhile, the shape fidelity and uniformity of the printed tissue models will be significantly improved ensuring drug screening efficiency and efficacy.
Collapse
Affiliation(s)
- Heqi Xu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Shaokun Zhang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | | | - Huayong Yang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China.
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Beheshtizadeh N, Gharibshahian M, Bayati M, Maleki R, Strachan H, Doughty S, Tayebi L. Vascular endothelial growth factor (VEGF) delivery approaches in regenerative medicine. Biomed Pharmacother 2023; 166:115301. [PMID: 37562236 DOI: 10.1016/j.biopha.2023.115301] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023] Open
Abstract
The utilization of growth factors in the process of tissue regeneration has garnered significant interest and has been the subject of extensive research. However, despite the fervent efforts invested in recent clinical trials, a considerable number of these studies have produced outcomes that are deemed unsatisfactory. It is noteworthy that the trials that have yielded the most satisfactory outcomes have exhibited a shared characteristic, namely, the existence of a mechanism for the regulated administration of growth factors. Despite the extensive exploration of drug delivery vehicles and their efficacy in delivering certain growth factors, the development of a reliable predictive approach for the delivery of delicate growth factors like Vascular Endothelial Growth Factor (VEGF) remains elusive. VEGF plays a crucial role in promoting angiogenesis; however, the administration of VEGF demands a meticulous approach as it necessitates precise localization and transportation to a specific target tissue. This process requires prolonged and sustained exposure to a low concentration of VEGF. Inaccurate administration of drugs, either through off-target effects or inadequate delivery, may heighten the risk of adverse reactions and potentially result in tumorigenesis. At present, there is a scarcity of technologies available for the accurate encapsulation of VEGF and its subsequent sustained and controlled release. The objective of this review is to present and assess diverse categories of VEGF administration mechanisms. This paper examines various systems, including polymeric, liposomal, hydrogel, inorganic, polyplexes, and microfluidic, and evaluates the appropriate dosage of VEGF for multiple applications.
Collapse
Affiliation(s)
- Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Bayati
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, Iran.
| | - Hannah Strachan
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Sarah Doughty
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
3
|
Pommella A, Griffiths P, Coativy G, Dalmas F, Ranoo S, Schmidt AM, Méchin F, Bernard J, Zinn T, Narayanan T, Meille S, Baeza GP. Fate of Magnetic Nanoparticles during Stimulated Healing of Thermoplastic Elastomers. ACS NANO 2023; 17:17394-17404. [PMID: 37578990 DOI: 10.1021/acsnano.3c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
We have investigated the heating mechanism in industrially relevant, multi-block copolymers filled with Fe nanoparticles and subjected to an oscillatory magnetic field that enables polymer healing in a contactless manner. While this procedure aims to extend the lifetime of a wide range of thermoplastic polymers, repeated or prolonged stimulus healing is likely to modify their structure, mechanics, and ability to heat, which must therefore be characterized in depth. In particular, our work sheds light on the physical origin of the secondary heating mechanism detected in soft systems subjected to magnetic hyperthermia and triggered by copolymer chain dissociation. In spite of earlier observations, the origin of this additional heating remained unclear. By using both static and dynamic X-ray scattering methods (small-angle X-ray scattering and X-ray photon correlation spectroscopy, respectively), we demonstrate that beyond magnetic hysteresis losses, the enormous drop of viscosity at the polymer melting temperature enables motion of nanoparticles that generates additional heat through friction. Additionally, we show that applying induction heating for a few minutes is found to magnetize the nanoparticles, which causes them to align in dipolar chains and leads to nonmonotonic translational dynamics. By extrapolating these observations to rotational dynamics and the corresponding amount of heat generated through friction, we not only clarify the origin of the secondary heating mechanism but also rationalize the presence of a possible temperature maximum observed during induction heating.
Collapse
Affiliation(s)
- Angelo Pommella
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| | - Pablo Griffiths
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, LGEF, EA682, Villeurbanne 69621, France
| | - Gildas Coativy
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, LGEF, EA682, Villeurbanne 69621, France
| | - Florent Dalmas
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| | - Surojit Ranoo
- Chemistry Department, Institute for Physical Chemistry, University of Cologne, Cologne 50939, Germany
| | - Annette M Schmidt
- Chemistry Department, Institute for Physical Chemistry, University of Cologne, Cologne 50939, Germany
| | - Françoise Méchin
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne Cédex F-69621, France
| | - Julien Bernard
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne Cédex F-69621, France
| | - Thomas Zinn
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Theyencheri Narayanan
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Sylvain Meille
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| | - Guilhem P Baeza
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| |
Collapse
|
4
|
Li X, Huang Z, Liao Z, Liu A, Huo S. Transformable nanodrugs for overcoming the biological barriers in the tumor environment during drug delivery. NANOSCALE 2023; 15:8532-8547. [PMID: 37114478 DOI: 10.1039/d2nr06621a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Drug delivery systems have been studied massively with explosive growth in the last few decades. However, challenges such as biological barriers are still obstructing the delivery efficiency of nanomedicines. Reports have shown that the physicochemical properties, such as the morphologies of nanodrugs, could highly affect their biodistribution and bioavailability. Therefore, transformable nanodrugs that take advantage of different sizes and shapes allow for overcoming multiple biological barriers, providing promising prospects for drug delivery. This review aims to present an overview of the most recent developments of transformable nanodrugs in this emerging field. First, the design principles and transformation mechanisms which serve as guidelines for smart nanodrugs are summarized. Afterward, their applications in overcoming biological barriers, including the bloodstream, intratumoral pressure, cellular membrane, endosomal wrapping, and nuclear membrane, are highlighted. Finally, discussions on the current developments and future perspectives of transformable nanodrugs are given.
Collapse
Affiliation(s)
- Xuejian Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhenkun Huang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Aijie Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
5
|
Griffiths P, Coativy G, Dalmas F, Falco G, Jiang L, Xiang Z, Le MQ, Ducharne B, Le Roy D, Méchin F, Bernard J, Meille S, Baeza GP. Ultrafast Remote Healing of Magneto-Responsive Thermoplastic Elastomer-Based Nanocomposites. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Pablo Griffiths
- Université de Lyon, INSA-Lyon, CNRS, MATEIS, UMR 5510, F-69621 Villeurbanne, France
- Université de Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | - Gildas Coativy
- Université de Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | - Florent Dalmas
- Université de Lyon, INSA-Lyon, CNRS, MATEIS, UMR 5510, F-69621 Villeurbanne, France
| | - Guillaume Falco
- Université de Lyon, INSA-Lyon, CNRS, MATEIS, UMR 5510, F-69621 Villeurbanne, France
| | - Liuyin Jiang
- Université de Lyon, INSA-Lyon, CNRS, MATEIS, UMR 5510, F-69621 Villeurbanne, France
- Université de Lyon, INSA Lyon, CNRS, IMP, UMR 5223, F-69621 Villeurbanne, France
| | - Ziyin Xiang
- Université de Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | - Minh-Quyen Le
- Université de Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
| | - Benjamin Ducharne
- Université de Lyon, INSA-Lyon, LGEF, EA682, F-69621 Villeurbanne, France
- ELyTMaX UMI 3757, CNRS─Université de Lyon─Tohoku University, International Joint Unit, Tohoku University, 980-8577 Sendai, Japan
| | - Damien Le Roy
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, F-69622 Lyon, France
| | - Françoise Méchin
- Université de Lyon, INSA Lyon, CNRS, IMP, UMR 5223, F-69621 Villeurbanne, France
| | - Julien Bernard
- Université de Lyon, INSA Lyon, CNRS, IMP, UMR 5223, F-69621 Villeurbanne, France
| | - Sylvain Meille
- Université de Lyon, INSA-Lyon, CNRS, MATEIS, UMR 5510, F-69621 Villeurbanne, France
| | - Guilhem P. Baeza
- Université de Lyon, INSA-Lyon, CNRS, MATEIS, UMR 5510, F-69621 Villeurbanne, France
| |
Collapse
|
6
|
Muhammad K, Zhao J, Gao B, Feng Y. Polymeric nano-carriers for on-demand delivery of genes via specific responses to stimuli. J Mater Chem B 2021; 8:9621-9641. [PMID: 32955058 DOI: 10.1039/d0tb01675f] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric nano-carriers have been developed as a most capable and feasible technology platform for gene therapy. As vehicles, polymeric nano-carriers are obliged to possess high gene loading capability, low immunogenicity, safety, and the ability to transfer various genetic materials into specific sites of target cells to express therapeutic proteins or block a process of gene expression. To this end, various types of polymeric nano-carriers have been prepared to release genes in response to stimuli such as pH, redox, enzymes, light and temperature. These stimulus-responsive nano-carriers exhibit high gene transfection efficiency and low cytotoxicity. In particular, dual- and multi-stimulus-responsive polymeric nano-carriers can respond to a combination of signals. Markedly, these combined responses take place either simultaneously or in a sequential manner. These dual-stimulus-responsive polymeric nano-carriers can control gene delivery with high gene transfection both in vitro and in vivo. In this review paper, we highlight the recent exciting developments in stimulus-responsive polymeric nano-carriers for gene delivery applications.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China. and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, P. R. China
| |
Collapse
|
7
|
Ganguly S, Margel S. Review: Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnol Adv 2020; 44:107611. [PMID: 32818552 DOI: 10.1016/j.biotechadv.2020.107611] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
|
8
|
|
9
|
Krishnan BP, Prieto-López LO, Hoefgen S, Xue L, Wang S, Valiante V, Cui J. Thermomagneto-Responsive Smart Biocatalysts for Malonyl-Coenzyme A Synthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20982-20990. [PMID: 32268726 DOI: 10.1021/acsami.0c04344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Smart biocatalysts, in which enzymes are conjugated to stimuli-responsive polymers, have gained considerable attention because of their catalytic switchability and recyclability. Although many systems have been developed, they require separate laboratory techniques for their recovery, making them unsuitable for many practical applications. To address these issues, we designed a thermomagneto-responsive biocatalyst by immobilizing an enzyme on the terminal of thermo-responsive polymer brushes tethered on magnetic nanoparticle (NP) clusters. The concept is demonstrated by a system consisting of iron oxide NPs, poly(N-isopropyl-acrylamide), and a malonyl-Coenzyme A synthetase (MatB). By using free malonate and coenzyme A (CoA), the designed catalyst exhibits adequate activity for the production of malonyl-CoA. Thanks to the use of a magnetic NP cluster, whose magnetic moment is high, this system is fully recoverable under the magnetic field at above 32 °C because of the collapse of the thermo-responsive polymer shell in the clusters. In addition, the recycled catalyst maintains moderate activity even after three cycles, and it also shows excellent catalytic switchability, that is, negligible catalytic activity at 25 °C because of the blockage of the active sites of the enzyme by the extended hydrophilic polymer chains but great catalytic activity at a temperatures above the lower critical solution temperature at which the enzymes are exposed to the reaction medium because of the thermo-responsive contraction of polymer chains. Because the azide functionality in our system can be easily functionalized depending upon our need, such catalytically switchable, fully recoverable, and recyclable multiresponsive catalytic systems can be of high relevance for other cell-free biosynthetic approaches.
Collapse
Affiliation(s)
- Baiju P Krishnan
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | | | - Sandra Hoefgen
- Leibniz Research Group-Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Lulu Xue
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Sheng Wang
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Vito Valiante
- Leibniz Research Group-Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Jiaxi Cui
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| |
Collapse
|
10
|
Putri AD, Murti BT, Kanchi S, Sabela MI, Bisetty K, Tiwari A, Inamuddin, Asiri AM. Computational studies on the molecular insights of aptamer induced poly(N-isopropylacrylamide)-graft-graphene oxide for on/off- switchable whole-cell cancer diagnostics. Sci Rep 2019; 9:7873. [PMID: 31133671 PMCID: PMC6536548 DOI: 10.1038/s41598-019-44378-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 05/13/2019] [Indexed: 01/04/2023] Open
Abstract
This work deals with first-principles and in silico studies of graphene oxide-based whole-cell selective aptamers for cancer diagnostics utilising a tunable-surface strategy. Herein, graphene oxide (GO) was constructed as a surface-based model with poly(N-isopropylacrylamide) (PNIPAM) covalently grafted as an "on/off"-switch in triggering interactions with the cancer-cell protein around its lower critical solution temperature. The atomic building blocks of the aptamer and the PNIPAM adsorbed onto the GO was investigated at the density functional theory (DFT) level. The presence of the monomer of PNIPAM stabilised the system's π-π interaction between GO and its nucleobases as confirmed by higher bandgap energy, satisfying the eigenvalues of the single-point energy observed rather than the nucleobase and the GO complex independently. The unaltered geometrical structures of the surface emphasise the physisorption type interaction between the nucleobase and the GO/NIPAM surface. The docking result for the aptamer and the protein, highlighted the behavior of the PNIPAM-graft-GO is exhibiting globular and extended conformations, further supported by molecular dynamics (MD) simulations. These studies enabled a better understanding of the thermal responsive behavior of the polymer-enhanced GO complex for whole-cell protein interactions through computational methods.
Collapse
Affiliation(s)
- Athika Darumas Putri
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
- Semarang College of Pharmaceutical Sciences, Jl. Letnand Jendral Sarwo Edi Wibowo, Semarang City, 50192, Indonesia
| | - Bayu Tri Murti
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
- Semarang College of Pharmaceutical Sciences, Jl. Letnand Jendral Sarwo Edi Wibowo, Semarang City, 50192, Indonesia
| | - Suvardhan Kanchi
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
| | - Myalowenkosi I Sabela
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Faculty of Applied Science, Durban University of Technology, Durban, 4000, South Africa.
| | - Ashutosh Tiwari
- Institute of Advanced Materials, UCS, Teknikringen 4A, Mjärdevi Science Park, SE-58330, Linköping, Sweden
- Vinoba Bhave Research Institute, Binda-Dhokri Road, Saidabad, Allahabad, 221508, India
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Jadhav SA, Brunella V, Sapino S, Caprarelli B, Riedo C, Chirio D, Gallarate M. Poly (N-isopropylacrylamide) based hydrogels as novel precipitation and stabilization media for solid lipid nanoparticles (SLNs). J Colloid Interface Sci 2019; 541:454-460. [PMID: 30711639 DOI: 10.1016/j.jcis.2019.01.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022]
Abstract
In this work, poly(N-isopropylacrylamide) (PNIPAM) based chemically cross-linked hydrogels are used as novel precipitation and stabilization media for solid lipid nanoparticles (SLNs) for the first time. The hydrogels and the hybrid thermoresponsive composite hydrogels with SLNs were characterized by SEM, DSC, DLS and rheometric analysis. The results showed that the SLNs obtained directly in the gel matrix by the newly devised method were well-dispersed and remained stable for one month. A remarkable advantage of this approach is that it yields the thermoresponsive nanocomposite hydrogels in a single step. This approach is a significant advancement in the preparation of hybrid thermoresponsive nanocomposite systems based on smart gels and SLNs for their use in biomedical applications.
Collapse
Affiliation(s)
- Sushilkumar A Jadhav
- Department of Chemistry and NIS Research Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; School of Nanoscience and Technology, Shivaji University Kolhapur, 416004 Kolhapur, Maharashtra, India.
| | - Valentina Brunella
- Department of Chemistry and NIS Research Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Simona Sapino
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Bruno Caprarelli
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Chiara Riedo
- Department of Chemistry and NIS Research Centre, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Daniela Chirio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Marina Gallarate
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Torino, Via P. Giuria 9, 10125 Torino, Italy
| |
Collapse
|
12
|
Baranowska-Korczyc A, Stelmach E, Paterczyk B, Maksymiuk K, Michalska A. Ultrasmall self-assembly poly(N-isopropylacrylamide-butyl acrylate) (polyNIPAM-BA) thermoresponsive nanoparticles. J Colloid Interface Sci 2019; 542:317-324. [DOI: 10.1016/j.jcis.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/27/2022]
|
13
|
Mai BT, Balakrishnan PB, Barthel MJ, Piccardi F, Niculaes D, Marinaro F, Fernandes S, Curcio A, Kakwere H, Autret G, Cingolani R, Gazeau F, Pellegrino T. Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5727-5739. [PMID: 30624889 PMCID: PMC6376448 DOI: 10.1021/acsami.8b16226] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/09/2019] [Indexed: 05/22/2023]
Abstract
The use of magnetic nanoparticles in oncothermia has been investigated for decades, but an effective combination of magnetic nanoparticles and localized chemotherapy under clinical magnetic hyperthermia (MH) conditions calls for novel platforms. In this study, we have engineered magnetic thermoresponsive iron oxide nanocubes (TR-cubes) to merge MH treatment with heat-mediated drug delivery, having in mind the clinical translation of the nanoplatform. We have chosen iron oxide based nanoparticles with a cubic shape because of their outstanding heat performance under MH clinical conditions, which makes them benchmark agents for MH. Accomplishing a surface-initiated polymerization of strongly interactive nanoparticles such as our iron oxide nanocubes, however, remains the main challenge to overcome. Here, we demonstrate that it is possible to accelerate the growth of a polymer shell on each nanocube by simple irradiation of a copper-mediated polymerization with a ultraviolet light (UV) light, which both speeds up the polymerization and prevents nanocube aggregation. Moreover, we demonstrate herein that these TR-cubes can carry chemotherapeutic doxorubicin (DOXO-loaded-TR-cubes) without compromising their thermoresponsiveness both in vitro and in vivo. In vivo efficacy studies showed complete tumor suppression and the highest survival rate for animals that had been treated with DOXO-loaded-TR-cubes, only when they were exposed to MH. The biodistribution of intravenously injected TR-cubes showed signs of renal clearance within 1 week and complete clearance after 5 months. This biomedical platform works under clinical MH conditions and at a low iron dosage, which will enable the translation of dual MH/heat-mediated chemotherapy, thus overcoming the clinical limitation of MH: i.e., being able to monitor tumor progression post-MH-treatment by magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Binh T. Mai
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso,
31, 16146 Genova, Italy
| | - Preethi B. Balakrishnan
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso,
31, 16146 Genova, Italy
| | | | | | - Dina Niculaes
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso,
31, 16146 Genova, Italy
| | | | - Soraia Fernandes
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Alberto Curcio
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Hamilton Kakwere
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Gwennhael Autret
- Centre
de Recherche Cardiovasculaire de Paris 56, rue Leblanc, 75737 Paris Cedex 15, France
| | | | - Florence Gazeau
- Laboratoire
Matière et Systèmes Complexes, UMR 7057, CNRS and University Paris Diderot, 75205 Paris Cedex 13, France
| | | |
Collapse
|
14
|
Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today 2018; 23:992-1006. [PMID: 29653291 PMCID: PMC6195679 DOI: 10.1016/j.drudis.2018.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
Nanomaterials that respond to externally applied physical stimuli such as temperature, light, ultrasound, magnetic field and electric field have shown great potential for controlled and targeted delivery of therapeutic agents. However, the body of literature on programming these stimuli-responsive nanomaterials to attain the desired level of pharmacologic responses is still fragmented and has not been systematically reviewed. The purpose of this review is to summarize and synthesize the literature on various design strategies for simple and sophisticated programmable physical-stimuli-responsive nanotherapeutics.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Muhammad Gulfam
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
16
|
Uniaxial alignment of ZnO nanowires via light-induced directional migration of azopolymeric microspheres. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Liu X, Yang Y, Urban MW. Stimuli-Responsive Polymeric Nanoparticles. Macromol Rapid Commun 2017; 38. [PMID: 28497535 DOI: 10.1002/marc.201700030] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/17/2022]
Abstract
There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic).
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Ying Yang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
18
|
Perez JE, Ravasi T, Kosel J. Mesenchymal stem cells cultured on magnetic nanowire substrates. NANOTECHNOLOGY 2017; 28:055703. [PMID: 28029098 DOI: 10.1088/1361-6528/aa52a3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 μm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing hMSCs differentiation.
Collapse
Affiliation(s)
- Jose E Perez
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia. Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
19
|
Jalili NA, Muscarello M, Gaharwar AK. Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications. Bioeng Transl Med 2016; 1:297-305. [PMID: 29313018 PMCID: PMC5689536 DOI: 10.1002/btm2.10034] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/18/2016] [Accepted: 08/26/2016] [Indexed: 01/03/2023] Open
Abstract
“Smart” hydrogels are part of an emerging class of biomaterials that respond to multiple external stimuli. A range of thermoresponsive magnetic hydrogels is currently being developed for on‐demand delivery of biomolecules for a range of biomedical applications, including therapeutic drug delivery, bioimaging, and regenerative engineering. In this review article, we explore different types of magnetic nanoparticles and thermoresponsive polymers used to fabricate these smart nanoengineered hydrogels. We highlight some of the emerging applications of these stimuli‐responsive hydrogels for biomedical applications. Finally, we capture the growing trend of these smart nanoengineered hydrogels and will identify promising new research directions.
Collapse
Affiliation(s)
- Nima A Jalili
- Dept. of Biomedical Engineering Texas A&M University, College Station TX 77843
| | - Madyson Muscarello
- Dept. of Biomedical Engineering Texas A&M University, College Station TX 77843
| | - Akhilesh K Gaharwar
- Dept. of Biomedical Engineering Texas A&M University, College Station TX 77843.,Dept. of Materials Science and Engineering Texas A&M University, College Station TX 77843.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station TX 77843
| |
Collapse
|
20
|
Gao Y, Chang MW, Ahmad Z, Li JS. Magnetic-responsive microparticles with customized porosity for drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra17162a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One step engineering of drug-loaded magnetic porous particles for controlled release and targeting.
Collapse
Affiliation(s)
- Yuan Gao
- College of Biomedical Engineering & Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
| | - Ming-Wei Chang
- College of Biomedical Engineering & Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
| | - Zeeshan Ahmad
- Leicester School of Pharmacy
- De Montfort University
- Leicester
- UK
| | - Jing-Song Li
- College of Biomedical Engineering & Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
| |
Collapse
|