1
|
Zhao S, Wang L, Huang X, Xiao Y, Li M, Huang X, Chen X, Li S, Xie J, Liu P, Wang YD, Chen WD. Design, Synthesis, and Biological Evaluation of Covalently Mucoadhesive Derivatives as Nonsystemic Intestine-Targeted TGR5 Agonists. J Med Chem 2024; 67:17701-17712. [PMID: 39321318 DOI: 10.1021/acs.jmedchem.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Takeda G-protein-coupled receptor 5 (TGR5) is considered a promising therapeutic target for treating type 2 diabetes mellitus (T2DM), obesity, and other metabolism-related diseases. Although many TGR5 agonists have been identified, they might cause some side effects in the gallbladder and the heart. To reduce these side effects and improve glucose-lowering capability, we first designed and synthesized a series of 4-phenoxynicotinamide intestine-targeted TGR5 agonist derivatives containing maleimides in the side chains with different linker lengths. All of the target compounds demonstrated significant TGR5 agonistic activity, among which compound 22b displayed the best TGR5 agonistic activity. Additionally, compound 22b displayed low Caco-2 cell permeability and strong mucoadhesion to mucin and the rat intestine. In C57BL/6J, diet-induced obese, and db/db mice, compound 22b demonstrated a robust and prolonged hypoglycemic effect along with an acceptable safety profile.
Collapse
Affiliation(s)
- Shizhen Zhao
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Le Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Xiaotong Huang
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Yali Xiao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Mengqi Li
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Xueyuan Huang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Xueyu Chen
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Shengjie Li
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
| | - Jing Xie
- The First Affiliated Hospital of Henan University, Kaifeng 475000, China
| | - Peng Liu
- Hebi Key Laboratory of Cardiovascular Diseases, Hebi Key Laboratory of Energy Metabolism, People's Hospital of Hebi, Henan University, Kaifeng 475000, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475000, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
2
|
Bhimanwar RS, Mittal A, Chaudhari S, Sharma V. Recent advancements in the structural exploration of TGR5 agonists for diabetes treatment. RSC Med Chem 2024; 15:3026-3037. [PMID: 39309359 PMCID: PMC11411620 DOI: 10.1039/d4md00473f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
TGR5, a receptor that interacts with bile acids on cell surfaces, has become a promising therapeutic target for type II diabetes due to its ability to regulate energy expenditure and blood sugar levels. While several TGR5 agonists have been identified, only a few are currently in clinical trials. This article reviews the promising TGR5 agonists discovered in recent years, highlighting the chemical structure and pharmacological profile of the most effective compounds. With the limited number of effective drugs available for treating type II diabetes, the search for a potent TGR5 agonist with high efficacy and fewer side effects continues. The goal of this article is to provide an overview of the latest advancements in TGR5 agonists and offer insights for the future development of novel, potent TGR5 agonists for diabetes treatment. A noteworthy aspect addressed in the discussion is the common side effect associated with TGR5 agonist treatment - gallbladder filling. The review also explores potential strategies to mitigate this side effect, with the goal of improving the overall safety and tolerability of TGR5-targeted therapies.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri Pune Maharashtra-411018 India
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| | - Snehal Chaudhari
- Department of Biochemistry, University of Wisconsin-Madison Madison WI-53706 USA
| | - Vikas Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| |
Collapse
|
3
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
4
|
D'Agostino GD, Chaudhari SN, Devlin AS. Host-microbiome orchestration of the sulfated metabolome. Nat Chem Biol 2024; 20:410-421. [PMID: 38347214 PMCID: PMC11095384 DOI: 10.1038/s41589-023-01526-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 04/01/2024]
Abstract
Recent studies have demonstrated that metabolites produced by commensal bacteria causally influence health and disease. The sulfated metabolome is one class of molecules that has recently come to the forefront due to efforts to understand the role of these metabolites in host-microbiome interactions. Sulfated compounds have canonically been classified as waste products; however, studies have revealed a variety of physiological roles for these metabolites, including effects on host metabolism, immune response and neurological function. Moreover, recent research has revealed that commensal bacteria either chemically modify or synthesize a variety of sulfated compounds. In this Review, we explore how host-microbiome collaborative metabolism transforms the sulfated metabolome. We describe bacterial and mammalian enzymes that sulfonate and desulfate biologically relevant carbohydrates, amino acid derivatives and cholesterol-derived metabolites. We then discuss outstanding questions and future directions in the field, including potential roles of sulfated metabolites in disease detection, prevention and treatment. We hope that this Review inspires future research into sulfated compounds and their effects on physiology.
Collapse
Affiliation(s)
- Gabriel D D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Zhuo N, Yun Y, Zhang C, Guo S, Yin J, Zhao T, Ge X, Gu M, Xie X, Nan F. Discovery of betulinic acid derivatives as gut-restricted TGR5 agonists: Balancing the potency and physicochemical properties. Bioorg Chem 2024; 144:107132. [PMID: 38241768 DOI: 10.1016/j.bioorg.2024.107132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The pleiotropic effects of TGR5 make it an appealing target for intervention of metabolic and inflammatory disorders, but systemic activation of TGR5 faces challenges of on-target side effects, especially gallbladder filling. Gut-restricted agonists were proved to be sufficient to circumvent these side effects, but extremely low systemic exposure may not be effective in activating TGR5 since it is located on the basolateral membrane. Herein, to balance potency and physicochemical properties, a series of gut-restricted TGR5 agonists with diversified kinetophores had been designed and synthesized. Compound 22-Na exhibited significant antidiabetic effect, and showed favorable gallbladder safety after 7 days of oral administration in humanized TGR5H88Y mice, confirming that gut-restricted agonism of TGR5 is a viable strategy to alleviate systemic target-related effects.
Collapse
Affiliation(s)
- Ning Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Yun
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Tingting Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiu Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| |
Collapse
|
6
|
Kumar MS. Paneth cell: The missing link between obesity, MASH and portal hypertension. Clin Res Hepatol Gastroenterol 2024; 48:102259. [PMID: 38070827 DOI: 10.1016/j.clinre.2023.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Obesity is a global health crisis, with its prevalence steadily rising over the past few decades. One concerning consequence of obesity is its association with metabolic associated steatohepatitis [MASH], portal hypertension and liver cirrhosis. Cirrhosis is irreversible, but stages of liver disease before the development of cirrhosis are reversible with appropriate interventions. Studies have brought into light new entities that influences the pathophysiology of portal hypertension. This review provides evidence supporting that, Paneth cells[PCs] in the intestinal epithelium, which remained enigmatic for a century, are the maneuverer of pathophysiology of portal hypertension and obesity. PC dysfunction can cause perturbation of the intestinal microbiota and changes in intestinal permeability, which are the potential triggers of systemic inflammation. Thus, it can offer unique opportunities to understand the pathophysiology of portal hypertension for intervention strategies.
Collapse
Affiliation(s)
- Minu Sajeev Kumar
- Department of Gastroenterology, Government Medical College, Thiruvanathapuram, India.
| |
Collapse
|
7
|
Yang WJ, Han FH, Gu YP, Qu H, Liu J, Shen JH, Leng Y. TGR5 agonist inhibits intestinal epithelial cell apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway and ameliorates dextran sulfate sodium-induced ulcerative colitis. Acta Pharmacol Sin 2023; 44:1649-1664. [PMID: 36997665 PMCID: PMC10374578 DOI: 10.1038/s41401-023-01081-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Excessive apoptosis of intestinal epithelial cell (IEC) is a crucial cause of disrupted epithelium homeostasis, leading to the pathogenesis of ulcerative colitis (UC). The regulation of Takeda G protein-coupled receptor-5 (TGR5) in IEC apoptosis and the underlying molecular mechanisms remained unclear, and the direct evidence from selective TGR5 agonists for the treatment of UC is also lacking. Here, we synthesized a potent and selective TGR5 agonist OM8 with high distribution in intestinal tract and investigated its effect on IEC apoptosis and UC treatment. We showed that OM8 potently activated hTGR5 and mTGR5 with EC50 values of 202 ± 55 nM and 74 ± 17 nM, respectively. After oral administration, a large amount of OM8 was maintained in intestinal tract with very low absorption into the blood. In DSS-induced colitis mice, oral administration of OM8 alleviated colitis symptoms, pathological changes and impaired tight junction proteins expression. In addition to enhancing intestinal stem cell (ISC) proliferation and differentiation, OM8 administration significantly reduced the rate of apoptotic cells in colonic epithelium in colitis mice. The direct inhibition by OM8 on IEC apoptosis was further demonstrated in HT-29 and Caco-2 cells in vitro. In HT-29 cells, we demonstrated that silencing TGR5, inhibition of adenylate cyclase or protein kinase A (PKA) all blocked the suppression of JNK phosphorylation induced by OM8, thus abolished its antagonizing effect against TNF-α induced apoptosis, suggesting that the inhibition by OM8 on IEC apoptosis was mediated via activation of TGR5 and cAMP/PKA signaling pathway. Further studies showed that OM8 upregulated cellular FLICE-inhibitory protein (c-FLIP) expression in a TGR5-dependent manner in HT-29 cells. Knockdown of c-FLIP blocked the inhibition by OM8 on TNF-α induced JNK phosphorylation and apoptosis, suggesting that c-FLIP was indispensable for the suppression of OM8 on IEC apoptosis induced by OM8. In conclusion, our study demonstrated a new mechanism of TGR5 agonist on inhibiting IEC apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway in vitro, and highlighted the value of TGR5 agonist as a novel therapeutic strategy for the treatment of UC.
Collapse
Affiliation(s)
- Wen-Ji Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Hui Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Pei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Hua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Higuchi S, Wood C, Nasiri RH, Giddla LJ, Molina V, Diarra R, DiPatrizio NV, Kawamura A, Haeusler RA. The 16α-hydroxylated Bile Acid, Pythocholic Acid Decreases Food Intake and Increases Oleoylethanolamide in Male Mice. Endocrinology 2023; 164:bqad116. [PMID: 37490843 PMCID: PMC10407715 DOI: 10.1210/endocr/bqad116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Modulation of bile acid (BA) structure is a potential strategy for obesity and metabolic disease treatment. BAs act not only as signaling molecules involved in energy expenditure and glucose homeostasis, but also as regulators of food intake. The structure of BAs, particularly the position of the hydroxyl groups of BAs, impacts food intake partly by intestinal effects: (1) modulating the activity of N-acyl phosphatidylethanolamine phospholipase D, which produces the anorexigenic bioactive lipid oleoylethanolamide (OEA) or (2) regulating lipid absorption and the gastric emptying-satiation pathway. We hypothesized that 16α-hydroxylated BAs uniquely regulate food intake because of the long intermeal intervals in snake species in which these BAs are abundant. However, the effects of 16α-hydroxylated BAs in mammals are completely unknown because they are not naturally found in mammals. To test the effect of 16α-hydroxylated BAs on food intake, we isolated the 16α-hydroxylated BA pythocholic acid from ball pythons (Python regius). Pythocholic acid or deoxycholic acid (DCA) was given by oral gavage in mice. DCA is known to increase N-acyl phosphatidylethanolamine phospholipase D activity better than other mammalian BAs. We evaluated food intake, OEA levels, and gastric emptying in mice. We successfully isolated pythocholic acid from ball pythons for experimental use. Pythocholic acid treatment significantly decreased food intake in comparison to DCA treatment, and this was associated with increased jejunal OEA, but resulted in no change in gastric emptying or lipid absorption. The exogenous BA pythocholic acid is a novel regulator of food intake and the satiety signal for OEA in the mouse intestine.
Collapse
Affiliation(s)
- Sei Higuchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Courtney Wood
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Raidah H Nasiri
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Leela J Giddla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Valentina Molina
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Rokia Diarra
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Akira Kawamura
- Department of Chemistry, Hunter College of CUNY, New York, NY 10065, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Dorel R, Wong AR, Crawford JJ. Trust Your Gut: Strategies and Tactics for Intestinally Restricted Drugs. ACS Med Chem Lett 2023; 14:233-243. [PMID: 36923921 PMCID: PMC10009798 DOI: 10.1021/acsmedchemlett.3c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Non-absorbable small-molecule drugs targeted to the gut represent an alternative approach to safe, non-systemic therapeutics. Such drugs remain confined to the gastrointestinal tract upon oral dosing by virtue of their limited passive permeability, increasing the local concentration at the site of action while minimizing exposure elsewhere in the body. Herein we review the latest advances in the field of gut-restricted therapeutics, highlighting the different strategies and tactics that medicinal chemists have employed in pursuit of drugs with minimal intestinal absorption.
Collapse
Affiliation(s)
- Ruth Dorel
- Genentech, Inc., South San Francisco, California 94080, United States
| | - Alice R. Wong
- Genentech, Inc., South San Francisco, California 94080, United States
| | - James J. Crawford
- Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
10
|
Bhimanwar RS, Lokhande KB, Shrivastava A, Singh A, Chitlange SS, Mittal A. Identification of potential drug candidates as TGR5 agonist to combat type II diabetes using in silico docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2023; 41:13314-13331. [PMID: 36724473 DOI: 10.1080/07391102.2023.2173654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
A cell surface bile acid receptor TGR5 being considered as a novel target for Type II diabetes found to be expressed in various tissues. A major role for TGR5 is to maintain blood sugar levels and increase in energy expenditure. These benefits make it a potential candidate for the treatment of type 2 diabetes, obesity and other metabolic disorder. To date, many novel TGR5 agonists have been synthesized and evaluated in the literature, but very few in silico computational studies have been reported. The discovery of a high-resolution crystal structure of TGR5 in 2020 provides an excellent opportunity for computational screening of potential agonists. In this study, we, therefore, aim to search novel, less toxic TGR5 agonists by iteratively analyzing molecular docking against TGR5 (PDB ID: 7CFN) by means of structure-based virtual screening. The docking score of the designed coumarin derivatives that have been docked successfully varies between -9.4 and -9.0 kcal/mol. The molecular docking and ADMET profile examinations of compounds D1, D5 and D15 revealed that these have a strong affinity for the active site residues of TGR5. In addition, molecular dynamics simulation (MDS) studies have shown the stability of compounds that bind to TGR5. It can be summarized that designed coumarin derivatives seem to have promising activity as TGR5 agonists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| | - Sohan S Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
11
|
Guan HP, Xiong Y. Learn from failures and stay hopeful to GPR40, a GPCR target with robust efficacy, for therapy of metabolic disorders. Front Pharmacol 2022; 13:1043828. [PMID: 36386134 PMCID: PMC9640913 DOI: 10.3389/fphar.2022.1043828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
GPR40 is a class A G-protein coupled receptor (GPCR) mainly expressed in pancreas, intestine, and brain. Its endogenous ligand is long-chain fatty acids, which activate GPR40 after meal ingestion to induce secretion of incretins in the gut, including GLP-1, GIP, and PYY, the latter control appetite and glucose metabolism. For its involvement in satiety regulation and metabolic homeostasis, partial and AgoPAM (Positive Allosteric Modulation agonist) GPR40 agonists had been developed for type 2 diabetes (T2D) by many pharmaceutical companies. The proof-of-concept of GPR40 for control of hyperglycemia was achieved by clinical trials of partial GPR40 agonist, TAK-875, demonstrating a robust decrease in HbA1c (-1.12%) after chronic treatment in T2D. The development of TAK-875, however, was terminated due to liver toxicity in 2.7% patients with more than 3-fold increase of ALT in phase II and III clinical trials. Different mechanisms had since been proposed to explain the drug-induced liver injury, including acyl glucuronidation, inhibition of mitochondrial respiration and hepatobiliary transporters, ROS generation, etc. In addition, activation of GPR40 by AgoPAM agonists in pancreas was also linked to β-cell damage in rats. Notwithstanding the multiple safety concerns on the development of small-molecule GPR40 agonists for T2D, some partial and AgoPAM GPR40 agonists are still under clinical development. Here we review the most recent progress of GPR40 agonists development and the possible mechanisms of the side effects in different organs, and discuss the possibility of developing novel strategies that retain the robust efficacy of GPR40 agonists for metabolic disorders while avoid toxicities caused by off-target and on-target mechanisms.
Collapse
|
12
|
Gao R, Meng X, Xue Y, Mao M, Liu Y, Tian X, Sui B, Li X, Zhang P. Bile acids-gut microbiota crosstalk contributes to the improvement of type 2 diabetes mellitus. Front Pharmacol 2022; 13:1027212. [PMID: 36386219 PMCID: PMC9640995 DOI: 10.3389/fphar.2022.1027212] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 10/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) occurs that cannot effectively use the insulin. Insulin Resistance (IR) is a significant characteristic of T2DM which is also an essential treatment target in blood glucose regulation to prevent T2DM and its complications. Bile acids (BAs) are one group of bioactive metabolites synthesized from cholesterol in liver. BAs play an important role in mutualistic symbiosis between host and gut microbiota. It is shown that T2DM is associated with altered bile acid metabolism which can be regulated by gut microbiota. Simultaneously, BAs also reshape gut microbiota and improve IR and T2DM in the bidirectional communications of the gut-liver axis. This article reviewed the findings on the interaction between BAs and gut microbiota in improving T2DM, which focused on gut microbiota and its debinding function and BAs regulated gut microbiota through FXR/TGR5. Meanwhile, BAs and their derivatives that are effective for improving T2DM and other treatments based on bile acid metabolism were also summarized. This review highlighted that BAs play a critical role in the glucose metabolism and may serve as therapeutic targets in T2DM, providing a reference for discovering and screening novel therapeutic drugs.
Collapse
Affiliation(s)
- Ruolin Gao
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yili Xue
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Min Mao
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Yaru Liu
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuewen Tian
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Bo Sui
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Pengyi Zhang
- School of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
13
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
14
|
Gheorghe S, Stan MS, Mitroi DN, Staicu AC, Cicirma M, Lucaciu IE, Nita-Lazar M, Dinischiotu A. Oxidative Stress and Histopathological Changes in Gills and Kidneys of Cyprinus carpio following Exposure to Benzethonium Chloride, a Cationic Surfactant. TOXICS 2022; 10:227. [PMID: 35622641 PMCID: PMC9147585 DOI: 10.3390/toxics10050227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
One cationic surfactant with a wide spectrum of microbiocidal activity is benzethonium chloride (BEC). Despite being widely used, the toxicity data on vertebrate organisms are limited. Therefore, we aimed to evaluate within this study the acute toxicity of BEC on the gills and kidneys of Cyprinus carpio (European carp). An alteration of the antioxidant enzymes activities (glutathione reductase, glutathione peroxidase and glutathione S-transferase) was noticed after 96 h of exposure, along with an elevation of lipid peroxidation and decreased concentration of reduced glutathione, which confirmed that BEC was able to induce toxicity to these tissues. These metabolic effects were correlated with unspecific structural changes observed in gills and kidneys, having moderate degree of severity (such as an increase of melanomacrophages aggregation incidence and cytoplasm vacuolation of goblet cells in collecting tubules) and generally being compatible with life for the exposure time studied. The most severe structural effects were observed in gills after 96 h, noticing a lamellar aneurysm, hemorrhages and lamellar epithelium disruption due to the blood vessels and pillar cells damages and increased blood flow inside the lamellae. By our research we can confirm the utility of biochemical and histological analyses in the fish organs as tools for monitoring the water quality and ecotoxicological potential of chemicals.
Collapse
Affiliation(s)
- Stefania Gheorghe
- National Research and Development Institute for Industrial Ecology (ECOIND), 71–73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (S.G.); (I.E.L.); (M.N.-L.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Daniel N. Mitroi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
- AbbVie Inc., 2525 DuPont Dr, Irvine, CA 92612, USA
| | - Andrea C. Staicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
| | - Marius Cicirma
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
| | - Irina E. Lucaciu
- National Research and Development Institute for Industrial Ecology (ECOIND), 71–73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (S.G.); (I.E.L.); (M.N.-L.)
| | - Mihai Nita-Lazar
- National Research and Development Institute for Industrial Ecology (ECOIND), 71–73 Drumul Podu Dambovitei, 060652 Bucharest, Romania; (S.G.); (I.E.L.); (M.N.-L.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Spl. Independentei, 050095 Bucharest, Romania; (D.N.M.); (A.C.S.); (M.C.); (A.D.)
| |
Collapse
|
15
|
Abstract
The gut microbiome produces chemically diverse small molecules to interact with the host, conveying signals from the gut to the whole system. The microbial metabolites feature several unique modes of interaction with host targets, which fits well into the balanced and networked fashion of biological regulation. Hence, fully unveiling the targetome of signaling microbial metabolites may offer new insights into host health and disease, expand the repertoire of druggable targets, and enlighten a bioinspired path to drug design and discovery. In this review, we present an updated understanding of how microbial metabolite interaction with host targets finely orchestrates and integrates multiple signals to pathophysiological phenotypes, contributing new insights into organ crosstalk and holistic homeostasis maintenance in biological systems. We discuss strategies and open questions for mining and biomimicking the microbial metabolite-targetome interactions for pharmacological manipulation, which may lead to a new paradigm of drug discovery.
Collapse
Affiliation(s)
- Xiao Zheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Bhimanwar RS, Mittal A. TGR5 agonists for diabetes treatment: a patent review and clinical advancements (2012-present). Expert Opin Ther Pat 2021; 32:191-209. [PMID: 34652989 DOI: 10.1080/13543776.2022.1994551] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION A cell surface bile acid receptor TGR5 can be considered a promising target for the treatment of various metabolic diseases. The TGR5 receptor is expressed in various tissues, including the liver, kidney, intestine, and adrenal glands, causing its effect in each tissue to differ. A major role for TGR5 is to maintain blood sugar levels. Also, TGR5 is postulated to contribute to an increase in energy expenditure. These benefits make it a potential candidate for the treatment of type 2 diabetes, obesity, and other metabolic diseases. AREA COVERED This paper highlights recent advances in the development of potent steroidal and non-steroidal TGR5 agonists and the peer-reviewed scientific articles that have led to understanding the structure-activity relationship for TGR5 agonists (2012-2020). The review also discusses the clinical progress made by some TGR5 agonists over the past eight years. EXPERT OPINION Preclinical studies have suggested a key role for the TGR5 receptor in GLP-1 secretion and have shown promising outcomes such as weight loss, anti-inflammatory, anti-diabetic effects. Along with the evaluation of semisynthetic derivatives, synthetic compounds can also be considered as a possible avenue for the discovery of novel TGR5 agonists. Currently, few TGR5 agonists have reached the clinical trial stage, and, likely, we will soon discover a novel TGR5 modulator with fewer adverse effects. In silico studies can be performed with these scaffolds ranging from steroidal to heterocyclic rings to discover selective and safe TGR5 agonists.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India.,Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune (Maharashtra) 411018, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India
| |
Collapse
|
17
|
Stefela A, Kaspar M, Drastik M, Kronenberger T, Micuda S, Dracinsky M, Klepetarova B, Kudova E, Pavek P. (E)-7-Ethylidene-lithocholic Acid (7-ELCA) Is a Potent Dual Farnesoid X Receptor (FXR) Antagonist and GPBAR1 Agonist Inhibiting FXR-Induced Gene Expression in Hepatocytes and Stimulating Glucagon-like Peptide-1 Secretion From Enteroendocrine Cells. Front Pharmacol 2021; 12:713149. [PMID: 34483922 PMCID: PMC8414367 DOI: 10.3389/fphar.2021.713149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are key signaling steroidal molecules that regulate glucose, lipid, and energy homeostasis via interactions with the farnesoid X receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1). Extensive medicinal chemistry modifications of the BA scaffold led to the discovery of potent selective or dual FXR and GPBAR1 agonists. Herein, we discovered 7-ethylidene-lithocholic acid (7-ELCA) as a novel combined FXR antagonist/GPBAR1 agonist (IC50 = 15 μM/EC50 = 26 nM) with no off-target activation in a library of 7-alkyl substituted derivatives of BAs. 7-ELCA significantly suppressed the effect of the FXR agonist obeticholic acid in BSEP and SHP regulation in human hepatocytes. Importantly, 7-ELCA significantly stimulated the production of glucagon-like peptide-1 (GLP-1), an incretin with insulinotropic effect in postprandial glucose utilization, in intestinal enteroendocrine cells. We can suggest that 7-ELCA may be a prospective approach to the treatment of type II diabetes as the dual modulation of GPBAR1 and FXR has been supposed to be effective in the synergistic regulation of glucose homeostasis in the intestine.
Collapse
Affiliation(s)
- Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Miroslav Kaspar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Sciences, Charles University, Prague, Czechia
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany.,School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, Finland
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martin Dracinsky
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Blanka Klepetarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
18
|
Gertzen CGW, Gohlke H, Häussinger D, Herebian D, Keitel V, Kubitz R, Mayatepek E, Schmitt L. The many facets of bile acids in the physiology and pathophysiology of the human liver. Biol Chem 2021; 402:1047-1062. [PMID: 34049433 DOI: 10.1515/hsz-2021-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022]
Abstract
Bile acids perform vital functions in the human liver and are the essential component of bile. It is therefore not surprising that the biology of bile acids is extremely complex, regulated on different levels, and involves soluble and membrane receptors as well as transporters. Hereditary disorders of these proteins manifest in different pathophysiological processes that result in liver diseases of varying severity. In this review, we summarize our current knowledge of the physiology and pathophysiology of bile acids with an emphasis on recently established analytical approaches as well as the molecular mechanisms that underlie signaling and transport of bile acids. In this review, we will focus on ABC transporters of the canalicular membrane and their associated diseases. As the G protein-coupled receptor, TGR5, receives increasing attention, we have included aspects of this receptor and its interaction with bile acids.
Collapse
Affiliation(s)
- Christoph G W Gertzen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Chaudhari SN, Devlin AS. Intestinal Co-culture System to Study TGR5 Agonism and Gut Restriction. Bio Protoc 2021; 11:e3948. [PMID: 33855108 DOI: 10.21769/bioprotoc.3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 11/02/2022] Open
Abstract
The activation of the Takeda G-protein receptor 5 (TGR5, also known as the G protein-coupled bile acid receptor 1, GPBAR1) in enteroendocrine L-cells results in secretion of the anti-diabetic hormone Glucagon-Like Peptide 1 (GLP-1) into systemic circulation. Consequently, recent research has focused on identification and development of TGR5 agonists as type 2 diabetes therapeutics. However, the clinical application of TGR5 agonists has been hampered by side effects of these compounds that primarily result from their absorption into circulation. Here we describe an in vitro screening protocol to evaluate the TGR5 agonism, GLP-1 secretion, and gut-restricted properties of small molecules. The protocol involves differentiating gut epithelial and endocrine cells together in transwells to assess both the pharmacodynamics of TGR5 agonists and the toxicity of compounds to the intestinal monolayer. As a proof of concept, we demonstrate the use of the protocol in evaluating properties of naturally occurring bile acid metabolites that are potent TGR5 agonists. This protocol is adapted from Chaudhari et al. (2021).
Collapse
Affiliation(s)
- Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| |
Collapse
|
20
|
Lefort C, Cani PD. The Liver under the Spotlight: Bile Acids and Oxysterols as Pivotal Actors Controlling Metabolism. Cells 2021; 10:cells10020400. [PMID: 33669184 PMCID: PMC7919658 DOI: 10.3390/cells10020400] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Among the myriad of molecules produced by the liver, both bile acids and their precursors, the oxysterols are becoming pivotal bioactive lipids which have been underestimated for a long time. Their actions are ranging from regulation of energy homeostasis (i.e., glucose and lipid metabolism) to inflammation and immunity, thereby opening the avenue to new treatments to tackle metabolic disorders associated with obesity (e.g., type 2 diabetes and hepatic steatosis) and inflammatory diseases. Here, we review the biosynthesis of these endocrine factors including their interconnection with the gut microbiota and their impact on host homeostasis as well as their attractive potential for the development of therapeutic strategies for metabolic disorders.
Collapse
|
21
|
Chaudhari SN, Harris DA, Aliakbarian H, Luo JN, Henke MT, Subramaniam R, Vernon AH, Tavakkoli A, Sheu EG, Devlin AS. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat Chem Biol 2020; 17:20-29. [PMID: 32747812 PMCID: PMC7891870 DOI: 10.1038/s41589-020-0604-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Bariatric surgery, the most effective treatment for obesity and type 2 diabetes, is associated with increased levels of the incretin hormone GLP-1 and changes in levels of circulating bile acids. The levels of individual bile acids in the GI tract following surgery, however, have remained largely unstudied. Using UPLC-MS-based quantification, we observed an increase in an endogenous bile acid, cholic acid-7-sulfate (CA7S), in the GI tract of both mice and humans after sleeve gastrectomy. We show that CA7S is a TGR5 agonist that increases Tgr5 expression and induces GLP-1 secretion. Further, CA7S administration increases glucose tolerance in insulin-resistant mice in a TGR5-dependent manner. CA7S remains gut-restricted, minimizing off-target effects previously observed for TGR5 agonists absorbed into circulation. By studying changes in individual metabolites following surgery, this study has revealed a naturally occurring TGR5 agonist that exerts systemic glucoregulatory effects while remaining confined to the gut.
Collapse
Affiliation(s)
- Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David A Harris
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hassan Aliakbarian
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James N Luo
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew T Henke
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Renuka Subramaniam
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ashley H Vernon
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Tavakkoli
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric G Sheu
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Studies have identified several effects of bile acids (BAs) in glucose homeostasis, energy expenditure, and body weight control, through receptor-dependent and independent mechanisms. BAs are produced from cholesterol and characterized by their structures, which result from enzymes in the liver and the gut microbiota. The aim of this review is to characterize the effects of BA structure and composition on diabetes. RECENT FINDINGS The hydroxyl groups of BAs interact with binding pockets of receptors and enzymes that affect glucose homeostasis. Human and animal studies show that BA composition is associated with insulin resistance and food intake regulation. The hydroxylation of BAs and BA composition contributes to glucose regulation. Modulation of BA composition has the potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Sei Higuchi
- Naomi Berrie Diabetes Center and Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Russ Berrie Pavilion, Room 315, 1150 St. Nicholas Ave., New York, NY, 10032, USA.
| |
Collapse
|
23
|
Han F, Ning M, Cao H, Ye Y, Feng Y, Leng Y, Shen J. Design of G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) soft drugs with reduced gallbladder-filling effects. Eur J Med Chem 2020; 203:112619. [PMID: 32682201 DOI: 10.1016/j.ejmech.2020.112619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
The G-protein-coupled bile acid receptor TGR5 agonists were widely developed in type 2 diabetes and gastrointestinal disorders, but were also full of challenges, due to the systemic on-targeted side effects, especially the gallbladder-filling effects. Here, to circumvent these risks, several TGR5 agonists with soft-drug designation had been designed and synthesized with the properties of rapid metabolized after drug effect. Among them, compound 19 showed negligible systemic exposure and favorable gallbladder safety on a 3-day continuous administration, providing a novel strategy for developing TGR5 agonists.
Collapse
Affiliation(s)
- Fanghui Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Hua Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
24
|
Marino SD, Finamore C, Biagioli M, Carino A, Marchianò S, Roselli R, Giorgio CD, Bordoni M, Di Leva FS, Novellino E, Cassiano C, Limongelli V, Zampella A, Festa C, Fiorucci S. GPBAR1 Activation by C6-Substituted Hyodeoxycholane Analogues Protect against Colitis. ACS Med Chem Lett 2020; 11:818-824. [PMID: 32435390 DOI: 10.1021/acsmedchemlett.9b00636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
GPBAR1 agonists have been identified as potential leads for the treatment of diseases related to colon inflammation such as Crohn's and ulcerative colitis. In this paper, we report the discovery of a small library of hyodeoxycholane analogues, decorated at C-6 with different substituents, as potent and selective GPBAR1 agonists. In vitro pharmacological assays showed that compound 6 selectively activates GPBAR1 (EC50 = 0.3 μM) and reduces the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in THP1 cells. The binding mode of compound 6 in GPBAR1 was elucidated by docking calculations. Moreover, compound 6 protects against TNBS-induced colitis in Gpbar1+/+ rodent model, representing an intriguing lead for the treatment of these inflammatory disorders.
Collapse
Affiliation(s)
- Simona De Marino
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Claudia Finamore
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Michele Biagioli
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Perugia CH-6900, Italy
| | - Adriana Carino
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Perugia CH-6900, Italy
| | - Silvia Marchianò
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Perugia CH-6900, Italy
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Cristina Di Giorgio
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Perugia CH-6900, Italy
| | - Martina Bordoni
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Perugia CH-6900, Italy
| | - Francesco Saverio Di Leva
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Faculty of Biomedical Sciences, Institute of Computational Science, Center for Computational Medicine in Cardiology, Università della Svizzera italiana (USI), Via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Angela Zampella
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Stefano Fiorucci
- Department of Surgery and Biomedical Sciences, Nuova Facoltà di Medicina, Perugia CH-6900, Italy
| |
Collapse
|
25
|
Farr S, Stankovic B, Hoffman S, Masoudpoor H, Baker C, Taher J, Dean AE, Anakk S, Adeli K. Bile acid treatment and FXR agonism lower postprandial lipemia in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G682-G693. [PMID: 32003602 DOI: 10.1152/ajpgi.00386.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Postprandial dyslipidemia is a common feature of insulin-resistant states and contributes to increased cardiovascular disease risk. Recently, bile acids have been recognized beyond their emulsification properties as important signaling molecules that promote energy expenditure, improve insulin sensitivity, and lower fasting lipemia. Although bile acid receptors have become novel pharmaceutical targets, their effects on postprandial lipid metabolism remain unclear. Here, we investigated the potential role of bile acids in regulation of postprandial chylomicron production and triglyceride excursion. Healthy C57BL/6 mice were given an intraduodenal infusion of taurocholic acid (TA) under fat-loaded conditions, and circulating lipids were measured. Targeting of bile acid receptors was achieved with GW4064, a synthetic agonist to the farnesoid X receptor (FXR), and deoxycholic acid (DCA), an activator of the Takeda G-protein-coupled receptor 5. TA, GW4064, and DCA treatments all lowered postprandial lipemia. FXR agonism also reduced intestinal triglyceride content and activity of microsomal triglyceride transfer protein, involved in chylomicron assembly. Importantly, TA (but not DCA) effects were largely lost in FXR knockout mice. These bile acid effects are reminiscent of the antidiabetic hormone glucagon-like peptide-1 (GLP-1). Although the GLP-1 receptor agonist exendin-4 retained its ability to acutely lower postprandial lipemia during bile acid sequestration and FXR deficiency, it did raise hepatic expression of the rate-limiting enzyme for bile acid synthesis. Bile acid signaling may be an important mechanism of controlling dietary lipid absorption, and bile acid receptors may constitute novel targets for the treatment of postprandial dyslipidemia.NEW & NOTEWORTHY We present new data suggesting potentially important roles for bile acids in regulation of postprandial lipid metabolism. Specific bile acid species, particularly secondary bile acids, were found to markedly inhibit absorption of dietary lipid and reduce postprandial triglyceride excursion. These effects appear to be mediated via bile acid receptors, farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Importantly, bile acid signaling may trigger glucagon-like peptide-1 (GLP-1) secretion, which may in turn mediate the marked inhibitory effects on dietary fat absorption.
Collapse
Affiliation(s)
- Sarah Farr
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bogdan Stankovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Simon Hoffman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hassan Masoudpoor
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chris Baker
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jennifer Taher
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angela E Dean
- Molecular and Cellular Biology, University of Illinois-Urbana-Champaign, Urbana, Illinois
| | | | - Khosrow Adeli
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.,Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Brønden A, Knop FK. Gluco-Metabolic Effects of Pharmacotherapy-Induced Modulation of Bile Acid Physiology. J Clin Endocrinol Metab 2020; 105:5601203. [PMID: 31630179 DOI: 10.1210/clinem/dgz025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT The discovery and characterization of the bile acid specific receptors farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) have facilitated a wealth of research focusing on the link between bile acid physiology and glucose metabolism. Modulation of FXR and TGR5 activation have been demonstrated to affect the secretion of glucagon-like peptide 1, insulin, and glucagon as well as energy expenditure and gut microbiota composition, with potential beneficial effects on glucose metabolism. EVIDENCE ACQUISITION A search strategy based on literature searches in on PubMed with various combinations of the key words FXR, TGR5, agonist, apical sodium-dependent bile acid transporter (ASBT), bile acid sequestrant, metformin, and glucose metabolism has been applied to obtain material for the present review. Furthermore, manual searches including scanning of reference lists in relevant papers and conference proceedings have been performed. EVIDENCE SYNTHESIS This review provides an outline of the link between bile acid and glucose metabolism, with a special focus on the gluco-metabolic impact of treatment modalities with modulating effects on bile acid physiology; including FXR agonists, TGR5 agonists, ASBT inhibitors, bile acid sequestrants, and metformin. CONCLUSIONS Any potential beneficial gluco-metabolic effects of FXR agonists remain to be established, whereas the clinical relevance of TGR5-based treatment modalities seems limited because of substantial safety concerns of TGR5 agonists observed in animal models. The glucose-lowering effects of ASBT inhibitors, bile acid sequestrants, and metformin are at least partly mediated by modulation of bile acid circulation, which might allow an optimization of these bile acid-modulating treatment modalities. (J Clin Endocrinol Metab XX: 00-00, 2019).
Collapse
Affiliation(s)
- Andreas Brønden
- Center for Clinical M etabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
| | - Filip K Knop
- Center for Clinical M etabolic Research, Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
- Steno Diabetes Copenhagen, DK-2820 Gentofte, Denmark
| |
Collapse
|
27
|
Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol 2019; 15:701-712. [PMID: 31616073 PMCID: PMC6918475 DOI: 10.1038/s41574-019-0266-7] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Of all the novel glucoregulatory molecules discovered in the past 20 years, bile acids (BAs) are notable for the fact that they were hiding in plain sight. BAs were well known for their requirement in dietary lipid absorption and biliary cholesterol secretion, due to their micelle-forming properties. However, it was not until 1999 that BAs were discovered to be endogenous ligands for the nuclear receptor FXR. Since that time, BAs have been shown to act through multiple receptors (PXR, VDR, TGR5 and S1PR2), as well as to have receptor-independent mechanisms (membrane dynamics, allosteric modulation of N-acyl phosphatidylethanolamine phospholipase D). We now also have an appreciation of the range of physiological, pathophysiological and therapeutic conditions in which endogenous BAs are altered, raising the possibility that BAs contribute to the effects of these conditions on glycaemia. In this Review, we highlight the mechanisms by which BAs regulate glucose homeostasis and the settings in which endogenous BAs are altered, and provide suggestions for future research.
Collapse
Affiliation(s)
- Tiara R Ahmad
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
28
|
Finn PD, Rodriguez D, Kohler J, Jiang Z, Wan S, Blanco E, King AJ, Chen T, Bell N, Dragoli D, Jacobs JW, Jain R, Leadbetter M, Siegel M, Carreras CW, Koo-McCoy S, Shaw K, Le C, Vanegas S, Hsu IH, Kozuka K, Okamoto K, Caldwell JS, Lewis JG. Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in Western diet-fed mice. Am J Physiol Gastrointest Liver Physiol 2019; 316:G412-G424. [PMID: 30605011 PMCID: PMC6459286 DOI: 10.1152/ajpgi.00300.2018] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) agonists induce systemic release of glucagon-like peptides (GLPs) from intestinal L cells, a potentially therapeutic action against metabolic diseases such as nonalcoholic steatohepatitis (NASH), nonalcoholic fatty liver disease (NAFLD), and Type 2 diabetes. Historically, TGR5 agonist use has been hindered by side effects, including inhibition of gallbladder emptying. Here, we characterize RDX8940, a novel, orally administered TGR5 agonist designed to have minimal systemic effects and investigate its activity in mice fed a Western diet, a model of NAFLD and mild insulin resistance. Agonist activity, binding selectivity, toxicity, solubility, and permeability of RDX8940 were characterized in standard in vitro models. RDX8940 pharmacokinetics and effects on GLP secretion, insulin sensitivity, and liver steatosis were assessed in C57BL/6 mice fed normal or Western diet chow and given single or repeated doses of RDX8940 or vehicle, with or without dipeptidyl peptidase-4 (DPP4) inhibitors. Gallbladder effects were assessed in CD-1 mice fed normal chow and given RDX8940 or a systemic TGR5 agonist or vehicle. Our results showed that RDX8940 is minimally systemic, potent, and selective, and induces incretin (GLP-1, GLP-2, and peptide YY) secretion. RDX8940-induced increases in plasma active GLP-1 (aGLP-1) levels were enhanced by repeated dosing and by coadministration of DPP4 inhibitors. RDX8940 increased hepatic exposure to aGLP-1 without requiring coadministration of a DPP4 inhibitor. In mice fed a Western diet, RDX8940 improved liver steatosis and insulin sensitivity. Unlike systemic TGR5 agonists, RDX8940 did not inhibit gallbladder emptying. These results indicate that RDX8940 may have therapeutic potential in patients with NAFLD/NASH. NEW & NOTEWORTHY Takeda G protein-coupled receptor 5 (TGR5) agonists have potential as a treatment for nonalcoholic steatohepatitis and nonalcoholic fatty liver disease (NAFLD) but have until now been associated with undesirable side effects associated with systemic TGR5 agonism, including blockade of gallbladder emptying. We demonstrate that RDX8940, a potent, selective, minimally systemic oral TGR5 agonist, improves liver steatosis and insulin sensitivity in a mouse model of NAFLD and does not inhibit gallbladder emptying in mice.
Collapse
Affiliation(s)
| | | | | | | | - Sindy Wan
- Ardelyx, Incorporated, Fremont, California
| | | | | | - Tao Chen
- Ardelyx, Incorporated, Fremont, California
| | - Noah Bell
- Ardelyx, Incorporated, Fremont, California
| | | | | | | | | | | | | | | | - Karen Shaw
- Ardelyx, Incorporated, Fremont, California
| | - Cathy Le
- Ardelyx, Incorporated, Fremont, California
| | | | - I-Hsin Hsu
- Ardelyx, Incorporated, Fremont, California
| | | | | | | | | |
Collapse
|
29
|
De Marino S, Festa C, Sepe V, Zampella A. Chemistry and Pharmacology of GPBAR1 and FXR Selective Agonists, Dual Agonists, and Antagonists. Handb Exp Pharmacol 2019; 256:137-165. [PMID: 31201554 DOI: 10.1007/164_2019_237] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the recent years, bile acid receptors FXR and GPBAR1 have attracted the interest of scientific community and companies, as they proved promising targets for the treatment of several diseases, ranging from liver cholestatic disorders to metabolic syndrome, inflammatory states, nonalcoholic steatohepatitis (NASH), and diabetes.Consequently, the development of dual FXR/GPBAR1 agonists, as well as selective targeting of one of these receptors, is considered a hopeful possibility in the treatment of these disorders. Because endogenous bile acids and steroidal ligands, which cover the same chemical space of bile acids, often target both receptor families, speculation on nonsteroidal ligands represents a promising and innovative strategy to selectively target GPBAR1 or FXR.In this review, we summarize the most recent acquisition on natural, semisynthetic, and synthetic steroidal and nonsteroidal ligands, able to interact with FXR and GPBAR1.
Collapse
Affiliation(s)
- Simona De Marino
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Carmen Festa
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
30
|
Donkers JM, Roscam Abbing RLP, van de Graaf SFJ. Developments in bile salt based therapies: A critical overview. Biochem Pharmacol 2018; 161:1-13. [PMID: 30582898 DOI: 10.1016/j.bcp.2018.12.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Bile acids, amphipathic molecules known for their facilitating role in fat absorption, are also recognized as signalling molecules acting via nuclear and membrane receptors. Of the bile acid-activated receptors, the Farnesoid X Receptor (FXR) and the G protein-coupled bile acid receptor-1 (Gpbar1 or TGR5) have been studied most extensively. Bile acid signaling is critical in the regulation of bile acid metabolism itself, but it also plays a significant role in glucose, lipid and energy metabolism. Activation of FXR and TGR5 leads to reduced hepatic bile salt load, improved insulin sensitivity and glucose regulation, increased energy expenditure, and anti-inflammatory effects. These beneficial effects render bile acid signaling an interesting therapeutic target for the treatment of diseases such as cholestasis, non-alcoholic fatty liver disease, and diabetes. Here, we summarize recent findings on bile acid signaling and discuss potential and current limitations of bile acid receptor agonist and modulators of bile acid transport as future therapeutics for a wide-spectrum of diseases.
Collapse
Affiliation(s)
- Joanne M Donkers
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands
| | - Reinout L P Roscam Abbing
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
31
|
Chen T, Reich NW, Bell N, Finn PD, Rodriguez D, Kohler J, Kozuka K, He L, Spencer AG, Charmot D, Navre M, Carreras CW, Koo-McCoy S, Tabora J, Caldwell JS, Jacobs JW, Lewis JG. Design of Gut-Restricted Thiazolidine Agonists of G Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5). J Med Chem 2018; 61:7589-7613. [DOI: 10.1021/acs.jmedchem.8b00308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tao Chen
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | | | - Noah Bell
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Patricia D. Finn
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - David Rodriguez
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Jill Kohler
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Kenji Kozuka
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Limin He
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Andrew G. Spencer
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Dominique Charmot
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Marc Navre
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | | | - Samantha Koo-McCoy
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Jocelyn Tabora
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Jeremy S. Caldwell
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Jeffrey W. Jacobs
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| | - Jason Gustaf Lewis
- Ardelyx, Inc., 34175 Ardenwood Blvd, Fremont, California 94555, United States
| |
Collapse
|
32
|
Sasaki T, Kuboyama A, Mita M, Murata S, Shimizu M, Inoue J, Mori K, Sato R. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem 2018; 293:10322-10332. [PMID: 29773650 DOI: 10.1074/jbc.ra118.002733] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
TGR5 (also known as G protein-coupled bile acid receptor 1, GPBAR1) is a G protein-coupled bile acid receptor that is expressed in many diverse tissues. TGR5 is involved in various metabolic processes, including glucose metabolism and energy expenditure; however, TGR5's function in skeletal muscle is not fully understood. Using both gain- and loss-of-function mouse models, we demonstrate here that Tgr5 activation promotes muscle cell differentiation and muscle hypertrophy. Both young and old transgenic mice with muscle-specific Tgr5 expression exhibited increased muscle strength. Moreover, we found that Tgr5 expression is increased by the unfolded protein response (UPR), which is an adaptive response required for maintenance of endoplasmic reticulum (ER) homeostasis. Both ER stress response element (ERSE)- and unfolded protein response element (UPRE)-like sites are present in the 5' upstream region of the Tgr5 gene promoter and are essential for Tgr5 expression by Atf6α (activating transcription factor 6α), a well known UPR-activated transcriptional regulator. We observed that in the skeletal muscle of mice, exercise-induced UPR increases Tgr5 expression, an effect that was abrogated in Atf6α KO mice, indicating that Atf6α is essential for this response. These findings indicate that the bile acid receptor Tgr5 contributes to improved muscle function and provide an additional explanation for the beneficial effects of exercise on skeletal muscle activity.
Collapse
Affiliation(s)
| | | | - Moeko Mita
- From the Food Biochemistry Laboratory and
| | | | | | - Jun Inoue
- From the Food Biochemistry Laboratory and
| | - Kazutoshi Mori
- the Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, and
| | - Ryuichiro Sato
- From the Food Biochemistry Laboratory and .,Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| |
Collapse
|
33
|
Omotuyi OI, Nash O, Inyang OK, Ogidigo J, Enejoh O, Okpalefe O, Hamada T. Flavonoid-rich extract of Chromolaena odorata modulate circulating GLP-1 in Wistar rats: computational evaluation of TGR5 involvement. 3 Biotech 2018; 8:124. [PMID: 29450114 DOI: 10.1007/s13205-018-1138-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022] Open
Abstract
Chromolaena odorata is a major bio-resource in folkloric treatment of diabetes. In the present study, its anti-diabetic component and underlying mechanism were investigated. A library containing 140 phytocompounds previously characterized from C. odorata was generated and docked (Autodock Vina) into homology models of dipeptidyl peptidase (DPP)-4, Takeda-G-protein-receptor-5 (TGR5), glucagon-like peptide 1 (GLP1) receptor, renal sodium dependent glucose transporter (SGLUT)-1/2 and nucleotide-binding oligomerization domain (NOD) proteins 1&2. GLP-1 gene (RT-PCR) modulation and its release (EIA) by C. odorata were confirmed in vivo. From the docking result above, TGR5 was identified as a major target for two key C. odorata flavonoids (5,7-dihydroxy-6-4-dimethoxyflavanone and homoesperetin-7-rutinoside); sodium taurocholate and C. odorata powder included into the diet of the animals both raised the intestinal GLP-1 expression versus control (p < 0.05); When treated with flavonoid-rich extract of C. odorata (CoF) or malvidin, circulating GLP-1 increased by 130.7% in malvidin-treated subjects (0 vs. 45 min). CoF treatment also resulted in 128.5 and 275% increase for 10 and 30 mg/kg b.w., respectively. CONCLUSIONS The results of this study support that C. odorata flavonoids may modulate the expression of GLP-1 and its release via TGR5. This finding may underscore its anti-diabetic potency.
Collapse
Affiliation(s)
- Olaposi Idowu Omotuyi
- 1Center for Bio-Computing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Oyekanmi Nash
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Olumide Kayode Inyang
- 1Center for Bio-Computing and Drug Development, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Joyce Ogidigo
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Ojochenemi Enejoh
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Okiemute Okpalefe
- Phytomedicine Research Group, Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Tsuyoshi Hamada
- 3Advanced Computing Centre, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
34
|
Ladurner A, Zehl M, Grienke U, Hofstadler C, Faur N, Pereira FC, Berry D, Dirsch VM, Rollinger JM. Allspice and Clove As Source of Triterpene Acids Activating the G Protein-Coupled Bile Acid Receptor TGR5. Front Pharmacol 2017; 8:468. [PMID: 28769799 PMCID: PMC5511840 DOI: 10.3389/fphar.2017.00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022] Open
Abstract
Worldwide, metabolic diseases such as obesity and type 2 diabetes have reached epidemic proportions. A major regulator of metabolic processes that gained interest in recent years is the bile acid receptor TGR5 (Takeda G protein-coupled receptor 5). This G protein-coupled membrane receptor can be found predominantly in the intestine, where it is mainly responsible for the secretion of the incretins glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). The aim of this study was (i) to identify plant extracts with TGR5-activating potential, (ii) to narrow down their activity to the responsible constituents, and (iii) to assess whether the intestinal microbiota produces transformed metabolites with a different activity profile. Chenodeoxycholic acid (CDCA) served as positive control for both, the applied cell-based luciferase reporter gene assay for TGR5 activity and the biotransformation assay using mouse fecal slurry. The suitability of the workflow was demonstrated by the biotransformation of CDCA to lithocholic acid resulting in a distinct increase in TGR5 activity. Based on a traditional Tibetan formula, 19 plant extracts were selected and investigated for TGR5 activation. Extracts from the commonly used spices Syzygium aromaticum (SaroE, clove), Pimenta dioica (PdioE, allspice), and Kaempferia galanga (KgalE, aromatic ginger) significantly increased TGR5 activity. After biotransformation, only KgalE showed significant differences in its metabolite profile, which, however, did not alter its TGR5 activity compared to non-transformed KgalE. UHPLC-HRMS (high-resolution mass spectrometry) analysis revealed triterpene acids (TTAs) as the main constituents of the extracts SaroE and PdioE. Identification and quantification of TTAs in these two extracts as well as comparison of their TGR5 activity with reconstituted TTA mixtures allowed the attribution of the TGR5 activity to TTAs. EC50s were determined for the main TTAs, i.e., oleanolic acid (2.2 ± 1.6 μM), ursolic acid (1.1 ± 0.2 μM), as well as for the hitherto unknown TGR5 activators corosolic acid (0.5 ± 1.0 μM) and maslinic acid (3.7 ± 0.7 μM). In conclusion, extracts of clove, allspice, and aromatic ginger activate TGR5, which might play a pivotal role in their therapeutic use for the treatment of metabolic diseases. Moreover, the TGR5 activation of SaroE and PdioE could be pinpointed solely to TTAs.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Martin Zehl
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
- Department of Pharmaceutical Chemistry, University of ViennaVienna, Austria
- Department of Analytical Chemistry, University of ViennaVienna, Austria
| | - Ulrike Grienke
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Christoph Hofstadler
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Nadina Faur
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Fátima C. Pereira
- Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - David Berry
- Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| |
Collapse
|
35
|
Sasaki T, Mita M, Ikari N, Kuboyama A, Hashimoto S, Kaneko T, Ishiguro M, Shimizu M, Inoue J, Sato R. Identification of key amino acid residues in the hTGR5-nomilin interaction and construction of its binding model. PLoS One 2017; 12:e0179226. [PMID: 28594916 PMCID: PMC5464637 DOI: 10.1371/journal.pone.0179226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
TGR5, a member of the G protein-coupled receptor (GPCR) family, is activated by bile acids. Because TGR5 promotes energy expenditure and improves glucose homeostasis, it is recognized as a key target in treating metabolic diseases. We previously showed that nomilin, a citrus limonoid, activates TGR5 and confers anti-obesity and anti-hyperglycemic effects in mice. Information on the TGR5–nomilin interaction regarding molecular structure, however, has not been reported. In the present study, we found that human TGR5 (hTGR5) shows higher nomilin responsiveness than does mouse TGR5 (mTGR5). Using mouse–human chimeric TGR5, we also found that three amino acid residues (Q77ECL1, R80ECL1, and Y893.29) are important in the hTGR5–nomilin interaction. Based on these results, an hTGR5–nomilin binding model was constructed using in silico docking simulation, demonstrating that four hydrophilic hydrogen-bonding interactions occur between nomilin and hTGR5. The binding mode of hTGR5–nomilin is vastly different from those of other TGR5 agonists previously reported, suggesting that TGR5 forms various binding patterns depending on the type of agonist. Our study promotes a better understanding of the structure of TGR5, and it may be useful in developing and screening new TGR5 agonists.
Collapse
Affiliation(s)
- Takashi Sasaki
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Moeko Mita
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Naho Ikari
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ayane Kuboyama
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Shuzo Hashimoto
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Tatsuya Kaneko
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Masaji Ishiguro
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata, Japan
| | - Makoto Shimizu
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Jun Inoue
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Ryuichiro Sato
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
36
|
Lasalle M, Hoguet V, Hennuyer N, Leroux F, Piveteau C, Belloy L, Lestavel S, Vallez E, Dorchies E, Duplan I, Sevin E, Culot M, Gosselet F, Boulahjar R, Herledan A, Staels B, Deprez B, Tailleux A, Charton J. Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon Like Peptide-1 Secretion and Improve Glucose Tolerance. J Med Chem 2017; 60:4185-4211. [PMID: 28414465 DOI: 10.1021/acs.jmedchem.6b01873] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The role of the G-protein-coupled bile acid receptor TGR5 in various organs, tissues, and cell types, specifically in intestinal endocrine L-cells and brown adipose tissue, has made it a promising therapeutical target in several diseases, especially type-2 diabetes and metabolic syndrome. However, recent studies have shown deleterious on-target effects of systemic TGR5 agonists. To avoid these systemic effects while stimulating glucagon-like peptide-1 (GLP-1) secreting enteroendocrine L-cells, we have designed TGR5 agonists with low intestinal permeability. In this article, we describe their synthesis, characterization, and biological evaluation. Among them, compound 24 is a potent GLP-1 secretagogue, has low effect on gallbladder volume, and improves glucose homeostasis in a preclinical murine model of diet-induced obesity and insulin resistance, making the proof of concept of the potential of topical intestinal TGR5 agonists as therapeutic agents in type-2 diabetes.
Collapse
Affiliation(s)
- Manuel Lasalle
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Vanessa Hoguet
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Loïc Belloy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Emmanuelle Vallez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Emilie Dorchies
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Isabelle Duplan
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Emmanuel Sevin
- Univ. Artois , EA 2465 - Blood-Brain Barrier Laboratory (LBHE), F-62300 Lens, France
| | - Maxime Culot
- Univ. Artois , EA 2465 - Blood-Brain Barrier Laboratory (LBHE), F-62300 Lens, France
| | - Fabien Gosselet
- Univ. Artois , EA 2465 - Blood-Brain Barrier Laboratory (LBHE), F-62300 Lens, France
| | - Rajaa Boulahjar
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Julie Charton
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| |
Collapse
|
37
|
Abstract
In addition to their bioenergetic intracellular function, several classical metabolites act as extracellular signaling molecules activating cell-surface G-protein-coupled receptors (GPCRs), similar to hormones and neurotransmitters. "Signaling metabolites" generated from nutrients or by gut microbiota target primarily enteroendocrine, neuronal, and immune cells in the lamina propria of the gut mucosa and the liver and, through these tissues, the rest of the body. In contrast, metabolites from the intermediary metabolism act mainly as metabolic stress-induced autocrine and paracrine signals in adipose tissue, the liver, and the endocrine pancreas. Importantly, distinct metabolite GPCRs act as efficient pro- and anti-inflammatory regulators of key immune cells, and signaling metabolites may thus function as important drivers of the low-grade inflammation associated with insulin resistance and obesity. The concept of key metabolites as ligands for specific GPCRs has broadened our understanding of metabolic signaling significantly and provides a number of novel potential drug targets.
Collapse
Affiliation(s)
- Anna Sofie Husted
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mette Trauelsen
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Olga Rudenko
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Siv A Hjorth
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thue W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department for Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
38
|
Yusta B, Matthews D, Flock GB, Ussher JR, Lavoie B, Mawe GM, Drucker DJ. Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway. Mol Metab 2017; 6:503-511. [PMID: 28580281 PMCID: PMC5444019 DOI: 10.1016/j.molmet.2017.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Glucagon-like peptides (GLPs) are secreted from enteroendocrine cells in response to nutrients and bile acids and control metabolism via actions on structurally-related yet distinct G protein coupled receptors. GLP-1 regulates gut motility, appetite, islet function, and glucose homeostasis, whereas GLP-2 enhances intestinal nutrient absorption. GLP-1R agonists are used to treat diabetes and obesity, and a GLP-2R agonist is approved to treat short bowel syndrome. Unexpectedly, reports of gallbladder disease have been associated with the use of both GLP-1R and GLP-2R agonists and after bariatric surgery, although the mechanisms remain unknown. METHODS We investigated whether GLP-1 or GLP-2 acutely controls gallbladder (GB) volume and whether GLP-2 regulates GB muscle activity in mice. The expression of Tgr5, Glp2r, and Glp1r was assessed in mouse GB, and the effects of GLP-2 on hepatic bile acid (BA) flow, intestinal and liver BA uptake, and GB gene expression were determined. GLP-2 regulation of GB volume was assessed in wildtype, Glp2r-/- and Tgr5-/- mice. The effect of GLP-2 on GB smooth muscle (GBSM) calcium transients was characterized ex vivo. RESULTS Acute administration of the GLP-1R agonist exendin-4 lowered glucose but had no effect on GB volume in mice. In contrast, GLP-2 rapidly enhanced GB filling in a dose-dependent manner, actions maintained in the presence of cholecystokinin, and mediated through the canonical GLP-2R. GLP-2 also rapidly induced immediate early gene expression in GB, consistent with detection of the endogenous Glp2r in GB RNA. The ability of GLP-2 to increase GB volume was not abrogated by systemic administration of hexamethonium, propranolol, a vasoactive peptide receptor antagonist or N-Nitroarginine methyl ester, and was maintained in Tgr5-/- mice. In contrast, lithocholic acid, a Tgr5 agonist, increased GB filling in Glp2r-/- but not in Tgr5-/- mice. GLP-2 had no effect on ileal uptake or hepatic clearance of taurocholic acid or on hepatic bile flow, yet reduced the frequency of spontaneous calcium transients in murine GBSM ex vivo, in a tetrodotoxin-sensitive manner. CONCLUSIONS Our data extend endocrine concepts of regulation of GB filling beyond FXR-FGF15/19 and the direct effects of BA via Tgr5, to encompass a novel BA-Tgr5-L cell GLP-2 axis providing nutrient-mediated feedback from BA to terminate meal-related GB contraction. These findings have implications for conditions characterized by elevated circulating levels of GLP-2 such as after bariatric surgery and the development and use of agents that promote Tgr5 activation, L cell secretion, or GLP-2R agonism for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Bernardo Yusta
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| | - Dianne Matthews
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| | - Grace B Flock
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| | - John R Ussher
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| | - Brigitte Lavoie
- The Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Gary M Mawe
- The Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Daniel J Drucker
- The Department of Medicine, University of Toronto, Canada.,The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| |
Collapse
|
39
|
Zhang X, Sui Z, Kauffman J, Hou C, Chen C, Du F, Kirchner T, Liang Y, Johnson D, Murray WV, Demarest K. Evaluation of anti-diabetic effect and gall bladder function with 2-thio-5-thiomethyl substituted imidazoles as TGR5 receptor agonists. Bioorg Med Chem Lett 2017; 27:1760-1764. [PMID: 28285911 DOI: 10.1016/j.bmcl.2017.02.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 11/29/2022]
Abstract
A novel series of 2-thio-5-thiomethyl substituted imidazoles was discovered to be potent TGR5 agonists that possessed glucose-lowering effects while inhibiting gall bladder emptying in mice.
Collapse
Affiliation(s)
- Xuqing Zhang
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States.
| | - Zhihua Sui
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Jack Kauffman
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Cuifen Hou
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Cailin Chen
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Fuyong Du
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Thomas Kirchner
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Yin Liang
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Dana Johnson
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - William V Murray
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Keith Demarest
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| |
Collapse
|
40
|
The anti-hyperglycemic efficacy of a lipid-lowering drug Daming capsule and the underlying signaling mechanisms in a rat model of diabetes mellitus. Sci Rep 2016; 6:34284. [PMID: 27721485 PMCID: PMC5056381 DOI: 10.1038/srep34284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder manifested by hyperglycemia. Daming Capsule (DMC), a combination of traditional Chinese herbs, is used clinically as a lipid-lowering drug. This study was designed to evaluate if DMC possesses an anti-hyperglycemic effect and to elucidate the underlying mechanisms. Compared to diabetic rats, the rats received DMC (200 mg/kg/d) had significantly lower blood lipid and glucose levels. DMC markedly restored the decreased secretion of GLP-1 and GIP as well as the coding gene GCG and GIP in ileum. Moreover, DMC normalized depressed GCG and GIP transcription by significantly enhancing the GSK-3β/β-catenin signaling pathway and expression of TCF7L2, a transactivator of GCG and GIP in diabetic rats. DMC possesses an anti-hyperglycemic property characterized by preservation/stimulation of GLP-1 and GIP secretion in DM rats. Here, we proposed DMC → GSK-3β/β-catenin↑ → TCF7L2↑ → GLP-1, GIP secretion↑ → blood glucose↓ as a regulatory pathway of blood glucose homeostasis. Our findings suggest DMC as a promising therapeutic drug in the clinical treatment of diabetes.
Collapse
|