1
|
Pang H, Wu Y, Chen Y, Chen C, Nie X, Li P, Huang G, Xu ZP, Han FY. Development of polysaccharide-coated layered double hydroxide nanocomposites for enhanced oral insulin delivery. Drug Deliv Transl Res 2024; 14:2345-2355. [PMID: 38214820 PMCID: PMC11291568 DOI: 10.1007/s13346-023-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Oral insulin (INS) is predicted to have the most therapeutic advantages in treating diabetes to repress hepatic glucose production through its potential to mimic the endogenous insulin pathway. Many oral insulin delivery systems have been investigated. Layered double hydroxide (LDH) as an inorganic material has been widely used in drug delivery thanks to its appealing features such as good biocompatibility, low toxicity, and excellent loading capability. However, when used in oral drug delivery, the effectiveness of LDH is limited due to the acidic degradation in the stomach. In this study, to overcome these challenges, chitosan (Chi) and alginate (Alg) dual-coated LDH nanocomposites with the loading of insulin (Alg-Chi-LDH@INS) were developed by the layered-by-layered method for oral insulin delivery with dynamic size of ~ 350.8 nm, negative charge of ~ - 13.0 mV, and dispersity index 0.228. The insulin release profile was evaluated by ultraviolet-visible spectroscopy. The drug release profiles evidenced that alginate and chitosan coating partially protect insulin release from a burst release in acidic conditions. The analysis using flow cytometry showed that chitosan coating significantly enhanced the uptake of LDH@INS by Caco-2 cells compared to unmodified LDH and free insulin. Further in the in vivo study in streptozocin-induced diabetic mice, a significant hypoglycemic effect was maintained following oral administration with great biocompatibility (~ 50% blood glucose level reduction at 4 h). This research has thus provided a potential nanocomposite system for oral delivery of insulin.
Collapse
Affiliation(s)
- Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yang Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chen Chen
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xuqiang Nie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guojun Huang
- Hainan Beautech Stem Cell Anti-Aging Hospital, Hainan, 571400, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
2
|
Pang H, Wu Y, Chen Y, Chen C, Nie X, Li P, Huang G, Xu ZP, Han FY. Development of polysaccharide-coated layered double hydroxide nanocomposites for enhanced oral insulin delivery. Drug Deliv Transl Res 2024; 14:2345-2355. [DOI: https:/doi.org/10.1007/s13346-023-01504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 02/14/2024]
Abstract
AbstractOral insulin (INS) is predicted to have the most therapeutic advantages in treating diabetes to repress hepatic glucose production through its potential to mimic the endogenous insulin pathway. Many oral insulin delivery systems have been investigated. Layered double hydroxide (LDH) as an inorganic material has been widely used in drug delivery thanks to its appealing features such as good biocompatibility, low toxicity, and excellent loading capability. However, when used in oral drug delivery, the effectiveness of LDH is limited due to the acidic degradation in the stomach. In this study, to overcome these challenges, chitosan (Chi) and alginate (Alg) dual-coated LDH nanocomposites with the loading of insulin (Alg-Chi-LDH@INS) were developed by the layered-by-layered method for oral insulin delivery with dynamic size of ~ 350.8 nm, negative charge of ~ − 13.0 mV, and dispersity index 0.228. The insulin release profile was evaluated by ultraviolet–visible spectroscopy. The drug release profiles evidenced that alginate and chitosan coating partially protect insulin release from a burst release in acidic conditions. The analysis using flow cytometry showed that chitosan coating significantly enhanced the uptake of LDH@INS by Caco-2 cells compared to unmodified LDH and free insulin. Further in the in vivo study in streptozocin-induced diabetic mice, a significant hypoglycemic effect was maintained following oral administration with great biocompatibility (~ 50% blood glucose level reduction at 4 h). This research has thus provided a potential nanocomposite system for oral delivery of insulin.
Graphical Abstract
Collapse
|
3
|
Alonso-Cerda MJ, García-Soto MJ, Miranda-López A, Segura-Velázquez R, Sánchez-Betancourt JI, González-Ortega O, Rosales-Mendoza S. Layered Double Hydroxides (LDH) as Delivery Vehicles of a Chimeric Protein Carrying Epitopes from the Porcine Reproductive and Respiratory Syndrome Virus. Pharmaceutics 2024; 16:841. [PMID: 39065539 PMCID: PMC11279870 DOI: 10.3390/pharmaceutics16070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) causes reproductive failure and respiratory symptoms, leading to huge economic losses for the pig farming industry. Although several vaccines against PRRSV are available in the market; they show an overall low efficacy, and several countries have the need for vaccines covering the local, circulating variants. This project aims at developing a new chimeric antigen targeting specific epitopes from PRRSV and evaluating two test adjuvants to formulate a vaccine candidate. The test antigen was called LTB-PRRSV, which was produced recombinantly in Escherichia coli and consisted of the heat labile enterotoxin B subunit from E. coli (LTB) and four epitopes from PRRSV. LTB-PRRSV was rescued as inclusion bodies and methods for its solubilization, IMAC-based purification, and refolding were standardized, leading to mean yields of 18 mg of pure protein per liter culture. Layered double hydroxides (LDH) have been used as vaccine adjuvants given their biocompatibility, low cost, and positive surface charge that allows an efficient adsorption of negatively charged biomolecules. Therefore, LDH were selected as delivery vehicles of LTB-PRRSV. Pure LTB-PRRSV was adsorbed onto LDH by incubation at different LDH:LTB-PRRSV mass ratios (1:0.25, 1:0.5, 1:1, and 1:2) and at pH 9.5. The best adsorption occurred with a 1:2 mass ratio, and in a sucrose-tween solution. The conjugates obtained had a polydispersity index of 0.26, a hydrodynamic diameter of 192 nm, and a final antigen concentration of 64.2 μg/mL. An immunogenicity assessment was performed by injecting mice with LDH:LTB-PRRSV, Alum/LTB-PRRSV, or LTB-PRRSV in a scheme comprising three immunizations at two-week intervals and two dose levels (1 and 5 μg). LTB-PRRSV was capable of inducing strong humoral responses, which lasted for a longer period when LDH was used as the delivery vehicle/adjuvant. The potential of LDH to serve as an attractive carrier for veterinary vaccines is discussed.
Collapse
Affiliation(s)
- María José Alonso-Cerda
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - Mariano J. García-Soto
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
| | - Arleth Miranda-López
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - René Segura-Velázquez
- Unidad de Investigación, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - José Ivan Sánchez-Betancourt
- Departamento de Medicina y Zootecnia de Cerdos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava 6, San Luis Potosí 78210, Mexico; (M.J.A.-C.); (M.J.G.-S.); (A.M.-L.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, San Luis Potosí 78210, Mexico
| |
Collapse
|
4
|
Cressoni C, Malandra S, Milan E, Boschi F, Nicolato E, Negri A, Veccia A, Bontempi P, Mangiameli D, Pietrobono S, Melisi D, Marzola P, Antonelli A, Speghini A. Injectable Thermogelling Nanostructured Ink as Simultaneous Optical and Magnetic Resonance Imaging Contrast Agent for Image-Guided Surgery. Biomacromolecules 2024; 25:3741-3755. [PMID: 38783486 DOI: 10.1021/acs.biomac.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development of efficient and biocompatible contrast agents is particularly urgent for modern clinical surgery. Nanostructured materials raised great interest as contrast agents for different imaging techniques, for which essential features are high contrasts, and in the case of precise clinical surgery, minimization of the signal spatial dispersion when embedded in biological tissues. This study deals with the development of a multimodal contrast agent based on an injectable hydrogel nanocomposite containing a lanthanide-activated layered double hydroxide coupled to a biocompatible dye (indocyanine green), emitting in the first biological window. This novel nanostructured thermogelling hydrogel behaves as an efficient tissue marker for optical and magnetic resonance imaging because the particular formulation strongly limits its spatial diffusion in biological tissue by exploiting a simple injection. The synergistic combination of these properties permits to employ the hydrogel ink simultaneously for both optical and magnetic resonance imaging, easy monitoring of the biological target, and, at the same time, increasing the spatial resolution during a clinical surgery. The biocompatibility and excellent performance as contrast agents are very promising for possible use in image-guided surgery, which is currently one of the most challenging topics in clinical research.
Collapse
Affiliation(s)
- Chiara Cressoni
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Sarah Malandra
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Urology Unit, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), P.le A. Stefani 1, 37126 Verona, Italy
| | - Emil Milan
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Elena Nicolato
- Centre of Tecnological Platforms, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Alessandro Negri
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Alessandro Veccia
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Urology Unit, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), P.le A. Stefani 1, 37126 Verona, Italy
| | - Pietro Bontempi
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Domenico Mangiameli
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy
| | - Silvia Pietrobono
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy
| | - Davide Melisi
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Alessandro Antonelli
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Urology Unit, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), P.le A. Stefani 1, 37126 Verona, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
5
|
de Araújo MA, Dos Santos Júnior ED, Dos Santos BP, Dos Santos YDR, Paulino PAT, Dos Santos EC, Souza TPM, Anhezini L, Bassi ÊJ, Duzzioni M, de Castro OW, de Andrade TG, Dornelas CB, Gitaí DLG. Layered double hydroxides (LDHs) as efficient and safe carriers for miRNA inhibitors: In vitro and in vivo assessment of biocompatibility. Chem Biol Interact 2024; 391:110874. [PMID: 38311162 DOI: 10.1016/j.cbi.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024]
Abstract
Layered double hydroxides (LDHs) have been employed as nano-sized carriers for therapeutic/bio-active molecules, including small interfering RNAs (siRNAs). However, the potential of LDHs nanoparticles for an efficient and safe antisense oligonucleotide (AMO) delivery still requires studies. In this research, we have tested the suitability of a Mg-Al-LDH-based nanocarrier loaded with a miRNA-196b-5p inhibitor. LDHs (and LDH-Oligo complex) were synthesized by the coprecipitation method followed by physicochemical characterization as hydrodynamic size, surface charge, crystallinity, and chemical groups. Thymic endothelial cell line (tEnd.1) were transfected with LDH-Oligo and were evaluated for i. cell viability by MTT, trypan blue, and propidium iodide assays; ii. transfection efficiency by flow cytometry, and iii. depletion of miRNA-196b-5p by RT-qPCR. In addition, Drosophila melanogaster larvae were fed LDHs and evaluated for: i. larval motility; ii. pupation rate; iii. larval-pupal transition; iv. lethality, and v. emergence rate. We demonstrated that LDHs nanoparticles are stable in aqueous solutions and exhibit a regular hexagonal shape. The LDH-AMO complex showed a transfection efficiency of 93.95 ± 2.15 % and induced a significant depletion of miRNA-196b-5p 48h after transfection. No cytotoxic effects were detected in tEnd.1 cells at concentrations up to 50 μg/ml, as well as in Drosophila exposed up to 500 μg of LDH. In conclusion, our data suggest that LDHs are biocompatible and efficient carriers for miRNA inhibitors and can be used as a viable and effective tool in functional miRNA inhibition assays.
Collapse
Affiliation(s)
- Mykaella Andrade de Araújo
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil.
| | - Erivaldo Davi Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Bruna Priscila Dos Santos
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Ygor Daniel Ramos Dos Santos
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Pedro Augusto Tibúrcio Paulino
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Elane Conceição Dos Santos
- Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Tayhana Priscila Medeiros Souza
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Lucas Anhezini
- Laboratory for in Vivo Analysis of Toxicity and Neurodegenerative Diseases, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Ênio José Bassi
- Laboratory of Research in Virology and Immunology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Marcelo Duzzioni
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology and Pharmacology, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Tiago Gomes de Andrade
- Circadian Medicine Center, Faculty of Medicine, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Camila Braga Dornelas
- Laboratory for Active Substance Carrier Nanosystems Technology, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, 57072-900, Brazil.
| |
Collapse
|
6
|
Li L, Sevciuc A, van Rijn P. Layered Double Hydroxides as an Intercalation System for Hydrophobic Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3145. [PMID: 38133041 PMCID: PMC10745577 DOI: 10.3390/nano13243145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Layered double hydroxides (LDHs) have been extensively studied as drug delivery systems due to their favorable characteristics, including biocompatibility, high loading efficiency, and pH-responsive release. However, the current research predominantly focuses on LDHs as carriers for various anionic drugs, while there are only limited reports on LDHs as carriers for hydrophobic drugs. In this study, we successfully achieved the loading of a hydrophobic drug mimic, Nile red (NR), into LDHs using sodium dodecyl sulfate (SDS) as an intermediate storage medium. Furthermore, we optimized the experimental methods and varied the SDS/NR molar ratio to optimize this intercalation system. With an increase in the SDS/NR molar ratio from 2/1 to 32/1, the loading efficiency of LDH-SDS-NR for NR initially increased from 1.32% for LDH-SDS-NR_2/1 to 4.46% for LDH-SDS-NR_8/1. Then, the loading efficiency slightly decreased to 3.64% for LDH-SDS-NR_16.8/1, but then increased again to 6.31% for LDH-SDS-NR_32/1. We believe that the established method and the obtained results in this study broaden the application scope of LDHs as delivery systems for hydrophobic drugs and contribute to the further expansion of the application scope of LDHs.
Collapse
Affiliation(s)
- Lei Li
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anastasia Sevciuc
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Development of Dipeptide N–acetyl–L–cysteine Loaded Nanostructured Carriers Based on Inorganic Layered Hydroxides. Pharmaceutics 2023; 15:pharmaceutics15030955. [PMID: 36986816 PMCID: PMC10054814 DOI: 10.3390/pharmaceutics15030955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
N–acetyl–L–cysteine (NAC), a derivative of the L–cysteine amino acid, presents antioxidant and mucolytic properties of pharmaceutical interest. This work reports the preparation of organic-inorganic nanophases aiming for the development of drug delivery systems based on NAC intercalation into layered double hydroxides (LDH) of zinc–aluminum (Zn2Al–NAC) and magnesium–aluminum (Mg2Al–NAC) compositions. A detailed characterization of the synthesized hybrid materials was performed, including X-ray diffraction (XRD) and pair distribution function (PDF) analysis, infrared and Raman spectroscopies, solid-state 13carbon and 27aluminum nuclear magnetic resonance (NMR), simultaneous thermogravimetric and differential scanning calorimetry coupled to mass spectrometry (TG/DSC–MS), scanning electron microscopy (SEM), and elemental chemical analysis to assess both chemical composition and structure of the samples. The experimental conditions allowed to isolate Zn2Al–NAC nanomaterial with good crystallinity and a loading capacity of 27.3 (m/m)%. On the other hand, NAC intercalation was not successful into Mg2Al–LDH, being oxidized instead. In vitro drug delivery kinetic studies were performed using cylindrical tablets of Zn2Al–NAC in a simulated physiological solution (extracellular matrix) to investigate the release profile. After 96 h, the tablet was analyzed by micro-Raman spectroscopy. NAC was replaced by anions such as hydrogen phosphate by a slow diffusion-controlled ion exchange process. Zn2Al–NAC fulfil basic requirements to be employed as a drug delivery system with a defined microscopic structure, appreciable loading capacity, and allowing a controlled release of NAC.
Collapse
|
8
|
Damasceno Leão A, Ribeiro da Silva J, Fontana Agostini J, Dal Santo G, Duarte Vieira L, da Costa Silva Neto J, Rodrigues de Lima Porto Ramos K, Gonçalves da Silva T, Alvarez-Lorenzo C, Gonçalves Wanderley A, Lamartine Soares-Sobrinho J. Efficacy and safety of nanoparticles of glibenclamide and organomodified layered double hydroxides in diabetics rats. Int J Pharm 2023; 634:122678. [PMID: 36738803 DOI: 10.1016/j.ijpharm.2023.122678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Glibenclamide (GB) is an important drug in the treatment of type II diabetes mellitus (DM II); however, its low solubility causes variability in its oral bioavailability, negatively affecting the pharmacological treatment. Nanoparticles (NP) of GB and organophilized Layered Double Hydroxide (LDH) were developed to improve oral bioavailability and tested in streptozotocin-induced diabetic rats to evaluate therapeutic efficacy and safety. Blood glucose was measured for 12 h or after 28 days of treatment. In addition, body weight, water and feed consumption, hematological, biochemistry and morphological parameters and markers of oxidative stress were determined. After the treatment, GB with LDH normalized the blood glucose level, indicating a better release profile. Water and feed intake and body weight of animals treated with GB and GB with LDH were closer to the normoglycemic group and did not indicate signs of toxicity of the nanoparticles. The biochemical, hematological and histological results also showed no significant changes related to nanotoxicity. The combination of GB with LDH proved to be critical in the oxidative balance, as it reduced the oxidative stress of vascular tissue. In conclusion, NPs are a potential controlled release system for the treatment of DM II.
Collapse
Affiliation(s)
- Amanda Damasceno Leão
- Federal University of Pernambuco-UFPE, Department of Pharmaceutical Sciences, University, Recife, Brazil.
| | - Juliano Ribeiro da Silva
- Federal University of Pernambuco-UFPE, Department of Pharmaceutical Sciences, University, Recife, Brazil
| | - Jotele Fontana Agostini
- Federal University of Pernambuco-UFPE, Department of Pharmaceutical Sciences, University, Recife, Brazil
| | - Glaucia Dal Santo
- Federal University of Pernambuco-UFPE, Department of Pharmaceutical Sciences, University, Recife, Brazil
| | - Lêucio Duarte Vieira
- Federal University of Pernambuco-UFPE, Department Physiology and Pharmacology, University, Recife, Brazil
| | | | | | | | - Carmen Alvarez-Lorenzo
- University of Santiago de Compostela-USC, Department of Pharmacology, Pharmacy and Pharmaceutical Technology, iMATUS and IDIS, 15782, Santiago de Compostela, Spain
| | - Almir Gonçalves Wanderley
- Federal University of São Paulo-UNIFESP, Department of Pharmaceutical Sciences, University, Diadema, Brazil
| | | |
Collapse
|
9
|
Constantino VRL, Figueiredo MP, Magri VR, Eulálio D, Cunha VRR, Alcântara ACS, Perotti GF. Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020413. [PMID: 36839735 PMCID: PMC9961265 DOI: 10.3390/pharmaceutics15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The development of biomaterials has a substantial role in pharmaceutical and medical strategies for the enhancement of life quality. This review work focused on versatile biomaterials based on nanocomposites comprising organic polymers and a class of layered inorganic nanoparticles, aiming for drug delivery (oral, transdermal, and ocular delivery) and tissue engineering (skin and bone therapies). Layered double hydroxides (LDHs) are 2D nanomaterials that can intercalate anionic bioactive species between the layers. The layers can hold metal cations that confer intrinsic biological activity to LDHs as well as biocompatibility. The intercalation of bioactive species between the layers allows the formation of drug delivery systems with elevated loading capacity and modified release profiles promoted by ion exchange and/or solubilization. The capacity of tissue integration, antigenicity, and stimulation of collagen formation, among other beneficial characteristics of LDH, have been observed by in vivo assays. The association between the properties of biocompatible polymers and LDH-drug nanohybrids produces multifunctional nanocomposites compatible with living matter. Such nanocomposites are stimuli-responsive, show appropriate mechanical properties, and can be prepared by creative methods that allow a fine-tuning of drug release. They are processed in the end form of films, beads, gels, monoliths etc., to reach orientated therapeutic applications. Several studies attest to the higher performance of polymer/LDH-drug nanocomposite compared to the LDH-drug hybrid or the free drug.
Collapse
Affiliation(s)
- Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-9152
| | - Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vagner Roberto Magri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Denise Eulálio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vanessa Roberta Rodrigues Cunha
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Linha J, s/n–Zona Rural, Juína 78320-000, MT, Brazil
| | | | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Itacoatiara 69103-128, AM, Brazil
| |
Collapse
|
10
|
Surface modification of two-dimensional layered double hydroxide nanoparticles with biopolymers for biomedical applications. Adv Drug Deliv Rev 2022; 191:114590. [PMID: 36341860 DOI: 10.1016/j.addr.2022.114590] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/24/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023]
Abstract
Layered double hydroxides (LDHs) are appealing nanomaterials for (bio)medical applications and their potential is threefold. One can gain advantage of the structure of LDH frame (i.e., layered morphology), anion exchanging property towards drugs with acidic character and tendency for facile surface modification with biopolymers. This review focuses on the third aspect, as it is necessary to evaluate the advantages of polymer adsorption on LDH surfaces. Beside the short discussion on fundamental and structural features of LDHs, LDH-biopolymer interactions will be classified in terms of the effect on the colloidal stability of the dispersions. Thereafter, an overview on the biocompatibility and biomedical applications of LDH-biopolymer composite materials will be given. Finally, the advances made in the field will be summarized and future research directions will be suggested.
Collapse
|
11
|
Pires Figueiredo M, Diaz Suarez E, M. Petrilli H, Leroux F, Taviot-Guého C, Leopoldo Constantino VR. Limiting content of trivalent iron to form organic-inorganic single-phase layered double hydroxides hybrids by coprecipitation. APPLIED CLAY SCIENCE 2022; 228:106642. [DOI: 10.1016/j.clay.2022.106642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Guilherme VA, Cunha VRR, de Paula E, de Araujo DR, Constantino VRL. Anti-Inflammatory and Analgesic Evaluation of a Phytochemical Intercalated into Layered Double Hydroxide. Pharmaceutics 2022; 14:pharmaceutics14050934. [PMID: 35631520 PMCID: PMC9144641 DOI: 10.3390/pharmaceutics14050934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Coumaric acid (CouH), an antioxidant molecule assimilated by food consumption, was intercalated into layered double hydroxide (LDH) nanocarrier, having zinc and aluminium ions in the layers (LDH-Cou), to evaluate its pharmacological activity through in vitro and in vivo assays in mice. Therefore, the following tests were performed: coumarate delivery in saline solution, fibroblasts’ cell viability using neutral red, peritonitis induced by carrageenan, formalin test, acetic-acid-induced writhing, and tail-flick assay, for the non-intercalated CouH and the intercalated LDH-Cou system. Furthermore, different pharmacological pathways were also investigated to evaluate their possible anti-inflammatory and antinociceptive mechanisms of action, in comparison to traditionally used agents (morphine, naloxone, caffeine, and indomethacin). The LDH-Cou drug delivery system showed more pronounced anti-inflammatory effect than CouH but not more than that evoked by the classic non-steroidal anti-inflammatory drug (NSAID) indomethacin. For the analgesic effect, according to the tail-flick test, the treatment with LDH-Cou expressively increased the analgesia duration (p < 0.001) by approximately 1.7−1.8 times compared to CouH or indomethacin. Thus, the results pointed out that the LDH-Cou system induced in vivo analgesic and anti-inflammatory activities and possibly uses similar mechanisms to that observed for classic NSAIDs, such as indomethacin.
Collapse
Affiliation(s)
- Viviane A. Guilherme
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas 13083-862, SP, Brazil; (V.A.G.); (E.d.P.)
- Faculdade de Farmácia, Universidade Adventista de São Paulo—UNASP, Engenheiro Coelho 13448-900, SP, Brazil
| | - Vanessa R. R. Cunha
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso—Campus Juína—IFT-MT, Juína 78320-000, MT, Brazil
| | - Eneida de Paula
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas 13083-862, SP, Brazil; (V.A.G.); (E.d.P.)
| | - Daniele R. de Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC—UFABC, Santo André 09210-170, SP, Brazil
- Correspondence: (D.R.d.A.); (V.R.L.C.)
| | - Vera R. L. Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil;
- Correspondence: (D.R.d.A.); (V.R.L.C.)
| |
Collapse
|
13
|
Gautam RK, Singh AK, Tiwari I. Nanoscale layered double hydroxide modified hybrid nanomaterials for wastewater treatment: A review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
|
15
|
Novel anti-inflammatory and wound healing controlled released LDH-Curcumin nanocomposite via intramuscular implantation, in-vivo study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Computational Indicator Approach for Assessment of Nanotoxicity of Two-Dimensional Nanomaterials. NANOMATERIALS 2022; 12:nano12040650. [PMID: 35214977 PMCID: PMC8879952 DOI: 10.3390/nano12040650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022]
Abstract
The increasing growth in the development of various novel nanomaterials and their biomedical applications has drawn increasing attention to their biological safety and potential health impact. The most commonly used methods for nanomaterial toxicity assessment are based on laboratory experiments. In recent years, with the aid of computer modeling and data science, several in silico methods for the cytotoxicity prediction of nanomaterials have been developed. An affordable, cost-effective numerical modeling approach thus can reduce the need for in vitro and in vivo testing and predict the properties of designed or developed nanomaterials. We propose here a new in silico method for rapid cytotoxicity assessment of two-dimensional nanomaterials of arbitrary chemical composition by using free energy analysis and molecular dynamics simulations, which can be expressed by a computational indicator of nanotoxicity (CIN2D). We applied this approach to five well-known two-dimensional nanomaterials promising for biomedical applications: graphene, graphene oxide, layered double hydroxide, aloohene, and hexagonal boron nitride nanosheets. The results corroborate the available laboratory biosafety data for these nanomaterials, supporting the applicability of the developed method for predictive nanotoxicity assessment of two-dimensional nanomaterials.
Collapse
|
17
|
Nocchetti M, Boccalon E, Pica M, Giordano NMR, Finori F, Pietrella D, Cipiciani A. Overcoming Antibiotic Resistance: Playing the 'Silver Nanobullet' Card. MATERIALS (BASEL, SWITZERLAND) 2022; 15:932. [PMID: 35160881 PMCID: PMC8839980 DOI: 10.3390/ma15030932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 12/10/2022]
Abstract
Enhancing the antibacterial activity of old antibiotics by a multitarget approach, such as combining antibiotics with metal nanoparticles, is a valuable strategy to overcome antibacterial resistance. In this work, the synergistic antimicrobial effect of silver nanoparticles and antibiotics, immobilized on a solid support, was investigated. Nanometric layered double hydroxides (LDH) based on Zn(II) and Al(III) were prepared by the double microemulsion technique. The dual function of LDH as an anionic exchanger and support for metal nanoparticles was exploited to immobilize both silver and antibiotics. Cefazolin (CFZ), a β-lactam, and nalidixic acid (NAL), a quinolone, were selected and intercalated into LDH obtaining ZnAl-CFZ and ZnAl-NAL samples. These samples were used for the growth of silver nanoparticles with dimension ranging from 2.5 to 8 nm. Silver and antibiotics release profiles, from LDH loaded with antibiotics and Ag/antibiotics, were evaluated in two different media: water and phosphate buffer. Interestingly, the release profiles are affected by both the acceptor media and the presence of silver. The synergistic antibacterial activity of LDH containing both silver and antibiotics were investigated on gram-positives (Staphylococcus aureus and Streptococcus pneumoniae) and gram-negatives (Pseudomonas aeruginosa) and compared with the plain antimicrobials and LDH containing only antibiotics or silver.
Collapse
Affiliation(s)
- Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (M.P.); (N.M.R.G.)
| | - Elisa Boccalon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy;
| | - Monica Pica
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123 Perugia, Italy; (M.P.); (N.M.R.G.)
| | | | - Francesco Finori
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy; (F.F.); (A.C.)
| | - Donatella Pietrella
- Microbiology and Clinical Microbiology, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli, 1, 06129 Perugia, Italy;
| | - Antonio Cipiciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy; (F.F.); (A.C.)
| |
Collapse
|
18
|
Figueiredo MP, Cunha VRR, Cellier J, Taviot‐Gueho C, Constantino VRL. Fe(III)‐Based Layered Double Hydroxides Carrying Model Naproxenate Anions: Compositional and Structural Aspects. ChemistrySelect 2022. [DOI: 10.1002/slct.202103880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mariana Pires Figueiredo
- Departamento de Química Fundamental Instituto de Química – Universidade de São Paulo – USP Av. Prof. Lineu Prestes 748 05508-000 São Paulo São Paulo Brazil
| | - Vanessa R. R. Cunha
- Departamento de Química Fundamental Instituto de Química – Universidade de São Paulo – USP Av. Prof. Lineu Prestes 748 05508-000 São Paulo São Paulo Brazil
- Instituto Federal de Educação Ciência e Tecnologia de Mato Grosso (IFMT), Linha J, s/no – Zona Rural, CEP 78320-000 Juína, MT Brazil
| | - Joel Cellier
- Université Clermont Auvergne F63000 Clermont-Ferrand France
- CNRS UMR 6296 Institut de Chimie de Clermont-Ferrand F-63178 Aubiere France
| | - Christine Taviot‐Gueho
- Université Clermont Auvergne F63000 Clermont-Ferrand France
- CNRS UMR 6296 Institut de Chimie de Clermont-Ferrand F-63178 Aubiere France
| | - Vera R. L. Constantino
- Departamento de Química Fundamental Instituto de Química – Universidade de São Paulo – USP Av. Prof. Lineu Prestes 748 05508-000 São Paulo São Paulo Brazil
| |
Collapse
|
19
|
Gutiérrez Galán DK, Pacheco-Moisés FP, Silva Bezerra F, Alves de Matos N, González Rojas NA, Arratia-Quijada J, Carbajal Arízaga GG. Hydrophilic lycopene-coated layered double hydroxide nanoparticles to enhance the antioxidant activity and the oxidative stress evaluation. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Emerging 2D Nanomaterials for Biomedical Applications. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:276-302. [PMID: 34970073 PMCID: PMC8713997 DOI: 10.1016/j.mattod.2021.04.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) nanomaterials are an emerging class of biomaterials with remarkable potential for biomedical applications. The planar topography of these nanomaterials confers unique physical, chemical, electronic and optical properties, making them attractive candidates for therapeutic delivery, biosensing, bioimaging, regenerative medicine, and additive manufacturing strategies. The high surface-to-volume ratio of 2D nanomaterials promotes enhanced interactions with biomolecules and cells. A range of 2D nanomaterials, including transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), layered silicates (nanoclays), 2D metal carbides and nitrides (MXenes), metal-organic framework (MOFs), covalent organic frameworks (COFs) and polymer nanosheets have been investigated for their potential in biomedical applications. Here, we will critically evaluate recent advances of 2D nanomaterial strategies in biomedical engineering and discuss emerging approaches and current limitations associated with these nanomaterials. Due to their unique physical, chemical, and biological properties, this new class of nanomaterials has the potential to become a platform technology in regenerative medicine and other biomedical applications.
Collapse
Affiliation(s)
- Aparna Murali
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Giriraj Lokhande
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Kaivalya A. Deo
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Anna Brokesh
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Akhilesh K. Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
Izbudak B, Cecen B, Anaya I, Miri AK, Bal-Ozturk A, Karaoz E. Layered double hydroxide-based nanocomposite scaffolds in tissue engineering applications. RSC Adv 2021; 11:30237-30252. [PMID: 35480250 PMCID: PMC9041101 DOI: 10.1039/d1ra03978d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Layered double hydroxides (LDHs), when incorporated into biomaterials, provide a tunable composition, controllable particle size, anion exchange capacity, pH-sensitive solubility, high-drug loading efficiency, efficient gene and drug delivery, controlled release and effective intracellular uptake, natural biodegradability in an acidic medium, and negligible toxicity. In this review, we study potential applications of LDH-based nanocomposite scaffolds for tissue engineering. We address how LDHs provide new solutions for nanostructure stability and enhance in vivo studies' success.
Collapse
Affiliation(s)
- Burcin Izbudak
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University Istanbul Turkey
| | - Berivan Cecen
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University Glassboro NJ 08028 USA.,School of Medical Engineering, Science and Health, Rowan University Camden NJ 08103 USA.,Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University 34010 Zeytinburnu Istanbul Turkey
| | - Ingrid Anaya
- Department of Bioengineering, Tecnológico de Monterrey, Campus Monterrey CP 64849 Monterrey Nuevo León México
| | - Amir K Miri
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University Glassboro NJ 08028 USA.,School of Medical Engineering, Science and Health, Rowan University Camden NJ 08103 USA
| | - Ayca Bal-Ozturk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University Istanbul Turkey .,Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University Istanbul Turkey
| | - Erdal Karaoz
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University Istanbul Turkey .,Department of Histology and Embryology, Faculty of Medicine, Istinye University Istanbul Turkey.,Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell) Istanbul Turkey
| |
Collapse
|
22
|
Hierarchical Two-Dimensional Layered Double Hydroxide Coated Polydopamine Nanocarriers for Combined Chemodynamic and Photothermal Tumor Therapy. COATINGS 2021. [DOI: 10.3390/coatings11081008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The combination of chemodynamic therapy (CDT) and photothermal therapy (PTT) has proven to be successful in combating the challenges associated with cancer therapy. A combination of these therapies can maximize the benefits of each therapeutic modality through endogenous reduction-oxidation (redox) reaction and external laser power induction. In the current work, we have designed a copper-aluminum layered double hydroxide (CuAl-LDH) loaded doxorubicin (DOX) by a co-precipitation method; the surface was coated with polydopamine (PDA). The synthesized CuAl-LDH@DOX@PDA nanocarrier (NC) served as a Fenton-like catalyst with photothermal properties. It is well known that metal ion incorporated NCs can induce intracellular depletion of reduced glutathione (GSH) levels along with the reduction of Cu2+ to Cu+. The Cu+ ions in turn react with DOX leading to the generation of intracellular hydrogen peroxide (H2O2) molecules to produce the highly toxic hydroxyl radicals (•OH) through a Fenton-like reaction. The enhanced absorption of CuAl@DOX@PDA at 810 nm, greatly improved the photothermal efficiency in comparison with bare CuAl-LDH and CuAl-LDH@DOX. In vitro studies revealed the tremendous CDT/PTT efficacy of CuAl@DOX@PDA in suppressing A549 cancer cells. Furthermore, reactive oxygen species (ROS) assays and intracellular levels of various ROS cascade biomolecules support our findings in the efficient destruction of cancer cells through synergistic CDT/PTT therapy.
Collapse
|
23
|
Cámara-Torres M, Duarte S, Sinha R, Egizabal A, Álvarez N, Bastianini M, Sisani M, Scopece P, Scatto M, Bonetto A, Marcomini A, Sanchez A, Patelli A, Mota C, Moroni L. 3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration. Bioact Mater 2021; 6:1073-1082. [PMID: 33102947 PMCID: PMC7569267 DOI: 10.1016/j.bioactmat.2020.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Bone infections following open bone fracture or implant surgery remain a challenge in the orthopedics field. In order to avoid high doses of systemic drug administration, optimized local antibiotic release from scaffolds is required. 3D additive manufactured (AM) scaffolds made with biodegradable polymers are ideal to support bone healing in non-union scenarios and can be given antimicrobial properties by the incorporation of antibiotics. In this study, ciprofloxacin and gentamicin intercalated in the interlamellar spaces of magnesium aluminum layered double hydroxides (MgAl) and α-zirconium phosphates (ZrP), respectively, are dispersed within a thermoplastic polymer by melt compounding and subsequently processed via high temperature melt extrusion AM (~190 °C) into 3D scaffolds. The inorganic fillers enable a sustained antibiotics release through the polymer matrix, controlled by antibiotics counterions exchange or pH conditions. Importantly, both antibiotics retain their functionality after the manufacturing process at high temperatures, as verified by their activity against both Gram + and Gram - bacterial strains. Moreover, scaffolds loaded with filler-antibiotic do not impair human mesenchymal stromal cells osteogenic differentiation, allowing matrix mineralization and the expression of relevant osteogenic markers. Overall, these results suggest the possibility of fabricating dual functionality 3D scaffolds via high temperature melt extrusion for bone regeneration and infection prevention.
Collapse
Affiliation(s)
- María Cámara-Torres
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229, ER, Maastricht, the Netherlands
| | - Stacy Duarte
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229, ER, Maastricht, the Netherlands
| | - Ravi Sinha
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229, ER, Maastricht, the Netherlands
| | - Ainhoa Egizabal
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009, Donostia-San Sebastian, Spain
| | - Noelia Álvarez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009, Donostia-San Sebastian, Spain
| | - Maria Bastianini
- Prolabin & Tefarm S.r.l., Via Dell'Acciaio, 9 06134, Perugia, Italy
| | - Michele Sisani
- Prolabin & Tefarm S.r.l., Via Dell'Acciaio, 9 06134, Perugia, Italy
| | - Paolo Scopece
- Nadir S.r.l., Via Torino, 155/b, 30172, Venice, Italy
| | - Marco Scatto
- Nadir S.r.l., Via Torino, 155/b, 30172, Venice, Italy
| | - Alessandro Bonetto
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Dorsoduro 3246, 30172, Venice, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Dorsoduro 3246, 30172, Venice, Italy
| | - Alberto Sanchez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009, Donostia-San Sebastian, Spain
| | - Alessandro Patelli
- Department of Physics and Astronomy, Padova University, Via Marzolo, 8, 35131, Padova, Italy
| | - Carlos Mota
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229, ER, Maastricht, the Netherlands
| | - Lorenzo Moroni
- Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Universiteitssingel 40, 6229, ER, Maastricht, the Netherlands
| |
Collapse
|
24
|
Ameena Shirin VK, Sankar R, Johnson AP, Gangadharappa HV, Pramod K. Advanced drug delivery applications of layered double hydroxide. J Control Release 2020; 330:398-426. [PMID: 33383094 DOI: 10.1016/j.jconrel.2020.12.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/09/2023]
Abstract
Layered double hydroxides (LDHs), also known as anionic clays or hydrotalcite-like compounds, are a class of nanomaterials that attained great attention as a carrier for drug delivery applications. The lamellar structure of this compound exhibits a high surface-to-volume ratio which enables the intercalation of therapeutic agents and releases them at the target site, thereby reducing the adverse effect. Moreover, the intercalated drug can be released in a sustained manner, and hence the frequency of drug administration can be decreased. The co-precipitation, ion exchange, manual grinding, and sol-gel methods are the most employed for their synthesis. The unique properties like the ease of synthesis, low cost, high biocompatibility, and low toxicity render them suitable for biomedical applications. This review presents the advances in the structure, properties, method of preparation, types, functionalization, and drug delivery applications of LDH. Also, this review provides various new conceptual insights that can form the basis for new research questions related to the drug delivery applications of LDH.
Collapse
Affiliation(s)
- V K Ameena Shirin
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Renu Sankar
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India
| | - Asha P Johnson
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India
| | - H V Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Bannimantap, Mysuru 570015, Karnataka, India.
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008, Kerala, India.
| |
Collapse
|
25
|
Figueiredo MP, Borrego-Sánchez A, García-Villén F, Miele D, Rossi S, Sandri G, Viseras C, Constantino VRL. Polymer/Iron-Based Layered Double Hydroxides as Multifunctional Wound Dressings. Pharmaceutics 2020; 12:E1130. [PMID: 33238477 PMCID: PMC7700130 DOI: 10.3390/pharmaceutics12111130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
This work presents the development of multifunctional therapeutic membranes based on a high-performance block copolymer scaffold formed by polyether (PE) and polyamide (PA) units (known as PEBA) and layered double hydroxide (LDH) biomaterials, with the aim to study their uses as wound dressings. Two LDH layer compositions were employed containing Mg2+ or Zn2+, Fe3+ and Al3+ cations, intercalated with chloride anions, abbreviated as Mg-Cl or Zn-Cl, or intercalated with naproxenate (NAP) anions, abbreviated as Mg-NAP or Zn-NAP. Membranes were structurally and physically characterized, and the in vitro drug release kinetics and cytotoxicity assessed. PEBA-loading NaNAP salt particles were also prepared for comparison. Intercalated NAP anions improved LDH-polymer interaction, resulting in membranes with greater mechanical performance compared to the polymer only or to the membranes containing the Cl-LDHs. Drug release (in saline solution) was sustained for at least 8 h for all samples and release kinetics could be modulated: a slower, an intermediate and a faster NAP release were observed from membranes containing Zn-NAP, NaNAP and Mg-NAP particles, respectively. In general, cell viability was higher in the presence of Mg-LDH and the membranes presented improved performance in comparison with the powdered samples. PEBA containing Mg-NAP sample stood out among all membranes in all the evaluated aspects, thus being considered a great candidate for application as multifunctional therapeutic dressings.
Collapse
Affiliation(s)
- Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil;
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Ana Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
| | - Dalila Miele
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (S.R.); (G.S.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (S.R.); (G.S.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (S.R.); (G.S.)
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada—UGR, Campus of Cartuja s/n, 18071 Granada, Spain; (A.B.-S.); (F.G.-V.)
- Andalusian Institute of Earth Sciences, Consejo Superior de Investigaciones Científicas-University of Granada, Avenida de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo—USP, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil;
| |
Collapse
|
26
|
Leão AD, Alvarez-Lorenzo C, Soares-Sobrinho JL. One-pot synthesis of the organomodified layered double hydroxides - glibenclamide biocompatible nanoparticles. Colloids Surf B Biointerfaces 2020; 193:111055. [PMID: 32403034 DOI: 10.1016/j.colsurfb.2020.111055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/27/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023]
Abstract
In this work, synthesis of sodium dodecyl sulfate (SDS) organomodified LDH Zn2Al carrying glibenclamide (GLIB) was performed in one step and in one-pot to obtain nanoparticles (NP). XRD data showed GLIB adsolubilization (d = 14.03 Å) and NP coating with Eudragit L100®. In addition, thermal and XRD data showed exfoliated/intercalated nanocomposite for NP S5 (LDH associated with SDS and Eudragit L100®). LDH organophilization and GLIB intercalation reduced surface area (SBET 23.58 m2/g) and NP size (469 nm). In addition, the change in zeta potential (-35.5 ζ) relative to pristine LDH (SBET 41.34 m2/g, 688.8 nm and +14 ζ) indicated that LDH functionalization seems an appropriate approach to produce NP with greater colloidal stability and enhanced functionality. The zinc release data from the LDH matrix (2.96 % ±0.002 ppm) showed the effectiveness of the coating in acid medium (pH 1.2) and the release data from GLIB showed the kinetics of release of zero order with release in simulated intestinal medium (pH 7.4) of 88 % and 73 % (24 h) for uncoated and coated NP, respectively. All NP were considered biocompatible in the WST-1 assay on BALB 3T3 fibroblast strains making these NP promising therapeutically.
Collapse
Affiliation(s)
- Amanda Damasceno Leão
- Federal University of Pernambuco-UFPE, Department of Pharmaceutical Sciences, University city, Recife, Brazil.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
27
|
Design of 3D multi-layered electrospun membranes embedding iron-based layered double hydroxide for drug storage and control of sustained release. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Cunha VRR, Petersen PAD, Souza RB, Martins AMCRPF, Leroux F, Taviot-Gueho C, Petrilli HM, Koh IHJ, Constantino VRL. Phytochemical species intercalated into layered double hydroxides: structural investigation and biocompatibility assays. NEW J CHEM 2020. [DOI: 10.1039/d0nj00238k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The compound p-coumaric acid (HCou) is found in many foods and presents action in the suppression of chronic diseases and protective effects on neurodegenerative disorders.
Collapse
Affiliation(s)
- Vanessa R. R. Cunha
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- USP
- São Paulo
| | - Philippe A. D. Petersen
- Departamento de Física dos Materiais e Mecânica
- Instituto de Física
- Universidade de São Paulo
- USP
- São Paulo
| | - Rodrigo B. Souza
- Departamento de Morfologia e Genética
- Universidade Federal de São Paulo – UNIFESP
- São Paulo
- Brazil
| | | | - Fabrice Leroux
- Institut de Chimie de Clermont-Ferrand ICCF
- CNRS
- Université Clermont Auvergne
- F-63000 Clermont-Ferrand
- France
| | - Christine Taviot-Gueho
- Institut de Chimie de Clermont-Ferrand ICCF
- CNRS
- Université Clermont Auvergne
- F-63000 Clermont-Ferrand
- France
| | - Helena M. Petrilli
- Departamento de Física dos Materiais e Mecânica
- Instituto de Física
- Universidade de São Paulo
- USP
- São Paulo
| | - Ivan H. J. Koh
- Departamento de Cirurgia
- Universidade Federal de São Paulo – UNIFESP
- São Paulo
- Brazil
| | - Vera R. L. Constantino
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- USP
- São Paulo
| |
Collapse
|
29
|
Smalenskaite A, Kaba MM, Grigoraviciute-Puroniene I, Mikoliunaite L, Zarkov A, Ramanauskas R, Morkan IA, Kareiva A. Sol-Gel Synthesis and Characterization of Coatings of Mg-Al Layered Double Hydroxides. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3738. [PMID: 31766177 PMCID: PMC6888420 DOI: 10.3390/ma12223738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
In this study, new synthetic approaches for the preparation of thin films of Mg-Al layered double hydroxides (LDHs) have been developed. The LDHs were fabricated by reconstruction of mixed-metal oxides (MMOs) in deionized water. The MMOs were obtained by calcination of the precursor gels. Thin films of sol-gel-derived Mg-Al LDHs were deposited on silicon and stainless-steel substrates using the dip-coating technique by a single dipping process, and the deposited film was dried before the new layer was added. Each layer in the preparation of the Mg-Al LDH multilayers was separately annealed at 70 °C or 300 °C in air. Fabricated Mg-Al LDH coatings were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was discovered that the diffraction lines of Mg3Al LDH thin films are sharper and more intensive in the sample obtained on the silicon substrate, confirming a higher crystallinity of synthesized Mg3Al LDH. However, in both cases the single-phase crystalline Mg-Al LDHs have formed. To enhance the sol-gel processing, the viscosity of the precursor gel was increased by adding polyvinyl alcohol (PVA) solution. The LDH coatings could be used to protect different substrates from corrosion, as catalyst supports, and as drug-delivery systems in medicine.
Collapse
Affiliation(s)
- A. Smalenskaite
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - M. M. Kaba
- Department of Chemistry, Institute of Natural Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (M.M.K.); (I.A.M.)
| | - I. Grigoraviciute-Puroniene
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - L. Mikoliunaite
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| | - A. Zarkov
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - R. Ramanauskas
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| | - I. A. Morkan
- Department of Chemistry, Institute of Natural Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (M.M.K.); (I.A.M.)
| | - A. Kareiva
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| |
Collapse
|
30
|
Abstract
Layered double hydroxides (LDHs) are an emergent class of biocompatible inorganic lamellar nanomaterials that have attracted significant research interest owing to their high surface-to-volume ratio, the capability to accumulate specific molecules, and the timely release to targets. Their unique properties have been employed for applications in organic catalysis, photocatalysis, sensors, drug delivery, and cell biology. Given the widespread contemporary interest in these topics, time-to-time it urges to review the recent progresses. This review aims to summarize the most recent cutting-edge reports appearing in the last years. It firstly focuses on the application of LDHs as catalysts in relevant chemical reactions and as photocatalysts for organic molecule degradation, water splitting reaction, CO2 conversion, and reduction. Subsequently, the emerging role of these materials in biological applications is discussed, specifically focusing on their use as biosensors, DNA, RNA, and drug delivery, finally elucidating their suitability as contrast agents and for cellular differentiation. Concluding remarks and future prospects deal with future applications of LDHs, encouraging researches in better understanding the fundamental mechanisms involved in catalytic and photocatalytic processes, and the molecular pathways that are activated by the interaction of LDHs with cells in terms of both uptake mechanisms and nanotoxicology effects.
Collapse
|
31
|
High-Power Ultrasonic Synthesis and Magnetic-Field-Assisted Arrangement of Nanosized Crystallites of Cobalt-Containing Layered Double Hydroxides. CHEMENGINEERING 2019. [DOI: 10.3390/chemengineering3030062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-quality stoichiometric Co2Al–NO3 and Co2Al–CO3 layered double hydroxides (LDHs) have been obtained by precipitation followed by anion exchange, both high-power-sonication assisted. Application of high-power ultrasound has been demonstrated to result in a considerable acceleration of the crystallization process and the anion-exchange reaction. Two independent approaches were used to form bulk and 2-D samples of Co2Al–NO3 with the oriented crystallites, namely uniaxial pressing of deposits from sonicated LDH slurries and magnetic field-assisted arrangement of LDH crystallites precipitating on glass substrates. A convenient way of preparation of semi-transparent compacts with relatively big blocks of oriented crystallites have been demonstrated. Thin dense transparent films of highly-ordered crystallites of Co2Al–NO3 LDH have been produced and characterized.
Collapse
|
32
|
Jr da Costa Fernandes C, Pinto TS, Kang HR, de Magalhães Padilha P, Koh IHJ, Constantino VRL, Zambuzzi WF. Layered Double Hydroxides Are Promising Nanomaterials for Tissue Bioengineering Application. ACTA ACUST UNITED AC 2019; 3:e1800238. [PMID: 32648675 DOI: 10.1002/adbi.201800238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/01/2019] [Indexed: 01/07/2023]
Abstract
Layered double hydroxides (LDHs) have emerged as promising nanomaterials for human health and although it has achieved some progress on this matter, their application within bioengineering is not fully addressed. This prompted to subject fibroblasts to two compositions of LDHs (Mg2 Al-Cl and Zn2 Al-Cl), considering an acute response. First, LDH particles are addressed by scanning electron microscopy, and no significant effect of the cell culture medium on the shape of LDHs particles is reported although it seems to adsorb some soluble proteins as proposed by energy-dispersive X-ray analysis. These LDHs release magnesium, zinc, and aluminum, but there is no cytotoxic or biocompatibility effects. The data show interference to fibroblast adhesion by driving the reorganization of actin-based cytoskeleton, preliminarily to cell cycle progression. Additionally, these molecular findings are validated by performing a functional wound-healing assay, which is accompanied by a dynamic extracellular matrix remodeling in response to the LDHs. Altogether, the results show that LDHs nanomaterials modulate cell adhesion, proliferation, and migration, delineating new advances on the biomaterial field applied in the context of soft tissue bioengineering, which must be explored in health disorders, such as wound healing in burn injuries.
Collapse
Affiliation(s)
- Célio Jr da Costa Fernandes
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Thaís Silva Pinto
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ha Ram Kang
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Pedro de Magalhães Padilha
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ivan Hong Jun Koh
- Departamento de Cirurgia, Universidade Federal de São Paulo-UNIFESP, Rua Botucatu 740, CEP 04023-900, São Paulo, SP, Brazil
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
| | - Willian F Zambuzzi
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil
| |
Collapse
|
33
|
Crystal Chemistry of Chlormagaluminite, Mg4Al2(OH)12Cl2(H2O)2, a Natural Layered Double Hydroxide. MINERALS 2019. [DOI: 10.3390/min9040221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chlormagaluminite is the only Cl-dominated hydrotalcite-supergroup mineral species with M2+:M3+ = 2:1. The holotype sample of chlormagaluminite from the Kapaevskaya volcanic pipe (Irkutsk Oblast, Siberia, Russia) has been chemically and structurally characterized. The average chemical composition of the mineral is (electron microprobe, OH content is calculated by stoichiometry and H2O from the crystal-structure data, wt. %): MgO 33.85, FeO 1.09, Al2O3 22.07, Cl 14.72, H2Otot 30.96, Cl=O −3.39, total 99.30. The empirical formula based on Mg + Al + Fe = 6 atoms per formula unit (apfu) is [Mg3.91Fe2+0.07Al2.02(OH)12]Cl2.02(H2O)2.0(2). The crystal structure has been solved from single-crystal X-ray diffraction data in the space group P63/mcm, a = 5.268(3), c = 15.297(8) Å and V = 367.6(4) Å3. The refinement converged to R1 = 0.083 on the basis of 152 unique reflections with I > 2σ(I) collected at room conditions. The powder pattern contains standard reflections of a 2H polytype and two additional reflections [(010), d010 = 4.574 Å; (110), d110 = 2.647 Å] indicative of Mg and Al ordering according to the superstructure. The structure is based upon brucite-type octahedral layers with an ordered distribution of Mg and Al over octahedral sites. The Cl− anions and H2O molecules reside in the interlayer, providing a three-dimensional integrity of the structure.
Collapse
|
34
|
Yang G, Phua SZF, Bindra AK, Zhao Y. Degradability and Clearance of Inorganic Nanoparticles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805730. [PMID: 30614561 DOI: 10.1002/adma.201805730] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/05/2018] [Indexed: 05/07/2023]
Abstract
Inorganic nanoparticles with tunable and diverse properties hold tremendous potential in the field of nanomedicine, while having non-negligible toxicity concerns in healthy tissues/organs that have resulted in their restricted clinical translation to date. In the past decade, the emergence of biodegradable or clearable inorganic nanoparticles has made it possible to completely solve this long-standing conundrum. A comprehensive understanding of the design of these inorganic nanoparticles with their metabolic performance in the body is of crucial importance to advance clinical trials and expand their biological applications in disease diagnosis. Here, a diverse variety of biodegradable or clearable inorganic nanoparticles regarding considerations of the size, morphology, surface chemistry, and doping strategy are highlighted. Their pharmacokinetics, pathways of metabolism in the body, and time required for excretion are discussed. Some inorganic materials intrinsically responsive to various conditions in the tumor microenvironment are also introduced. Finally, an overview of the encountered challenges is provided along with an outlook for applying these inorganic nanoparticles toward future clinical translations.
Collapse
Affiliation(s)
- Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Soo Zeng Fiona Phua
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
35
|
Marreiros J, Diaz-Couce M, Ferreira MJ, Vaz PD, Calhorda MJ, Nunes CD. Synthesis and catalytic activity of Mo(II) complexes of α-diimines intercalated in layered double hydroxides. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
da Silva Feltran G, da Costa Fernandes CJ, Rodrigues Ferreira M, Kang HR, de Carvalho Bovolato AL, de Assis Golim M, Deffune E, Koh IHJ, Constantino VRL, Zambuzzi WF. Sonic hedgehog drives layered double hydroxides-induced acute inflammatory landscape. Colloids Surf B Biointerfaces 2019; 174:467-475. [PMID: 30497008 DOI: 10.1016/j.colsurfb.2018.11.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/31/2018] [Accepted: 11/20/2018] [Indexed: 01/19/2023]
Abstract
Although layered double hydroxides (LDH) have been listed as promising nanomaterials in human healthcare, very little has been achieved on osteoblast inflammatory signaling. Thus, osteoblasts were challenged with two LDHs (Mg2Al-Cl and Zn2Al-Cl, at 0.002 mg/mL) up to 24 h, establishing an acute inflammatory mechanism, as well as identifying whether Sonic hedgehog (Shh) signaling has an influence. Functional experiments were performed by previously treating (2 h) semiconfluent osteoblast cultures with cyclopamine molecule (cyc), a widely used Shh inhibitor. Considering inflammasome complex, the asc1 gene was significantly up-expressed in response to Zn2Al-Cl - LDHs, as well as the nrlp3 gene. By treating the osteoblast with cyc, the asc1 gene presented an even higher profile. Our results found a down-modulation of major pro-inflammatory cytokines-related genes, when tnfα and il1ß were significantly down-modulated in response to LDHs. Conversely, anti-inflammatory cytokines were up-modulated considering the same experimental procedures. Except the il6, the other il13, il10, and tgfß genes were up modulated. Additionally, Shh signaling seems to modulate this repertory as both the il13 and il10 genes were significantly up-modulated when the Shh signaling was inhibited. Altogether, our results reveal for the first time the exigency of Shh-dependent anti-inflammatory signals in LDH-induced osteoblast responses.
Collapse
Affiliation(s)
- Geórgia da Silva Feltran
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Célio Junior da Costa Fernandes
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Marcel Rodrigues Ferreira
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ha Ram Kang
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, campus Botucatu, São Paulo, CEP 18618-970, Brazil
| | - Ana Lívia de Carvalho Bovolato
- Lab. de Engenharia Celular, Hemocentro, Hospital das Clínicas, Faculdade de Medicina de Botucatu, São Paulo, CEP 18618-688, Brazil
| | - Márjorie de Assis Golim
- Lab. de Engenharia Celular, Hemocentro, Hospital das Clínicas, Faculdade de Medicina de Botucatu, São Paulo, CEP 18618-688, Brazil
| | - Elenice Deffune
- Lab. de Engenharia Celular, Hemocentro, Hospital das Clínicas, Faculdade de Medicina de Botucatu, São Paulo, CEP 18618-688, Brazil
| | - Ivan Hong Jun Koh
- Departamento de Cirurgia, Universidade Federal de São Paulo-UNIFESP, Rua Botucatu 740, CEP 04023-900, São Paulo, SP, Brazil
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo-USP, Av. Prof. Lineu Prestes 748, CEP 05508-000, São Paulo, SP, Brazil
| | - Willian F Zambuzzi
- Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, campus Botucatu, São Paulo, CEP 18618-970, Brazil.
| |
Collapse
|
37
|
Chen W, Zuo H, Rolfe B, Schembri MA, Cobbold RN, Zhang B, Mahony TJ, Xu ZP. Clay nanoparticles co-deliver three antigens to promote potent immune responses against pathogenic Escherichia coli. J Control Release 2018; 292:196-209. [PMID: 30414464 DOI: 10.1016/j.jconrel.2018.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 01/02/2023]
|
38
|
Rongere T, Langry A, Bennis K, Taviot-Gueho C, Ducki S, Leroux F. Analgesic molecules interleaved between layered double hydroxide: Exchange versus in situ reaction and release properties. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
2D materials for next generation healthcare applications. Int J Pharm 2018; 551:309-321. [DOI: 10.1016/j.ijpharm.2018.09.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/17/2018] [Indexed: 01/19/2023]
|
40
|
Okoronkwo MU, Balonis M, Juenger M, Bauchy M, Neithalath N, Sant G. Stability of Calcium–Alumino Layered-Double-Hydroxide Nanocomposites in Aqueous Electrolytes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Monday U. Okoronkwo
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | | | - Maria Juenger
- Department of Civil, Architectural and Environmental Engineering, University of Texas, Austin, Texas 78712, United States
| | | | - Narayanan Neithalath
- School of Sustainable Engineering and the Built-Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Gaurav Sant
- Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
41
|
Abstract
Bioactive ingredients from natural sources possess well-known positive effects in cosmetic applications. Among them, phenolic acids have emerged with very interesting potential. Caffeic acid (CAF) is one of the most promising active compounds because it possess antioxidant, anti-inflammatory, antitumoral and anti-wrinkle effects. In order to increase its local bioavailability in topical applications, the vehiculation of caffeic acid can lead to a new raw material of cosmetic interest. For this purpose, clay minerals possess excellent properties, such as low or null toxicity and good biocompatibility. Clays are able to host a wide range of active ingredients in the interlayer region, using a green process known as intercalation reaction. The hosting of cosmetic actives into the layered structure of anionic clays allows the preparation of new materials with enhanced stability towards oxidation and photodegradation, better local bioavailability, and easier workability. In this paper, the successful vehiculation of caffeic acid into anionic clay is presented. The obtained hybrid is very promising for the cosmetic market because of its higher bioavailability and prolonged antioxidant activity.
Collapse
|
42
|
Chen W, Zuo H, Li B, Duan C, Rolfe B, Zhang B, Mahony TJ, Xu ZP. Clay Nanoparticles Elicit Long-Term Immune Responses by Forming Biodegradable Depots for Sustained Antigen Stimulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704465. [PMID: 29655306 DOI: 10.1002/smll.201704465] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/29/2018] [Indexed: 05/21/2023]
Abstract
Nanomaterials have been widely tested as new generation vaccine adjuvants, but few evoke efficient immunoreactions. Clay nanoparticles, for example, layered double hydroxide (LDH) and hectorite (HEC) nanoparticles, have shown their potent adjuvanticity in generating effective and durable immune responses. However, the mechanism by which clay nanoadjuvants stimulate the immune system is not well understood. Here, it is demonstrated that LDH and HEC-antigen complexes form loose agglomerates in culture medium/serum. They also form nodules with loose structures in tissue after subcutaneous injection, where they act as a depot for up to 35 d. More importantly, clay nanoparticles actively and continuously recruit immune cells into the depot for up to one month, and stimulate stronger immune responses than FDA-approved adjuvants, Alum and QuilA. Sustained antigen release is also observed in clay nanoparticle depots, with 50-60% antigen released after 35 d. In contrast, Alum-antigen complexes show minimal antigen release from the depot. Importantly, LDH and HEC are more effective than QuilA and Alum in promoting memory T-cell proliferation. These findings suggest that both clay nanoadjuvants can serve as active vaccine platforms for sustained and potent immune responses.
Collapse
Affiliation(s)
- Weiyu Chen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Huali Zuo
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bei Li
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Chengcheng Duan
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Barbara Rolfe
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bing Zhang
- Vaccine Delivery, Animal Science, Agri-Science Queensland, Department of Agriculture & Fisheries, Dutton Park, QLD, 4102, Australia
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
43
|
Deák Á, Csapó E, Juhász Á, Dékány I, Janovák L. Anti-ulcerant kynurenic acid molecules intercalated Mg/Al-layered double hydroxide and its release study. APPLIED CLAY SCIENCE 2018; 156:28-35. [DOI: 10.1016/j.clay.2018.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
44
|
Forano C, Bruna F, Mousty C, Prevot V. Interactions between Biological Cells and Layered Double Hydroxides: Towards Functional Materials. CHEM REC 2018. [PMID: 29517856 DOI: 10.1002/tcr.201700102] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review highlights the current research on the interactions between biological cells and Layered Double Hydroxides (LDH). The as-prepared biohybrid materials appear extremely attractive in diverse fields of application relating to health care, environment and energy production. We describe how thanks to the main features of biological cells and LDH layers, various strategies of assemblies can be carried out for constructing smart biofunctional materials. The interactions between the two components are described with a peculiar attention to the adsorption, biocompatibilization, LDH layer internalization, antifouling and antimicrobial properties. The most significant achievements including authors' results, involving biological cells and LDH assemblies in waste water treatment, bioremediation and bioenergy generation are specifically addressed.
Collapse
Affiliation(s)
- Claude Forano
- Université Clermont Auvergne, CNRS, Sigma-Clermont, ICCF, UMR 6296, F-63000, CLERMONT-FERRAND, FRANCE
| | - Felipe Bruna
- Université Clermont Auvergne, CNRS, Sigma-Clermont, ICCF, UMR 6296, F-63000, CLERMONT-FERRAND, FRANCE
| | - Christine Mousty
- Université Clermont Auvergne, CNRS, Sigma-Clermont, ICCF, UMR 6296, F-63000, CLERMONT-FERRAND, FRANCE
| | - Vanessa Prevot
- Université Clermont Auvergne, CNRS, Sigma-Clermont, ICCF, UMR 6296, F-63000, CLERMONT-FERRAND, FRANCE
| |
Collapse
|
45
|
Kang HR, da Costa Fernandes CJ, da Silva RA, Constantino VRL, Koh IHJ, Zambuzzi WF. Mg-Al and Zn-Al Layered Double Hydroxides Promote Dynamic Expression of Marker Genes in Osteogenic Differentiation by Modulating Mitogen-Activated Protein Kinases. Adv Healthc Mater 2018; 7. [PMID: 29280352 DOI: 10.1002/adhm.201700693] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/14/2017] [Indexed: 01/14/2023]
Abstract
The effect of LDH samples comprised of chloride anions intercalated between positive layers of magnesium/aluminum (Mg-Al LDH) or zinc/aluminum (Zn-Al LDH) chemical composition on pre-osteoblast performance is investigated. Non-cytotoxic concentrations of both LDHs modulated pre-osteoblast adhesion by triggering cytoskeleton rearrangement dependent on recruiting of Cofilin, which is modulated by the inhibition of the Protein Phosphatase 2A (PP2A), culminating in osteoblast differentiation with a significant increase of osteogenic marker genes. The alkaline phosphatase (ALP) and bone sialoprotein (BSP) are significantly up-modulated by both LDHs; however, Mg-Al LDH nanomaterial promoted even more significance than both experimental controls, while the phosphorylations of mitogen-activated protein kinase (MAPKs)- extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) significantly increased. MAPK signaling is necessary to activate Runt-related transcription factor 2 (RUNX2) gene. Concomitantly, it is also investigated whether challenged osteoblasts are able to modulate osteoclastogenesis by investigating both osteoprotegerin (OPG) and Receptor activator of nuclear factor kappa-ligand (RANKL) in this model; a dynamic reprogramming of both these genes is found, suggesting LDHs in modulating osteoclastogenesis. These results suggest that LDHs interfere in bone remodeling, and they can be considered as nanomaterials in graft-based bone healing or drug-delivery materials for bone disorders.
Collapse
Affiliation(s)
- Ha Ram Kang
- Laboratorio de Bioensaios e Dinâmica Celular; Departamento de Química e Bioquímica; Instituto de Biociências; Universidade Estadual Paulista-UNESP; campus Botucatu São Paulo CEP 18618-970 Brazil
| | - Célio Junior da Costa Fernandes
- Laboratorio de Bioensaios e Dinâmica Celular; Departamento de Química e Bioquímica; Instituto de Biociências; Universidade Estadual Paulista-UNESP; campus Botucatu São Paulo CEP 18618-970 Brazil
| | - Rodrigo Augusto da Silva
- Laboratorio de Bioensaios e Dinâmica Celular; Departamento de Química e Bioquímica; Instituto de Biociências; Universidade Estadual Paulista-UNESP; campus Botucatu São Paulo CEP 18618-970 Brazil
| | - Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental; Instituto de Química; Universidade de São Paulo-USP; Av. Prof. Lineu Prestes 748 São Paulo CEP 05508-000 Brazil
| | - Ivan Hong Jun Koh
- Departamento de Cirurgia; Universidade Federal de São Paulo-UNIFESP; Rua Botucatu 740 CEP 04023-900 São Paulo Brazil
| | - Willian F. Zambuzzi
- Laboratorio de Bioensaios e Dinâmica Celular; Departamento de Química e Bioquímica; Instituto de Biociências; Universidade Estadual Paulista-UNESP; campus Botucatu São Paulo CEP 18618-970 Brazil
| |
Collapse
|
46
|
Carazo E, Borrego-Sánchez A, García-Villén F, Sánchez-Espejo R, Cerezo P, Aguzzi C, Viseras C. Advanced Inorganic Nanosystems for Skin Drug Delivery. CHEM REC 2018; 18:891-899. [DOI: 10.1002/tcr.201700061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/22/2017] [Indexed: 01/01/2023]
Affiliation(s)
- E. Carazo
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - A. Borrego-Sánchez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| | - F. García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - R. Sánchez-Espejo
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| | - P. Cerezo
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - C. Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
| | - C. Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy; University of Granada; Campus of Cartuja, 18071 s/n Granada Spain
- Andalusian Institute of Earth Sciences; CSIC-University of Granada; Avda. de Las Palmeras 4 18100 Armilla (Granada) Spain
| |
Collapse
|
47
|
Singh M, Singh RK, Singh SK, Mahto SK, Misra N. In vitro biocompatibility analysis of functionalized poly(vinyl chloride)/layered double hydroxide nanocomposites. RSC Adv 2018; 8:40611-40620. [PMID: 35557920 PMCID: PMC9091646 DOI: 10.1039/c8ra06175k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to examine the cytotoxicity and biocompatibility of functionalized poly(vinyl chloride) (PVC)/layered double hydroxide (LDH) nanocomposites.
Collapse
Affiliation(s)
- Monika Singh
- School of Biomedical Engineering
- Indian Institute of Technology
- (Banaras Hindu University)
- Varanasi 221005
- India
| | - Rajesh Kumar Singh
- Centre of Experimental Medicine and Surgery
- Institute of Medical Science
- Banaras Hindu University
- Varanasi 221005
- India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery
- Institute of Medical Science
- Banaras Hindu University
- Varanasi 221005
- India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering
- Indian Institute of Technology
- (Banaras Hindu University)
- Varanasi 221005
- India
| | - Nira Misra
- School of Biomedical Engineering
- Indian Institute of Technology
- (Banaras Hindu University)
- Varanasi 221005
- India
| |
Collapse
|
48
|
Morais AF, Silva IGN, Sree SP, de Melo FM, Brabants G, Brito HF, Martens JA, Toma HE, Kirschhock CEA, Breynaert E, Mustafa D. Hierarchical self-supported ZnAlEu LDH nanotubes hosting luminescent CdTe quantum dots. Chem Commun (Camb) 2017; 53:7341-7344. [DOI: 10.1039/c7cc02097j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled, cylindrical LDH nanotubes (∅ 20nm) host large species such as nanodots or bulky substrates in their central cavity, leaving the interlayer space available for anionic sensitizer molecules.
Collapse
Affiliation(s)
- Alysson F. Morais
- Instituto de Física da Universidade de São Paulo
- 05508-090 – São Paulo
- Brazil
| | - Ivan G. N. Silva
- Instituto de Química da Universidade de São Paulo
- 05508-900 – São Paulo
- Brazil
| | | | - Fernando M. de Melo
- Instituto de Química da Universidade de São Paulo
- 05508-900 – São Paulo
- Brazil
| | - Gert Brabants
- KULeuven – Center for Surface Chemistry and Catalysis
- B-3001 Heverlee
- Belgium
| | - Hermi F. Brito
- Instituto de Química da Universidade de São Paulo
- 05508-900 – São Paulo
- Brazil
| | - Johan A. Martens
- KULeuven – Center for Surface Chemistry and Catalysis
- B-3001 Heverlee
- Belgium
| | - Henrique E. Toma
- Instituto de Química da Universidade de São Paulo
- 05508-900 – São Paulo
- Brazil
| | | | - Eric Breynaert
- KULeuven – Center for Surface Chemistry and Catalysis
- B-3001 Heverlee
- Belgium
| | - Danilo Mustafa
- Instituto de Física da Universidade de São Paulo
- 05508-090 – São Paulo
- Brazil
- KULeuven – Center for Surface Chemistry and Catalysis
- B-3001 Heverlee
| |
Collapse
|