1
|
Song Z, Feng Z, Wang X, Li J, Zhang D. NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications. Cell Biol Toxicol 2025; 41:29. [PMID: 39797972 PMCID: PMC11724797 DOI: 10.1007/s10565-024-09974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity. The study reveals the intricate connections between NFKB1 and tumors, highlighting its significant roles in invasion, metastasis, genomic stability, and metabolic changes. Through meta-analysis, it is evidenced that tumor specimens exhibit increased NFKB1 expression when compared to non-tumor specimens, although its association with cancer incidence requires further investigation. Analysis from the Gene Expression Omnibus (GEO) database suggests that high NFKB1 gene expression may not markedly impact tumor patient prognosis. The noticeable correlation between the NFKB1-94 ATTG promoter polymorphic sequence and elevated cancer susceptibility is highlighted across different genetic models. Furthermore, bioinformatics analysis uncovers NFKB1's association with the sensitivity to various anticancer drugs and its central involvement in crucial BP like the cell cycle, cytoskeleton assembly, and cellular senescence. Overall, NFKB1's expression and polymorphisms are significantly linked to tumor risk, prognosis, and treatment response, highlighting its prospect as a forthcoming aim for cancer treatment. This study offers a robust foundation for further exploration of NFKB1's mechanisms and the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Zixuan Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China
| | - Zheng Feng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoxue Wang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
| |
Collapse
|
2
|
Rashwan E, Ibrahim N, Salem ML. Evaluation of NFKB1 and MyD88 expression levels in a sample of non-Hodgkin lymphoma patients before and during chemotherapy. EGYPTIAN JOURNAL OF BASIC AND APPLIED SCIENCES 2024; 11:386-401. [DOI: 10.1080/2314808x.2024.2347129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 12/03/2024]
Affiliation(s)
- Eman Rashwan
- Department of Zoology, Faculty of Science, Zigzag University, Zigzag, Egypt
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Nagi Ibrahim
- Department of Zoology, Faculty of Science, Zigzag University, Zigzag, Egypt
| | - Mohamed Labib Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Sheng Y, Mills G, Zhao X. Identifying therapeutic strategies for triple-negative breast cancer via phosphoproteomics. Expert Rev Proteomics 2024:1-17. [PMID: 39588933 DOI: 10.1080/14789450.2024.2432477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Given the poor prognosis of patients with TNBC, it is urgent to identify new biomarkers and therapeutic targets to enable personalized treatment strategies and improve patient survival. Comprehensive insights beyond genomic and transcriptomic analysis are crucial to improved outcomes for patients. As proteins are the workhorses of cellular function with their activity primarily regulated by phosphorylation, advanced phosphoproteomics techniques, such as mass spectrometry and antibody arrays, are essential for elucidating kinase signaling pathways that drive TNBC progression and contribute to therapy resistance. AREA COVERED This review discusses the critical need to integrate phosphoproteomics into TNBC research, evaluates commonly used technologies and their applications, and explores their advantages and limitations. We highlight significant findings from phosphoproteomic analyses in TNBC and address the challenges of implementing these technologies into clinical practice. EXPERT OPINION Rapid advances in phosphoproteomics analysis facilitate subtype stratification, adaptive response monitoring, and identification of biomarkers and therapeutic targets in TNBC. However, challenges in analyzing protein phosphorylation, especially in deep spatially resolved analysis of malignant cells and the tumor ecosystem, hinder the translation of phosphoproteomics to the CLIA setting. Nonetheless, phosphoproteomics offers a powerful tool that, when integrated into routine clinical practice, has the potential to revolutionize patient care.
Collapse
Affiliation(s)
- Yuhan Sheng
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gordon Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Xuejiao Zhao
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother 2023; 163:114822. [PMID: 37146418 DOI: 10.1016/j.biopha.2023.114822] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India
| | - Ju Yong Sung
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health care informatics, Sacred Heart University, 5151Park Avenue, Fair fields, CT06825, USA
| | - Rino Choi
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
5
|
Zhang Z, Wang S, Liu X, Yang Y, Zhang Y, Li B, Guo F, Liang J, Hong X, Guo R, Zhang B. Secoisolariciresinol diglucoside Ameliorates Osteoarthritis via Nuclear factor-erythroid 2-related factor-2/ nuclear factor kappa B Pathway: In vitro and in vivo experiments. Biomed Pharmacother 2023; 164:114964. [PMID: 37269815 DOI: 10.1016/j.biopha.2023.114964] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
Osteoarthritis (OA) is an age-related joint disease in which inflammation and extracellular matrix (ECM) degradation play a crucial role in the destruction of articular cartilage. Secoisolariciresinol diglucoside (SDG), the main lignan in wholegrain flaxseed, which has been reported to remarkably suppress inflammation and oxidative stress, may have potential therapeutic value in OA. In this study, the effect and mechanism of SDG against cartilage degeneration were verified in the destabilization of the medial meniscus (DMM) and collagen-induced (CIA) arthritis models and interleukin-1β (IL-1β)-stimulated osteoarthritis chondrocyte models. From our experiments, SDG treatment downregulated the expression of pro-inflammatory factors induced by IL-1β in vitro, including inducible nitric oxide synthase (INOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF-α), and interleukin 6 (IL-6). Additionally, SDG promoted the expression of collagen II (COL2A1) and SRY-related high-mobility-group-box gene 9(SOX9), while suppressing the expression of a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS5) and matrix metalloproteinases 13(MMP13), which leads to catabolism. Consistently, in vivo, SDG has been identified to have chondroprotective effects in DMM-induced and collagen-induced arthritis models. Mechanistically, SDG exerted its anti-inflammation and anti-ECM degradation effects by activating the Nrf2/HO-1 pathway and inhibiting the nuclear factor kappa B (NF-κB) pathway. In conclusion, SDG ameliorates the progression of OA via the Nrf2/NF-κB pathway, which indicates that SDG may have therapeutic potential for OA.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Song Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Yuxin Yang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Yiqin Zhang
- Huankui academy, Nanchang University, Nanchang 330006, China
| | - Bo Li
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Fengfen Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Jianhui Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Xin Hong
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China
| | - Runsheng Guo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| | - Bin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
6
|
Wen T, Geng M, Bai E, Wang X, Miao H, Chen Z, Zhou H, Wang J, Shi J, Zhang Y, Lei M, Zhu Y. KPT-330 and Y219 exert a synergistic antitumor effect in triple-negative breast cancer through inhibiting NF-κB signaling. FEBS Open Bio 2023; 13:751-762. [PMID: 36847599 PMCID: PMC10068319 DOI: 10.1002/2211-5463.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, which has poor prognosis due to the lack of effective targeted drugs. KPT-330, an inhibitor of the nuclear export protein CRM-1, has been widely used in clinical medicine. Y219, a novel proteasome inhibitor designed by our group, shows superior efficacy, reduced toxicity, and reduced off-target effects as compared to the proteasome inhibitor bortezomib. In this study, we investigated the synergistic effect of KPT-330 and Y219 against TNBC cells, as well as the underlying mechanisms. We report that combination treatment with KPT-330 and Y219 synergistically inhibited the viability of TNBC cells in vitro and in vivo. Further analysis revealed that the combined use of KPT-330 and Y219 induced G2-M phase arrest and apoptosis in TNBC cells, and attenuated nuclear factor kappa B (NF-κB) signaling by facilitating nuclear localization of IκB-α. Collectively, these results suggest that the combined use of KPT-330 and Y219 may be an effective therapeutic strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Tiantian Wen
- College of Life Science, Nanjing Normal University, China
| | - Mengzhu Geng
- College of Life Science, Nanjing Normal University, China
| | - Enhe Bai
- College of Life Science, Nanjing Normal University, China
| | - Xueyuan Wang
- College of Life Science, Nanjing Normal University, China
| | - Hang Miao
- College of Science, Nanjing Forestry University, China
| | - Zhimeng Chen
- College of Science, Nanjing Forestry University, China
| | - Hui Zhou
- College of Life Science, Nanjing Normal University, China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Jingmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
| | - Yin Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| | - Meng Lei
- College of Science, Nanjing Forestry University, China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, China
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd., Nanjing, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, China
| |
Collapse
|
7
|
Mussa A, Afolabi HA, Syed NH, Talib M, Murtadha AH, Hajissa K, Mokhtar NF, Mohamud R, Hassan R. The NF-κB Transcriptional Network Is a High-Dose Vitamin C-Targetable Vulnerability in Breast Cancer. Biomedicines 2023; 11:biomedicines11041060. [PMID: 37189677 DOI: 10.3390/biomedicines11041060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Breast cancer (BC) is the most common cancer type among women with a distinct clinical presentation, but the survival rate remains moderate despite advances in multimodal therapy. Consequently, a deeper understanding of the molecular etiology is required for the development of more effective treatments for BC. The relationship between inflammation and tumorigenesis is well established, and the activation of the pro-inflammatory transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is frequently identified in BC. Constitutive NF-κB activation is linked to cell survival, metastasis, proliferation, and hormonal, chemo-, and radiotherapy resistance. Moreover, the crosstalk between NF-κB and other transcription factors is well documented. It is reported that vitamin C plays a key role in preventing and treating a number of pathological conditions, including cancer, when administered at remarkably high doses. Indeed, vitamin C can regulate the activation of NF-κB by inhibiting specific NF-κB-dependent genes and multiple stimuli. In this review, we examine the various NF-κB impacts on BC development. We also provide some insight into how the NF-κB network may be targeted as a potential vulnerability by using natural pro-oxidant therapies such as vitamin C.
Collapse
|
8
|
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
A combination of novel NSC small molecule inhibitor along with doxorubicin inhibits proliferation of triple-negative breast cancer through metabolic reprogramming. Oncogene 2022; 41:5076-5091. [PMID: 36243802 DOI: 10.1038/s41388-022-02497-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Treatment of patients with triple-negative breast cancer (TNBC) has been challenging due to the absence of well-defined molecular targets and the highly invasive and proliferative nature of TNBC cells. Current treatments against TNBC have shown little promise due to high recurrence rate in patients. Consequently, there is a pressing need for novel and efficacious therapies against TNBC. Here, we report the discovery of a novel small molecule inhibitor (NSC33353) with potent anti-tumor activity against TNBC cells. The anti-proliferative effects of this small molecule inhibitor were determined using 2D and 3D cell proliferation assays. We found that NSC33353 significantly reduces the proliferation of TNBC cells in these assays. Using proteomics, next generation sequencing (NGS), and gene enrichment analysis, we investigated global regulatory pathways affected by this compound in TNBC cells. Proteomics data indicate a significant metabolic reprograming affecting both glycolytic enzymes and energy generation through oxidative phosphorylation. Subsequently, using metabolic (Seahorse) and enzymatic assays, we validated our proteomics and NGS analysis findings. Finally, we showed the inhibitory and anti-tumor effects of this small molecule in vitro and confirmed its inhibitory activity in vivo. Doxorubicin is one of the most effective agents in the treatment of TNBC and resistance to this drug has been a major problem. We show that the combination of NSC33353 and doxorubicin suppresses the growth of TNBC cells synergistically, suggesting that NSC33353 enhances TNBC sensitivity to doxorubicin. In summary, our data indicate that the small molecule inhibitor, NSC33353, exhibits anti-tumor activity in TNBC cells, and works in a synergistic fashion with a well-known chemotherapeutic agent.
Collapse
|
10
|
de Freitas KS, da Silva LHD, Squarisi IS, de Souza Oliveira LT, Ribeiro AB, Alves BS, Esperandim TR, de Melo MRS, Ozelin SD, Lemes DC, Bastos JK, Veneziani RCS, Tavares DC. Red propolis exhibits chemopreventive effect associated with antiproliferative and anti-inflammatory activities. Toxicol Res (Camb) 2022; 11:750-757. [PMID: 36337250 PMCID: PMC9618114 DOI: 10.1093/toxres/tfac049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 08/25/2023] Open
Abstract
INTRODUCTION Red propolis is synthetized from exudates of Dalbergia ecastophyllum (L) Taub. and Symphonia globulifera L.f., presents isoflavones, guttiferone E, xanthochymol, and oblongifolin B and has anti-inflammatory, antioxidant, and antiproliferative activities. OBJECTIVES This study aimed to evaluate the antigenotoxic and anticarcinogenic potential of red propolis hydroalcoholic extract (RPHE) in rodents. METHODS The influence of RPHE in doxorubicin (DXR)-induced genotoxicity was investigated through the micronucleus test in Swiss mice. Blood samples were also collected to investigate oxidative stress, hepatotoxicity, and nephrotoxicity. Was investigated the influence of RPHE in 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci, as well as its influence in proliferating cell nuclear antigen (PCNA) and the cyclooxygenase-2 (COX-2) expression in colon of rats, by immunohistochemistry. RESULTS The results showed that RPHE (48 mg/kg) reduced DXR-induced genotoxicity. Animals treated with DXR showed significantly lower GSH serum levels in comparison to the negative control. RPHE treatments did not attenuated significantly the DXR-induced GSH depletion. No difference was observed in cytotoxicity parameters of mice hematopoietic tissues between the treatment groups, as well as the biochemical parameters of hepatotoxicity and nephrotoxicity. RPHE (12 mg/kg) reduced the DMH-induced carcinogenicity and toxicity, as well as DMH-induced PCNA and COX-2 expression in colon tissue. CONCLUSION Therefore, was observed that the RPHE has chemopreventive effect, associated to antiproliferative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Karoline Soares de Freitas
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Lucas Henrique Domingos da Silva
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Iara Silva Squarisi
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Lucas Teixeira de Souza Oliveira
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Arthur Barcelos Ribeiro
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Bianca Silva Alves
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Tábata Rodrigues Esperandim
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Matheus Reis Santos de Melo
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Saulo Duarte Ozelin
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Danieli Cristina Lemes
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café Ave, Vila Monte Alegre, Ribeirão Preto, São Paulo 14040-900, Brazil
| | - Rodrigo Cassio Sola Veneziani
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Denise Crispim Tavares
- Mutagenesis Laboratory, University of Franca, 201 Dr Armando Salles de Oliveira Ave, Parque Universitário, Franca, São Paulo 14404-600, Brazil
| |
Collapse
|
11
|
Meng Z, Yang W, Zhu L, Liu W, Wang Y. A novel necroptosis-related LncRNA signature for prediction of prognosis and therapeutic responses of head and neck squamous cell carcinoma. Front Pharmacol 2022; 13:963072. [PMID: 36016575 PMCID: PMC9395581 DOI: 10.3389/fphar.2022.963072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play an essential role in the occurrence and prognosis of tumors, and it has great potential as biomarkers of tumors. However, the roles of Necroptosis-related lncRNA (NRLs) in Head and neck squamous cell carcinoma (HNSCC) remain elusive. Methods: We comprehensively analyzed the gene expression and clinical information of 964 HNSCC in four cohorts. LASSO regression was utilized to construct a necroptosis-related lncRNA prognosis signature (NLPS). We used univariate and multivariate regression to assess the independent prognostic value of NLPS. Based on the optimal cut-off, patients were divided into high- and low-risk groups. In addition, the immune profile, multi-omics alteration, and pharmacological landscape of NLPS were further revealed. Results: A total of 21 NRLs associated with survival were identified by univariate regression in four cohorts. We constructed and validated a best prognostic model (NLPS). Compared to the low-risk group, patients in the high group demonstrated a more dismal prognosis. After adjusting for clinical features by multivariate analysis, NLPS still displayed independent prognostic value. Additionally, further analysis found that patients in the low-risk group showed more abundant immune cell infiltration and immunotherapy response. In contrast, patients in the high-risk group were more sensitive to multiple chemotherapeutic agents. Conclusion: As a promising tool, the establishment of NLPS provides guidance and assistance in the clinical management and personalized treatment of HNSCC.
Collapse
Affiliation(s)
| | | | | | | | - Yudong Wang
- Department of Maxillofacial Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
12
|
Dimethyl Fumarate Induces Apoptosis via Inhibition of NF-κB and Enhances the Effect of Paclitaxel and Adriamycin in Human TNBC Cells. Int J Mol Sci 2022; 23:ijms23158681. [PMID: 35955813 PMCID: PMC9369077 DOI: 10.3390/ijms23158681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) has the poorest prognosis of all breast cancer subtypes. Recently, the activation of NF-κB, which is involved in the growth and survival of malignant tumors, has been demonstrated in TNBC, suggesting that NF-κB may serve as a new therapeutic target. In the present study, we examined whether dimethyl fumarate (DMF), an NF-κB inhibitor, induces apoptosis in TNBC cells and enhances the apoptosis-inducing effect of paclitaxel and adriamycin. Cell survival was analyzed by the trypan blue assay and apoptosis assay. Protein detection was examined by immunoblotting. The activation of NF-κB p65 was correlated with poor prognosis in patients with TNBC. DMF induced apoptosis in MDA-MB-231 and BT-549 cells at concentrations that were non-cytotoxic to the normal mammary cell line MCF-10A. Furthermore, DMF inhibited NF-κB nuclear translocation and Survivin, XIAP, Bcl-xL, and Bcl-2 expression in MDA-MB-231 and BT-549 cells. Moreover, DMF enhanced the apoptosis-inducing effect of paclitaxel and adriamycin in MDA-MB-231 cells. These findings suggest that DMF may be an effective therapeutic agent for the treatment of TNBC, in which NF-κB is constitutively active. DMF may also be useful as an adjuvant therapy to conventional anticancer drugs.
Collapse
|
13
|
Salman G, Aldujaily E, Jabardi M, Qassid OL. Investigating the clinical significance of EGFR expression using machine learning in a series of Iraqi patients with triple-negative breast cancer. J Med Life 2022; 15:967-978. [PMID: 36188649 PMCID: PMC9514808 DOI: 10.25122/jml-2021-0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/14/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a heterogeneous disease with a distinct profile of the expression of each tumor. Triple-negative breast cancer (TNBC) is a molecular subtype of breast cancer characterized by an aggressive clinical behavior linked to loss or reduced expression of estrogen, progesterone, and Her2/neu receptors. The study's main objective was to investigate the clinical significance of epidermal growth factor receptor (EGFR) overexpression in a series of Iraqi patients with TNBC. The sectional analytic study involved immunohistochemical analysis of EGFR expression in randomly selected 53 formalin fixed paraffin embedded tissue blocks of TNBC cases out of 127 Iraqi patients with TNBC and correlated expression data with clinicopathological parameters including survival time. Machine learning (statistical tests and principal component analysis (PCA)) was used to predict the outcome of the patients using EGFR expression data together with clinicopathological parameters. EGFR was expressed in approximately 28% of TNBC cases. We estimated the risk of mortality and distant metastasis based on EGFR expression and clinicopathologic factors using the principal component analysis (PCA) model. We found a substantial positive correlation between clinical stage and distant metastasis, clinical stage and death, death and distant metastasis, and death and positive EGFR expression. Overall, EGFR expression was linked to a poor prognosis and increased mortality. A higher risk of distant metastasis and death was associated with an advanced clinical stage of the tumor. Furthermore, the existence of distant metastases increased the risk of death. These findings raise the possibility of using EGFR expression data with other clinicopathological parameters to predict the outcome of patients with TNBC.
Collapse
Affiliation(s)
- Gufran Salman
- Department of Basic Science, Faculty of Dentistry, University of Kufa, Kufa, Iraq
| | - Esraa Aldujaily
- Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa, Kufa, Iraq,Corresponding Author: Esraa Aldujaily, Department of Pathology and Forensic Medicine, Faculty of Medicine, University of Kufa, Kufa, Iraq. E-mail:
| | - Mohammed Jabardi
- Department of Computer Science, College of Education, University of Kufa, Kufa, Iraq
| | - Omar Layth Qassid
- Cancer Research Center, University of Leicester, Leicester City, United Kingdom
| |
Collapse
|
14
|
Walter LO, Maioral MF, Silva LO, Speer DB, Campbell SC, Gallimore W, Falkenberg MB, Santos-Silva MC. Involvement of the NF-κB and PI3K/Akt/mTOR pathways in cell death triggered by stypoldione, an o-quinone isolated from the brown algae Stypopodium zonale. ENVIRONMENTAL TOXICOLOGY 2022; 37:1297-1309. [PMID: 35128807 DOI: 10.1002/tox.23484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that remains incurable to date. Thus, the aims of this study were to evaluate the involvement of the NF-κB and PI3K/Akt/mTOR pathways in the cytotoxicity of stypoldione, an o-quinone isolated from the brown algae Stypopodium zonale, in MM cells (MM1.S). The cytotoxic effect was evaluated in MM1.S cells and peripheral blood mononuclear cells (PBMCs) by MTT assay. The stypoldione reduced the cell viability of MM1.S cells in a concentration and time-dependent manner (IC50 in MM.1S from 2.55 to 5.38 μM). However, it was also cytotoxic to PBMCs, but at a lower range. Additionally, no significant hemolysis was observed even at concentration up to 10 times the IC50 . Apoptotic cell death was confirmed by cell morphology and Annexin V-FITC assay. Stypoldione induced intrinsic and extrinsic apoptosis by increasing FasR expression and reactive oxygen species (ROS) production, inverting the Bax/Bcl-2 ratio, and inducing ΔΨm loss, which resulted in AIF release and caspase-3 activation. It also increased Ki-67 and survivin expression and inhibited the NF-κB and PI3K/Akt/mTOR pathways. These results suggest that stypoldione is a good candidate for the development of new drugs for MM treatment.
Collapse
Affiliation(s)
- Laura O Walter
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mariana F Maioral
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lisandra O Silva
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Douglas B Speer
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Sanjay C Campbell
- Department of Chemistry, University of the West Indies, St. Andrew, Jamaica
| | - Winklet Gallimore
- Department of Chemistry, University of the West Indies, St. Andrew, Jamaica
| | - Miriam B Falkenberg
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Maria Cláudia Santos-Silva
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
15
|
Aspros KGM, Carter JM, Hoskin TL, Suman VJ, Subramaniam M, Emch MJ, Ye Z, Sun Z, Sinnwell JP, Thompson KJ, Tang X, Rodman EPB, Wang X, Nelson AW, Chernukhin I, Hamdan FH, Bruinsma ES, Carroll JS, Fernandez-Zapico ME, Johnsen SA, Kalari KR, Huang H, Leon-Ferre RA, Couch FJ, Ingle JN, Goetz MP, Hawse JR. Estrogen receptor beta repurposes EZH2 to suppress oncogenic NFκB/p65 signaling in triple negative breast cancer. NPJ Breast Cancer 2022; 8:20. [PMID: 35177654 PMCID: PMC8854734 DOI: 10.1038/s41523-022-00387-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022] Open
Abstract
Triple Negative Breast Cancer (TNBC) accounts for 15-20% of all breast cancer cases, yet is responsible for a disproportionately high percentage of breast cancer mortalities. Thus, there is an urgent need to identify novel biomarkers and therapeutic targets based on the molecular events driving TNBC pathobiology. Estrogen receptor beta (ERβ) is known to elicit anti-cancer effects in TNBC, however its mechanisms of action remain elusive. Here, we report the expression profiles of ERβ and its association with clinicopathological features and patient outcomes in the largest cohort of TNBC to date. In this cohort, ERβ was expressed in approximately 18% of TNBCs, and expression of ERβ was associated with favorable clinicopathological features, but correlated with different overall survival outcomes according to menopausal status. Mechanistically, ERβ formed a co-repressor complex involving enhancer of zeste homologue 2/polycomb repressive complex 2 (EZH2/PRC2) that functioned to suppress oncogenic NFκB/RELA (p65) activity. Importantly, p65 was shown to be required for formation of this complex and for ERβ-mediated suppression of TNBC. Our findings indicate that ERβ+ tumors exhibit different characteristics compared to ERβ- tumors and demonstrate that ERβ functions as a molecular switch for EZH2, repurposing it for tumor suppressive activities and repression of oncogenic p65 signaling.
Collapse
Affiliation(s)
- Kirsten G M Aspros
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vera J Suman
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Malayannan Subramaniam
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michael J Emch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenqing Ye
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhifu Sun
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason P Sinnwell
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin J Thompson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiaojia Tang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Esther P B Rodman
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xiyin Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adam W Nelson
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Igor Chernukhin
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Feda H Hamdan
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jason S Carroll
- Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Martin E Fernandez-Zapico
- Shulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven A Johnsen
- Gene Regulatory Mechanisms and Molecular Epigenetics Lab, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Urology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Fergus J Couch
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew P Goetz
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
16
|
Curcumin as an Enhancer of Therapeutic Efficiency of Chemotherapy Drugs in Breast Cancer. Int J Mol Sci 2022; 23:ijms23042144. [PMID: 35216255 PMCID: PMC8878285 DOI: 10.3390/ijms23042144] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022] Open
Abstract
Female breast cancer is the world’s most prevalent cancer in 2020. Chemotherapy still remains a backbone in breast cancer therapy and is crucial in advanced and metastatic breast cancer treatment. The clinical efficiency of chemotherapy regimens is limited due to tumor heterogeneity, chemoresistance, and side effects. Chemotherapeutic drug combinations with natural products hold great promise for enhancing their anticancer efficacy. Curcumin is an ideal chemopreventive and chemotherapy agent owning to its multitargeting function on various regulatory molecules, key signaling pathways, and pharmacological safety. This review aimed to elucidate the potential role of curcumin in enhancing the efficacy of doxorubicin, paclitaxel, 5-fluorouracil, and cisplatin via combinational therapy. Additionally, the molecular mechanisms underlying the chemosensitizing activity of these combinations have been addressed. Overall, based on the promising therapeutic potential of curcumin in combination with conventional chemotherapy drugs, curcumin is of considerable value to develop as an adjunct for combination chemotherapy with current drugs to treat breast cancer. Furthermore, this topic may provide the frameworks for the future research direction of curcumin–chemotherapy combination studies and may benefit in the development of a novel therapeutic strategy to maximize the clinical efficacy of anticancer drugs while minimizing their side effects in the future breast cancer treatment.
Collapse
|
17
|
Maqbool M, Bekele F, Fekadu G. Treatment Strategies Against Triple-Negative Breast Cancer: An Updated Review. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:15-24. [PMID: 35046722 PMCID: PMC8760999 DOI: 10.2147/bctt.s348060] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) is associated with an increased risk of early recurrence and distant metastasis, as well as the development of therapeutic resistance and poor prognosis. TNBC is characterized by a wide range of genetic, immunophenotypic, morphological, and clinical features. TNBC is coined to describe cancers that lack estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). As a result, hormonal or trastuzumab-based treatments are ineffective in TNBC patients. TNBCs are biologically aggressive, and despite some evidence that they respond to treatment better than other forms of breast cancer, the prognosis remains poor. This is attributed to a shorter disease-free interval in adjuvant and neoadjuvant settings, as well as a more aggressive metastatic course. TNBC has a lot of clinical ramifications. In terms of new treatment methods, TNBC has lagged behind other types of breast cancer. There are not many options for treating this form of breast cancer because it is progressive. Many effective treatments for most breast cancers block the growth-stimulating effects of ER, PR, and/or HER2, leaving TNBC with few choices. Finding new and effective treatment options for TNBC remains a critical clinical need. To develop more effective drugs, new experimental approaches must be tested in patients with TNBC.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Firomsa Bekele
- Department of Pharmacy, College of Health Sciences, Mettu University, Mettu, Ethiopia
| | - Ginenus Fekadu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.,Department of Pharmacy, Institute of Health Sciences, Wollega University, Nekemte, Ethiopia
| |
Collapse
|
18
|
Safe S, Shrestha R, Mohankumar K, Howard M, Hedrick E, Abdelrahim M. Transcription factors specificity protein and nuclear receptor 4A1 in pancreatic cancer. World J Gastroenterol 2021; 27:6387-6398. [PMID: 34720529 PMCID: PMC8517783 DOI: 10.3748/wjg.v27.i38.6387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Specificity protein (Sp) transcription factors (TFs) Sp1, Sp3 and Sp4, and the orphan nuclear receptor 4A1 (NR4A1) are highly expressed in pancreatic tumors and Sp1 is a negative prognostic factor for pancreatic cancer patient survival. Results of knockdown and overexpression of Sp1, Sp3 and Sp4 in pancreatic and other cancer lines show that these TFs are individually pro-oncogenic factors and loss of one Sp TF is not compensated by other members. NR4A1 is also a pro-oncogenic factor and both NR4A1 and Sp TFs exhibit similar functions in pancreatic cancer cells and regulate cell growth, survival, migration and invasion. There is also evidence that Sp TFs and NR4A1 regulate some of the same genes including survivin, epidermal growth factor receptor, PAX3-FOXO1, α5- and α6-integrins, β1-, β3- and β4-integrins; this is due to NR4A1 acting as a cofactor and mediating NR4A1/Sp1/4-regulated gene expression through GC-rich gene promoter sites. Several studies show that drugs targeting Sp downregulation or NR4A1 antagonists are highly effective inhibitors of Sp/NR4A1-regulated pathways and genes in pancreatic and other cancer cells, and the triterpenoid celastrol is a novel dual-acting agent that targets both Sp TFs and NR4A1.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77845, United States
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77845, United States
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77845, United States
| | - Marcell Howard
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77845, United States
| | - Erik Hedrick
- Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Maen Abdelrahim
- Department of Medical Oncology, Houston Methodist Hospital Cancer Center, Houston, TX 77030, United States
| |
Collapse
|
19
|
Pinkney HR, Black MA, Diermeier SD. Single-Cell RNA-Seq Reveals Heterogeneous lncRNA Expression in Xenografted Triple-Negative Breast Cancer Cells. BIOLOGY 2021; 10:987. [PMID: 34681087 PMCID: PMC8533545 DOI: 10.3390/biology10100987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/03/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer in the world, with triple-negative breast cancer (TNBC) making up 12% of these diagnoses. TNBC tumours are highly heterogeneous in both inter-tumour and intra-tumour gene expression profiles, where they form subclonal populations of varying levels of aggressiveness. These aspects make it difficult to study and treat TNBC, requiring further research into tumour heterogeneity as well as potential therapeutic targets and biomarkers. Recently, it was discovered that the majority of the transcribed genome comprises non-coding RNAs, in particular long non-coding RNAs (lncRNAs). LncRNAs are transcripts of >200 nucleotides in length that do not encode a protein. They have been characterised as regulatory molecules and their expression can be associated with a malignant phenotype. We set out to explore TNBC tumour heterogeneity in vivo at a single cell level to investigate whether lncRNA expression varies across different cells within the tumour, even if cells are coming from the same cell line, and whether lncRNA expression is sufficient to define cellular subpopulations. We applied single-cell expression profiling due to its ability to capture expression signals of lncRNAs expressed in small subpopulations of cells. Overall, we observed most lncRNAs to be expressed at low, but detectable levels in TNBC xenografts, with a median of 25 lncRNAs detected per cell. LncRNA expression alone was insufficient to define a subpopulation of cells, and lncRNAs showed highly heterogeneous expression patterns, including ubiquitous expression, subpopulation-specific expression, and a hybrid pattern of lncRNAs expressed in several, but not all subpopulations. These findings reinforce that transcriptionally defined tumour cell subpopulations can be identified in cell-line derived xenografts, and uses single-cell RNA-seq (scRNA-seq) to detect and characterise lncRNA expression across these subpopulations in xenografted tumours. Future studies will aim to investigate the spatial distribution of lncRNAs within xenografts and patient tissues, and study the potential of subclone-specific lncRNAs as new therapeutic targets and/or biomarkers.
Collapse
Affiliation(s)
- Holly R. Pinkney
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
- Amaroq Therapeutics Ltd., Dunedin 9016, New Zealand
| |
Collapse
|
20
|
Balkrishna A, Mittal R, Arya V. Unveiling Novel Therapeutic Drug Targets and Prognostic Markers of Triple Negative Breast Cancer. Curr Cancer Drug Targets 2021; 21:907-918. [PMID: 34503412 DOI: 10.2174/1568009621666210908113010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022]
Abstract
Triple negative breast cancer represents multiple genomic and transcriptomic heterogeneities. Genetic and epigenetic changes emerging in TNBC help it in acquiring resistance against immunological response. Distant metastasis, lack of clinically targeted therapies and prognostic markers make it the most aggressive form of breast cancer. In this review, we showed that driver alterations in targeted genes AR, ERR, TIL, TAM, miRNA, mTOR and immunosuppressive cytokines are predominantly involved in complicating TNBC by inducing cell proliferation, invasion and metastasis, and by inhibiting apoptosis. The role of node status, cathepsin-D, Ki-67 index, CD3+TIL, BRCA1 promoter methylation value and p53 as an efficient prognostic factor have also been studied to predict the disease free and overall survival rate in TNBC patients. The present review article is an attempt to gain an insight with a new vision on the etiology of TNBC, its treatment strategies and prognostic marker to identify the outcome of standard therapies and to re-design future treatment strategies to provide maximum benefit to patients.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar. India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar. India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar. India
| |
Collapse
|
21
|
Farghadani R, Naidu R. Curcumin: Modulator of Key Molecular Signaling Pathways in Hormone-Independent Breast Cancer. Cancers (Basel) 2021; 13:cancers13143427. [PMID: 34298639 PMCID: PMC8307022 DOI: 10.3390/cancers13143427] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Breast cancer remains the most commonly diagnosed cancer and the leading cause of cancer death among females worldwide. It is a highly heterogeneous disease, classified according to hormone and growth factor receptor expression. Patients with triple negative breast cancer (TNBC) (estrogen receptor-negative/progesterone receptor-negative/human epidermal growth factor receptor (HER2)-negative) and hormone-independent HER2 overexpressing subtypes still represent highly aggressive behavior, metastasis, poor prognosis, and drug resistance. Thus, new alternative anticancer agents based on the use of natural products have been receiving enormous attention. In this regard, curcumin is a promising lead in cancer drug discovery due its ability to modulate a diverse range of molecular targets and signaling pathways. The current review has emphasized the underlying mechanism of curcumin anticancer action mediated through the modulation of PI3K/Akt/mTOR, JAK/STAT, MAPK, NF-ĸB, p53, Wnt/β-catenin, apoptosis, and cell cycle pathways in hormone-independent breast cancer, providing frameworks for future studies and insights to improve its efficiency in clinical practice. Abstract Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among women worldwide. Despite the overall successes in breast cancer therapy, hormone-independent HER2 negative breast cancer, also known as triple negative breast cancer (TNBC), lacking estrogens and progesterone receptors and with an excessive expression of human epidermal growth factor receptor 2 (HER2), along with the hormone-independent HER2 positive subtype, still remain major challenges in breast cancer treatment. Due to their poor prognoses, aggressive phenotype, and highly metastasis features, new alternative therapies have become an urgent clinical need. One of the most noteworthy phytochemicals, curcumin, has attracted enormous attention as a promising drug candidate in breast cancer prevention and treatment due to its multi-targeting effect. Curcumin interrupts major stages of tumorigenesis including cell proliferation, survival, angiogenesis, and metastasis in hormone-independent breast cancer through the modulation of multiple signaling pathways. The current review has highlighted the anticancer activity of curcumin in hormone-independent breast cancer via focusing on its impact on key signaling pathways including the PI3K/Akt/mTOR pathway, JAK/STAT pathway, MAPK pathway, NF-ĸB pathway, p53 pathway, and Wnt/β-catenin, as well as apoptotic and cell cycle pathways. Besides, its therapeutic implications in clinical trials are here presented.
Collapse
|
22
|
Kanzaki H, Chatterjee A, Hossein Nejad Ariani H, Zhang X, Chung S, Deng N, Ramanujan VK, Cui X, Greene MI, Murali R. Disabling the Nuclear Translocalization of RelA/NF-κB by a Small Molecule Inhibits Triple-Negative Breast Cancer Growth. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:419-430. [PMID: 34262338 PMCID: PMC8275049 DOI: 10.2147/bctt.s310231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/13/2021] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Constitutive activation of NF-κB has been implicated as being contributive to cancer cell growth, drug resistance, and tumor recurrence in many cancers including breast cancer. Activation of NF-κB leads to nuclear translocation of RelA, a critical component of the NF-κB transcription factor complex, which subsequently binds to specific DNA sites and activates a multitude of genes involved in diverse cell functions. Studies show that triple-negative breast cancer (TNBC) cells possess constitutively active NF-κB and concomitantly have higher levels of nuclear localization of RelA than cytoplasmic RelA. This feature is considered to be associated with the response to chemotherapy. However, currently, there is no specific inhibitor to block nuclear translocation of RelA. METHODS A structure-based approach was used to develop a small-molecule inhibitor of RelA nuclear translocation. The interaction between this molecule and RelA was verified biophysically through isothermal titration calorimetry and microscale thermophoresis. TNBC cell lines MDA-MB-231 and MDA-MB-468 and a human TNBC xenograft model were used to verify in vitro and in vivo efficacy of the small molecule, respectively. RESULTS We found that the small molecule, CRL1101, bound specifically to RelA as indicated by the biophysical assays. Further, CRL1101 blocked RelA nuclear translocation in breast cancer cells in vitro, and markedly reduced breast tumor growth in a triple-negative breast cancer xenograft model. CONCLUSION Our study demonstrates that CRL1101 may lead to new NF-κB-targeted therapeutics for TNBC. Further, blocking of nuclear translocation of shuttling transcription factors may be a useful general strategy in cancer drug development.
Collapse
Affiliation(s)
- Hirotaka Kanzaki
- Department of Biomedical Sciences, Research Division of Immunology
| | | | | | | | | | - Nan Deng
- Biostatistics and Bioinformatics Research Center
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - V Krishnan Ramanujan
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Xiaojiang Cui
- Department of Biomedical Sciences, Research Division of Immunology
- Department of Surgery
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Mark I Greene
- Department of Pathology and Laboratory of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
23
|
Zhang X, Li F, Zhou Y, Mao F, Lin Y, Shen S, Li Y, Zhang S, Sun Q. Long noncoding RNA AFAP1-AS1 promotes tumor progression and invasion by regulating the miR-2110/Sp1 axis in triple-negative breast cancer. Cell Death Dis 2021; 12:627. [PMID: 34145213 PMCID: PMC8213778 DOI: 10.1038/s41419-021-03917-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
Long noncoding ribonucleic acids (LncRNAs) have been found to be involved in the proliferation, apoptosis, invasion, migration, and other pathological processes of triple-negative breast cancer (TNBC). Expression of the lncRNA actin filament-associated protein 1 antisense RNA1 (AFAP1-AS1) has been found to be significantly higher in TNBC than in other subtypes or in normal tissue samples, but the specific mechanism by which AFAP1-AS1 affects the occurrence and development of TNBC is yet to be revealed. In this study, we used Cell Counting Kit-8 (CCK-8), colony formation, wound healing migration, Transwell invasion, and nude mouse xenograft assays to confirm the role of AFAP1-AS1 in the proliferation, migration of TNBC cells in vitro and in vivo. In addition, we performed bioinformatics analyses, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), western blot (WB), and dual-luciferase reporter assays (dual-LRA) to confirm interaction among AFAP1-AS1, micro-RNA 2110 (miR-2110), and Sp1 transcription factor (Sp1). We found that silencing AFAP1-AS1 and Sp1 or upregulating miR-2110 suppressed the proliferation, migration, and invasion of MDA-MB-231 and MDA-MB-468 cells in vitro as well as tumor growth in vivo. Mechanistically, the dual-LRA highlighted that miR-2110 was an inhibitory target of AFAP1-AS1, and that AFAP1-AS1 functioned as a miR-2110 sponge to increase Sp1 expression. AFAP1-AS1 silencing led to a reduction in Sp1 mRNA and protein levels, which could be reversed by joint transfection with miR-2110 inhibitor. Our findings demonstrated that AFAP1-AS1 could modulate the progression of breast cancer cells and affect tumorigenesis in mice by acting as a miR-2110 sponge, resulting in regulation of Sp1 expression. Therefore, AFAP1-AS1 could play a pivotal role in the treatment of TNBC.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fangyuan Li
- Medical Science Research Centre, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yuntao Li
- No.1 department of surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sheng Zhang
- 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College &Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| |
Collapse
|
24
|
Wilson EA, Sultana N, Shah KN, Elford HL, Faridi JS. Molecular Targeting of RRM2, NF-κB, and Mutant TP53 for the Treatment of Triple-Negative Breast Cancer. Mol Cancer Ther 2021; 20:655-664. [PMID: 33536192 DOI: 10.1158/1535-7163.mct-20-0373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Doxorubicin and other anthracycline derivatives are frequently used as part of the adjuvant chemotherapy regimen for triple-negative breast cancer (TNBC). Although effective, doxorubicin is known for its off-target and toxic side effect profile, particularly with respect to the myocardium, often resulting in left ventricular (LV) dysfunction and congestive heart failure when used at cumulative doses exceeding 400 mg/m2 Previously, we have observed that the ribonucleotide reductase subunit M2 (RRM2) is significantly overexpressed in estrogen receptor (ER)-negative cells as compared with ER-positive breast cancer cells. Here, we inhibited RRM2 in ER-negative breast cancer cells as a target for therapy in this difficult-to-treat population. We observed that through the use of didox, a ribonucleotide reductase inhibitor, the reduction in RRM2 was accompanied by reduced NF-κB activity in vitro When didox was used in combination with doxorubicin, we observed significant downregulation of NF-κB proteins accompanied by reduced TNBC cell proliferation. As well, we observed that protein levels of mutant p53 were significantly reduced by didox or combination therapy in vitro Xenograft studies showed that combination therapy was found to be synergistic in vivo, resulting in a significantly reduced tumor volume as compared with doxorubicin monotherapy. In addition, the use of didox was also found to ameliorate the toxic myocardial effects of doxorubicin in vivo as measured by heart mass, LV diameter, and serum troponin T levels. The data present a novel and promising approach for the treatment of TNBC that merits further clinical evaluation in humans.
Collapse
Affiliation(s)
- Elizabeth A Wilson
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, California
| | - Nahid Sultana
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, California
| | - Khyati N Shah
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, California
| | | | - Jesika S Faridi
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, California.
| |
Collapse
|
25
|
Wu S, Wang J, Zhu X, Chyr J, Zhou X, Wu X, Huang L. The Functional Impact of Alternative Splicing on the Survival Prognosis of Triple-Negative Breast Cancer. Front Genet 2021; 11:604262. [PMID: 33519909 PMCID: PMC7841428 DOI: 10.3389/fgene.2020.604262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose Triple-negative breast cancer (TNBC) is a type of breast cancer (BC) showing a high recurrence ratio and a low survival probability, which requires novel actionable molecular targets. The involvement of alternative splicing (AS) in TNBC promoted us to study the potential roles of AS events in the survival prognosis of TNBC patients. Methods A total of 150 TNBC patients from The Cancer Genome Atlas (TCGA) were involved in this work. To study the effects of AS in the recurrence-free survival (RFS) prognosis of TNBC, we performed the analyses as follows. First, univariate Cox regression model was applied to identify RFS-related AS events. Their host genes were analyzed by Metascape to discover the potential functions and involved pathways. Next, least absolute shrinkage and selection operator (LASSO) method was used to select the most informative RFS-related AS events to constitute an AS risk factor for RFS prognosis, which was evaluated by Kaplan–Meier (KM) and receiver operating characteristic (ROC) curves in all the data and also in different clinical subgroups. Furthermore, we analyzed the relationships between splicing factors (SFs) and these RFS-related AS events to seek the possibility that SFs regulated AS events to influence RFS. Then, we evaluated the potential of these RFS-related AS events in the overall survival (OS) prognosis from all the above aspects. Results We identified a total of 546 RFS-related AS events, which were enriched in some splicing and TNBC-associated pathways. Among them, seven RFS-related events were integrated into a risk factor, exhibiting satisfactory RFS prognosis alone and even better performance when combined with clinical tumor–node–metastasis stages. Furthermore, the correlation analysis between SFs and the seven AS events revealed the hypotheses that SRPK3 might upregulate PCYT2_44231_AA to have an effect on RFS prognosis and that three other SFs may work together to downregulate FLAD1_7874_RI to influence RFS prognosis. In addition, the seven RFS-related AS events were validated to be promising in the OS prognosis of TNBC as well. Conclusion The abnormal AS events regulated by SFs may act as a kind of biomarker for the survival prognosis of TNBC.
Collapse
Affiliation(s)
- Sijia Wu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jiachen Wang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Xinchao Zhu
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Jacqueline Chyr
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoming Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| |
Collapse
|
26
|
Ferrucci V, Asadzadeh F, Collina F, Siciliano R, Boccia A, Marrone L, Spano D, Carotenuto M, Chiarolla CM, De Martino D, De Vita G, Macrì A, Dassi L, Vandenbussche J, Marino N, Cantile M, Paolella G, D'Andrea F, di Bonito M, Gevaert K, Zollo M. Prune-1 drives polarization of tumor-associated macrophages (TAMs) within the lung metastatic niche in triple-negative breast cancer. iScience 2020; 24:101938. [PMID: 33426510 PMCID: PMC7779777 DOI: 10.1016/j.isci.2020.101938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
M2-tumor-associated macrophages (M2-TAMs) in the tumor microenvironment represent a prognostic indicator for poor outcome in triple-negative breast cancer (TNBC). Here we show that Prune-1 overexpression in human TNBC patients has positive correlation to lung metastasis and infiltrating M2-TAMs. Thus, we demonstrate that Prune-1 promotes lung metastasis in a genetically engineered mouse model of metastatic TNBC augmenting M2-polarization of TAMs within the tumor microenvironment. Thus, this occurs through TGF-β enhancement, IL-17F secretion, and extracellular vesicle protein content modulation. We also find murine inactivating gene variants in human TNBC patient cohorts that are involved in activation of the innate immune response, cell adhesion, apoptotic pathways, and DNA repair. Altogether, we indicate that the overexpression of Prune-1, IL-10, COL4A1, ILR1, and PDGFB, together with inactivating mutations of PDE9A, CD244, Sirpb1b, SV140, Iqca1, and PIP5K1B genes, might represent a route of metastatic lung dissemination that need future prognostic validations. Prune-1 correlates to M2-TAMs confirming lung metastatic dissemination in GEMM Cytokines and EV proteins are responsible of M2-TAMs polarization processes A small molecule with immunomodulatory properties ameliorates metastatic dissemination Identification of gene variants within immune response and cell adhesion in TNBC
Collapse
Affiliation(s)
- Veronica Ferrucci
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy.,European School of Molecular Medicine (SEMM), University of Milan, Milan, Italy
| | - Fatemeh Asadzadeh
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | | | | | - Laura Marrone
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Marianeve Carotenuto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Daniela De Martino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | - Gennaro De Vita
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy
| | | | - Luisa Dassi
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy
| | - Jonathan Vandenbussche
- VIB-UGent Centre for Medical Biotechnology, Ghent 9052, Belgium.,Department of Biomolecular Medicine, Ghent University, B9052 Ghent, Belgium
| | - Natascia Marino
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Department of Medicine, Indiana University-Purdue University Indianapolis, Indianapolis 46202, USA
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | | | - Francesco D'Andrea
- Dipartimento di Sanità pubblica - AOU, Università; degli Studi di Napoli Federico II, Naples 80131, Italy
| | - Maurizio di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCS- Fondazione G.Pascale, Naples 80131, Italy
| | - Kris Gevaert
- VIB-UGent Centre for Medical Biotechnology, Ghent 9052, Belgium.,Department of Biomolecular Medicine, Ghent University, B9052 Ghent, Belgium
| | - Massimo Zollo
- CEINGE, Biotecnologie Avanzate, Naples 80145, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples 80134, Italy.,European School of Molecular Medicine (SEMM), University of Milan, Milan, Italy.,DAI Medicina di Laboratorio e Trasfusionale, AOU Federico II, Naples 80131, Italy
| |
Collapse
|
27
|
Zang H, Li Y, Zhang X, Huang G. Blocking circ_0000520 Suppressed Breast Cancer Cell Growth, Migration and Invasion Partially via miR-1296/SP1 Axis Both in vitro and in vivo. Cancer Manag Res 2020; 12:7783-7795. [PMID: 32922078 PMCID: PMC7457856 DOI: 10.2147/cmar.s251666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/01/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer (BCa) is an overwhelming malignant tumor mainly in women globally. Circular RNAs (circRNAs) are a special type of noncoding RNAs involved in competing endogenous RNA (ceRNA) network, a classic molecular mechanism of the tumorigenesis of human cancers, including BCa. Here, we intended to explore the role and mechanism of hsa_circ_0000520 (circ_0000520) in BCa cells. Methods Expression of circ_0000520, miRNA-1296-5p (miR-1296) and specificity protein 1 (SP1) was measured by real time-quantitative PCR and Western blotting. Cell growth was measured by cell counting kit-8, colony formation assay and flow cytometry method. Cell migration and invasion were assessed by transwell assays and Western blotting. Tumor growth was determined by xenograft models. The direct interaction among circ_0000520, miR-1296 and SP1 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results circ_0000520 was upregulated in BCa tumors and cell lines (T47D, MCF7, MDA-MB-231, BT549, and SKBR3), and circ_0000520 high expression was associated with poor overall survival. Blocking circ_0000520 suppressed cell viability, colony formation, migration and invasion, but promoted cell cycle arrest and apoptosis rate in MDA-MB-231 and MCF7 cells. circ_0000520 could directly regulate miR-1296 expression, and SP1 was a novel target for miR-1296. Moreover, the anti-tumor role of circ_0000520 silencing was abrogated by miR-1296 downregulation or SP1 restoration. Notably, tumor growth of MDA-MB-231 cells in mice was restrained by circ_0000520 deletion. Conclusion circ_0000520 knockdown could suppress cell growth, migration and invasion both in vitro and in vivo through regulating miR-1296/SP1 pathway.
Collapse
Affiliation(s)
- Hongliang Zang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhui Li
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xue Zhang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guomin Huang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
28
|
Kancharla J, Prasad IDV, Bhaskar LVKS, Bramhachari PV, Alam A. Meta-analysis of NFKB1-94 ATTG Ins/Del Polymorphism and Risk of Breast Cancer. Curr Drug Metab 2020; 21:221-225. [PMID: 32156231 DOI: 10.2174/1389200221666200310113118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer (BC) accounts for one of the most prevalent malignancies in the world. Inflammatory molecules modulate tumor microenvironment in BC that promotes tumor growth and metastasis. NF-κB (a transcription factor) that regulates multiple immune functions and acts as a crucial mediator of inflammatory responses. OBJECTIVE The present study is aimed to quantitatively summarize the relation of NFKB1-94 ATTG (I, insertion/D, deletion) variant and risk of BC. METHODS Further, the meta-analysis includes three independent case-control investigations that focus on NFKB1-94, ATTG I/D polymorphism, and BC patients. Web of Science, PubMed and Embase databases were used to retrieve relevant data. OR and 95% confidence interval of pooled studies were analyzed by using the MetaGenyo web tool. RESULTS This study revealed a high heterogeneity. In all three genetic comparison models, the NFKB1-94 ATTG I/D variant is not related to the risk of BC. Further, no publication bias on the connection between NFKB1-94 ATTG I/D variant and risk of BC was observed. CONCLUSION To summarize, our meta-analysis demonstrates that the NFKB1-94 ATTG I/D polymorphism is not a major risk factor for BC.
Collapse
Affiliation(s)
- Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - I Devi Vara Prasad
- Department of Physical Education and Sports Sciences, Acharya Nagarjuna University, Ongole 523001, Andhra Pradesh, India
| | | | | | - Afroz Alam
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| |
Collapse
|
29
|
Sabapathi N, Sabarimurugan S, Madurantakam Royam M, Kumarasamy C, Xu X, Xu G, Jayaraj R. Prognostic Significance of FOXC1 in Various Cancers: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2019; 23:695-706. [PMID: 31372939 DOI: 10.1007/s40291-019-00416-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Forkhead box C1 (FOXC1), a member of the Forkhead box (Fox) transcription factor family, plays an essential role in lymphatic vessel formation, angiogenesis and metastasis. Observational studies examining the relationship between the protein biomarker FOXC1 and breast cancer prognosis have reported conflicting findings. This systematic review and meta-analysis evaluates the prognostic value of the FOXC1 expression in association with patient survival in breast cancer and other types of cancers in order to identify the overall prognostic effectiveness of FOXC1. METHODS This study followed the guidelines established in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We conducted a broad search on the online bibliographic databases EMBASE, PubMed, Science Direct and Scopus, limiting search to publications from 2010 to 2018. The prognostic value was demonstrated by a random effects model meta-analysis using the hazard ratio (HR) with 95% confidence interval (CI) for overall survival (OS) in various cancer patients. The heterogeneity was measured by the I2 statistic. Publication bias and quality assessment for the selected articles was performed. Subgroup analysis was conducted based on the data available from the selected articles. RESULTS A total of 16 studies met the predefined selection criteria established for our systematic review and meta-analysis, with multiple studies using diverse methodologies and reported on differing clinical outcomes, falling under a common banner of FOXC1 expression and survival in cancer. Overall, we observed a statistically non-significant association between FOXC1 protein expression and patients survival (HR: 1.186 and 95% CI 1.122-1.255, p = 0.000, I2 = 88.83%). CONCLUSION In summary, FOXC1 protein expression indicated poor survival outcome in various carcinomas, especially in patients with breast cancer, suggesting it as a possible biomarker for the prognosis in multiple carcinomas. Further clinical evaluation and large-scale cohort studies are required to accurately identify its possible clinical utility.
Collapse
Affiliation(s)
- Nadana Sabapathi
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shanthi Sabarimurugan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Madhav Madurantakam Royam
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Chellan Kumarasamy
- University of Adelaide, North Terrace Campus, Adelaide, SA, 5005, Australia
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Gaixia Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rama Jayaraj
- College of Health and Human Sciences, Charles Darwin University, Ellengowan Drive, Casuarina, NT, 0909, Australia.
| |
Collapse
|
30
|
Chiba A, Bawaneh A, Velazquez C, Clear KY, Wilson AS, Howard-McNatt M, Levine EA, Levi-Polyachenko N, Yates-Alston SA, Diggle SP, Soto-Pantoja DR, Cook KL. Neoadjuvant Chemotherapy Shifts Breast Tumor Microbiota Populations to Regulate Drug Responsiveness and the Development of Metastasis. Mol Cancer Res 2019; 18:130-139. [DOI: 10.1158/1541-7786.mcr-19-0451] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/26/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
|
31
|
Cosentino G, Plantamura I, Cataldo A, Iorio MV. MicroRNA and Oxidative Stress Interplay in the Context of Breast Cancer Pathogenesis. Int J Mol Sci 2019; 20:ijms20205143. [PMID: 31627322 PMCID: PMC6829356 DOI: 10.3390/ijms20205143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is a pathological condition determined by a disturbance in reactive oxygen species (ROS) homeostasis. Depending on the entity of the perturbation, normal cells can either restore equilibrium or activate pathways of cell death. On the contrary, cancer cells exploit this phenomenon to sustain a proliferative and aggressive phenotype. In fact, ROS overproduction or their reduced disposal influence all hallmarks of cancer, from genome instability to cell metabolism, angiogenesis, invasion and metastasis. A persistent state of oxidative stress can even initiate tumorigenesis. MicroRNAs (miRNAs) are small non coding RNAs with regulatory functions, which expression has been extensively proven to be dysregulated in cancer. Intuitively, miRNA transcription and biogenesis are affected by the oxidative status of the cell and, in some instances, they participate in defining it. Indeed, it is widely reported the role of miRNAs in regulating numerous factors involved in the ROS signaling pathways. Given that miRNA function and modulation relies on cell type or tumor, in order to delineate a clearer and more exhaustive picture, in this review we present a comprehensive overview of the literature concerning how miRNAs and ROS signaling interplay affects breast cancer progression.
Collapse
Affiliation(s)
- Giulia Cosentino
- Molecular Targeting Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Ilaria Plantamura
- Molecular Targeting Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Alessandra Cataldo
- Molecular Targeting Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
- IFOM Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy.
| | - Marilena V Iorio
- Molecular Targeting Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
- IFOM Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy.
| |
Collapse
|
32
|
Duan S, Chan WK, Oman A, Basile DP, Alvira CM, Buxton IL, Iosef C. NF-κB/NKILA signaling modulates the anti-cancerous effects of EZH2 inhibition. J Cell Mol Med 2019; 23:6182-6192. [PMID: 31282094 PMCID: PMC6714229 DOI: 10.1111/jcmm.14500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
A wealth of evidence supports the broad therapeutic potential of NF-κB and EZH2 inhibitors as adjuvants for breast cancer treatment. We contribute to this knowledge by elucidating, for the first time, unique regulatory crosstalk between EZH2, NF-κB and the NF-κB interacting long non-coding RNA (NKILA). We define a novel signaling loop encompassing canonical and non-canonical actions of EZH2 on the regulation of NF-κB/NKILA homeostasis, with relevance to breast cancer treatment. We applied a respective silencing approach in non-transformed breast epithelial cells, triple negative MDA-MB-231 cells and hormone responsive MCF-7 cells, and measured changes in EZH2/NF-κB/NKILA levels to confirm their interdependence. We demonstrate cell line-specific fluctuations in these factors that functionally contribute to epithelial-to-mesenchymal transition (EMT) remodelling and cell fate response. EZH2 inhibition attenuates MDA-MB-231 cell motility and CDK4-mediated MCF-7 cell cycle regulation, while inducing global H3K27 methylation and an EMT phenotype in non-transformed cells. Notably, these events are mediated by a cell-context dependent gain or loss of NKILA and NF-κB. Depletion of NF-κB in non-transformed cells enhances their sensitivity to growth factor signaling and suggests a role for the host microenvironment milieu in regulating EZH2/NF-κB/NKILA homeostasis. Taken together, this knowledge critically informs the delivery and assessment of EZH2 inhibitors in breast cancer.
Collapse
Affiliation(s)
- Suzann Duan
- University of Nevada Reno, School of MedicineRenoNevada
| | | | - Andrew Oman
- University of Nevada Reno, School of MedicineRenoNevada
| | | | | | | | - Cristiana Iosef
- University of Nevada Reno, School of MedicineRenoNevada
- Stanford University School of MedicineStanfordCalifornia
| |
Collapse
|
33
|
Ferreira EN, Brianese RC, de Almeida RVB, Drummond RD, de Souza JE, da Silva IT, de Souza SJ, Carraro DM. Influence of BRCA1 Germline Mutations in the Somatic Mutational Burden of Triple-Negative Breast Cancer. Transl Oncol 2019; 12:1453-1460. [PMID: 31419696 PMCID: PMC6706625 DOI: 10.1016/j.tranon.2019.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022] Open
Abstract
The majority of the hereditary triple-negative breast cancers (TNBCs) are associated with BRCA1 germline mutations. Nevertheless, the understanding of the role of BRCA1 deficiency in the TNBC tumorigenesis is poor. In this sense, we performed whole-exome sequencing of triplet samples (leucocyte, tumor, and normal-adjacent breast tissue) for 10 cases of early-onset TNBC, including 5 hereditary (with BRCA1 germline pathogenic mutation) and 5 sporadic (with no BRCA1 or BRCA2 germline pathogenic mutations), for assessing the somatic mutation repertoire. Protein-affecting somatic mutations were identified for both mammary tissues, and Ingenuity Pathway Analysis was used to investigate gene interactions. BRCA1 and RAD51C somatic promoter methylation in tumor samples was also investigated by bisulfite sequencing. Sporadic tumors had higher proportion of driver mutations (≥25% allele frequency) than BRCA1 hereditary tumors, whereas no difference was detected in the normal breast samples. Distinct gene networks were obtained from the driver genes in each group. The Cancer Genome Atlas data analysis of TNBC classified as hereditary and sporadic reinforced our findings. The data presented here indicate that in the absence of BRCA1 germline mutations, a higher number of driver mutations are required for tumor development and that different defective processes are operating in the tumorigenesis of hereditary and sporadic TNBC in young women.
Collapse
Affiliation(s)
| | | | | | | | - Jorge Estefano de Souza
- Instituto Metrópole Digital, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Israel Tojal da Silva
- CIPE, International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Sandro José de Souza
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal, RN, Brazil; Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Dirce Maria Carraro
- CIPE, International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil; National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, SP, Brazil.
| |
Collapse
|
34
|
Kim JY, Lee E, Park K, Im SA, Sohn J, Lee KS, Chae YS, Kim JH, Kim TY, Jung KH, Park YH. Exploratory biomarker analysis from a phase II clinical trial of eribulin plus gemcitabine versus paclitaxel plus gemcitabine for HER2-negative metastatic breast cancer patients (KCSG BR13-11). Breast Cancer Res Treat 2019; 178:367-377. [PMID: 31407230 DOI: 10.1007/s10549-019-05400-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE We conducted an exploratory biomarker study from a phase II clinical trial of eribulin plus gemcitabine (EG) versus paclitaxel plus gemcitabine (PG) in HER2-negative metastatic breast cancer (BC) patients. METHODS We performed targeted deep sequencing with a customized cancer gene panel and RNA expression assay. Tumor mutation burden (TMB) and mutation signatures were determined based on genetic alteration in targeted regions. Gene set variation analysis was performed with PanCancer Immune Profiling and PanCancer Pathway Panels. Statistical analyses were conducted to identify the associations between genetic alterations and clinical outcomes. RESULTS Of 119 patients, 40 had available biomarker data. Among the 40 patients, 4 supported their post-treatment tissues. In targeted deep sequencing, FAT3 (48%) was the most frequently mutated gene, followed by PKHD1, TP53, GATA3, PARP4, and PIK3CA. In terms of gene expression, low expression of epithelial-mesenchymal transition (EMT) pathway genes was associated with prolonged progression-free survival (PFS) in the EG group, while high expression of the EMT pathway was associated with good prognosis in the PG group. Median TMB was 6.5 (range 2.44-46.34) and there was no relationship between TMB and patient prognosis. Analysis of mutation signatures showed that signatures 3, 20, and 26 were frequently observed in our cohort. Further survival analysis according to mutation signature showed that mutation signature 3, as a homologous recombinant deficiency-related signature, was highly associated with disease progression (hazard ratio (log2 scale) 8.21, 95% confidence interval 2.93-13.48, p = 0.002). Kaplan-Meier plot also showed that BCs with signature 3 had short PFS compared to those without these signatures (median PFS (months) for signature 3 (low vs. high): 17.2 vs. 8.1, p = 0.0026). CONCLUSIONS Mutation signature 3, found in about 30% of MBCs regardless of hormone receptor status, was associated with short PFS for patients with cytotoxic chemotherapy. TRIAL REGISTRY ClinicalTrials.gov number: NCT02263495.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Eunjin Lee
- Samsung Medical Center, Samsung Genome Institute, Seoul, 06351, Korea
| | - Kyunghee Park
- Samsung Medical Center, Samsung Genome Institute, Seoul, 06351, Korea
| | - Seock-Ah Im
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University, College of Medicine, Seoul, 03080, Korea
| | - Joohyuk Sohn
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Keun Seok Lee
- Center for Breast Cancer, National Cancer Center, Goyang, 10408, Korea
| | - Yee Soo Chae
- Kyungpook National University Medical Center, Daegu, 41944, Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620, Korea
| | - Tae-Yong Kim
- Department of Internal Medicine, Seoul National University Hospital, Cancer Research Institute, Seoul National University, College of Medicine, Seoul, 03080, Korea
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| |
Collapse
|
35
|
Xi Y, Zhang X, Yang Z, Zhang X, Guo Q, Zhang Z, Chen S, Zheng H, Hua B. Prognositic significance of P-cadherin expression in breast cancer: Protocol for a meta-analysis. Medicine (Baltimore) 2019; 98:e14924. [PMID: 30896652 PMCID: PMC6709078 DOI: 10.1097/md.0000000000014924] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND P-cadherin is a calcium-dependent cell-cell adhesion glycoprotein. It has been implicated in invasiveness and metastasis. However, the clinical prognostic value of overexpression of P-cadherin in patients with breast cancer (BC) remains unsettled. METHODS A systematic literature search will be performed in all available databases to quantitatively review eligible studies and identify all relevant data, which could be used to detect the relationship between overexpression of P-cadherin and overall survival (OS), disease-free survival (DFS), and clinicopathological parameters. Hazard ratio and 95% confidence intervals (CIs) or P value will be employed as effect measures to estimate the correlation between P-cadherin and the oncologic outcomes including overall survival (OS), disease-free survival (DFS). Odds ratios (ORs) and the 95% CIs will be evaluated for the pooled analysis of the correlation between P-cadherin expression and clinicopathological features. We will use the Review Manager (Revman) 5.3.5 software (Cochrane Community, London, United Kingdom) and STATA 14 software (version 14.0; Stata Corp, College Station, TX) to perform the meta-analysis to calculate the data. RESULTS The review will provide a high-quality synthesis of current evidence of the prognostic role of P-cadherin in BCs. The results will be published in a peer-reviewed journal. CONCLUSION We hope that the results of this study will provide significant evidence to assess whether the expression of P-cadherin is associated with poor prognosis in patients with BC. PROSPERO REGISTRATION NUMBER This meta-analysis protocol has been registered in the PROSPERO network with registration number: CRD42019119880.
Collapse
Affiliation(s)
- Yupeng Xi
- Beijing University of Chinese Medicine
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Xiwen Zhang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Zizhen Yang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
- Shanxi University of Chinese Medicine, Xianyang, Shanxi Province, China
| | - Xing Zhang
- Beijing University of Chinese Medicine
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Qiujun Guo
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Zhenhua Zhang
- Beijing University of Chinese Medicine
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Shuntai Chen
- Beijing University of Chinese Medicine
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Honggang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| | - Baojin Hua
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing
| |
Collapse
|
36
|
Greish K, Nehoff H, Bahman F, Pritchard T, Taurin S. Raloxifene nano-micelles effect on triple-negative breast cancer is mediated through estrogen receptor-β and epidermal growth factor receptor. J Drug Target 2019; 27:903-916. [PMID: 30615483 DOI: 10.1080/1061186x.2019.1566341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that differs in progression, recurrence, and prognosis from other forms of breast cancer. The heterogeneity of TNBC has remained a challenge as no targeted therapy is currently available. Previously, we and others have demonstrated that raloxifene, a selective oestrogen receptor modulator, was also acting independently of the oestrogen receptor-α. However, raloxifene is characterised by a low bioavailability in vivo. Thus, we encapsulated raloxifene into a styrene-maleic acid (SMA) micelle to improve its pharmacokinetics. The micellar raloxifene had higher cytotoxicity when compared to the free formulation, promoted a higher cellular uptake and affected critical signalling pathways. Furthermore, SMA-raloxifene reduced TNBC tumour growth more efficiently than free raloxifene. Finally, we showed that this effect was partially mediated through oestrogen receptor-β. In conclusion, we have provided new insight into the role of raloxifene nanoformulation in improving the management of TNBC.
Collapse
Affiliation(s)
- Khaled Greish
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain.,b Department of Oncology , Suez Canal University , Ismailia , Egypt
| | - Hayley Nehoff
- c Department of Pharmacology and Toxicology , University of Otago , Dunedin , New Zealand
| | - Fatemah Bahman
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain
| | - Tara Pritchard
- d Malaghan Institute of Medical Research , Wellington , New Zealand
| | - Sebastien Taurin
- a Department of Molecular Medicine, and Nanomedicine Unit , College of Medicine and Medical Sciences, Princess Al-Jawhara Center for Molecular Medicine and Inherited Disorders, Arabian Gulf University , Manama , Kingdom of Bahrain
| |
Collapse
|
37
|
Niersmann C, Hauck SM, Kannenberg JM, Röhrig K, von Toerne C, Roden M, Herder C, Carstensen-Kirberg M. Omentin-regulated proteins combine a pro-inflammatory phenotype with an anti-inflammatory counterregulation in human adipocytes: A proteomics analysis. Diabetes Metab Res Rev 2019; 35:e3074. [PMID: 30198166 DOI: 10.1002/dmrr.3074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Abstract
AIMS Experimental and epidemiological studies reported controversial data on the role of omentin in type 2 diabetes and cardiovascular diseases. This study aimed to characterise the impact of omentin on the secretome of human adipocytes to analyse the enrichment of these proteins in metabolic and cellular signalling pathways underlying its physiological function. MATERIAL/METHODS Differentiated primary human adipocytes were treated without or with 500 or 2000 ng/mL omentin for 24 hours. The secretome was analysed by liquid chromatography coupled tandem-mass spectrometry. Differences in protein secretion between untreated and omentin-treated adipocytes were compared using a paired t-test. Other potential upstream regulators and the overrepresentation in canonical pathways of omentin-stimulated proteins were analysed using Ingenuity Pathway Analysis. RESULTS The supernatant of adipocytes contained 3493 proteins, of which 140 were differentially secreted by both concentrations of omentin compared with untreated adipocytes. Among the most strongly increased proteins, tumour necrosis factor-inducible gene 6 protein (TNFAIP6) was increased by 140-fold in the supernatant. Omentin-regulated proteins were overrepresented in seven canonical pathways including eukaryotic initiation factor 2 signalling, complement system, and inhibition of matrix metalloproteases. We further identified 25 other potential upstream activators of omentin-regulated proteins, mainly pro-inflammatory cytokines and transcription regulators including NFκB. CONCLUSIONS In differentiated human adipocytes, the release of the anti-inflammatory TNFAIP6 might be part of a counterregulatory response to the pro-inflammatory action of omentin. Omentin-regulated proteins were overrepresented in pathways indicating cellular stress, a pro-inflammatory environment and a crosstalk with other organs. Other potential activators of omentin-regulated proteins point towards a central role of NFκB activation in the omentin-induced secretory process.
Collapse
Affiliation(s)
- Corinna Niersmann
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), München-Neuherberg, Germany
| | - Julia M Kannenberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Karin Röhrig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christine von Toerne
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Maren Carstensen-Kirberg
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
38
|
Safe S, Abbruzzese J, Abdelrahim M, Hedrick E. Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development. Cancer Prev Res (Phila) 2018; 11:371-382. [PMID: 29545399 DOI: 10.1158/1940-6207.capr-17-0407] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp) transcription factors (TFs) such as Sp1 are critical for early development but their expression decreases with age and there is evidence that transformation of normal cells to cancer cells is associated with upregulation of Sp1, Sp3, and Sp4, which are highly expressed in cancer cells and tumors. Sp1 is a negative prognostic factor for pancreatic, colon, glioma, gastric, breast, prostate, and lung cancer patients. Functional studies also demonstrate that Sp TFs regulate genes responsible for cancer cell growth, survival, migration/invasion, inflammation and drug resistance, and Sp1, Sp3 and Sp4 are also nononcogene addiction (NOA) genes and important drug targets. The mechanisms of drug-induced downregulation of Sp TFs and pro-oncogenic Sp-regulated genes are complex and include ROS-dependent epigenetic pathways that initially decrease expression of the oncogene cMyc. Many compounds such as curcumin, aspirin, and metformin that are active in cancer prevention also exhibit chemotherapeutic activity and these compounds downregulate Sp TFs in cancer cell lines and tumors. The effects of these compounds on downregulation of Sp TFs in normal cells and the contribution of this response to their chemopreventive activity have not yet been determined. Cancer Prev Res; 11(7); 371-82. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - James Abbruzzese
- Department of Medicine, Division of Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Maen Abdelrahim
- GI Medical Oncology, Cockrell Center for Advanced Therapeutics, Houston Methodist Cancer Center and Institute of Academic Medicine, Houston, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
39
|
An NFκB-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget 2018; 9:26679-26700. [PMID: 29928478 PMCID: PMC6003573 DOI: 10.18632/oncotarget.25465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/07/2018] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is a complex disease exhibiting extensive inter- and intra-tumor heterogeneity. Inflammation is a well-known driver of cancer progression, often attributed to immune cells infiltrating the tumor stroma. However, tumor cells themselves are capable to secrete a variety of inflammatory molecules, of which we understand very little about their role in intra-clonal communication. We recently reported the capacity of triple negative cell lines to induce a cancer stem cell (CSC)-like phenotype and invasion properties into luminal cells, a mechanism mediated by pro-inflammatory cytokines that up-regulated the CXCL12/CXCR4/CXCR7 chemokine signaling axis. We performed transcriptional array analyses of CSCs-associated genes and cancer-inflammatory cell crosstalk genes and built regulatory networks with the data collected. We found a specific molecular signature segregating with the induced-invasive/stemness phenotype. Regulatory network analysis pointed out to an NFκB transcriptional signature, active in aggressive triple negative cells and in induced-invasive/CSC-like luminal cells. In agreement, NFκB inhibition abolished the induction of the stemness/invasive features. These data support an NFκB dependent mechanism of intra-clonal communication responsible for tumor cell plasticity leading the acquisition of cancer aggressive features. Understanding the communication between different tumor clones would help to find better therapeutic and prophylactic targets to prevent BrC progression and relapse.
Collapse
|
40
|
Chen L, Wang S, Wang Y, Zhang W, Ma K, Hu C, Zhu H, Liang S, Liu M, Xu N. IL-6 influences the polarization of macrophages and the formation and growth of colorectal tumor. Oncotarget 2018; 9:17443-17454. [PMID: 29707119 PMCID: PMC5915127 DOI: 10.18632/oncotarget.24734] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/21/2018] [Indexed: 02/05/2023] Open
Abstract
Macrophages play a crucial role in tumorigenesis depending upon the phenotype of macrophages found in tumor microenvironments. To date, how the tumor microenvironment affects the phenotypes of macrophages is not yet fully understood. In this study, we constructed a NIH3T3/Src cell line stably overexpresses the Src protein and found that conditioned medium from this cell line was able to induce polarization towards the M2 phenotype in primary bone marrow-derived macrophages (BMDM) and Ana-1 macrophages. Further investigation revealed that IL-6 produced by NIH3T3/Src cells plays a key role in M2 polarization. During the development of colorectal cancer in C57BL/6J-ApcMin/+ mice, increased IL-6 secretion in the interstitial fluid of the colorectal tissues was observed. Furthermore, tumorigenesis in IL-6tm1Kopf mice treated with AOM-DSS, an IL-6 knockout mouse strain, was significantly inhibited compared with the control group, suggesting the important role of IL-6 in promoting tumorigenicity. Our findings identify the target molecules and proinflammatory cytokines responsible for promoting polarization towards the M2 phenotype in macrophages present in tumor microenvironment, which may be useful for the design of novel therapeutic strategies for colorectal cancer.
Collapse
Affiliation(s)
- Lechuang Chen
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuren Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weina Zhang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
41
|
Park YH. The nuclear factor-kappa B pathway and response to treatment in breast cancer. Pharmacogenomics 2017; 18:1697-1709. [PMID: 29182047 DOI: 10.2217/pgs-2017-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) pathway is known to contribute to critical signaling in cancer biology, including breast cancer, through promotion of proliferation, angiogenesis, metastasis, tumor progression, inflammation and cell survival. In this review, in vivo and in vitro studies of the NF-κB pathway in breast cancer are discussed, focusing on DNA damage and the epithelial-mesenchymal transition associated with breast cancer stem cell properties. The relationships between NF-κB signaling and conventional cancer treatments in terms of response to chemo- and radiotherapy will also be discussed. Then contribution and involvement of immune system in the NF-κB pathway will be covered. Furthermore, the future perspective of NF-κB targeting as an innovative strategy to overcome refractory breast cancer, including recent updates on out-receptor activator of NF-κB (RANKing), will be covered.
Collapse
Affiliation(s)
- Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| |
Collapse
|
42
|
Ndombera FT. Anti-cancer agents and reactive oxygen species modulators that target cancer cell metabolism. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AbstractTraditionally the perspective on reactive oxygen species (ROS) has centered on the role they play as carcinogenic or cancer-causing radicals. Over the years, characterization and functional studies have revealed the complexity of ROS as signaling molecules that regulate various physiological cellular responses or whose levels are altered in various diseases. Cancer cells often maintain high basal level of ROS and are vulnerable to any further increase in ROS levels beyond a certain protective threshold. Consequently, ROS-modulation has emerged as an anticancer strategy with synthesis of various ROS-inducing or responsive agents that target cancer cells. Of note, an increased carbohydrate uptake and/or induction of death receptors of cancer cells was exploited to develop glycoconjugates that potentially induce cellular stress, ROS and apoptosis. This mini review highlights the development of compounds that target cancer cells by taking advantage of redox or metabolic alteration in cancer cells.
Collapse
|
43
|
Synergistic effect of eribulin and CDK inhibition for the treatment of triple negative breast cancer. Oncotarget 2017; 8:83925-83939. [PMID: 29137393 PMCID: PMC5663565 DOI: 10.18632/oncotarget.20202] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/12/2017] [Indexed: 01/22/2023] Open
Abstract
Activation of CDK2 in triple negative breast cancer (TNBC) can contribute to non-canonical phosphorylation of a TGFβ signaling component, Smad3, promoting cell proliferation and migration. Inhibition of CDK2 was shown to decrease breast cancer oncogenesis. Eribulin chemotherapy was used effectively in the treatment of TNBC. To this end, we tested therapeutic efficacy of a novel CDK2/9 inhibitor, CYC065, eribulin, and the combination of CYC065 and eribulin in 3 different TNBC cell lines, and an in vivo xenograft model. Specifically, we characterized cell proliferation, apoptosis, migration, cell cycle associated protein expression, treatment-related transcription factor activity, and tumor growth in TNBC. Treatment with CYC065 and eribulin in combination had a superior effect on decreasing cell proliferation, inducing apoptosis, and inhibiting migration in TNBC cell lines in vitro. Combination therapy inhibited non-canonical Smad3 phosphorylation at the T179 site in the protein linker region, and resulted in increased p15 and decreased c-myc expression. In a transcription factor array, combination treatment significantly increased activity of AP1 and decreased activity of factors including NFκB, SP1, E2F, and SMAD3. In an in vivo xenograft model of TNBC, individual and combination treatments resulted in a decrease in both tumor volume and mitotic indices. Taken together, these studies highlight the potential of this novel drug combination, CYC065 and eribulin, to suppress the growth of TNBC cells in vitro and in vivo, warranting further clinical investigation.
Collapse
|