1
|
Liu Y, Dantas E, Ferrer M, Miao T, Qadiri M, Liu Y, Comjean A, Davidson EE, Perrier T, Ahmed T, Hu Y, Goncalves MD, Janowitz T, Perrimon N. Hepatic gluconeogenesis and PDK3 upregulation drive cancer cachexia in flies and mice. Nat Metab 2025; 7:823-841. [PMID: 40275022 PMCID: PMC12021660 DOI: 10.1038/s42255-025-01265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/06/2025] [Indexed: 04/26/2025]
Abstract
Cachexia, a severe wasting syndrome characterized by tumour-induced metabolic dysregulation, is a leading cause of death in people with cancer, yet its underlying mechanisms remain poorly understood. Here we show that a longitudinal full-body single-nuclei-resolution transcriptome analysis in a Drosophila model of cancer cachexia captures interorgan dysregulations. Our study reveals that the tumour-secreted interleukin-like cytokine Upd3 induces fat-body expression of Pepck1 and Pdk, key regulators of gluconeogenesis, disrupting glucose metabolism and contributing to cachexia. Similarly, in mouse cancer cachexia models, we observe IL-6-JAK-STAT-signalling-mediated induction of Pck1 and Pdk3 expression in the liver. Increased expression of these genes in fly, mouse, and human correlates with poor prognosis, and hepatic expression of Pdk3 emerges as a previously unknown mechanism contributing to metabolic dysfunction in cancer cachexia. This study highlights the conserved nature of tumour-induced metabolic disruptions and identifies potential therapeutic targets to mitigate cachexia in people with cancer.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Ezequiel Dantas
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Ting Miao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Mujeeb Qadiri
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Emma E Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Tiffany Perrier
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tanvir Ahmed
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marcus D Goncalves
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
- Northwell Health Cancer Institute, Northwell Health, New Hyde Park, New York, NY, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Zaru R, Marygold SJ. In silico identification and analysis of paralogs encoding enzymes of carbohydrate metabolism in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001425. [PMID: 39975507 PMCID: PMC11836677 DOI: 10.17912/micropub.biology.001425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/21/2025]
Abstract
The identification and characterization of gene paralogs is crucial to understand the functional contribution of individual genes/proteins to biological pathways. Here, we have identified 51 genes belonging to fifteen paralogous groups encoding enzymes involved in carbohydrate metabolism in Drosophila melanogaster . Strikingly, most paralogous groups comprise a single 'canonical' enzyme that is expressed ubiquitously and one or more variants expressed predominantly in the testis. Most of these testis-specific forms are predicted to be catalytically inactive, suggesting they may have adopted regulatory roles. This work will aid the planning and interpretation of experimental studies of several Drosophila metabolic pathways, including glycolysis, gluconeogenesis and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Rossana Zaru
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Steven J Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| |
Collapse
|
3
|
Nan N, Liu Y, Yan Z, Zhang Y, Li S, Zhang J, Qin G, Sang N. Ozone induced multigenerational glucose and lipid metabolism disorders in Drosophila. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175477. [PMID: 39151609 DOI: 10.1016/j.scitotenv.2024.175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Ozone (O3), a persistent pollutant, poses a significant health threat. However, research on its multigenerational toxicity remains limited. Leveraging the Drosophila model with its short lifespan and advanced genetic tools, we explored the effects of O3 exposure across three generations of fruit flies. The findings revealed that O3 disrupted motility, body weight, stress resistance, and oxidative stress in three generations of flies, with varying effects observed among them. Transcriptome analysis highlighted the disruption of glucose metabolism-related pathways, encompassing gluconeogenesis/glycolysis, galactose metabolism, and carbon metabolism. Hub genes were identified, and RT-qPCR results indicated that O3 decreased their transcription levels. Comparative analysis of their human orthologs was conducted using Comparative Toxicogenomics Database (CTD) and DisGeNET databases. These genes are linked to various metabolic diseases, including diabetes, hypoglycemia, and obesity. The trehalose content was reduced in F0 generation flies but increased in F1-F2 generations after O3 exposure. While the trehalase and glucose levels were decreased across F0-F2 generations. TAG synthesis-related genes were significantly upregulated in F0 generation flies but downregulated in F1-F2 generations. The expression patterns of lipolysis-related genes varied among the three generations of flies. Food intake was increased in F0 generation flies but decreased in F1-F2 generations. Moreover, TAG content was significantly elevated in F0 generation flies by O3 exposure, while it was reduced in F2 generation flies. These differential effects of O3 across three generations of flies suggest a metabolic reprogramming aimed at mitigating the damage caused by O3 to flies. The study affirms the viability of employing the Drosophila model to investigate the mechanisms underlying O3-induced glucose and lipid metabolism disorders while emphasizing the importance of studying the long-term health effects of O3 exposure. Moreover, this research highlights the Drosophila model as a viable tool for investigating the multigenerational effects of pollutants, particularly atmospheric pollutants.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Yuntong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Shiya Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| | - Jianqin Zhang
- School of Life Science, Shanxi University, Shanxi 030006, PR China
| | - Guohua Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Shanxi 030006, PR China
| |
Collapse
|
4
|
Kwok SH, Liu Y, Bilder D, Kim J. Paraneoplastic renal dysfunction in fly cancer models driven by inflammatory activation of stem cells. Proc Natl Acad Sci U S A 2024; 121:e2405860121. [PMID: 39392665 PMCID: PMC11494367 DOI: 10.1073/pnas.2405860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Tumors can induce systemic disturbances in distant organs, leading to physiological changes that enhance host morbidity. In Drosophila cancer models, tumors have been known for decades to cause hypervolemic "bloating" of the abdominal cavity. Here we use allograft and transgenic tumors to show that hosts display fluid retention associated with autonomously defective secretory capacity of fly renal tubules, which function analogous to those of the human kidney. Excretion from these organs is blocked by abnormal cells that originate from inappropriate activation of normally quiescent renal stem cells (RSCs). Blockage is initiated by IL-6-like oncokines that perturb renal water-transporting cells and trigger a damage response in RSCs that proceeds pathologically. Thus, a chronic inflammatory state produced by the tumor causes paraneoplastic fluid dysregulation by altering cellular homeostasis of host renal units.
Collapse
Affiliation(s)
- Sze Hang Kwok
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuejiang Liu
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA94720
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA94720
| | - Jung Kim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
5
|
Kazek M, Chodáková L, Lehr K, Strych L, Nedbalová P, McMullen E, Bajgar A, Opekar S, Šimek P, Moos M, Doležal T. Glucose and trehalose metabolism through the cyclic pentose phosphate pathway shapes pathogen resistance and host protection in Drosophila. PLoS Biol 2024; 22:e3002299. [PMID: 38713712 PMCID: PMC11101078 DOI: 10.1371/journal.pbio.3002299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/17/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.
Collapse
Affiliation(s)
- Michalina Kazek
- Department of molecular biology and genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lenka Chodáková
- Department of molecular biology and genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Katharina Lehr
- Department of molecular biology and genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lukáš Strych
- Department of molecular biology and genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavla Nedbalová
- Department of molecular biology and genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ellen McMullen
- Department of molecular biology and genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Adam Bajgar
- Department of molecular biology and genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Stanislav Opekar
- Laboratory of Analytical Biochemistry and Metabolomics, Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Petr Šimek
- Laboratory of Analytical Biochemistry and Metabolomics, Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Martin Moos
- Laboratory of Analytical Biochemistry and Metabolomics, Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Tomáš Doležal
- Department of molecular biology and genetics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
6
|
Kwok SH, Liu Y, Bilder D, Kim J. Paraneoplastic renal dysfunction in fly cancer models driven by inflammatory activation of stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586173. [PMID: 38585959 PMCID: PMC10996499 DOI: 10.1101/2024.03.21.586173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tumors can induce systemic disturbances in distant organs, leading to physiological changes that enhance host morbidity. In Drosophila cancer models, tumors have been known for decades to cause hypervolemic 'bloating' of the abdominal cavity. Here we use allograft and transgenic tumors to show that hosts display fluid retention associated with autonomously defective secretory capacity of fly renal tubules, which function analogous to those of the human kidney. Excretion from these organs is blocked by abnormal cells that originate from inappropriate activation of normally quiescent renal stem cells (RSCs). Blockage is initiated by IL-6-like oncokines that perturb renal water-transporting cells, and trigger a damage response in RSCs that proceeds pathologically. Thus, a chronic inflammatory state produced by the tumor causes paraneoplastic fluid dysregulation by altering cellular homeostasis of host renal units.
Collapse
Affiliation(s)
- Sze Hang Kwok
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuejiang Liu
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| | - Jung Kim
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley CA, 94720, USA
| |
Collapse
|
7
|
Xu W, Li G, Chen Y, Ye X, Song W. A novel antidiuretic hormone governs tumour-induced renal dysfunction. Nature 2023; 624:425-432. [PMID: 38057665 DOI: 10.1038/s41586-023-06833-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Maintenance of renal function and fluid transport are essential for vertebrates and invertebrates to adapt to physiological and pathological challenges. Human patients with malignant tumours frequently develop detrimental renal dysfunction and oliguria, and previous studies suggest the involvement of chemotherapeutic toxicity and tumour-associated inflammation1,2. However, how tumours might directly modulate renal functions remains largely unclear. Here, using conserved tumour models in Drosophila melanogaster3, we characterized isoform F of ion transport peptide (ITPF) as a fly antidiuretic hormone that is secreted by a subset of yki3SA gut tumour cells, impairs renal function and causes severe abdomen bloating and fluid accumulation. Mechanistically, tumour-derived ITPF targets the G-protein-coupled receptor TkR99D in stellate cells of Malpighian tubules-an excretory organ that is equivalent to renal tubules4-to activate nitric oxide synthase-cGMP signalling and inhibit fluid excretion. We further uncovered antidiuretic functions of mammalian neurokinin 3 receptor (NK3R), the homologue of fly TkR99D, as pharmaceutical blockade of NK3R efficiently alleviates renal tubular dysfunction in mice bearing different malignant tumours. Together, our results demonstrate a novel antidiuretic pathway mediating tumour-renal crosstalk across species and offer therapeutic opportunities for the treatment of cancer-associated renal dysfunction.
Collapse
Affiliation(s)
- Wenhao Xu
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gerui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
| | - Wei Song
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Zhang J, Qi L, Chen B, Li H, Hu L, Wang Q, Wang S, Xi J. Trehalose-6-Phosphate Synthase Contributes to Rapid Cold Hardening in the Invasive Insect Lissorhoptrus oryzophilus (Coleoptera: Curculionidae) by Regulating Trehalose Metabolism. INSECTS 2023; 14:903. [PMID: 38132577 PMCID: PMC10744047 DOI: 10.3390/insects14120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Rapid cold hardening (RCH) is known to rapidly enhance the cold tolerance of insects. Trehalose has been demonstrated to be a cryoprotectant in Lissorhoptrus oryzophilus, an important invasive pest of rice in China. Trehalose synthesis mainly occurs through the Trehalose-6-phosphate synthase (TPS)/trehalose-6-phosphate phosphatase (TPP) pathway in insects. In this study, the TPS gene from L. oryzophilus (LoTPS) was cloned and characterized for the first time. Its expression and trehalose content changes elicited by RCH were investigated. Our results revealed that RCH not only increased the survival rate of adults but also upregulated the expression level of LoTPS and increased the trehalose content under low temperature. We hypothesized that upregulated LoTPS promoted trehalose synthesis and accumulation to protect adults from low-temperature damage. To further verify the function of the LoTPS gene, we employed RNA interference (RNAi) technology. Our findings showed that RCH efficiency disappeared and the survival rate did not increase when the adults were fed dsRNA of LoTPS. Additionally, inhibiting LoTPS expression resulted in no significant difference in trehalose content between the RCH and non-RCH treatments. Furthermore, the expression patterns of trehalose transporter (TRET) and trehalase (TRE) were also affected. Collectively, these results indicate the critical role of LoTPS in L. oryzophilus cold resistance after RCH induction. LoTPS can enhance survival ability by regulating trehalose metabolism. These findings contribute to further understanding the role of TPS in insect cold resistance and the invasiveness of L. oryzophilus. Moreover, RNAi of LoTPS opens up possibilities for novel control strategies against L. oryzophilus in the future.
Collapse
Affiliation(s)
- Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Lizhong Qi
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Baoyu Chen
- Key Laboratory of Plant Nutrition and Agro-Environment in Northeast Region, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment Research, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Hongye Li
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Lianglin Hu
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Qingtai Wang
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| |
Collapse
|
9
|
Suzuki T, Akiba C, Izawa M, Iwami M. Steroid hormone-dependent changes in trehalose physiology in the silkworm, Bombyx mori. J Comp Physiol B 2023:10.1007/s00360-023-01497-2. [PMID: 37221306 DOI: 10.1007/s00360-023-01497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Holometabolous insects undergo metamorphosis to reconstruct their body to the adult form during pupal period. Since pupae cannot take any diets from the outside because of a hard pupal cuticle, those insects stock up on nutrients sufficient for successful metamorphosis during larval feeding period. Among those nutrients, carbohydrates are stored as glycogen or trehalose, which is the major blood sugar in insects. The hemolymph trehalose is constantly high during the feeding period but suddenly decreases at the beginning of the prepupal period. It is believed that trehalase, which is a trehalose-hydrolyzing enzyme, becomes highly active to reduce hemolymph trehalose level during prepupal period. This change in the hemolymph trehalose level has been interpreted as the physiological shift from storage to utilization of trehalose at that stage. Although this shift in trehalose physiology is indispensable for energy production required for successful metamorphosis, little is known on the regulatory mechanisms of trehalose metabolism in accordance with developmental progress. Here, we show that ecdysone, an insect steroid hormone, plays essential roles in the regulation of soluble trehalase activity and its distribution in the midgut of silkworm, Bombyx mori. In the end of larval period, soluble trehalase was highly activated in the midgut lumen. This activation was disappeared in the absence of ecdysone and also restored by ecdysone administration. Our present results suggest that ecdysone is essentially required for the changes in the function of the midgut on trehalose physiology as development progresses.
Collapse
Affiliation(s)
- Takumi Suzuki
- Laboratory of Developmental Biology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Laboratory of Developmental Biology and Physiology, College of Science, Ibaraki University, 1-1-2 Bunkyo, Mito, 310-8512, Japan.
- Laboratory of Developmental Biology and Physiology, Division of Science, Graduate School of Science and Engineering, Ibaraki University, 1-1-2 Bunkyo, Mito, 310-8512, Japan.
| | - Chika Akiba
- Laboratory of Developmental Biology and Physiology, Division of Science, Graduate School of Science and Engineering, Ibaraki University, 1-1-2 Bunkyo, Mito, 310-8512, Japan
| | - Misaki Izawa
- Laboratory of Developmental Biology and Physiology, Division of Science, Graduate School of Science and Engineering, Ibaraki University, 1-1-2 Bunkyo, Mito, 310-8512, Japan
| | - Masafumi Iwami
- Laboratory of Developmental Biology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
10
|
Liu Y, Dantas E, Ferrer M, Liu Y, Comjean A, Davidson EE, Hu Y, Goncalves MD, Janowitz T, Perrimon N. Tumor Cytokine-Induced Hepatic Gluconeogenesis Contributes to Cancer Cachexia: Insights from Full Body Single Nuclei Sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540823. [PMID: 37292804 PMCID: PMC10245574 DOI: 10.1101/2023.05.15.540823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A primary cause of death in cancer patients is cachexia, a wasting syndrome attributed to tumor-induced metabolic dysregulation. Despite the major impact of cachexia on the treatment, quality of life, and survival of cancer patients, relatively little is known about the underlying pathogenic mechanisms. Hyperglycemia detected in glucose tolerance test is one of the earliest metabolic abnormalities observed in cancer patients; however, the pathogenesis by which tumors influence blood sugar levels remains poorly understood. Here, utilizing a Drosophila model, we demonstrate that the tumor secreted interleukin-like cytokine Upd3 induces fat body expression of Pepck1 and Pdk, two key regulatory enzymes of gluconeogenesis, contributing to hyperglycemia. Our data further indicate a conserved regulation of these genes by IL-6/JAK-STAT signaling in mouse models. Importantly, in both fly and mouse cancer cachexia models, elevated gluconeogenesis gene levels are associated with poor prognosis. Altogether, our study uncovers a conserved role of Upd3/IL-6/JAK-STAT signaling in inducing tumor-associated hyperglycemia, which provides insights into the pathogenesis of IL-6 signaling in cancer cachexia.
Collapse
Affiliation(s)
- Ying Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ezequiel Dantas
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Miriam Ferrer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Emma E. Davidson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724 USA
- Northwell Health Cancer Institute, Northwell Health, New Hyde Park, New York, NY 11042 USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
11
|
Karpova EK, Bobrovskikh MA, Deryuzhenko MA, Shishkina OD, Gruntenko NE. Wolbachia Effect on Drosophila melanogaster Lipid and Carbohydrate Metabolism. INSECTS 2023; 14:357. [PMID: 37103172 PMCID: PMC10143037 DOI: 10.3390/insects14040357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The effect of maternally inherited endosymbiotic bacteria Wolbachia on triglyceride and carbohydrate metabolism, starvation resistance and feeding behavior of Drosophila melanogaster females was studied. Eight D. melanogaster lines of the same nuclear background were investigated; one had no infection and served as the control, and seven others were infected with different Wolbachia strains pertaining to wMel and wMelCS groups of genotypes. Most of the infected lines had a higher overall lipid content and triglyceride level than the control line and their expression of the bmm gene regulating triglyceride catabolism was reduced. The glucose content was higher in the infected lines compared to that in the control, while their trehalose levels were similar. It was also found that the Wolbachia infection reduced the level of tps1 gene expression (coding for enzyme for trehalose synthesis from glucose) and had no effect on treh gene expression (coding for trehalose degradation enzyme). The infected lines exhibited lower appetite but higher survival under starvation compared to the control. The data obtained may indicate that Wolbachia foster their hosts' energy exchange through increasing its lipid storage and glucose content to ensure the host's competitive advantage over uninfected individuals. The scheme of carbohydrate and lipid metabolism regulation under Wolbachia's influence was suggested.
Collapse
|
12
|
Banzai K, Nishimura T. Isolation of a novel missense mutation in insulin receptor as a spontaneous revertant in ImpL2 mutants in Drosophila. Development 2023; 150:285910. [PMID: 36504086 DOI: 10.1242/dev.201248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022]
Abstract
Evolutionarily conserved insulin/insulin-like growth factor (IGF) signaling (IIS) correlates nutrient levels to metabolism and growth, thereby playing crucial roles in development and adult fitness. In the fruit fly Drosophila, ImpL2, an ortholog of IGFBP7, binds to and inhibits the function of Drosophila insulin-like peptides. In this study, we isolated a temperature-sensitive mutation in the insulin receptor (InR) gene as a spontaneous revertant in ImpL2 null mutants. The p.Y902C missense mutation is located at the functionally conserved amino acid residue of the first fibronectin type III domain of InR. The hypomorphic InR mutant animals showed a temperature-dependent reduction in IIS and body size. The mutant animals also exhibited metabolic defects, such as increased triglyceride and carbohydrate levels. Metabolomic analysis further revealed that defects in InR caused dysregulation of amino acid and ribonucleotide metabolism. We also observed that InR mutant females produced tiny irregular-shaped embryos with reduced fecundity. In summary, this novel allele of InR is a valuable tool for the Drosophila genetic model of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Kota Banzai
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo 650-0047, Japan.,Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
13
|
Drosophila suzukii energetic pathways are differently modulated by nutritional geometry in males and females. Sci Rep 2022; 12:21194. [PMID: 36476948 PMCID: PMC9729594 DOI: 10.1038/s41598-022-25509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
As a polyphagous pest, Drosophila suzukii has a variety of host fruits available for feeding and oviposition, but how the nutritional geometry of different hosts influences its metabolism is still poorly understood. This work aimed to evaluate how D. suzukii metabolic and transcriptional pathways are influenced by feeding on different host fruits, and how sex influences these responses. Adult flies were allowed to feed on five different fruit-based media. Lipids, glucose, glycogen, and energy pathways-associated gene expression, were quantified. Females showed an energetic metabolism easily adaptable to the food's nutritional characteristics; in contrast, males' energetic metabolism was particularly influenced by food, predominantly those fed on raspberry media who showed changes in glucose levels and in the expression of genes associated with metabolic pathways, suggesting activation of gluconeogenesis and trehaloneogenesis as a result of nutritional deficiency. Here we present novel insight into how D. suzukii's energetic pathways are modulated depending on fruits' nutritional geometry and sex. While the females showed high adaptability in their energetic metabolism to the diet, males were more feeding-sensitive. These findings might be used not only to control this pest population but to better advise producers to invest in less suitable fruits based on the hosts' nutritional geometry.
Collapse
|
14
|
Wang J, Fan H, Li Y, Zhang TF, Liu YH. Trehalose-6-phosphate phosphatases are involved in trehalose synthesis and metamorphosis in Bactrocera minax. INSECT SCIENCE 2022; 29:1643-1658. [PMID: 35075784 DOI: 10.1111/1744-7917.13010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Trehalose is the principal sugar circulating in the hemolymph of insects, and trehalose synthesis is catalyzed by trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Insect TPS is a fused enzyme containing both TPS domain and TPP domain. Thus, many insects do not possess TPP genes as TPSs have replaced the function of TPPs. However, TPPs are widely distributed across the dipteran insects, while the roles they play remain largely unknown. In this study, 3 TPP genes from notorious dipteran pest Bactrocera minax (BmiTPPB, BmiTPPC1, and BmiTPPC2) were identified and characterized. The different temporal-spatial expression patterns of 3 BmiTPPs implied that they exert different functions in B. minax. Recombinant BmiTPPs were heterologously expressed in yeast cells, and all purified proteins exhibited enzymatic activities, despite the remarkable disparity in performance between BmiTPPB and BmiTPPCs. RNA interference revealed that all BmiTPPs were successfully downregulated after double-stranded RNA injection, leading to decreased trehalose content and increased glucose content. Also, suppression of BmiTPPs significantly affected expression of downstream genes and increased the mortality and malformation rate. Collectively, these results indicated that all 3 BmiTPPs in B. minax are involved in trehalose synthesis and metamorphosis. Thus, these genes could be evaluated as insecticidal targets for managing B. minax, and even for other dipteran pests.
Collapse
Affiliation(s)
- Jia Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Huan Fan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ying Li
- College of Plant Protection, Southwest University, Chongqing, China
| | - Tong-Fang Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Ying-Hong Liu
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
15
|
Gáliková M, Klepsatel P. Ion transport peptide regulates energy intake, expenditure, and metabolic homeostasis in Drosophila. Genetics 2022; 222:iyac150. [PMID: 36190340 PMCID: PMC9713441 DOI: 10.1093/genetics/iyac150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
In mammals, energy homeostasis is regulated by the antagonistic action of hormones insulin and glucagon. However, in contrast to the highly conserved insulin, glucagon is absent in most invertebrates. Although there are several endocrine regulators of energy expenditure and catabolism (such as the adipokinetic hormone), no single invertebrate hormone with all of the functions of glucagon has been described so far. Here, we used genetic gain- and loss-of-function experiments to show that the Drosophila gene Ion transport peptide (ITP) codes for a novel catabolic regulator that increases energy expenditure, lowers fat and glycogen reserves, and increases glucose and trehalose. Intriguingly, Ion transport peptide has additional functions reminiscent of glucagon, such as inhibition of feeding and transit of the meal throughout the digestive tract. Furthermore, Ion transport peptide interacts with the well-known signaling via the Adipokinetic hormone; Ion transport peptide promotes the pathway by stimulating Adipokinetic hormone secretion and transcription of the receptor AkhR. The genetic manipulations of Ion transport peptide on standard and Adipokinetic hormone-deficient backgrounds showed that the Adipokinetic hormone peptide mediates the hyperglycemic and hypertrehalosemic effects of Ion transport peptide, while the other metabolic functions of Ion transport peptide seem to be Adipokinetic hormone independent. In addition, Ion transport peptide is necessary for critical processes such as development, starvation-induced foraging, reproduction, and average lifespan. Altogether, our work describes a novel master regulator of fly physiology with functions closely resembling mammalian glucagon.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, 845 06 Bratislava, Slovakia
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, 845 06 Bratislava, Slovakia
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| |
Collapse
|
16
|
Zhou H, Lei G, Chen Y, You M, You S. PxTret1-like Affects the Temperature Adaptability of a Cosmopolitan Pest by Altering Trehalose Tissue Distribution. Int J Mol Sci 2022; 23:ijms23169019. [PMID: 36012281 PMCID: PMC9409412 DOI: 10.3390/ijms23169019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Global warming poses new challenges for insects to adapt to higher temperatures. Trehalose is the main blood sugar in insects and plays an important role in energy metabolism and stress resistance. The transmembrane transport of trehalose mainly depends on the trehalose transporter (TRET1). Plutella xylostella (L.) is a worldwide agricultural pest; however, the effects of the trehalose transport mechanism and trehalose distribution in tissues on the development, reproduction and temperature adaptation of P. xylostella have yet to be reported. In this study, PxTret1-like was cloned and analyzed regarding its expression pattern. It was found that the expression of PxTret1-like was affected by ambient temperature. The knockout mutation of PxTret1-like was generated using a CRISPR/Cas9 system by targeted knockout. The trehalose content and trehalase activity of mutant P. xylostella increased at different developmental stages. The trehalose content increased in the fat body of the fourth-instar P. xylostella, and decreased in the hemolymph, and there was no significant change in glucose in the fat body and hemolymph. Mutant strains of P. xylostella showed a significantly reduced survival rate, fecundity and ability to withstand extreme temperatures. The results showed that PxTret1-like could affect the development, reproduction and temperature adaptability of P. xylostella by regulating the trehalose content in the fat body and hemolymph.
Collapse
Affiliation(s)
- Huiling Zhou
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaoke Lei
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanting Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijun You
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- BGI-Sanya, BGI-Shenzhen, Sanya 572025, China
- Correspondence:
| |
Collapse
|
17
|
Chen J, Fan J, Liu W, Wang Z, Ren A, Shi L. Trehalose‐6‐phosphate synthase influences polysaccharide synthesis and cell wall components in
Ganoderma lucidum. J Basic Microbiol 2022; 62:1337-1345. [DOI: 10.1002/jobm.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Juhong Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Junpei Fan
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Weidong Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Zi Wang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture; Department of Microbiology, College of Life Sciences Nanjing Agricultural University Nanjing China
| |
Collapse
|
18
|
Li F, Rane RV, Luria V, Xiong Z, Chen J, Li Z, Catullo RA, Griffin PC, Schiffer M, Pearce S, Lee SF, McElroy K, Stocker A, Shirriffs J, Cockerell F, Coppin C, Sgrò CM, Karger A, Cain JW, Weber JA, Santpere G, Kirschner MW, Hoffmann AA, Oakeshott JG, Zhang G. Phylogenomic analyses of the genus Drosophila reveals genomic signals of climate adaptation. Mol Ecol Resour 2022; 22:1559-1581. [PMID: 34839580 PMCID: PMC9299920 DOI: 10.1111/1755-0998.13561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
Many Drosophila species differ widely in their distributions and climate niches, making them excellent subjects for evolutionary genomic studies. Here, we have developed a database of high-quality assemblies for 46 Drosophila species and one closely related Zaprionus. Fifteen of the genomes were newly sequenced, and 20 were improved with additional sequencing. New or improved annotations were generated for all 47 species, assisted by new transcriptomes for 19. Phylogenomic analyses of these data resolved several previously ambiguous relationships, especially in the melanogaster species group. However, it also revealed significant phylogenetic incongruence among genes, mainly in the form of incomplete lineage sorting in the subgenus Sophophora but also including asymmetric introgression in the subgenus Drosophila. Using the phylogeny as a framework and taking into account these incongruences, we then screened the data for genome-wide signals of adaptation to different climatic niches. First, phylostratigraphy revealed relatively high rates of recent novel gene gain in three temperate pseudoobscura and five desert-adapted cactophilic mulleri subgroup species. Second, we found differing ratios of nonsynonymous to synonymous substitutions in several hundred orthologues between climate generalists and specialists, with trends for significantly higher ratios for those in tropical and lower ratios for those in temperate-continental specialists respectively than those in the climate generalists. Finally, resequencing natural populations of 13 species revealed tropics-restricted species generally had smaller population sizes, lower genome diversity and more deleterious mutations than the more widespread species. We conclude that adaptation to different climates in the genus Drosophila has been associated with large-scale and multifaceted genomic changes.
Collapse
Affiliation(s)
- Fang Li
- BGI‐ShenzhenShenzhenChina
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Rahul V. Rane
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Victor Luria
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Zijun Xiong
- BGI‐ShenzhenShenzhenChina
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of Sciences (CAS)KunmingYunnanChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | | | | | - Renee A. Catullo
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Division of Ecology and EvolutionCentre for Biodiversity AnalysisThe Australian National UniversityActonACTAustralia
| | - Philippa C. Griffin
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Michele Schiffer
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
- Daintree Rainforest ObservatoryJames Cook UniversityCape TribulationQldAustralia
| | - Stephen Pearce
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Siu Fai Lee
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Applied BioSciencesMacquarie UniversityNorth RydeNSWAustralia
| | - Kerensa McElroy
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Ann Stocker
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Jennifer Shirriffs
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - Fiona Cockerell
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Chris Coppin
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
| | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityClaytonVic.Australia
| | - Amir Karger
- IT ‐ Research ComputingHarvard Medical SchoolBostonMassachusettsUSA
| | - John W. Cain
- Department of MathematicsHarvard UniversityCambridgeMassachusettsUSA
| | - Jessica A. Weber
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB)Department of Experimental and Health Sciences (DCEXS)Hospital del Mar Medical Research Institute (IMIM)Universitat Pompeu FabraBarcelonaCataloniaSpain
| | - Marc W. Kirschner
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ary A. Hoffmann
- Bio21 InstituteSchool of BioSciencesUniversity of MelbourneParkvilleVic.Australia
| | - John G. Oakeshott
- Commonwealth Scientific and Industrial Research OrganisationActonACTAustralia
- Applied BioSciencesMacquarie UniversityNorth RydeNSWAustralia
| | - Guojie Zhang
- BGI‐ShenzhenShenzhenChina
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of Sciences (CAS)KunmingYunnanChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
19
|
Zhou M, Shen Q, Wang S, Li G, Wu Y, Xu C, Tang B, Li C. Regulatory function of the trehalose-6-phosphate synthase gene TPS3 on chitin metabolism in brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2022; 31:241-250. [PMID: 34923699 DOI: 10.1111/imb.12754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Brown planthopper (Nilaparvata lugens) is one of the important pests that damage rice. Trehalose-6-phosphate synthase (TPS) is a key enzyme responsible for catalysing the biosynthesis of trehalose, which is the energy substance of insects. In this study, combined with the reported N. lugens TPS1, TPS2 and newly discovered TPS3, we studied the regulation of TPS in chitin metabolism by RNA interference. Firstly, we found that the relative expression levels of TRE1-1, TRE1-2 and TRE2 increased significantly after 48 h of dsTPS3 injection, and the activity of TRE1 enhanced significantly. Secondly, abnormal and lethal phenotypes were observed after dsTPS3 and dsTPSs injection. The relative expression levels of PGM2, G6PI2, Cht1-4, Cht6-10 and IDGF decreased significantly after 48 h of dsTPS3 injection. At 72 h after injection of dsTPS3, the relative expression levels of CHS1, Cht2, Cht4, Cht7 and Cht8 reduced significantly, but the expression levels of G6PI1, Cht5 and ENGase increased significantly. The relative expression levels of GFAT, UAP, PGM2, G6PI2, CHS1, CHS1a, CHS1b, Cht2, Cht4, Cht8, Cht9 and Cht10 decreased significantly after 48 h of dsTPSs injection. However, at 72 h after the injection of dsTPSs, the expression levels of GNPNA, UAP, PGM1, G6PI1, HK, CHS1, CHS1a, CHS1b, Cht3, Cht5, Cht7 and ENGase increased significantly. Finally, the chitin content decreased in dsTPS1, dsTPS2 and dsTPSs treatments. In conclusion, the inhibition of TPS expression affected the metabolism of trehalose and chitin in N. lugens. The related research results provide a theoretical basis for pest control.
Collapse
Affiliation(s)
- Min Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Qida Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shasha Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guoyong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Caidi Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
20
|
Gong C, Yang Z, Hu Y, Wu Q, Wang S, Guo Z, Zhang Y. Silencing of the BtTPS genes by transgenic plant-mediated RNAi to control Bemisia tabaci MED. PEST MANAGEMENT SCIENCE 2022; 78:1128-1137. [PMID: 34796637 DOI: 10.1002/ps.6727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Whitefly (Bemisia tabaci) is a typical pest that causes severe damage to hundreds of agricultural crops. The trehalose-6-phosphate synthase (TPS) genes, as the key genes in the insect trehalose synthesis pathway, are important for insect growth and development. The whitefly TPS genes may be a main reason for the severe damage and may represent potential targets for the control of whiteflies. RESULTS In this study, we identified and cloned three TPS genes from B. tabaci MED and found that the BtTPS1 and BtTPS2 genes showed higher expression levels than the BtTPS3 gene. Then, RNA interference (RNAi) of BtTPS1 and BtTPS2 resulted in significant mortality and influenced the expression of related genes involved in energy metabolism and chitin biosynthesis in whitefly adults. Finally, the transgenic tobacco plants showed a significant effect on B. tabaci, and knockdown of BtTPS1 or BtTPS2 led to retarded growth and low hatchability in whitefly nymphs, and caused 90% mortality and decreased the fecundity in whitefly adults. Additionally, the transgenic tobacco with combinatorial RNAi of BtTPS1 and BtTPS2 showed a better efficacy against whiteflies than individual silencing. CONCLUSION Our results suggest that silencing of the BtTPS genes can compromise the growth and development of whiteflies, offering not only a new option for whitefly control but also a secure and environmentally friendly management strategy.
Collapse
Affiliation(s)
- Cheng Gong
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Hu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Tamayo B, Kercher K, Vosburg C, Massimino C, Jernigan MR, Hasan DL, Harper D, Mathew A, Adkins S, Shippy T, Hosmani PS, Flores-Gonzalez M, Panitz N, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D’Elia T, Saha S. Annotation of glycolysis, gluconeogenesis, and trehaloneogenesis pathways provide insight into carbohydrate metabolism in the Asian citrus psyllid. GIGABYTE 2022; 2022:gigabyte41. [PMID: 36824510 PMCID: PMC9933520 DOI: 10.46471/gigabyte.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Citrus greening disease is caused by the pathogen Candidatus Liberibacter asiaticus and transmitted by the Asian citrus psyllid, Diaphorina citri. No curative treatment or significant prevention mechanism exists for this disease, which causes economic losses from reduced citrus production. A high-quality genome of D. citri is being manually annotated to provide accurate gene models to identify novel control targets and increase understanding of this pest. Here, we annotated 25 D. citri genes involved in glycolysis and gluconeogenesis, and seven in trehaloneogenesis. Comparative analysis showed that glycolysis genes in D. citri are highly conserved but copy numbers vary. Analysis of expression levels revealed upregulation of several enzymes in the glycolysis pathway in the thorax, consistent with the primary use of glucose by thoracic flight muscles. Manually annotating these core metabolic pathways provides accurate genomic foundation for developing gene-targeting therapeutics to control D. citri.
Collapse
Affiliation(s)
- Blessy Tamayo
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Kyle Kercher
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Chad Vosburg
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | | | | | | | - Anuja Mathew
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Samuel Adkins
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Teresa Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | - Wayne B. Hunter
- US Department of Agriculture-Agricultural Research Service (USDA-ARS), US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson InstituteIthaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
22
|
Maslov DL, Zemskaya NV, Trifonova OP, Lichtenberg S, Balashova EE, Lisitsa AV, Moskalev AA, Lokhov PG. Comparative Metabolomic Study of Drosophila Species with Different Lifespans. Int J Mol Sci 2021; 22:ijms222312873. [PMID: 34884677 PMCID: PMC8657752 DOI: 10.3390/ijms222312873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
The increase in life expectancy, leading to a rise in the proportion of older people, is accompanied by a prevalence of age-related disorders among the world population, the fight against which today is one of the leading biomedical challenges. Exploring the biological insights concerning the lifespan is one of the ways to provide a background for designing an effective treatment for the increase in healthy years of life. Untargeted direct injection mass spectrometry-based metabolite profiling of 12 species of Drosophila with significant variations in natural lifespans was conducted in this research. A cross-comparison study of metabolomic profiles revealed lifespan signatures of flies. These signatures indicate that lifespan extension is associated with the upregulation of amino acids, phospholipids, and carbohydrate metabolism. Such information provides a metabolome-level view on longevity and may provide a molecular measure of organism age in age-related studies.
Collapse
Affiliation(s)
- Dmitry L. Maslov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Correspondence: ; Tel.: +7-499-246-6980
| | - Nadezhda V. Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Oxana P. Trifonova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Steven Lichtenberg
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Metabometrics Inc., 651 N Broad Street, Suite 205 #1370, Middletown, DE 19709, USA
| | - Elena E. Balashova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Andrey V. Lisitsa
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Petr G. Lokhov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| |
Collapse
|
23
|
Huang Q, Zhang G, Nan J, Cheng W, Zhu-Salzman K. Characterization of trehalose metabolic genes and corresponding enzymatic activities during diapause of Sitodiplosis mosellana. JOURNAL OF INSECT PHYSIOLOGY 2021; 135:104324. [PMID: 34744003 DOI: 10.1016/j.jinsphys.2021.104324] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Trehalose plays crucial roles in energy metabolism and stress tolerance in various organisms. The orange wheat blossom midge Sitodiplosis mosellana, a serious pest of wheat worldwide, undergoes long obligatory diapause as a larva to survive harsh temperature extremes in summer and winter. To gain an insight into trehalose function and metabolic mechanism in this process, we measured the content of trehalose and glucose, as well as enzymatic activities of trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP) and soluble trehalase (Treh1) at pre-diapause, diapause and post-diapause larvae of S. mosellana. Trehalose levels greatly increased upon entry into diapause, peaked in low-temperature quiescence phase, and significantly dropped after resumption of development, highly consistent with activity changes of trehalose-synthetic enzymes SmTPS and SmTPP. In marked contrast, the activity of trehalose-degrading SmTreh1 exhibited a completely reversed profile. This profile was in agreement with contents of its product i.e. glucose. Furthermore, deduced amino acid sequences of cloned SmTPS, SmTPPB, SmTPPC, SmTreh1-1 and SmTreh1-2 genes contained all conserved functional domains, motifs and active sites. Expression patterns of these genes were closely correlated with their enzyme activities. These results suggested that coordination of trehalose synthetic and degradation pathways is responsible for diapause-related trehalose accumulation, which may serve as an energy reserve for post-diapause development and a cryoprotectant against cold stress in winter.
Collapse
Affiliation(s)
- Qitong Huang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guojun Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianglei Nan
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weining Cheng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
24
|
Rivera MJ, Contreras A, Nguyen LT, Eldon ED, Klig LS. Regulated inositol synthesis is critical for balanced metabolism and development in Drosophila melanogaster. Biol Open 2021; 10:272639. [PMID: 34710213 PMCID: PMC8565467 DOI: 10.1242/bio.058833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 01/23/2023] Open
Abstract
Myo-inositol is a precursor of the membrane phospholipid, phosphatidylinositol (PI). It is involved in many essential cellular processes including signal transduction, energy metabolism, endoplasmic reticulum stress, and osmoregulation. Inositol is synthesized from glucose-6-phosphate by myo-inositol-3-phosphate synthase (MIPSp). The Drosophila melanogaster Inos gene encodes MIPSp. Abnormalities in myo-inositol metabolism have been implicated in type 2 diabetes, cancer, and neurodegenerative disorders. Obesity and high blood (hemolymph) glucose are two hallmarks of diabetes, which can be induced in Drosophila melanogaster third-instar larvae by high-sucrose diets. This study shows that dietary inositol reduces the obese-like and high-hemolymph glucose phenotypes of third-instar larvae fed high-sucrose diets. Furthermore, this study demonstrates Inos mRNA regulation by dietary inositol; when more inositol is provided there is less Inos mRNA. Third-instar larvae with dysregulated high levels of Inos mRNA and MIPSp show dramatic reductions of the obese-like and high-hemolymph glucose phenotypes. These strains, however, also display developmental defects and pupal lethality. The few individuals that eclose die within two days with striking defects: structural alterations of the wings and legs, and heads lacking proboscises. This study is an exciting extension of the use of Drosophila melanogaster as a model organism for exploring the junction of development and metabolism. Summary: Inositol reduces obesity and high blood (hemolymph) glucose, but can cause dramatic developmental defects. This study uses the model organism Drosophila melanogaster to explore the junction of development and metabolism.
Collapse
Affiliation(s)
- Maria J Rivera
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Altagracia Contreras
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - LongThy T Nguyen
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Elizabeth D Eldon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Lisa S Klig
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
25
|
Li YN, Ren XB, Liu ZC, Ye B, Zhao ZJ, Fan Q, Liu YB, Zhang JN, Li WL. Insulin-Like Peptide and FoxO Mediate the Trehalose Catabolism Enhancement during the Diapause Termination Period in the Chinese Oak Silkworm ( Antheraea pernyi). INSECTS 2021; 12:insects12090784. [PMID: 34564224 PMCID: PMC8472214 DOI: 10.3390/insects12090784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary In insects, the insulin/insulin-like growth factor signalling (IIS) pathway regulates the carbohydrate and lipid metabolisms, and plays important roles in diapause regulation. Trehalose accumulates in many diapausing insects, as it is a major carbohydrate reserve and a stress protectant. Because of metabolism depression, the trehalose concentration is maintained at relatively high levels over the diapause phase. In the present study, bovine insulin injection triggered diapause termination and synchronous eclosion in Antheraea pernyi pupae. Moreover, treatment with bovine insulin elevated the trehalose catabolism in diapausing pupae. As a homologue of vertebrate insulin, insulin-like peptide (ApILP) enhances the trehalose catabolism during the diapause termination process. The transcription factor forkhead box O (ApFoxO)—the downstream target of the IIS pathway—exhibited a contrasting effect on the trehalose catabolism to that of ApILP. These results suggest that ApILP and ApFoxO are involved in the regulation of trehalose catabolism during diapause termination in A. pernyi pupae. Abstract In insects, trehalose accumulation is associated with the insulin/insulin-like growth factor signalling (IIS) pathway. However, whether insulin-like peptide is involved in the regulation of the trehalose metabolism during diapause termination remains largely unknown. This study assessed whether insulin-like peptide (ApILP) enhances the trehalose catabolism in the pupae of Antheraeapernyi during their diapause termination process. Injection of 10 μg of bovine insulin triggered diapause termination and synchronous adult eclosion in diapausing pupae. Moreover, treatment with bovine insulin increased the expression of trehalase 1A (ApTre-1A) and trehalase 2 (ApTre-2), as well as the activity of soluble and membrane-bound trehalase, resulting in a decline in trehalose levels in the haemolymph. Silencing ApILP via RNA interference significantly suppressed the expression of ApTre-1A and ApTre-2, thus leading to an increase in the trehalose concentration during diapause termination. However, neither injection with bovine insulin nor ApILP knockdown directly affected trehalase 1B (ApTre-1B) expression. Moreover, overexpression of the transcription factor forkhead box O (ApFoxO) induced an increase in trehalose levels during diapause termination; however, depletion of ApFoxO accelerated the breakdown of trehalose in diapausing pupae by increasing the expression of ApTre-1A and ApTre-2. The results of this study help to understand the contributions of ApILP and ApFoxO to the trehalose metabolism during diapause termination.
Collapse
Affiliation(s)
- Ya-Na Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
| | - Xiao-Bing Ren
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124211, China; (X.-B.R.); (Z.-C.L.); (Y.-B.L.); (J.-N.Z.)
| | - Zhi-Chao Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124211, China; (X.-B.R.); (Z.-C.L.); (Y.-B.L.); (J.-N.Z.)
| | - Bo Ye
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China; (B.Y.); (Z.-J.Z.); (Q.F.)
| | - Zhen-Jun Zhao
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China; (B.Y.); (Z.-J.Z.); (Q.F.)
| | - Qi Fan
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China; (B.Y.); (Z.-J.Z.); (Q.F.)
| | - Yu-Bo Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124211, China; (X.-B.R.); (Z.-C.L.); (Y.-B.L.); (J.-N.Z.)
| | - Jia-Ning Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124211, China; (X.-B.R.); (Z.-C.L.); (Y.-B.L.); (J.-N.Z.)
| | - Wen-Li Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124211, China; (X.-B.R.); (Z.-C.L.); (Y.-B.L.); (J.-N.Z.)
- Correspondence:
| |
Collapse
|
26
|
Hara Y, Shibahara R, Kondo K, Abe W, Kunieda T. Parallel evolution of trehalose production machinery in anhydrobiotic animals via recurrent gene loss and horizontal transfer. Open Biol 2021; 11:200413. [PMID: 34255978 PMCID: PMC8277472 DOI: 10.1098/rsob.200413] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trehalose is a versatile non-reducing sugar. In some animal groups possessing its intrinsic production machinery, it is used as a potent protectant against environmental stresses, as well as blood sugar. However, the trehalose biosynthesis genes remain unidentified in the large majority of metazoan phyla, including vertebrates. To uncover the evolutionary history of trehalose production machinery in metazoans, we scrutinized the available genome resources and identified bifunctional trehalose-6-phosphate synthase-trehalose-6-phosphate phosphatase (TPS–TPP) genes in various taxa. The scan included our newly sequenced genome assembly of a desiccation-tolerant tardigrade Paramacrobiotus sp. TYO, revealing that this species retains TPS–TPP genes activated upon desiccation. Phylogenetic analyses identified a monophyletic group of the many of the metazoan TPS–TPP genes, namely ‘pan-metazoan’ genes, that were acquired in the early ancestors of metazoans. Furthermore, coordination of our results with the previous horizontal gene transfer studies illuminated that the two tardigrade lineages, nematodes and bdelloid rotifers, all of which include desiccation-tolerant species, independently acquired the TPS–TPP homologues via horizontal transfer accompanied with loss of the ‘pan-metazoan’ genes. Our results indicate that the parallel evolution of trehalose synthesis via recurrent loss and horizontal transfer of the biosynthesis genes resulted in the acquisition and/or augmentation of anhydrobiotic lives in animals.
Collapse
Affiliation(s)
- Yuichiro Hara
- Research Center for Genome and Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Reira Shibahara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Koyuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Wataru Abe
- Department of Biology, Dokkyo Medical University, Tochigi, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
28
|
Schoville SD, Simon S, Bai M, Beethem Z, Dudko RY, Eberhard MJB, Frandsen PB, Küpper SC, Machida R, Verheij M, Willadsen PC, Zhou X, Wipfler B. Comparative transcriptomics of ice-crawlers demonstrates cold specialization constrains niche evolution in a relict lineage. Evol Appl 2021; 14:360-382. [PMID: 33664782 PMCID: PMC7896716 DOI: 10.1111/eva.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Key changes in ecological niche space are often critical to understanding how lineages diversify during adaptive radiations. However, the converse, or understanding why some lineages are depauperate and relictual, is more challenging, as many factors may constrain niche evolution. In the case of the insect order Grylloblattodea, highly conserved thermal breadth is assumed to be closely tied to their relictual status, but has not been formerly tested. Here, we investigate whether evolutionary constraints in the physiological tolerance of temperature can help explain relictualism in this lineage. Using a comparative transcriptomics approach, we investigate gene expression following acute heat and cold stress across members of Grylloblattodea and their sister group, Mantophasmatodea. We additionally examine patterns of protein evolution, to identify candidate genes of positive selection. We demonstrate that cold specialization in Grylloblattodea has been accompanied by the loss of the inducible heat shock response under both acute heat and cold stress. Additionally, there is widespread evidence of selection on protein-coding genes consistent with evolutionary constraints due to cold specialization. This includes positive selection on genes involved in trehalose transport, metabolic function, mitochondrial function, oxygen reduction, oxidative stress, and protein synthesis. These patterns of molecular adaptation suggest that Grylloblattodea have undergone evolutionary trade-offs to survive in cold habitats and should be considered highly vulnerable to climate change. Finally, our transcriptomic data provide a robust backbone phylogeny for generic relationships within Grylloblattodea and Mantophasmatodea. Major phylogenetic splits in each group relate to arid conditions driving biogeographical patterns, with support for a sister-group relationship between North American Grylloblatta and Altai-Sayan Grylloblattella, and a range disjunction in Namibia splitting major clades within Mantophasmatodea.
Collapse
Affiliation(s)
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Ming Bai
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zachary Beethem
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Biomedical SciencesSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roman Y. Dudko
- Institute of Systematics and Ecology of AnimalsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
- Tomsk State UniversityTomskRussia
| | - Monika J. B. Eberhard
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Paul B. Frandsen
- Department of Plant & Wildlife SciencesBrigham Young UniversityProvoUTUSA
- Data Science LabOffice of the Chief Information OfficerSmithsonian InstitutionWashingtonDCU.S.A
| | - Simon C. Küpper
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Ryuichiro Machida
- Sugadaira Research StationMountain Science CenterUniversity of TsukubaUeda, NaganoJapan
| | - Max Verheij
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Peter C. Willadsen
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Entomology and Plant PathologyNorth Carolina State UniversityCampus Box 7613RaleighNCUSA
| | - Xin Zhou
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | | |
Collapse
|
29
|
Bretscher H, O’Connor MB. The Role of Muscle in Insect Energy Homeostasis. Front Physiol 2020; 11:580687. [PMID: 33192587 PMCID: PMC7649811 DOI: 10.3389/fphys.2020.580687] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Maintaining energy homeostasis is critical for ensuring proper growth and maximizing survival potential of all organisms. Here we review the role of somatic muscle in regulating energy homeostasis in insects. The muscle is not only a large consumer of energy, it also plays a crucial role in regulating metabolic signaling pathways and energy stores of the organism. We examine the metabolic pathways required to supply the muscle with energy, as well as muscle-derived signals that regulate metabolic energy homeostasis.
Collapse
Affiliation(s)
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
30
|
Nishimura T. Feedforward Regulation of Glucose Metabolism by Steroid Hormones Drives a Developmental Transition in Drosophila. Curr Biol 2020; 30:3624-3632.e5. [DOI: 10.1016/j.cub.2020.06.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/16/2023]
|
31
|
Zhao X, Li X, Shi X, Karpac J. Diet-MEF2 interactions shape lipid droplet diversification in muscle to influence Drosophila lifespan. Aging Cell 2020; 19:e13172. [PMID: 32537848 PMCID: PMC7433001 DOI: 10.1111/acel.13172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/05/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The number, size, and composition of lipid droplets can be influenced by dietary changes that shift energy substrate availability. This diversification of lipid droplets can promote metabolic flexibility and shape cellular stress responses in unique tissues with distinctive metabolic roles. Using Drosophila, we uncovered a role for myocyte enhancer factor 2 (MEF2) in modulating diet-dependent lipid droplet diversification within adult striated muscle, impacting mortality rates. Muscle-specific attenuation of MEF2, whose chronic activation maintains glucose and mitochondrial homeostasis, leads to the accumulation of large, cholesterol ester-enriched intramuscular lipid droplets in response to high calorie, carbohydrate-sufficient diets. The diet-dependent accumulation of these lipid droplets also correlates with both enhanced stress protection in muscle and increases in organismal lifespan. Furthermore, MEF2 attenuation releases an antagonistic regulation of cell cycle gene expression programs, and up-regulation of Cyclin E is required for diet- and MEF2-dependent diversification of intramuscular lipid droplets. The integration of MEF2-regulated gene expression networks with dietary responses thus plays a critical role in shaping muscle metabolism and function, further influencing organismal lifespan. Together, these results highlight a potential protective role for intramuscular lipid droplets during dietary adaptation.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| | - Xiaotong Li
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| | - Xiangyu Shi
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| | - Jason Karpac
- Department of Molecular and Cellular MedicineTexas A&M University Health Science CenterBryanTXUSA
| |
Collapse
|
32
|
Matsushita R, Nishimura T. Trehalose metabolism confers developmental robustness and stability in Drosophila by regulating glucose homeostasis. Commun Biol 2020; 3:170. [PMID: 32265497 PMCID: PMC7138798 DOI: 10.1038/s42003-020-0889-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/11/2020] [Indexed: 01/06/2023] Open
Abstract
Organisms have evolved molecular mechanisms to ensure consistent and invariant phenotypes in the face of environmental fluctuations. Developmental homeostasis is determined by two factors: robustness, which buffers against environmental variations; and developmental stability, which buffers against intrinsic random variations. However, our understanding of these noise-buffering mechanisms remains incomplete. Here, we showed that appropriate glycemic control confers developmental homeostasis in the fruit fly Drosophila. We found that circulating glucose levels are buffered by trehalose metabolism, which acts as a glucose sink in circulation. Furthermore, mutations in trehalose synthesis enzyme (Tps1) increased the among-individual and within-individual variations in wing size. Whereas wild-type flies were largely resistant to changes in dietary carbohydrate and protein levels, Tps1 mutants experienced significant disruptions in developmental homeostasis in response to dietary stress. These results demonstrate that glucose homeostasis against dietary stress is crucial for developmental homeostasis.
Collapse
Affiliation(s)
- Ryota Matsushita
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan.
| |
Collapse
|
33
|
Three novel trehalase genes from Harmonia axyridis (Coleoptera: Coccinellidae): cloning and regulation in response to rapid cold and re-warming. 3 Biotech 2019; 9:321. [PMID: 31406643 PMCID: PMC6684730 DOI: 10.1007/s13205-019-1839-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Trehalose is the main blood sugar in insects. To study the function of trehalase during exposure to low temperatures, three other novel cDNAs of trehalase were cloned from Harmonia axyridis by transcriptome sequencing and rapid amplification of cDNA ends. One of the cloned cDNAs encoded a soluble trehalase, the second trehalase cDNA encoded a transmembrane-like domain, and the third cDNA encoded a membrane-bound protein. Therefore, these cDNAs were, respectively, named HaTreh1-5, HaTreh2-like, and HaTreh2. HaTreh1-5, HaTreh2-like, and HaTreh2 cDNAs encoded proteins containing 586, 553, and 633 amino acids with predicted masses of approximately 69.47, 63.46, and 73.66 kDa, and pIs of 9.20, 5.52, and 6.31, respectively. All three novel trehalases contained signal motifs "PGGINKESYYLDSY", "QWDYPNAWPP", and a highly conserved glycine-rich (GGGGEY) region. The expression levels of HaTreh1-5 and HaTreh2 mRNAs were high during adult stages, whereas HaTreh2-like was expressed in low amounts in the fourth larval stage. The results showed that the activity of membrane-bound trehalases decreased from 25 to 10 °C and from 5 to - 5 °C during cooling. The results also revealed a decreasing trend in expression of the three HaTreh mRNAs during the cooling treatment, and an initial decrease followed by an increase during the process of re-warming.
Collapse
|
34
|
Yamada T, Habara O, Yoshii Y, Matsushita R, Kubo H, Nojima Y, Nishimura T. The role of glycogen in development and adult fitness in Drosophila. Development 2019; 146:dev.176149. [PMID: 30918052 DOI: 10.1242/dev.176149] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
The polysaccharide glycogen is an evolutionarily conserved storage form of glucose. However, the physiological significance of glycogen metabolism on homeostatic control throughout the animal life cycle remains incomplete. Here, we describe Drosophila mutants that have defective glycogen metabolism. Null mutants of glycogen synthase (GlyS) and glycogen phosphorylase (GlyP) displayed growth defects and larval lethality, indicating that glycogen plays a crucial role in larval development. Unexpectedly, however, a certain population of larvae developed into adults with normal morphology. Semi-lethality in glycogen mutants during the larval period can be attributed to the presence of circulating sugar trehalose. Homozygous glycogen mutants produced offspring, indicating that glycogen stored in oocytes is dispensable for embryogenesis. GlyS and GlyP mutants showed distinct metabolic defects in the levels of circulating sugars and triglycerides in a life stage-specific manner. In adults, glycogen as an energy reserve is not crucial for physical fitness and lifespan under nourished conditions, but glycogen becomes important under energy stress conditions. This study provides a fundamental understanding of the stage-specific requirements for glycogen metabolism in the fruit fly.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuka Yoshii
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Ryota Matsushita
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hitomi Kubo
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yosui Nojima
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan .,Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|
35
|
Miyamoto T, Amrein H. Neuronal Gluconeogenesis Regulates Systemic Glucose Homeostasis in Drosophila melanogaster. Curr Biol 2019; 29:1263-1272.e5. [DOI: 10.1016/j.cub.2019.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 11/25/2022]
|
36
|
Control of Drosophila Growth and Survival by the Lipid Droplet-Associated Protein CG9186/Sturkopf. Cell Rep 2019; 26:3726-3740.e7. [DOI: 10.1016/j.celrep.2019.02.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/08/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
|
37
|
Thorat L, Nath BB. Insects With Survival Kits for Desiccation Tolerance Under Extreme Water Deficits. Front Physiol 2018; 9:1843. [PMID: 30622480 PMCID: PMC6308239 DOI: 10.3389/fphys.2018.01843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The year 2002 marked the tercentenary of Antonie van Leeuwenhoek's discovery of desiccation tolerance in animals. This remarkable phenomenon to sustain 'life' in the absence of water can be revived upon return of hydrating conditions. Today, coping with climate change-related factors, especially temperature-humidity imbalance, is a global challenge. Under such adverse circumstances, desiccation tolerance remains a prime mechanism of several plants and a few animals to escape the hostile consequences of fluctuating hydroperiodicity patterns in their habitats. Among small animals, insects have demonstrated impressive resilience to dehydration and thrive under physiological water deficits without compromising on revival and survival upon rehydration. The focus of this review is to compile research insights on insect desiccation tolerance, gathered over the past several decades from numerous laboratories worldwide working on different insect groups. We provide a comparative overview of species-specific behavioral changes, adjustments in physiological biochemistry and cellular and molecular mechanisms as few of the noteworthy desiccation-responsive survival kits in insects. Finally, we highlight the role of insects as potential mechanistic models in tracking global warming which will form the basis for translational research to mitigate periods of climatic uncertainty predicted for the future.
Collapse
Affiliation(s)
- Leena Thorat
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Bimalendu B Nath
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
38
|
Graze RM, Tzeng RY, Howard TS, Arbeitman MN. Perturbation of IIS/TOR signaling alters the landscape of sex-differential gene expression in Drosophila. BMC Genomics 2018; 19:893. [PMID: 30526477 PMCID: PMC6288939 DOI: 10.1186/s12864-018-5308-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
Background The core functions of the insulin/insulin-like signaling and target of rapamycin (IIS/TOR) pathway are nutrient sensing, energy homeostasis, growth, and regulation of stress responses. This pathway is also known to interact directly and indirectly with the sex determination regulatory hierarchy. The IIS/TOR pathway plays a role in directing sexually dimorphic traits, including dimorphism of growth, metabolism, stress and behavior. Previous studies of sexually dimorphic gene expression in the adult head, which includes both nervous system and endocrine tissues, have revealed variation in sex-differential expression, depending in part on genotype and environment. To understand the degree to which the environmentally responsive insulin signaling pathway contributes to sexual dimorphism of gene expression, we examined the effect of perturbation of the pathway on gene expression in male and female Drosophila heads. Results Our data reveal a large effect of insulin signaling on gene expression, with greater than 50% of genes examined changing expression. Males and females have a shared gene expression response to knock-down of InR function, with significant enrichment for pathways involved in metabolism. Perturbation of insulin signaling has a greater impact on gene expression in males, with more genes changing expression and with gene expression differences of larger magnitude. Primarily as a consequence of the response in males, we find that reduced insulin signaling results in a striking increase in sex-differential expression. This includes sex-differences in expression of immune, defense and stress response genes, genes involved in modulating reproductive behavior, genes linking insulin signaling and ageing, and in the insulin signaling pathway itself. Conclusions Our results demonstrate that perturbation of insulin signaling results in thousands of genes displaying sex differences in expression that are not differentially expressed in control conditions. Thus, insulin signaling may play a role in variability of somatic, sex-differential expression. The finding that perturbation of the IIS/TOR pathway results in an altered landscape of sex-differential expression suggests a role of insulin signaling in the physiological underpinnings of trade-offs, sexual conflict and sex differences in expression variability. Electronic supplementary material The online version of this article (10.1186/s12864-018-5308-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita M Graze
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences building, Auburn, AL, 36849-5407, USA.
| | - Ruei-Ying Tzeng
- Biomedical Sciences Department, Florida State University, College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Tiffany S Howard
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences building, Auburn, AL, 36849-5407, USA
| | - Michelle N Arbeitman
- Biomedical Sciences Department, Florida State University, College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
39
|
Response of Tribolium castaneum to dietary mannitol, with remarks on its possible nutritive effects. PLoS One 2018; 13:e0207497. [PMID: 30427916 PMCID: PMC6235386 DOI: 10.1371/journal.pone.0207497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Mannitol, one of the sugar alcohols, is often used as a low-calorific carbohydrate by animals. In some insects, mannitol acts as a cryoprotectant to endure coldness, but also become a poisonous agent. Adults of the red flour beetle Tribolium castaneum were shown to recognize mannitol as a factor stimulating their feeding behavior, but it remains unclear whether T. castaneum can utilize mannitol as a source of nutrition, because the enzymes needed to metabolize mannitol are unknown in this species. This study shows that T. castaneum utilizes mannitol as a nutrient in a dietary assay based on a sole carbon source added to artificial gypsum diet. The amount of mannitol excreted was less than that ingested, suggesting that it is absorbed in the insect body. The hemolymph of T. castaneum contained no mannitol but contained trehalose, a known blood sugar in insects, even after being fed mannitol. This study also revealed that dietary mannitol was metabolized to triglyceride, the main component of the fat body, forming lipid droplets. It was found that metabolites of a mannitol-supplemented diet extend the lifespan of T. castaneum, compared with those obtained by metabolizing a mannitol-free diet. Given that the insects presented transcriptional changes upon being fed carbohydrates, it might be possible to identify specific genes related to mannitol-specific metabolism by their upregulation upon mannitol intake in T. castaneum. The present study investigated mannitol-responsive gene expression using RNA-Seq. Twenty-eight genes, including those encoding trehalose-6-phosphate synthase and fatty acid synthase, were differentially expressed between beetles that were fed or not fed mannitol. The identification of upregulated genes provides us with important insights into the molecular events following mannitol intake.
Collapse
|
40
|
Pei J, Kinch LN, Grishin NV. FlyXCDB—A Resource for Drosophila Cell Surface and Secreted Proteins and Their Extracellular Domains. J Mol Biol 2018; 430:3353-3411. [DOI: 10.1016/j.jmb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
|
41
|
Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics 2018; 207:1231-1253. [PMID: 29203701 DOI: 10.1534/genetics.117.199885] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate metabolism is essential for cellular energy balance as well as for the biosynthesis of new cellular building blocks. As animal nutrient intake displays temporal fluctuations and each cell type within the animal possesses specific metabolic needs, elaborate regulatory systems are needed to coordinate carbohydrate metabolism in time and space. Carbohydrate metabolism is regulated locally through gene regulatory networks and signaling pathways, which receive inputs from nutrient sensors as well as other pathways, such as developmental signals. Superimposed on cell-intrinsic control, hormonal signaling mediates intertissue information to maintain organismal homeostasis. Misregulation of carbohydrate metabolism is causative for many human diseases, such as diabetes and cancer. Recent work in Drosophila melanogaster has uncovered new regulators of carbohydrate metabolism and introduced novel physiological roles for previously known pathways. Moreover, genetically tractable Drosophila models to study carbohydrate metabolism-related human diseases have provided new insight into the mechanisms of pathogenesis. Due to the high degree of conservation of relevant regulatory pathways, as well as vast possibilities for the analysis of gene-nutrient interactions and tissue-specific gene function, Drosophila is emerging as an important model system for research on carbohydrate metabolism.
Collapse
|
42
|
The impact of genome variation and diet on the metabolic phenotype and microbiome composition of Drosophila melanogaster. Sci Rep 2018; 8:6215. [PMID: 29670218 PMCID: PMC5906449 DOI: 10.1038/s41598-018-24542-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
The metabolic phenotype of an organism depends on a complex regulatory network, which integrates the plethora of intrinsic and external information and prioritizes the flow of nutrients accordingly. Given the rise of metabolic disorders including obesity, a detailed understanding of this regulatory network is in urgent need. Yet, our level of understanding is far from completeness and complicated by the discovery of additional layers in metabolic regulation, such as the impact of the microbial community present in the gut on the hosts’ energy storage levels. Here, we investigate the interplay between genome variation, diet and the gut microbiome in the shaping of a metabolic phenotype. For this purpose, we reared a set of fully sequenced wild type Drosophila melanogaster flies under basal and nutritionally challenged conditions and performed metabolic and microbiome profiling experiments. Our results introduce the fly as a model system to investigate the impact of genome variation on the metabolic response to diet alterations and reveal candidate single nucleotide polymorphisms associated with different metabolic traits, as well as metabolite-metabolite and metabolite-microbe correlations. Intriguingly, the dietary changes affected the microbiome composition less than anticipated. These results challenge the current view of a rapidly changing microbiome in response to environmental fluctuations.
Collapse
|
43
|
Tang B, Wang S, Wang SG, Wang HJ, Zhang JY, Cui SY. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications. Front Physiol 2018; 9:30. [PMID: 29445344 PMCID: PMC5797772 DOI: 10.3389/fphys.2018.00030] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/09/2018] [Indexed: 11/15/2022] Open
Abstract
The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Su Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Juan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jia-Yong Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, College of Life Science and Chemistry, Zhejiang Normal University, Jinhua, China
| | - Shuai-Ying Cui
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
44
|
Yamada T, Habara O, Kubo H, Nishimura T. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development 2018; 145:dev.158865. [DOI: 10.1242/dev.158865] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/09/2018] [Indexed: 12/26/2022]
Abstract
Adapting to changes in food availability is a central challenge for survival. Glucose is an important resource for energy production, and therefore, many organisms synthesize and retain sugar storage molecules. In insects, glucose is stored in two different forms: the disaccharide trehalose and the branched polymer glycogen. Glycogen is synthesized and stored in several tissues, including in muscle and the fat body. Despite the important role of the fat body as a center for energy metabolism, the importance of its glycogen content remains unclear. Here, we show that glycogen metabolism is regulated in a tissue-specific manner under starvation conditions in the fruit fly Drosophila. The mobilization of fat body glycogen in larvae is independent of adipokinetic hormone (Akh, the glucagon homolog) but is regulated by sugar availability in a tissue-autonomous manner. Fat body glycogen plays a critical role in the maintenance of circulating sugars, including trehalose, under fasting conditions. These results demonstrate the importance of fat body glycogen as a metabolic safeguard in Drosophila.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hitomi Kubo
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
45
|
Transcriptional profiles of plasticity for desiccation stress in Drosophila. Comp Biochem Physiol B Biochem Mol Biol 2017; 216:1-9. [PMID: 29128643 DOI: 10.1016/j.cbpb.2017.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 11/23/2022]
Abstract
We examined the transcriptional responses of desiccation resistance candidate genes in populations of Drosophila melanogaster divergent for desiccation resistance and in capacity to improve resistance via phenotypic plasticity. Adult females from temperate and tropical eastern Australian populations were exposed to a rapid desiccation hardening (RDH) treatment, and groups without RDH to acute desiccation stress, and the transcript expression of 12 candidate desiccation genes were temporally profiled during, and in recovery from stress. We found that desiccation exposure resulted in largely transitory, stress-specific transcriptional changes in all but one gene. However linking the expression profiles to the population-level phenotypic divergence was difficult given subtle, and time-point specific population expression variation. Nonetheless, rapid desiccation hardening had the largest effect on gene expression, resulting in distinct molecular profiles. We report a hitherto uncharacterised desiccation molecular hardening response where prior exposure essentially 'primes' genes to respond to subsequent stress without discernible transcript changes prior to stress. This, taken together with some population gene expression variation of several bona fide desiccation candidates associated with different water balance strategies speaks of the complexity of natural desiccation resistance and plasticity and provides new avenues for understanding the molecular basis of a trait of ecological significance.
Collapse
|
46
|
Hibshman JD, Doan AE, Moore BT, Kaplan RE, Hung A, Webster AK, Bhatt DP, Chitrakar R, Hirschey MD, Baugh LR. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival. eLife 2017; 6. [PMID: 29063832 PMCID: PMC5655125 DOI: 10.7554/elife.30057] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
daf-16/FoxO is required to survive starvation in Caenorhabditis elegans, but how daf-16IFoxO promotes starvation resistance is unclear. We show that daf-16/FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant but also serves as a glycolytic input. Furthermore, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16/FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant. Most animals rarely have access to a constant supply of food, and so have evolved ways to cope with times of plenty and times of shortage. Insulin is a hormone that travels throughout the body to signal when an animal is well fed. Insulin signaling inhibits the activity of a protein called FoxO, which otherwise switches on and off hundreds of genes to control the starvation response. The roundworm, Caenorhabditis elegans, has been well studied in the laboratory, and often has to cope with starvation in the wild. These worms can pause their development if no food is available, or divert to a different developmental path if they anticipate that food will be short in future. As with more complex animals, the worm responds to starvation by reducing insulin-like signaling, which in turn activates a FoxO protein called daf-16. When the worms stop feeding, daf-16 is switched on, which is crucial for survival. It was known how daf-16 stops the roundworm’s development, but it was not known how it helps the worms to survive starvation. Now, Hibshman et al. have compared normal roundworm larvae to larvae that are missing the gene for daf-16 to determine how this protein influences the roundworm’s ability to survive starvation. The worms were examined with and without food, to look for which genes were switched on and off by daf-16 during starvation. This revealed that daf-16 controls metabolism, activating a metabolic shortcut that makes the worms produce glucose and begin turning it into another type of sugar, called trehalose. This sugar usually promotes survival in conditions where water is limiting, like dehydration and high salt, but it can also be broken down to release energy. The levels of trehalose in the worms rose within hours of the onset of starvation. To confirm the importance of trehalose in surviving starvation, roundworms with mutations in genes involved in glucose or trehalose production were examined, as was the effect of giving starving worms glucose or trehalose. Disrupting the production of sugars caused the worms to die sooner of starvation, while supplementing with sugar had the opposite effect meaning the worms survived for longer. Taken together, these findings reveal that daf-16 protects against starvation by shifting metabolism towards the production of trehalose. This helps worms to survive by both protecting them from stress and providing them with a source of energy. These findings not only extend the current understanding of how animals respond to starvation, but could also lead to improved understanding of diseases where this response goes wrong, including diabetes and obesity.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Department of Biology, Duke University, Durham, United States.,University Program in Genetics and Genomics, Duke University, Durham, United States
| | | | - Brad T Moore
- Department of Biology, Duke University, Durham, United States
| | - Rebecca Ew Kaplan
- Department of Biology, Duke University, Durham, United States.,University Program in Genetics and Genomics, Duke University, Durham, United States
| | - Anthony Hung
- Department of Biology, Duke University, Durham, United States
| | - Amy K Webster
- Department of Biology, Duke University, Durham, United States.,University Program in Genetics and Genomics, Duke University, Durham, United States
| | - Dhaval P Bhatt
- Duke Molecular Physiology Institute, Duke University, Durham, United States
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, United States
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute, Duke University, Durham, United States.,Department of Medicine, Duke University, Durham, United States.,Department of Pharmacology & Cancer Biology, Duke University, Durham, United States
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, United States.,University Program in Genetics and Genomics, Duke University, Durham, United States
| |
Collapse
|
47
|
Rittschof CC, Schirmeier S. Insect models of central nervous system energy metabolism and its links to behavior. Glia 2017; 66:1160-1175. [DOI: 10.1002/glia.23235] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Clare C. Rittschof
- Department of Entomology; College of Agriculture, Food, and the Environment, University of Kentucky; Lexington Kentucky
| | - Stefanie Schirmeier
- Institut für Neuro-und Verhaltensbiologie, University of Münster; Münster Germany
| |
Collapse
|
48
|
Yasugi T, Yamada T, Nishimura T. Adaptation to dietary conditions by trehalose metabolism in Drosophila. Sci Rep 2017; 7:1619. [PMID: 28487555 PMCID: PMC5431645 DOI: 10.1038/s41598-017-01754-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 02/05/2023] Open
Abstract
Trehalose is a non-reducing disaccharide that serves as the main sugar component of haemolymph in insects. Trehalose hydrolysis enzyme, called trehalase, is highly conserved from bacteria to humans. However, our understanding of the physiological role of trehalase remains incomplete. Here, we analyze the phenotypes of several Trehalase (Treh) loss-of-function alleles in a comparative manner in Drosophila. The previously reported mutant phenotype of Treh affecting neuroepithelial stem cell maintenance and differentiation in the optic lobe is caused by second-site alleles in addition to Treh. We further report that the survival rate of Treh null mutants is significantly influenced by dietary conditions. Treh mutant larvae are lethal not only on a low-sugar diet but also under low-protein diet conditions. A reduction in adaptation ability under poor food conditions in Treh mutants is mainly caused by the overaccumulation of trehalose rather than the loss of Treh, because the additional loss of Tps1 mitigates the lethal effect of Treh mutants. These results demonstrate that proper trehalose metabolism plays a critical role in adaptation under various environmental conditions.
Collapse
Affiliation(s)
- Tetsuo Yasugi
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.,Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|