1
|
Pálmadóttir T, Getachew J, Ortigosa-Pascual L, Axell E, Wei J, Olsson U, Knowles TPJ, Linse S. On the reversibility of amyloid fibril formation. BIOPHYSICS REVIEWS 2025; 6:011303. [PMID: 39973975 PMCID: PMC11836874 DOI: 10.1063/5.0236947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/31/2024] [Indexed: 02/21/2025]
Abstract
Amyloids are elongated supramolecular protein self-assemblies. Their formation is a non-covalent assembly process and as such is fully reversible. Amyloid formation is associated with several neurodegenerative diseases, and the reversibility is key to maintaining the healthy state. Reversibility is also key to the performance of fibril-based biomaterials and functional amyloids. The reversibility can be observed by a range of spectroscopic, calorimetric, or surface-based techniques using as a starting state either a supersaturated monomer solution or diluted fibrils. Amyloid formation has the characteristics of a phase transition, and we provide some basic formalism for the reversibility and the derivation of the solubility/critical concentration. We also discuss conditions under which the dissociation of amyloids may be so slow that the process can be viewed as practically irreversible, for example, because it is slow relative to the experimental time frame or because the system at hand contains a source for constant monomer addition.
Collapse
Affiliation(s)
| | - Josef Getachew
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | - Emil Axell
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Jiapeng Wei
- Yusuf Hamied Chemistry Department, University of Cambridge, Cambridge, United Kingdom
| | - Ulf Olsson
- Physical Chemistry, Lund University, Lund, Sweden
| | - Tuomas P. J. Knowles
- Yusuf Hamied Chemistry Department, University of Cambridge, Cambridge, United Kingdom
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Tian Y, Torres-Flores AP, Shang Q, Zhang H, Khursheed A, Tahirbegi B, Pallier PN, Viles JH. The p3 peptides (Aβ 17-40/42) rapidly form amyloid fibrils that cross-seed with full-length Aβ. Nat Commun 2025; 16:2040. [PMID: 40016209 PMCID: PMC11868391 DOI: 10.1038/s41467-025-57341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
The p3 peptides, Aβ17-40/42, are a common alternative cleavage product of the amyloid precursor protein, and are found in diffuse amyloid deposits of Alzheimer's and Down Syndrome brains. The p3 peptides have been mis-named 'non-amyloidogenic'. Here we show p340/42 peptides rapidly form amyloid fibrils, with kinetics dominated by secondary nucleation. Importantly, cross-seeding experiments, with full-length Aβ induces a strong nucleation between p3 and Aβ peptides. The cross-seeding interaction is highly specific, and occurs only when the C-terminal residues are matched. We have imaged membrane interactions with p3, and monitored Ca2+ influx and cell viability with p3 peptide. Together this data suggests the N-terminal residues influence, but are not essential for, membrane disruption. Single particle analysis of TEM images indicates p3 peptides can form ring-like annular oligomers. Patch-clamp electrophysiology, shows p342 oligomers are capable of forming large ion-channels across cellular membranes. A role for p3 peptides in disease pathology should be considered as p3 peptides are cytotoxic and cross-seed Aβ fibril formation in vitro.
Collapse
Affiliation(s)
- Yao Tian
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Andrea P Torres-Flores
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Qi Shang
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Hui Zhang
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Anum Khursheed
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Bogachan Tahirbegi
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Patrick N Pallier
- The Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Queen Mary University of London, London, E1 2AT, UK
| | - John H Viles
- Department of Biochemistry, School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
3
|
Sengupta P, Mukhopadhyay D. IGF1R/ARRB1 Mediated Regulation of ERK and cAMP Pathways in Response to Aβ Unfolds Novel Therapeutic Avenue in Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04735-6. [PMID: 39969678 DOI: 10.1007/s12035-025-04735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
IGF1R/INSR signaling is crucial for understanding Alzheimer's disease (AD) and may aid in the development of potent therapeutic strategies. This study investigated the expression and activity of these receptors and their potential to form functional hybrids in response to amyloid beta (Aβ). IGF1R, INSR, and ARRB1 were found to be upregulated in AD. The propensity for functional hybrid formation was also greater in the presence of Aβ. The association of IGF1R with ARRB1 reached a maximum at 60 min of Aβ treatment, which coincided with increased pERK activity at approximately the same time, indicating the importance of this association in pERK regulation. Knocking down IGF1R, INSR, and ARRB1 independently reduced cAMP, whereas overexpressing IGF1R significantly increased cAMP. Knocking down ARRB1 in IGF1R-overexpressing cells led to a reduction in cAMP, indicating that the interaction of ARRB1 and IGF1R possibly contributes to cAMP dysregulation. Since cAMP plays a crucial role in cognition and memory, alterations in cAMP after receptor hybridization could be significant in AD. Additionally, we noted hyperactivation of MAPK, which is associated with aberrant cellular activity, transcriptional control, and stress pathways. This finding highlights the importance of IGF1R and INSR dysregulation, which plays a major role in addition to conventional RTK signaling through multiple pathways. Here, we focused on the ARRB1 and IGF1R interaction and showed that picropodophyllin (PPP), an IGF1R-specific inhibitor, blocks this interaction and alters the ERK and cAMP status under disease conditions. Cell viability studies further revealed that the PPP substantially improved cell viability in the presence of Aβ. This highlights the role of the PPP in regulating these cascades and opens the arena for further therapeutic development for AD.
Collapse
Affiliation(s)
- Priyanka Sengupta
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Debashis Mukhopadhyay
- Biophysical Sciences Group, 1/AF, Biddhanagar, Saha Institute of Nuclear Physics, Kolkata, 700064, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
4
|
Chung HS. Characterizing heterogeneity in amyloid formation processes. Curr Opin Struct Biol 2024; 89:102951. [PMID: 39566372 PMCID: PMC11602362 DOI: 10.1016/j.sbi.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Protein aggregation is a complex process, consisting of a large number of pathways connecting monomers and mature amyloid fibrils. Recent advances in structure determination techniques, such as solid-state NMR and cryoEM, have allowed the determination of atomic resolution structures of fibril polymorphs, but most of the intermediate stages of the process including oligomer formation remain unknown. Proper characterization of the heterogeneity of the process is critical not only for physical and chemical understanding of the aggregation process but also for elucidation of the disease mechanisms and identification of therapeutic targets. This article reviews recent developments in the characterization of heterogeneity in amyloid formation processes.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
5
|
Meng F, Kim JY, Louis JM, Chung HS. Single-Molecule Characterization of Heterogeneous Oligomer Formation during Co-Aggregation of 40- and 42-Residue Amyloid-β. J Am Chem Soc 2024; 146:24426-24439. [PMID: 39177153 DOI: 10.1021/jacs.4c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The two most abundant isoforms of amyloid-β (Aβ) are the 40- (Aβ40) and 42-residue (Aβ42) peptides. Since they coexist and there is a correlation between toxicity and the ratio of the two isoforms, quantitative characterization of their interactions is crucial for understanding the Aβ aggregation mechanism. In this work, we follow the aggregation of individual isoforms in a mixture using single-molecule FRET spectroscopy by labeling Aβ42 and Aβ40 with the donor and acceptor fluorophores, respectively. We found that there are two phases of aggregation. The first phase consists of coaggregation of Aβ42 with a small amount of Aβ40, while the second phase results mostly from aggregation of Aβ40. We also found that the aggregation of Aβ42 is slowed by Aβ40 while the aggregation of Aβ40 is accelerated by Aβ42 in a concentration-dependent manner. The formation of oligomers was monitored by incubating mixtures in a plate reader and performing a single-molecule free-diffusion experiment at several different stages of aggregation. The detailed properties of the oligomers were obtained by maximum likelihood analysis of fluorescence bursts. The FRET efficiency distribution is much broader than that of the Aβ42 oligomers, indicating the diversity in isoform composition of the oligomers. Pulsed interleaved excitation experiments estimate that the fraction of Aβ40 in the co-oligomers in a 1:1 mixture of Aβ42 and Aβ40 varies between 0 and 20%. The detected oligomers were mostly co-oligomers especially at the physiological ratio of Aβ42 and Aβ40 (1:10), suggesting the critical role of Aβ40 in oligomer formation and aggregation.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| |
Collapse
|
6
|
Visser BS, Lipiński WP, Spruijt E. The role of biomolecular condensates in protein aggregation. Nat Rev Chem 2024; 8:686-700. [PMID: 39134696 DOI: 10.1038/s41570-024-00635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 09/11/2024]
Abstract
There is an increasing amount of evidence that biomolecular condensates are linked to neurodegenerative diseases associated with protein aggregation, such as Alzheimer's disease and amyotrophic lateral sclerosis, although the mechanisms underlying this link remain elusive. In this Review, we summarize the possible connections between condensates and protein aggregation. We consider both liquid-to-solid transitions of phase-separated proteins and the partitioning of proteins into host condensates. We distinguish five key factors by which the physical and chemical environment of a condensate can influence protein aggregation, and we discuss their relevance in studies of protein aggregation in the presence of biomolecular condensates: increasing the local concentration of proteins, providing a distinct chemical microenvironment, introducing an interface wherein proteins can localize, changing the energy landscape of aggregation pathways, and the presence of chaperones in condensates. Analysing the role of biomolecular condensates in protein aggregation may be essential for a full understanding of amyloid formation and offers a new perspective that can help in developing new therapeutic strategies for the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Brent S Visser
- Institute of Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Wojciech P Lipiński
- Institute of Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute of Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Ulku I, Leung R, Herre F, Walther L, Shobo A, Saftig P, Hancock MA, Liebsch F, Multhaup G. Inhibition of BACE1 affected both its Aβ producing and degrading activities and increased Aβ42 and Aβ40 levels at high-level BACE1 expression. J Biol Chem 2024; 300:107510. [PMID: 38944120 PMCID: PMC11324814 DOI: 10.1016/j.jbc.2024.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
The beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the predominant β-secretase, cleaving the amyloid precursor protein (APP) via the amyloidogenic pathway. In addition, BACE1 as an amyloid degrading enzyme (ADE), cleaves Aβ to produce the C-terminally truncated non-toxic Aβ fragment Aβ34 which is an indicator of amyloid clearance. Here, we analyzed the effects of BACE1 inhibitors on its opposing enzymatic functions, i.e., amyloidogenic (Aβ producing) and amyloidolytic (Aβ degrading) activities, using cell culture models with varying BACE1/APP ratios. Under high-level BACE1 expression, low-dose inhibition unexpectedly yielded a two-fold increase in Aβ42 and Aβ40 levels. The concomitant decrease in Aβ34 and secreted APPβ levels suggested that the elevated Aβ42 and Aβ40 levels were due to the attenuated Aβ degrading activity of BACE1. Notably, the amyloidolytic activity of BACE1 was impeded at lower BACE1 inhibitor concentrations compared to its amyloidogenic activity, thereby suggesting that the Aβ degrading activity of BACE1 was more sensitive to inhibition than its Aβ producing activity. Under endogenous BACE1 and APP levels, "low-dose" BACE1 inhibition affected both the Aβ producing and degrading activities of BACE1, i.e., significantly increased Aβ42/Aβ40 ratio and decreased Aβ34 levels, respectively. Further, we incubated recombinant BACE1 with synthetic Aβ peptides and found that BACE1 has a higher affinity for Aβ substrates over APP. In summary, our results suggest that stimulating BACE1's ADE activity and halting Aβ production without decreasing Aβ clearance could still be a promising therapeutic approach with new, yet to be developed, BACE1 modulators.
Collapse
Affiliation(s)
- Irem Ulku
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Rocher Leung
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Fritz Herre
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Lina Walther
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Adeola Shobo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Paul Saftig
- Biochemisches Institut, CAU Kiel, Kiel, Germany
| | - Mark A Hancock
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Filip Liebsch
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Pagano K, De Rosa L, Tomaselli S, Molinari H, D'Andrea LD, Ragona L. Characterizing the Oligomers Distribution along the Aggregation Pathway of Amyloid Aβ1-40 by NMR. Chemistry 2024; 30:e202400594. [PMID: 38712990 DOI: 10.1002/chem.202400594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
This study delves into the early aggregation process of the Aβ1-40 amyloid peptide, elucidating the associated oligomers distribution. Motivated by the acknowledged role of small oligomers in the neurotoxic damage linked to Alzheimer's disease, we present an experimental protocol for preparing 26-O-acyl isoAβ1-40, a modified Aβ1-40 peptide facilitating rapid isomerization to the native amide form at neutral pH. This ensures seed-free solutions, minimizing experimental variability. Additionally, we demonstrate the efficacy of coupling NMR diffusion ordered spectroscopy (DOSY) with the Inverse Laplace Transform (ILT) reconstruction method, for effective characterization of early aggregation processes. This innovative approach efficiently maps oligomers distributions across a wide spectrum of initial peptide concentrations offering unique insights into the evolution of oligomers relative populations. As a proof of concept, we demonstrate the efficacy of our approach assessing the impact of Epigallocathechin gallate, a known remodeling agent of amyloid fibrils, on the oligomeric distributions of aggregated Aβ1-40. The DOSY-ILT proposed approach stands as a robust and discriminating asset, providing a powerful strategy for rapidly gaining insight into potential inhibitors' impact on the aggregation process.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini CNR, Via Pietro Castellino 111, Napoli, Italy
| | - Simona Tomaselli
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| | - Luca Domenico D'Andrea
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, Via Mario Bianco, 9, Milano, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" CNR, via Alfonso Corti, 12, Milano, Italy
| |
Collapse
|
9
|
Rajani RM, Ellingford R, Hellmuth M, Harris SS, Taso OS, Graykowski D, Lam FKW, Arber C, Fertan E, Danial JSH, Swire M, Lloyd M, Giovannucci TA, Bourdenx M, Klenerman D, Vassar R, Wray S, Sala Frigerio C, Busche MA. Selective suppression of oligodendrocyte-derived amyloid beta rescues neuronal dysfunction in Alzheimer's disease. PLoS Biol 2024; 22:e3002727. [PMID: 39042667 PMCID: PMC11265669 DOI: 10.1371/journal.pbio.3002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/25/2024] Open
Abstract
Reduction of amyloid beta (Aβ) has been shown to be effective in treating Alzheimer's disease (AD), but the underlying assumption that neurons are the main source of pathogenic Aβ is untested. Here, we challenge this prevailing belief by demonstrating that oligodendrocytes are an important source of Aβ in the human brain and play a key role in promoting abnormal neuronal hyperactivity in an AD knock-in mouse model. We show that selectively suppressing oligodendrocyte Aβ production improves AD brain pathology and restores neuronal function in the mouse model in vivo. Our findings suggest that targeting oligodendrocyte Aβ production could be a promising therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Rikesh M. Rajani
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Robert Ellingford
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Mariam Hellmuth
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Samuel S. Harris
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Orjona S. Taso
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - David Graykowski
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Francesca Kar Wey Lam
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Charles Arber
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at University of Cambridge, Cambridge, United Kingdom
| | - John S. H. Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at University of Cambridge, Cambridge, United Kingdom
- School of Physics and Astronomy, University of St Andrews, St. Andrews, United Kingdom
| | - Matthew Swire
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Marcus Lloyd
- Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
| | - Tatiana A. Giovannucci
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Mathieu Bourdenx
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute at University of Cambridge, Cambridge, United Kingdom
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Selina Wray
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Carlo Sala Frigerio
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| | - Marc Aurel Busche
- UK Dementia Research Institute at UCL, University College London, London, United Kingdom
| |
Collapse
|
10
|
Singh R, Kaur N, Dhingra N, Kaur T. Linalool acts as a chemical chaperone by inhibiting amyloid-β aggregation. Neurochem Int 2024; 177:105762. [PMID: 38723901 DOI: 10.1016/j.neuint.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Linalool is a neuroprotective monoterpene found in essential oils from aromatic plants. Linalool's effectiveness in AD animal models has been established previously, but its mechanisms of action remain unclear. Therefore, this study aims to investigate whether linalool binds directly to the amyloid beta (Aβ) fibrils to understand it's role in preventing neurodegeneration. The anti-aggregation ability of Linalool was determined using Dithiothreitol (DTT), and thermal aggregation assays followed by Thioflavin T (ThT) binding assay. AD animals were treated with Linalool, and Thioflavin T staining was used to check the binding of linalool to Aβ fibrils in rat brain tissue sections. Preliminary studies revealed the anti-aggregation potential of linalool under the thermal and chemical stimulus. Further, in ThT binding assay Linalool inhibited Aβ aggregation, binding directly to Aβ fibrils. The reduced fluorescence intensity of ThT in AD brain tissues following linalool administration, highlights its neuroprotective potential as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Rimaljot Singh
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University, Chandigarh, India
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University, Chandigarh, India.
| |
Collapse
|
11
|
Furlepa M, Zhang YP, Lobanova E, Kahanawita L, Vivacqua G, Williams-Gray CH, Klenerman D. Single-molecule characterization of salivary protein aggregates from Parkinson's disease patients: a pilot study. Brain Commun 2024; 6:fcae178. [PMID: 38863577 PMCID: PMC11166177 DOI: 10.1093/braincomms/fcae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/03/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Saliva is a convenient and accessible biofluid that has potential as a future diagnostic tool for Parkinson's disease. Candidate diagnostic tests for Parkinson's disease to date have predominantly focused on measurements of α-synuclein in CSF, but there is a need for accurate tests utilizing more easily accessible sample types. Prior studies utilizing saliva have used bulk measurements of salivary α-synuclein to provide diagnostic insight. Aggregate structure may influence the contribution of α-synuclein to disease pathology. Single-molecule approaches can characterize the structure of individual aggregates present in the biofluid and may, therefore, provide greater insight than bulk measurements. We have employed an antibody-based single-molecule pulldown assay to quantify salivary α-synuclein and amyloid-β peptide aggregate numbers and subsequently super-resolved captured aggregates using direct Stochastic Optical Reconstruction Microscopy to describe their morphological features. We show that the salivary α-synuclein aggregate/amyloid-β aggregate ratio is increased almost 2-fold in patients with Parkinson's disease (n = 20) compared with controls (n = 20, P < 0.05). Morphological information also provides insight, with saliva from patients with Parkinson's disease containing a greater proportion of larger and more fibrillar amyloid-β aggregates than control saliva (P < 0.05). Furthermore, the combination of count and morphology data provides greater diagnostic value than either measure alone, distinguishing between patients with Parkinson's disease (n = 17) and controls (n = 18) with a high degree of accuracy (area under the curve = 0.87, P < 0.001) and a larger dynamic range. We, therefore, demonstrate for the first time the application of highly sensitive single-molecule imaging techniques to saliva. In addition, we show that aggregates present within saliva retain relevant structural information, further expanding the potential utility of saliva-based diagnostic methods.
Collapse
Affiliation(s)
- Martin Furlepa
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Yu P Zhang
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| | - Evgeniia Lobanova
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| | - Lakmini Kahanawita
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK
| | - Giorgio Vivacqua
- Microscopic and Ultrastructural Anatomy Research Unit-Integrated Research Centre (PRABB), Campus Biomedico University of Rome, 00128 Rome, Italy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
| | | | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
12
|
Lindberg M, Axell E, Sparr E, Linse S. A label-free high-throughput protein solubility assay and its application to Aβ40. Biophys Chem 2024; 307:107165. [PMID: 38309218 DOI: 10.1016/j.bpc.2023.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 02/05/2024]
Abstract
A major hallmark of Alzheimer's disease is the accumulation of aggregated amyloid β peptide (Aβ) in the brain. Here we develop a solubility assay for proteins and measure the solubility of Aβ40. In brief, the method utilizes 96-well filter plates to separate monomeric Aβ from aggregated Aβ, and the small species are quantified with the amine reactive dye o-phthalaldehyde (OPA). This procedure ensures that solubility is measured for unlabeled species, and makes the assay high-throughput and inexpensive. We demonstrate that the filter plates successfully separate fibrils from monomer, with negligible monomer adsorption, and that OPA can quantify Aβ peptides in a concentration range from 40 nM to 20 μM. We also show that adding a methionine residue to the N-terminus of Aβ1-40 decreases the solubility by <3-fold. The method will facilitate further solubility studies, and contribute to the understanding of the thermodynamics of amyloid fibril formation.
Collapse
Affiliation(s)
- Max Lindberg
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Emil Axell
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Blömeke L, Rehn F, Kraemer‐Schulien V, Kutzsche J, Pils M, Bujnicki T, Lewczuk P, Kornhuber J, Freiesleben SD, Schneider L, Preis L, Priller J, Spruth EJ, Altenstein S, Lohse A, Schneider A, Fliessbach K, Wiltfang J, Hansen N, Rostamzadeh A, Düzel E, Glanz W, Incesoy EI, Butryn M, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann B, Teipel S, Kilimann I, Goerss D, Laske C, Munk MH, Sanzenbacher C, Spottke A, Roy‐Kluth N, Heneka MT, Brosseron F, Wagner M, Wolfsgruber S, Kleineidam L, Stark M, Schmid M, Jessen F, Bannach O, Willbold D, Peters O. Aβ oligomers peak in early stages of Alzheimer's disease preceding tau pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12589. [PMID: 38666085 PMCID: PMC11044868 DOI: 10.1002/dad2.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Soluble amyloid beta (Aβ) oligomers have been suggested as initiating Aβ related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aβ and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS Across groups, highest Aβ oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aβ oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE ε4 allele carriers showed significantly higher Aβ oligomer levels. No differences in tau oligomers were detected. DISCUSSION The accumulation of Aβ oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aβ oligomers might have the highest therapeutic effect in these disease stages. Highlights Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aβ oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAβ oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aβ oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.
Collapse
|
14
|
Meng F, Kim JY, Gopich IV, Chung HS. Single-molecule FRET and molecular diffusion analysis characterize stable oligomers of amyloid-β 42 of extremely low population. PNAS NEXUS 2023; 2:pgad253. [PMID: 37564361 PMCID: PMC10411938 DOI: 10.1093/pnasnexus/pgad253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Soluble oligomers produced during protein aggregation have been thought to be toxic species causing various diseases. Characterization of these oligomers is difficult because oligomers are a heterogeneous mixture, which is not readily separable, and may appear transiently during aggregation. Single-molecule spectroscopy can provide valuable information by detecting individual oligomers, but there have been various problems in determining the size and concentration of oligomers. In this work, we develop and use a method that analyzes single-molecule fluorescence burst data of freely diffusing molecules in solution based on molecular diffusion theory and maximum likelihood method. We demonstrate that the photon count rate, diffusion time, population, and Förster resonance energy transfer (FRET) efficiency can be accurately determined from simulated data and the experimental data of a known oligomerization system, the tetramerization domain of p53. We used this method to characterize the oligomers of the 42-residue amyloid-β (Aβ42) peptide. Combining peptide incubation in a plate reader and single-molecule free-diffusion experiments allows for the detection of stable oligomers appearing at various stages of aggregation. We find that the average size of these oligomers is 70-mer and their overall population is very low, less than 1 nM, in the early and middle stages of aggregation of 1 µM Aβ42 peptide. Based on their average size and long diffusion time, we predict the oligomers have a highly elongated rod-like shape.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| |
Collapse
|
15
|
Ehtezazi T, Rahman K, Davies R, Leach AG. The Pathological Effects of Circulating Hydrophobic Bile Acids in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:173-211. [PMID: 36994114 PMCID: PMC10041467 DOI: 10.3233/adr-220071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid, lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier and promote the formation of amyloid-β plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17β-estradiol actions such as LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol. This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or aMCI, prior/in combination with other treatments.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rhys Davies
- The Walton Centre, NHS Foundation Trust, Liverpool, UK
| | - Andrew G Leach
- School of Pharmacy, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Geerts H, Walker M, Rose R, Bergeler S, van der Graaf PH, Schuck E, Koyama A, Yasuda S, Hussein Z, Reyderman L, Swanson C, Cabal A. A combined physiologically-based pharmacokinetic and quantitative systems pharmacology model for modeling amyloid aggregation in Alzheimer's disease. CPT Pharmacometrics Syst Pharmacol 2023; 12:444-461. [PMID: 36632701 PMCID: PMC10088087 DOI: 10.1002/psp4.12912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Antibody-mediated removal of aggregated β-amyloid (Aβ) is the current, most clinically advanced potential disease-modifying treatment approach for Alzheimer's disease. We describe a quantitative systems pharmacology (QSP) approach of the dynamics of Aβ monomers, oligomers, protofibrils, and plaque using a detailed microscopic model of Aβ40 and Aβ42 aggregation and clearance of aggregated Aβ by activated microglia cells, which is enhanced by the interaction of antibody-bound Aβ. The model allows for the prediction of Aβ positron emission tomography (PET) imaging load as measured by a standardized uptake value ratio. A physiology-based pharmacokinetic model is seamlessly integrated to describe target exposure of monoclonal antibodies and simulate dynamics of cerebrospinal fluid (CSF) and plasma biomarkers, including CSF Aβ42 and plasma Aβ42 /Aβ40 ratio biomarkers. Apolipoprotein E genotype is implemented as a difference in microglia clearance. By incorporating antibody-bound, plaque-mediated macrophage activation in the perivascular compartment, the model also predicts the incidence of amyloid-related imaging abnormalities with edema (ARIA-E). The QSP platform is calibrated with pharmacological and clinical information on aducanumab, bapineuzumab, crenezumab, gantenerumab, lecanemab, and solanezumab, predicting adequately the change in PET imaging measured amyloid load and the changes in the plasma Aβ42 /Aβ40 ratio while slightly overestimating the change in CSF Aβ42 . ARIA-E is well predicted for all antibodies except bapineuzumab. This QSP model could support the clinical trial design of different amyloid-modulating interventions, define optimal titration and maintenance schedules, and provide a first step to understand the variability of biomarker response in clinical practice.
Collapse
|
17
|
Khalifa J, Bourgault S, Gaudreault R. Interactions of Polyphenolic Gallotannins with Amyloidogenic Polypeptides Associated with Alzheimer's Disease: From Molecular Insights to Physiological Significance. Curr Alzheimer Res 2023; 20:603-617. [PMID: 38270140 DOI: 10.2174/0115672050277001231213073043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024]
Abstract
Polyphenols are natural compounds abundantly found in plants. They are known for their numerous benefits to human health, including antioxidant properties and anti-inflammatory activities. Interestingly, many studies have revealed that polyphenols can also modulate the formation of amyloid fibrils associated with disease states and can prevent the formation of cytotoxic oligomer species. In this review, we underline the numerous effects of four hydrolysable gallotannins (HGTs) with high conformational flexibility, low toxicity, and multi-targeticity, e.g., tannic acid, pentagalloyl glucose, corilagin, and 1,3,6-tri-O-galloyl-β-D-glucose, on the aggregation of amyloidogenic proteins associated with the Alzheimer's Disease (AD). These HGTs have demonstrated interesting abilities to reduce, at different levels, the formation of amyloid fibrils involved in AD, including those assembled from the amyloid β-peptide, the tubulin-associated unit, and the islet amyloid polypeptide. HGTs were also shown to disassemble pre-formed fibrils and to diminish cognitive decline in mice. Finally, this manuscript highlights the importance of further investigating these naturally occurring HGTs as promising scaffolds to design molecules that can interfere with the formation of proteotoxic oligomers and aggregates associated with AD pathogenesis.
Collapse
Affiliation(s)
- Jihane Khalifa
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| | - Steve Bourgault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Canada
| | - Roger Gaudreault
- Département de Chimie, Université du Québec à Montréal, 2101 Rue Jeanne-Mance, Montréal, QC, H2X 2J6, Canada
- Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montréal, QC, H2X 3Y7, Canada
| |
Collapse
|
18
|
Shimanouchi T, Sano Y, Yasuhara K, Kimura Y. Amyloid-β aggregates induced by β-cholesteryl glucose-embedded liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140816. [PMID: 35777623 DOI: 10.1016/j.bbapap.2022.140816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Senile plaques that is characterized as an amyloid deposition found in Alzheimer's disease are composed primarily of fibrils of an aggregated peptide, amyloid β (Aβ). The ability to monitor senile plaque formation on a neuronal membrane under physiological conditions provides an attractive model. In this study, the growth behavior of amyloid Aβ fibrils in the presence of liposomes incorporating β-cholesteryl-D-glucose (β-CG) was examined using total internal reflection fluorescence microscopy, transmittance electron microscopy, and other spectroscopic methods. We found that β-CG on the liposome membrane induced the spontaneous formation of spherulitic Aβ fibrillar aggregates. The β-CG cluster formed on liposome membranes appeared to induce the accumulation of Aβ, followed by the growth of the spherulitic Aβ aggregates. In contrast, DMPC and DMPC incorporated cholesterol-induced fibrils that are laterally associated with each other. A comparison study using three types of liposomes implied that the induction of glucose contributed to the agglomeration of Aβ fibrils and liposomes. This agglomeration required the spontaneous formation of spherulitic Aβ fibrillary aggregates. This action can be regarded as a counterbalance to the growth of fibrils and their toxicity, which has great potential in the study of amyloidopathies.
Collapse
Affiliation(s)
- Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-kku, Okayama 700-8530, Japan.
| | - Yasuhiro Sano
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-kku, Okayama 700-8530, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yukitaka Kimura
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-kku, Okayama 700-8530, Japan
| |
Collapse
|
19
|
Liang R, Tian Y, Viles JH. Cross-seeding of WT amyloid-β with Arctic but not Italian familial mutants accelerates fibril formation in Alzheimer's disease. J Biol Chem 2022; 298:102071. [PMID: 35643314 PMCID: PMC9243174 DOI: 10.1016/j.jbc.2022.102071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/21/2023] Open
Abstract
Alzheimer’s disease (AD) involves the neurotoxic self-assembly of a 40 and 42 residue peptide, Amyloid-β (Aβ). Inherited early-onset AD can be caused by single point mutations within the Aβ sequence, including Arctic (E22G) and Italian (E22K) familial mutants. These mutations are heterozygous, resulting in an equal proportion of the WT and mutant Aβ isoform expression. It is therefore important to understand how these mixtures of Aβ isoforms interact with each other and influence the kinetics and morphology of their assembly into oligomers and fibrils. Using small amounts of nucleating fibril seeds, here, we systematically monitored the kinetics of fibril formation, comparing self-seeding with cross-seeding behavior of a range of isoform mixtures of Aβ42 and Aβ40. We confirm that Aβ40(WT) does not readily cross-seed Aβ42(WT) fibril formation. In contrast, fibril formation of Aβ40(Arctic) is hugely accelerated by Aβ42(WT) fibrils, causing an eight-fold reduction in the lag-time to fibrillization. We propose that cross-seeding between the more abundant Aβ40(Arctic) and Aβ42(WT) may be important for driving early-onset AD and will propagate fibril morphology as indicated by fibril twist periodicity. This kinetic behavior is not emulated by the Italian mutant, where minimal cross-seeding is observed. In addition, we studied the cross-seeding behavior of a C-terminal-amidated Aβ42 analog to probe the coulombic charge interplay between Glu22/Asp23/Lys28 and the C-terminal carboxylate. Overall, these studies highlight the role of cross-seeding between WT and mutant Aβ40/42 isoforms, which can impact the rate and structure of fibril assembly.
Collapse
Affiliation(s)
- Ruina Liang
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, United Kingdom
| | - Yao Tian
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, United Kingdom
| | - John H Viles
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, United Kingdom.
| |
Collapse
|
20
|
Shobo A, Röntgen A, Hancock MA, Multhaup G. Biophysical characterization as a tool to predict amyloidogenic and toxic properties of amyloid-β42 peptides. FEBS Lett 2022; 596:1401-1411. [PMID: 35466397 DOI: 10.1002/1873-3468.14358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
Amyloid-β42 (Aβ42) peptides are central to the amyloid pathology in Alzheimer's disease (AD). As biological mimetics, properties of synthetic Aβ peptides usually vary between vendors and batches, thus impacting the reproducibility of experimental studies. Here, we tested recombinantly expressed Aβ42 (Asp1 to Ala42) against synthetic Aβ42 from different suppliers using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), circular dichroism (CD) spectroscopy, thioflavin T aggregation, surface plasmon resonance and MTT cell viability assays. Overall, our recombinant Aβ42 provided a reproducible mimetic of desired properties. Across experimental approaches, the combined detection of Aβ42 dimers and random coil to β-sheet transition only correlated with aggregation-prone and cytotoxic peptides. Conclusively, combining MALDI-MS with CD appears to provide a rapid, reliable means to predict the "bioactivity" of Aβ42.
Collapse
Affiliation(s)
- Adeola Shobo
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Alexander Röntgen
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.,Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Mark A Hancock
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.,SPR-MS Facility, McGill University, Montreal, QC, Canada
| | - Gerhard Multhaup
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Malik S, De I, Singh M, Galanakis CM, Alamri AS, Yadav JK. Isolation and characterisation of milk-derived amyloid-like protein aggregates (MAPA) from cottage cheese. Food Chem 2022; 373:131486. [PMID: 34800818 DOI: 10.1016/j.foodchem.2021.131486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022]
Abstract
Cottage cheese, extensively consumed worldwide, contains coagulated milk protein (casein), produced through boiling and acidification of milk. Casein forms amyloid or amyloid-like structures at high temperatures and low pH. Due to the similarities in the preparation of casein amyloids and cottage cheese, we hypothesized the presence of amyloid or amyloid-like protein aggregates in cottage cheese. To examine this hypothesis, cottage cheese was prepared from cow (Bos indicus) milk and isolated amyloids through a water extraction method. The isolated protein aggregates displayed typical characteristics of amyloids, such as a bathochromic shift in the wavelength of maximum absorption (λmax) of Congo red (CR), high thioflavin T (ThT) binding, increased surface hydrophobicity, and high β-sheet structure. However, they did not show antibacterial activity and toxic properties against erythrocytes. Our study revealed that the heat-treatment and subsequent acidification during cottage cheese preparation lead to the formation of non-toxic amyloid-like aggregates.
Collapse
Affiliation(s)
- Shweta Malik
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Indranil De
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Manish Singh
- Institute of Nano Science and Technology, Mohali 160062, Punjab, India
| | - Charis M Galanakis
- Research & Innovation Department, Galanakis Laboratories, Chania, Greece; Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Jay Kant Yadav
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
22
|
Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer's Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int J Mol Sci 2021; 22:ijms22126355. [PMID: 34198582 PMCID: PMC8231952 DOI: 10.3390/ijms22126355] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
A large body of clinical and nonclinical evidence supports the role of neurotoxic soluble beta amyloid (amyloid, Aβ) oligomers as upstream pathogenic drivers of Alzheimer's disease (AD). Recent late-stage trials in AD that have evaluated agents targeting distinct species of Aβ provide compelling evidence that inhibition of Aβ oligomer toxicity represents an effective approach to slow or stop disease progression: (1) only agents that target soluble Aβ oligomers show clinical efficacy in AD patients; (2) clearance of amyloid plaque does not correlate with clinical improvements; (3) agents that predominantly target amyloid monomers or plaque failed to show clinical effects; and (4) in positive trials, efficacy is greater in carriers of the ε4 allele of apolipoprotein E (APOE4), who are known to have higher brain concentrations of Aβ oligomers. These trials also show that inhibiting Aβ neurotoxicity leads to a reduction in tau pathology, suggesting a pathogenic sequence of events where amyloid toxicity drives an increase in tau formation and deposition. The late-stage agents with positive clinical or biomarker data include four antibodies that engage Aβ oligomers (aducanumab, lecanemab, gantenerumab, and donanemab) and ALZ-801, an oral agent that fully blocks the formation of Aβ oligomers at the clinical dose.
Collapse
|
23
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
24
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
25
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
26
|
The Aggregation Pattern of Aβ
1–40
is Altered by the Presence of
N
‐Truncated Aβ
4–40
and/or Cu
II
in a Similar Way through Ionic Interactions. Chemistry 2021; 27:2798-2809. [DOI: 10.1002/chem.202004484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 12/19/2022]
|
27
|
Cawood EE, Karamanos TK, Wilson AJ, Radford SE. Visualizing and trapping transient oligomers in amyloid assembly pathways. Biophys Chem 2021; 268:106505. [PMID: 33220582 PMCID: PMC8188297 DOI: 10.1016/j.bpc.2020.106505] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/31/2022]
Abstract
Oligomers which form during amyloid fibril assembly are considered to be key contributors towards amyloid disease. However, understanding how such intermediates form, their structure, and mechanisms of toxicity presents significant challenges due to their transient and heterogeneous nature. Here, we discuss two different strategies for addressing these challenges: use of (1) methods capable of detecting lowly-populated species within complex mixtures, such as NMR, single particle methods (including fluorescence and force spectroscopy), and mass spectrometry; and (2) chemical and biological tools to bias the amyloid energy landscape towards specific oligomeric states. While the former methods are well suited to following the kinetics of amyloid assembly and obtaining low-resolution structural information, the latter are capable of producing oligomer samples for high-resolution structural studies and inferring structure-toxicity relationships. Together, these different approaches should enable a clearer picture to be gained of the nature and role of oligomeric intermediates in amyloid formation and disease.
Collapse
Affiliation(s)
- Emma E Cawood
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
28
|
Gu L, Guo Z. Alzheimer's Aβ42 and Aβ40 form mixed oligomers with direct molecular interactions. Biochem Biophys Res Commun 2020; 534:292-296. [PMID: 33272573 DOI: 10.1016/j.bbrc.2020.11.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/25/2020] [Indexed: 12/27/2022]
Abstract
Formation of Aβ oligomers and fibrils plays a central role in the pathogenesis of Alzheimer's disease. There are two major forms of Aβ in the brain: Aβ42 and Aβ40. Aβ42 is the major component of the amyloid plaques, but the overall abundance of Aβ40 is several times that of Aβ42. In vitro experiments show that Aβ42 and Aβ40 affect each other's aggregation. In mouse models of Alzheimer's disease, overexpression of Aβ40 has been shown to reduce the plaque pathology, suggesting that Aβ42 and Aβ40 also interact in vivo. Here we address the question of whether Aβ42 and Aβ40 interact with each other in the formation of oligomers using electron paramagnetic resonance (EPR) spectroscopy. When the Aβ42 oligomers were formed using only spin-labeled Aβ42, the dipolar interaction between spin labels that are within 20 Å range broadened the EPR spectrum and reduced its amplitude. Oligomers formed with a mixture of spin-labeled Aβ42 and wild-type Aβ42 gave an EPR spectrum with higher amplitude due to weakened spin-spin interactions, suggesting molecular mixing of labeled and wild-type Aβ42. When spin-labeled Aβ42 and wild-type Aβ40 were mixed to form oligomers, the resulting EPR spectrum also showed reduced amplitude, suggesting that wild-type Aβ40 can also form oligomers with spin-labeled Aβ42. Therefore, our results suggest that Aβ42 and Aβ40 form mixed oligomers with direct molecular interactions. Our results point to the importance of investigating Aβ42-Aβ40 interactions in the brain for a complete understanding of Alzheimer's pathogenesis and therapeutic interventions.
Collapse
Affiliation(s)
- Lei Gu
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA
| | - Zhefeng Guo
- Department of Neurology, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q Rev Biophys 2020; 53:e12. [PMID: 33148356 DOI: 10.1017/s0033583520000086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.
Collapse
|
30
|
Park G, Xue C, Wang H, Guo Z. Distinguishing the Effect on the Rate and Yield of Aβ42 Aggregation by Green Tea Polyphenol EGCG. ACS OMEGA 2020; 5:21497-21505. [PMID: 32905372 PMCID: PMC7469419 DOI: 10.1021/acsomega.0c02063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/10/2020] [Indexed: 05/15/2023]
Abstract
Deposition of Aβ42 aggregates in the form of amyloid plaques is a pathological hallmark of Alzheimer's disease. A desired avenue of intervention is the inhibition of Aβ42 aggregation. Epigallocatechin gallate (EGCG), the main polyphenol in green tea, has been generally considered an inhibitor of Aβ aggregation. However, previous experiments focused on the reduction of the amount of Aβ42 aggregates, while the effect of EGCG on the rate of Aβ42 aggregation was not critically analyzed. Here we performed an experimental evaluation of Aβ42 aggregation kinetics in the absence and presence of EGCG at a wide range of concentrations. We found that EGCG reduced thioflavin T fluorescence in an EGCG concentration-dependent manner, suggesting that EGCG reduced the amount of Aβ42 fibrils. The effect of EGCG on the rate of Aβ42 aggregation appears to be bimodal. We found that higher EGCG-to-Aβ42 ratios promoted the rate of Aβ42 aggregation, while lower EGCG-to-Aβ42 ratios inhibited the aggregation rate. To confirm that the reduction of thioflavin T fluorescence is due to the lowered aggregate quantity, but not due to perturbation of thioflavin T binding to Aβ42 fibrils, we probed the effect of EGCG on Aβ42 aggregation using site-directed spin labeling. Electron paramagnetic resonance of spin-labeled Aβ42 aggregates suggests that high EGCG-to-Aβ42 ratios led to a greatly reduced amount of Aβ42 fibrils, and these aggregates adopt similar structures as the fibrils in the no-EGCG sample. Potential implications of this work in designing prevention or therapeutic strategies using EGCG are discussed.
Collapse
|
31
|
Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes. Life (Basel) 2020; 10:life10080144. [PMID: 32784399 PMCID: PMC7459996 DOI: 10.3390/life10080144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Aβ, IAPP, α-synuclein, and prion proteins belong to the amyloidogenic intrinsically disordered proteins’ family; indeed, they lack well defined secondary and tertiary structures. It is generally acknowledged that they are involved, respectively, in Alzheimer’s, Type II Diabetes Mellitus, Parkinson’s, and Creutzfeldt–Jakob’s diseases. The molecular mechanism of toxicity is under intense debate, as many hypotheses concerning the involvement of the amyloid and the toxic oligomers have been proposed. However, the main role is represented by the interplay of protein and the cell membrane. Thus, the understanding of the interaction mechanism at the molecular level is crucial to shed light on the dynamics driving this phenomenon. There are plenty of factors influencing the interaction as mentioned above, however, the overall view is made trickier by the apparent irreproducibility and inconsistency of the data reported in the literature. Here, we contextualized this topic in a historical, and even more importantly, in a future perspective. We introduce two novel insights: the chemical equilibrium, always established in the aqueous phase between the free and the membrane phospholipids, as mediators of protein-transport into the core of the bilayer, and the symmetry-breaking of oligomeric aggregates forming an alternating array of partially ordered and disordered monomers.
Collapse
|
32
|
Dresser L, Hunter P, Yendybayeva F, Hargreaves AL, Howard JAL, Evans GJO, Leake MC, Quinn SD. Amyloid-β oligomerization monitored by single-molecule stepwise photobleaching. Methods 2020; 193:80-95. [PMID: 32544592 PMCID: PMC8336786 DOI: 10.1016/j.ymeth.2020.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 01/19/2023] Open
Abstract
Method enables investigation of amyloid-β oligomer stoichiometry without requiring extrinsic fluorescent probes. Uses single-molecule stepwise photobleaching in vitro. Unveils heterogeneity within populations of oligomers. Assays oligomer-induced dysregulation of intracellular Ca2+ homeostasis in living cells.
A major hallmark of Alzheimer’s disease is the misfolding and aggregation of the amyloid- β peptide (Aβ). While early research pointed towards large fibrillar- and plaque-like aggregates as being the most toxic species, recent evidence now implicates small soluble Aβ oligomers as being orders of magnitude more harmful. Techniques capable of characterizing oligomer stoichiometry and assembly are thus critical for a deeper understanding of the earliest stages of neurodegeneration and for rationally testing next-generation oligomer inhibitors. While the fluorescence response of extrinsic fluorescent probes such as Thioflavin-T have become workhorse tools for characterizing large Aβ aggregates in solution, it is widely accepted that these methods suffer from many important drawbacks, including an insensitivity to oligomeric species. Here, we integrate several biophysics techniques to gain new insight into oligomer formation at the single-molecule level. We showcase single-molecule stepwise photobleaching of fluorescent dye molecules as a powerful method to bypass many of the traditional limitations, and provide a step-by-step guide to implementing the technique in vitro. By collecting fluorescence emission from single Aβ(1–42) peptides labelled at the N-terminal position with HiLyte Fluor 555 via wide-field total internal reflection fluorescence (TIRF) imaging, we demonstrate how to characterize the number of peptides per single immobile oligomer and reveal heterogeneity within sample populations. Importantly, fluorescence emerging from Aβ oligomers cannot be easily investigated using diffraction-limited optical microscopy tools. To assay oligomer activity, we also demonstrate the implementation of another biophysical method involving the ratiometric imaging of Fura-2-AM loaded cells which quantifies the rate of oligomer-induced dysregulation of intracellular Ca2+ homeostasis. We anticipate that the integrated single-molecule biophysics approaches highlighted here will develop further and in principle may be extended to the investigation of other protein aggregation systems under controlled experimental conditions.
Collapse
Affiliation(s)
- Lara Dresser
- Department of Physics, University of York, Heslington YO10 5DD, UK
| | - Patrick Hunter
- Department of Physics, University of York, Heslington YO10 5DD, UK
| | | | - Alex L Hargreaves
- Department of Physics, University of York, Heslington YO10 5DD, UK; Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Jamieson A L Howard
- Department of Physics, University of York, Heslington YO10 5DD, UK; Department of Biology, University of York, Heslington YO10 5DD, UK
| | - Gareth J O Evans
- Department of Biology, University of York, Heslington YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK
| | - Mark C Leake
- Department of Physics, University of York, Heslington YO10 5DD, UK; Department of Biology, University of York, Heslington YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK
| | - Steven D Quinn
- Department of Physics, University of York, Heslington YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington YO10 5DD, UK.
| |
Collapse
|
33
|
Symmetry-breaking transitions in the early steps of protein self-assembly. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:175-191. [PMID: 32123956 DOI: 10.1007/s00249-020-01424-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 10/24/2022]
Abstract
Protein misfolding and subsequent self-association are complex, intertwined processes, resulting in development of a heterogeneous population of aggregates closely related to many chronic pathological conditions including Type 2 Diabetes Mellitus and Alzheimer's disease. To address this issue, here, we develop a theoretical model in the general framework of linear stability analysis. According to this model, self-assemblies of peptides with pronounced conformational flexibility may become, under particular conditions, unstable and spontaneously evolve toward an alternating array of partially ordered and disordered monomers. The predictions of the theory were verified by atomistic molecular dynamics (MD) simulations of islet amyloid polypeptide (IAPP) used as a paradigm of aggregation-prone polypeptides (proteins). Simulations of dimeric, tetrameric, and hexameric human-IAPP self-assemblies at physiological electrolyte concentration reveal an alternating distribution of the smallest domains (of the order of the peptide mean length) formed by partially ordered (mainly β-strands) and disordered (turns and coil) arrays. Periodicity disappears upon weakening of the inter-peptide binding, a result in line with the predictions of the theory. To further probe the general validity of our hypothesis, we extended the simulations to other peptides, the Aβ(1-40) amyloid peptide, and the ovine prion peptide as well as to other proteins (SOD1 dimer) that do not belong to the broad class of intrinsically disordered proteins. In all cases, the oligomeric aggregates show an alternate distribution of partially ordered and disordered monomers. We also carried out Surface Enhanced Raman Scattering (SERS) measurements of hIAPP as an experimental validation of both the theory and in silico simulations.
Collapse
|
34
|
Man VH, He X, Ji B, Liu S, Xie XQ, Wang J. Molecular Mechanism and Kinetics of Amyloid-β 42 Aggregate Formation: A Simulation Study. ACS Chem Neurosci 2019; 10:4643-4658. [PMID: 31660732 DOI: 10.1021/acschemneuro.9b00473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As an important neuropathological hallmark of Alzheimer's disease (AD), the oligomerization of amyloid-β (Aβ) peptides has been intensively investigated in both theoretical and experimental studies. However, the oligomerization space in terms of the kinetics, molecular mechanism, and oligomer structures remains mysterious to us. An equation that can quantitatively describe the time it takes for Aβ oligomers to appear in the human brain at a given Aβ monomer concentration is extremely vital for us to understand the development and disease progression of AD. In this study, we utilized molecular dynamics (MD) simulations to investigate the oligomerization of Aβ42 peptides at five different monomer concentrations. We have elucidated the formation pathways of Aβ tetramers, characterized the oligomer structures, estimated the oligomerization time for Aβ dimers, trimers, and tetramers, and for the first-time derived equations that could quantitatively describe the relationship between the oligomerization time and the monomer concentration. Applying these equations, our prediction of oligomerization time agrees well with the experimental and clinical findings, in spite of the limitations of our oligomerization simulations. We have found that the Aβ oligomerization time depends on the monomer concentration by a power of -2.4. The newly established equations will enable us to quantitatively estimate the risk score of AD, which is a function of age. Moreover, we have identified the most dominant pathway of forming Aβ tetramers, probably the most important and toxic Aβ oligomer. Our results have shown that the structures of Aβ42 dimer, trimer, and tetramer, which are distinguishable from each other, depend on the monomer concentration at which the oligomers form. Representative oligomer structures, which can serve as potential drug targets, have been identified by clustering analysis. The MD sampling adequacy has been validated by the excellent agreement between the calculated and measured collisional cross section (CCS) parameters (the prediction errors are within 2%). In a conclusion, this study provides the kinetics and structure basis for developing inhibitors to decelerate the Aβ oligomerization process.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
35
|
Yoon J, Kim Y, Park JW. Binary Structure of Amyloid Beta Oligomers Revealed by Dual Recognition Mapping. Anal Chem 2019; 91:8422-8428. [PMID: 31140786 DOI: 10.1021/acs.analchem.9b01316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amyloid beta (Aβ) oligomers are widely considered to be the causative agent of Alzheimer's disease (AD), a progressive neurodegenerative disorder. Determining the structure of oligomers is, therefore, important for understanding the disease and developing therapeutic agents; however, elucidating the structure has been proven difficult due to heterogeneity, noncrystallinity, and variability. Herein, we investigated homo- and hetero-oligomers of Aβ40 and Aβ42 using atomic force microscopy (AFM) and revealed characteristics of the molecular structure. By examining the surface of individual oligomers with sequential N- and C-terminus specific antibody-tethered tips, we simultaneously mapped the N- and C-terminus distributions and the elastic modulus. Interestingly, both the N- and C-termini of Aβ peptides were recognized on the oligomer surface, and the termini detected pixel regions exhibited a lower elastic modulus than silent pixel regions. These two types of regions were randomly distributed on the oligomer surface.
Collapse
Affiliation(s)
- Jihyun Yoon
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Youngkyu Kim
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| | - Joon Won Park
- Department of Chemistry , Pohang University of Science and Technology , 77 Cheongam-Ro , Nam-Gu, Pohang 37673 , Republic of Korea
| |
Collapse
|
36
|
Weiffert T, Meisl G, Flagmeier P, De S, Dunning CJR, Frohm B, Zetterberg H, Blennow K, Portelius E, Klenerman D, Dobson CM, Knowles TPJ, Linse S. Increased Secondary Nucleation Underlies Accelerated Aggregation of the Four-Residue N-Terminally Truncated Aβ42 Species Aβ5-42. ACS Chem Neurosci 2019; 10:2374-2384. [PMID: 30793584 DOI: 10.1021/acschemneuro.8b00676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aggregation of the amyloid-β (Aβ) peptide into plaques is believed to play a crucial role in Alzheimer's disease. Amyloid plaques consist of fibrils of full length Aβ peptides as well as N-terminally truncated species. β-Site amyloid precursor protein-cleaving enzyme (BACE1) cleaves amyloid precursor protein in the first step in Aβ peptide production and is an attractive therapeutic target to limit Aβ generation. Inhibition of BACE1, however, induces a unique pattern of Aβ peptides with increased levels of N-terminally truncated Aβ peptides starting at position 5 (Aβ5-X), indicating that these peptides are generated through a BACE1-independent pathway. Here we elucidate the aggregation mechanism of Aβ5-42 and its influence on full-length Aβ42. We find that, compared to Aβ42, Aβ5-42 is more aggregation prone and displays enhanced nucleation rates. Aβ5-42 oligomers cause nonspecific membrane disruption to similar extent as Aβ42 but appear at earlier time points in the aggregation reaction. Noteworthy, this implies similar toxicity of Aβ42 and Aβ5-42 and the toxic species are generated faster by Aβ5-42. The increased rate of secondary nucleation on the surface of existing fibrils originates from a higher affinity of Aβ5-42 monomers for fibrils, as compared to Aβ42: an effect that may be related to the reduced net charge of Aβ5-42. Moreover, Aβ5-42 and Aβ42 peptides coaggregate into heteromolecular fibrils and either species can elongate existing Aβ42 or Aβ5-42 fibrils but Aβ42 fibrils are more catalytic than Aβ5-42 fibrils. Our findings highlight the importance of the N-terminus for surface-catalyzed nucleation and thus the production of toxic oligomers.
Collapse
Affiliation(s)
- Tanja Weiffert
- Department of Biochemistry and Structural Biology, Lund University, P O box 124, 221 00 Lund, Sweden
| | - Georg Meisl
- Centre for Misfolding Disease, Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick Flagmeier
- Centre for Misfolding Disease, Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Suman De
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christopher J. R. Dunning
- Department of Biochemistry and Structural Biology, Lund University, P O box 124, 221 00 Lund, Sweden
| | - Birgitta Frohm
- Department of Biochemistry and Structural Biology, Lund University, P O box 124, 221 00 Lund, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience
and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska
Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
- UK Dementia Research Institute, WC1E 6BT London, United Kingdom
| | - Kaj Blennow
- Institute of Neuroscience
and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska
Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Erik Portelius
- Institute of Neuroscience
and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska
Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - David Klenerman
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Christopher M. Dobson
- Centre for Misfolding Disease, Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P. J. Knowles
- Centre for Misfolding Disease, Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, P O box 124, 221 00 Lund, Sweden
| |
Collapse
|
37
|
Hassan M, Shahzadi S, Raza H, Abbasi MA, Alashwal H, Zaki N, Moustafa AA, Seo SY. Computational investigation of mechanistic insights of Aβ42 interactions against extracellular domain of nAChRα7 in Alzheimer's disease. Int J Neurosci 2019; 129:666-680. [PMID: 30422726 DOI: 10.1080/00207454.2018.1543670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
AIM Amyloid beta (Aβ) 1-42, which is a basic constituent of amyloid plaques, binds with extracellular transmembrane receptor nicotine acetylcholine receptor α7 (nAChRα7) in Alzheimer's disease. MATERIALS AND METHODS In the current study, a computational approach was employed to explore the active binding sites of nAChRα7 through Aβ 1-42 interactions and their involvement in the activation of downstream signalling pathways. Sequential and structural analyses were performed on the extracellular part of nAChRα7 to identify its core active binding site. RESULTS Results showed that a conserved residual pattern and well superimposed structures were observed in all nAChRs proteins. Molecular docking servers were used to predict the common interactive residues in nAChRα7 and Aβ1-42 proteins. The docking profile results showed some common interactive residues such as Glu22, Ala42 and Trp171 may consider as the active key player in the activation of downstream signalling pathways. Moreover, the signal communication and receiving efficacy of best-docked complexes was checked through DynOmic online server. Furthermore, the results from molecular dynamic simulation experiment showed the stability of nAChRα7. The generated root mean square deviations and fluctuations (RMSD/F), solvent accessible surface area (SASA) and radius of gyration (Rg) graphs of nAChRα7 also showed its backbone stability and compactness, respectively. CONCLUSION Taken together, our predicted results intimated the structural insight on the molecular interactions of beta amyloid protein involved in the activation of nAChRα7 receptor. In future, a better understanding of nAChRα7 and their interconnected proteins signalling cascade may be consider as target to cure Alzheimer's disease.
Collapse
Affiliation(s)
- Mubashir Hassan
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Gongju , Chungnam-do 32588 , Republic of Korea
| | - Saba Shahzadi
- b Institute of Molecular Science and Bioinformatics , Lahore , Pakistan.,c Department of Bioinformatics , Virtual University of Pakistan , Lahore , Pakistan
| | - Hussain Raza
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Gongju , Chungnam-do 32588 , Republic of Korea
| | - Muhammad Athar Abbasi
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Gongju , Chungnam-do 32588 , Republic of Korea.,d Department of Chemistry , Government College University , Lahore , Pakistan
| | - Hany Alashwal
- e Department of Computer Science and Software Engineering, College of Information Technology , United Arab Emirates University , Al-Ain , United Arab Emirates
| | - Nazar Zaki
- e Department of Computer Science and Software Engineering, College of Information Technology , United Arab Emirates University , Al-Ain , United Arab Emirates
| | - Ahmed A Moustafa
- f School of Social Sciences and Psychology.,g MARCS Institute for Brain and Behaviour , Western Sydney University , Sydney , New South Wales , Australia.,h Department of Social Sciences, College of Arts and Sciences , Qatar University , Doha , Qatar'
| | - Sung-Yum Seo
- a Department of Biological Sciences, College of Natural Sciences , Kongju National University , Gongju , Chungnam-do 32588 , Republic of Korea
| |
Collapse
|
38
|
Imaging individual protein aggregates to follow aggregation and determine the role of aggregates in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:870-878. [PMID: 30611780 PMCID: PMC6676340 DOI: 10.1016/j.bbapap.2018.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/06/2018] [Accepted: 12/29/2018] [Indexed: 01/07/2023]
Abstract
Protein aggregates play a key role in the initiation and spreading of neurodegenerative disease but have been difficult to study due to their low abundance and heterogeneity, in both size and structure. Fluorescence based methods capable of detecting and characterising single aggregates have recently been developed and can be used to measure many important aggregate properties, and can be combined with sensitive assays to measure aggregate toxicity. Here we review these methods and discuss recent examples of their application to determine the molecular mechanism of aggregation and the detection of aggregates in cells and cerebrospinal fluid. The further development of these methods and their application to the aggregates present in humans has the potential to solve a major problem in the field and allow the identification of the key toxic species that should be targeted in therapies. Individual protein aggregates can be imaged using fluorescence imaging. Ultra-sensitive assays have been developed to measure aggregate toxicity. The aggregation mechanism of proteins can be determined. Experiments can be performed in cells or human cerebrospinal fluid. These methods can potentially identify the toxic aggregates that cause neurodegenerative disease.
Collapse
|
39
|
Iljina M, Dear AJ, Garcia GA, De S, Tosatto L, Flagmeier P, Whiten DR, Michaels TCT, Frenkel D, Dobson CM, Knowles TPJ, Klenerman D. Quantifying Co-Oligomer Formation by α-Synuclein. ACS NANO 2018; 12:10855-10866. [PMID: 30371053 PMCID: PMC6262461 DOI: 10.1021/acsnano.8b03575] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Small oligomers of the protein α-synuclein (αS) are highly cytotoxic species associated with Parkinson's disease (PD). In addition, αS can form co-aggregates with its mutational variants and with other proteins such as amyloid-β (Aβ) and tau, which are implicated in Alzheimer's disease. The processes of self-oligomerization and co-oligomerization of αS are, however, challenging to study quantitatively. Here, we have utilized single-molecule techniques to measure the equilibrium populations of oligomers formed in vitro by mixtures of wild-type αS with its mutational variants and with Aβ40, Aβ42, and a fragment of tau. Using a statistical mechanical model, we find that co-oligomer formation is generally more favorable than self-oligomer formation at equilibrium. Furthermore, self-oligomers more potently disrupt lipid membranes than do co-oligomers. However, this difference is sometimes outweighed by the greater formation propensity of co-oligomers when multiple proteins coexist. Our results suggest that co-oligomer formation may be important in PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Marija Iljina
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Alexander J. Dear
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Gonzalo A. Garcia
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Suman De
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Laura Tosatto
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Patrick Flagmeier
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Daniel R. Whiten
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Thomas C. T. Michaels
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Daan Frenkel
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Christopher M. Dobson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Department
of Chemistry, Centre for Misfolding Diseases, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- E-mail:
| | - David Klenerman
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- UK
Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- E-mail:
| |
Collapse
|
40
|
Dear AJ, Šarić A, Michaels TCT, Dobson CM, Knowles TPJ. Statistical Mechanics of Globular Oligomer Formation by Protein Molecules. J Phys Chem B 2018; 122:11721-11730. [PMID: 30336667 DOI: 10.1021/acs.jpcb.8b07805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The misfolding and aggregation of proteins into linear fibrils is widespread in human biology, for example, in connection with amyloid formation and the pathology of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The oligomeric species that are formed in the early stages of protein aggregation are of great interest, having been linked with the cellular toxicity associated with these conditions. However, these species are not characterized in any detail experimentally, and their properties are not well understood. Many of these species have been found to have approximately spherical morphology and to be held together by hydrophobic interactions. We present here an analytical statistical mechanical model of globular oligomer formation from simple idealized amphiphilic protein monomers and show that this correlates well with Monte Carlo simulations of oligomer formation. We identify the controlling parameters of the model, which are closely related to simple quantities that may be fitted directly from experiment. We predict that globular oligomers are unlikely to form at equilibrium in many polypeptide systems but instead form transiently in the early stages of amyloid formation. We contrast the globular model of oligomer formation to a well-established model of linear oligomer formation, highlighting how the differing ensemble properties of linear and globular oligomers offer a potential strategy for characterizing oligomers from experimental measurements.
Collapse
Affiliation(s)
- Alexander J Dear
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems , University College London , Gower Street , London WC1E 6BT , U.K
| | - Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Cavendish Laboratory, Department of Physics , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| |
Collapse
|
41
|
Kamynina AV, Esteras N, Koroev DO, Bobkova NV, Balasanyants SM, Simonyan RA, Avetisyan AV, Abramov AY, Volpina OM. Synthetic Fragments of Receptor for Advanced Glycation End Products Bind Beta-Amyloid 1-40 and Protect Primary Brain Cells From Beta-Amyloid Toxicity. Front Neurosci 2018; 12:681. [PMID: 30319347 PMCID: PMC6170785 DOI: 10.3389/fnins.2018.00681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of Alzheimer's disease. We have previously revealed that RAGE fragment sequence (60-76) and its shortened analogs sequence (60-70) and (60-65) under intranasal insertion were able to restore memory and improve morphological and biochemical state of neurons in the brain of bulbectomized mice developing major AD features. In the current study, we have investigated the ability of RAGE peptide (60-76) and five shortened analogs to bind beta-amyloid (Aβ) 1-40 in an fluorescent titration test and show that all the RAGE fragments apart from one [sequence (65-76)] were able to bind Aβ in vitro. Moreover, we show that all RAGE fragments apart from the shortest one (60-62), were able to protect neuronal primary cultures from amyloid toxicity, by preventing the caspase 3 activation induced by Aβ 1-42. We have compared the data obtained in the present research with the previously published data in the animal model of AD, and offer a probable mechanism of neuroprotection of the RAGE peptide.
Collapse
Affiliation(s)
- Anna V. Kamynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Noemi Esteras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Dmitriy O. Koroev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V. Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Samson M. Balasanyants
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ruben A. Simonyan
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Armine V. Avetisyan
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Andrey Y. Abramov
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Olga M. Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Jeong D, Kim J, Chae MS, Lee W, Yang SH, Kim Y, Kim SM, Lee JS, Lee JH, Choi J, Yoon DS, Hwang KS. Multifunctionalized Reduced Graphene Oxide Biosensors for Simultaneous Monitoring of Structural Changes in Amyloid-β 40. SENSORS 2018; 18:s18061738. [PMID: 29843431 PMCID: PMC6022081 DOI: 10.3390/s18061738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022]
Abstract
Determination of the conformation (monomer, oligomer, or fibril) of amyloid peptide aggregates in the human brain is essential for the diagnosis and treatment of Alzheimer's disease (AD). Accordingly, systematic investigation of amyloid conformation using analytical tools is essential for precisely quantifying the relative amounts of the three conformations of amyloid peptide. Here, we developed a reduced graphene oxide (rGO) based multiplexing biosensor that could be used to monitor the relative amounts of the three conformations of various amyloid-β 40 (Aβ40) fluids. The electrical rGO biosensor was composed of a multichannel sensor array capable of individual detection of monomers, oligomers, and fibrils in a single amyloid fluid sample. From the performance test of each sensor, we showed that this method had good analytical sensitivity (1 pg/mL) and a fairly wide dynamic range (1 pg/mL to 10 ng/mL) for each conformation of Aβ40. To verify whether the rGO biosensor could be used to evaluate the relative amounts of the three conformations, various amyloid solutions (monomeric Aβ40, aggregated Aβ40, and disaggregated Aβ40 solutions) were employed. Notably, different trends in the relative amounts of the three conformations were observed in each amyloid solution, indicating that this information could serve as an important parameter in the clinical setting. Accordingly, our analytical tool could precisely detect the relative amounts of the three conformations of Aβ40 and may have potential applications as a diagnostic system for AD.
Collapse
Affiliation(s)
- Dahye Jeong
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Jinsik Kim
- Department of Biomedical Engineering, Dongguk University, Seoul 04620, Korea.
| | - Myung-Sic Chae
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Wonseok Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea.
| | - Seung-Hoon Yang
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangnueung 25451, Korea.
| | - YoungSoo Kim
- Department of Pharmacy & Intergrated Science and Engineering Division, Yonsei University, Incheon 21983, Korea.
| | - Seung Min Kim
- Center for Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Korea.
| | - Jin San Lee
- Department of Neurology, Kyung Hee University Hospital, Seoul 02447, Korea.
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Korea.
| | - Jungkyu Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Dae Sung Yoon
- Department of Biomedical Engineering, Korea University, Seoul 02841, Korea.
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
43
|
Honda R. Amyloid‐β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryo Honda
- The United Graduate School of Drug Discovery and Medical Information Sciences Gifu University 1-1 Yanagido Gifu 501-1194 Japan
| |
Collapse
|
44
|
Honda R. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect. Angew Chem Int Ed Engl 2018; 57:6086-6089. [PMID: 29645399 DOI: 10.1002/anie.201800197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/25/2018] [Indexed: 01/28/2023]
Abstract
Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β-rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer's disease amyloid-β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP-amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases.
Collapse
Affiliation(s)
- Ryo Honda
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
45
|
Michaels TCT, Šarić A, Habchi J, Chia S, Meisl G, Vendruscolo M, Dobson CM, Knowles TPJ. Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation. Annu Rev Phys Chem 2018; 69:273-298. [PMID: 29490200 DOI: 10.1146/annurev-physchem-050317-021322] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Understanding how normally soluble peptides and proteins aggregate to form amyloid fibrils is central to many areas of modern biomolecular science, ranging from the development of functional biomaterials to the design of rational therapeutic strategies against increasingly prevalent medical conditions such as Alzheimer's and Parkinson's diseases. As such, there is a great need to develop models to mechanistically describe how amyloid fibrils are formed from precursor peptides and proteins. Here we review and discuss how ideas and concepts from chemical reaction kinetics can help to achieve this objective. In particular, we show how a combination of theory, experiments, and computer simulations, based on chemical kinetics, provides a general formalism for uncovering, at the molecular level, the mechanistic steps that underlie the phenomenon of amyloid fibril formation.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; .,Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Anđela Šarić
- Department of Physics and Astronomy, and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Johnny Habchi
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| | - Sean Chia
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| | - Georg Meisl
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; .,Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 1HE, United Kingdom; ,
| |
Collapse
|
46
|
Kundel F, Tosatto L, Whiten DR, Wirthensohn DC, Horrocks MH, Klenerman D. Shedding light on aberrant interactions - a review of modern tools for studying protein aggregates. FEBS J 2018; 285:3604-3630. [PMID: 29453901 DOI: 10.1111/febs.14409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/27/2018] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
The link between protein aggregation and neurodegenerative disease is well established. However, given the heterogeneity of species formed during the aggregation process, it is difficult to delineate details of the molecular events involved in generating pathological aggregates from those producing soluble monomers. As aberrant aggregates are possible pharmacological targets for the treatment of neurodegenerative diseases, the need to observe and characterise soluble oligomers has pushed traditional biophysical techniques to their limits, leading to the development of a plethora of new tools capable of detecting soluble oligomers with high precision and specificity. In this review, we discuss a range of modern biophysical techniques that have been developed to study protein aggregation, and give an overview of how they have been used to understand, in detail, the aberrant aggregation of amyloidogenic proteins associated with the two most common neurodegenerative disorders, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
| | - Laura Tosatto
- Centre for Integrative Biology, Università degli Studi di Trento, Italy
| | | | | | | | - David Klenerman
- Department of Chemistry, University of Cambridge, UK.,UK Dementia Research Institute, University of Cambridge, UK
| |
Collapse
|
47
|
Amyloid growth and membrane damage: Current themes and emerging perspectives from theory and experiments on Aβ and hIAPP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1625-1638. [PMID: 29501606 DOI: 10.1016/j.bbamem.2018.02.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's Disease (AD) and Type 2 diabetes mellitus (T2DM) are two incurable diseases both hallmarked by an abnormal deposition of the amyloidogenic peptides Aβ and Islet Amyloid Polypeptide (IAPP) in affected tissues. Epidemiological data demonstrate that patients suffering from diabetes are at high risk of developing AD, thus making the search for factors common to the two pathologies of special interest for the design of new therapies. Accumulating evidence suggests that the toxic properties of both Aβ or IAPP are ascribable to their ability to damage the cell membrane. However, the molecular details describing Aβ or IAPP interaction with membranes are poorly understood. This review focuses on biophysical and in silico studies addressing these topics. Effects of calcium, cholesterol and membrane lipid composition in driving aberrant Aβ or IAPP interaction with the membrane will be specifically considered. The cross correlation of all these factors appears to be a key issue not only to shed light in the countless and often controversial reports relative to this area but also to gain valuable insights into the central events leading to membrane damage caused by amyloidogenic peptides. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
|
48
|
Peters DG, Pollack AN, Cheng KC, Sun D, Saido T, Haaf MP, Yang QX, Connor JR, Meadowcroft MD. Dietary lipophilic iron alters amyloidogenesis and microglial morphology in Alzheimer's disease knock-in APP mice. Metallomics 2018; 10:426-443. [PMID: 29424844 DOI: 10.1039/c8mt00004b] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized pathologically by amyloid beta (Aβ) deposition, microgliosis, and iron dyshomeostasis. Increased labile iron due to homeostatic dysregulation is believed to facilitate amyloidogenesis. Free iron is incorporated into aggregating amyloid peptides during Aβ plaque formation and increases potential for oxidative stress surrounding plaques. The goal of this work was to observe how brain iron levels temporally influence Aβ plaque formation, plaque iron concentration, and microgliosis. We fed humanized APPNL-F and APPNL-G-F knock-in mice lipophilic iron compound 3,5,5-trimethylhexanoyl ferrocene (TMHF) and iron deficient diets for twelve months. TMHF elevated brain iron by 22% and iron deficiency decreased brain iron 21% relative to control diet. Increasing brain iron with TMHF accelerated plaque formation, increased Aβ staining, and increased senile morphology of amyloid plaques. Increased brain iron was associated with increased plaque-iron loading and microglial iron inclusions. TMHF decreased IBA1+ microglia branch length while increasing roundness indicative of microglial activation. This body of work suggests that increasing mouse brain iron with TMHF potentiates a more human-like Alzheimer's disease phenotype with iron integration into Aβ plaques and associated microgliosis.
Collapse
Affiliation(s)
- Douglas G Peters
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA and Department of Neural and Behavioral Science, The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| | - Alexis N Pollack
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | - Keith C Cheng
- Department of Pathology (Gittlen Cancer Research Institute), The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| | - Dongxiao Sun
- Department of Pharmacology, The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wakō-shi, Saitama-ken, Japan
| | - Michael P Haaf
- Department of Chemistry, Ithaca College, Ithaca, New York, USA
| | - Qing X Yang
- Department of Radiology (Center for NMR Research), The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| | - James R Connor
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | - Mark D Meadowcroft
- Department of Neurosurgery, The Pennsylvania State University - College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA and Department of Radiology (Center for NMR Research), The Pennsylvania State University - College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
49
|
Bode DC, Stanyon HF, Hirani T, Baker MD, Nield J, Viles JH. Serum Albumin's Protective Inhibition of Amyloid-β Fiber Formation Is Suppressed by Cholesterol, Fatty Acids and Warfarin. J Mol Biol 2018; 430:919-934. [PMID: 29409811 DOI: 10.1016/j.jmb.2018.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023]
Abstract
Central to Alzheimer's disease (AD) pathology is the assembly of monomeric amyloid-β peptide (Aβ) into oligomers and fibers. The most abundant protein in the blood plasma and cerebrospinal fluid is human serum albumin. Albumin can bind to Aβ and is capable of inhibiting the fibrillization of Aβ at physiological (μM) concentrations. The ability of albumin to bind Aβ has recently been exploited in a phase II clinical trial, which showed a reduction in cognitive decline in AD patients undergoing albumin-plasma exchange. Here we explore the equilibrium between Aβ monomer, oligomer and fiber in the presence of albumin. Using transmission electron microscopy and thioflavin-T fluorescent dye, we have shown that albumin traps Aβ as oligomers, 9 nm in diameter. We show that albumin-trapped Aβ oligomeric assemblies are not capable of forming ion channels, which suggests a mechanism by which albumin is protective in Aβ-exposed neuronal cells. In vivo albumin binds a variety of endogenous and therapeutic exogenous hydrophobic molecules, including cholesterol, fatty acids and warfarin. We show that these molecules bind to albumin and suppress its ability to inhibit Aβ fiber formation. The interplay between Aβ, albumin and endogenous hydrophobic molecules impacts Aβ assembly; thus, changes in cholesterol and fatty acid levels in vivo may impact Aβ fibrillization, by altering the capacity of albumin to bind Aβ. These observations are particularly intriguing given that high cholesterol or fatty acid diets are well-established risk factors for late-onset AD.
Collapse
Affiliation(s)
- David C Bode
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK
| | - Helen F Stanyon
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK
| | - Trisha Hirani
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK
| | - Mark D Baker
- Blizard Institute, Queen Mary University of London, Whitechapel E1 2AT, UK
| | - Jon Nield
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK
| | - John H Viles
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Rd., London, E1 4NS, UK.
| |
Collapse
|
50
|
Novo M, Freire S, Al-Soufi W. Critical aggregation concentration for the formation of early Amyloid-β (1-42) oligomers. Sci Rep 2018; 8:1783. [PMID: 29379133 PMCID: PMC5789034 DOI: 10.1038/s41598-018-19961-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
The oligomers formed during the early steps of amyloid aggregation are thought to be responsible for the neurotoxic damage associated with Alzheimer’s disease. It is therefore of great interest to characterize this early aggregation process and the aggregates formed, especially for the most significant peptide in amyloid fibrils, Amyloid-β(1–42) (Aβ42). For this purpose, we directly monitored the changes in size and concentration of initially monomeric Aβ42 samples, using Fluorescence Correlation Spectroscopy. We found that Aβ42 undergoes aggregation only when the amount of amyloid monomers exceeds the critical aggregation concentration (cac) of about 90 nM. This spontaneous, cooperative process resembles surfactants self-assembly and yields stable micelle-like oligomers whose size (≈50 monomers, Rh ≈ 7–11 nm) and elongated shape are independent of incubation time and peptide concentration. These findings reveal essential features of in vitro amyloid aggregation, which may illuminate the complex in vivo process.
Collapse
Affiliation(s)
- Mercedes Novo
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002, Lugo, Spain.
| | - Sonia Freire
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002, Lugo, Spain
| | - Wajih Al-Soufi
- Department of Physical Chemistry, Faculty of Science, University of Santiago de Compostela, E-27002, Lugo, Spain
| |
Collapse
|