1
|
Oats MF, Coronel-Aguilera CP, Applegate BM, Csonka LN, Bhunia AK, Gehring AG, Paoli GC. Determination of the Infection Dynamics of Escherichia coli O157:H7 by Bacteriophage ΦV10. Foods 2025; 14:617. [PMID: 40002061 PMCID: PMC11854483 DOI: 10.3390/foods14040617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
ΦV10 is an Escherichia coli O157:H7-specific bacteriophage that has been used to develop luminescent reporter assays for the detection of this important foodborne pathogen. Previous work demonstrated the specificity of ΦV10 for infection of E.coli O157:H7 through interaction with the O157 antigen. In addition, modification of the lipopolysaccharide (LPS) via O-acetylation prevents ΦV10 infection in an E. coli O157:H7 expressing a phage-encoded O-acetylase gene. Through assays for phage binding, plaque formation, and lysogeny using non-O157:H7 and O157: non-H7 strains, as well as complementation of an O157:H- strain, it is demonstrated in this study that both the somatic O157 antigen and flagellar H7 antigen are required for productive infection of E. coli O157:H7 by ΦV10. Together, the results indicate that the O157 antigen is required for phage binding and that the H7 antigen is necessary to complete the infection process.
Collapse
Affiliation(s)
- Michael F. Oats
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (L.N.C.)
| | | | - Bruce M. Applegate
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (L.N.C.)
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Laszlo N. Csonka
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA (L.N.C.)
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew G. Gehring
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| | - George C. Paoli
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Wyndmoor, PA 19038, USA
| |
Collapse
|
2
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2025; 125:933-971. [PMID: 39680919 PMCID: PMC11758799 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular
Signaling Laboratory, International Research Center for Sensory Biology
and Technology of MOST, Key Laboratory of Molecular Biophysics of
MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry
and Biochemistry, University of California
Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department
of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Islam MS, Fan J, Suzauddula M, Nime I, Pan F. Isolation and Characterization of Novel Escherichia coli O157:H7 Phage SPEC13 as a Therapeutic Agent for E. coli Infections In Vitro and In Vivo. Biomedicines 2024; 12:2036. [PMID: 39335549 PMCID: PMC11428821 DOI: 10.3390/biomedicines12092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
Escherichia coli O157:H7 is a recognized food-borne pathogen causing severe food poisoning at low doses. Bacteriophages (phages) are FDA-approved for use in food and are suggested as natural preservatives against specific pathogens. A novel phage must be identified and studied to develop a new natural preservative or antimicrobial agent against E. coli O157:H7. The phage SPEC13 displayed broad host range and was classified within the Ackermannviridae family based on its observed characteristics by a TEM and genome analysis. In 10 min, this phage achieves a remarkable 93% adsorption rate with the host. Its latency period then lasts about 20 min, after which it bursts, releasing an average of 139 ± 3 PFU/cell. It exhibited robustness within a pH range of 4 to 12, indicating resilience under diverse environmental circumstances. Furthermore, SPEC13 demonstrated stability at an ambient temperature up to 60 °C. A whole genome and phylogenetics analysis revealed that SPEC13 is a novel identified phage, lacking a lysogenic life cycle, antibiotic resistance genes, or genes associated with virulence, thereby presenting a promising biological agent for therapeutic application. Animal studies showed that SPEC13 effectively controlled the growth of harmful bacteria, resulting in a significant improvement in colon health, marked by reduced swelling (edema) and tissue damage (mucosal injury). The introduction of SPEC13 resulted in a substantial decrease in quantities of E. coli O157:H7, reducing the bacterial load to approximately 5 log CFU/g of feces. In conclusion, SPEC13 emerges as a promising inclusion in the array of phage therapy, offering a targeted and efficient approach for addressing bacterial infections.
Collapse
Affiliation(s)
- Md Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Fan
- Department of Pathology, School of Basic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang 471023, China
| | - Md Suzauddula
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ishatur Nime
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Wang J, Zheng Y, Huang H, Ma Y, Zhao X. An overview of signal amplification strategies and construction methods on phage-based biosensors. Food Res Int 2024; 191:114727. [PMID: 39059923 DOI: 10.1016/j.foodres.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phages are a class of viruses that specifically infect host bacteria. Compared to other recognition elements, phages offer several advantages such as high specificity, easy to obtain and good environmental tolerance, etc. These advantages underscore the potential of phages as recognition elements in the construction of biosensors. Therefore, the phage-based biosensors are currently garnering widespread attention for detecting pathogens in recent years. However, the test performance such as detection limit, sensitivity and stability of exicting phage-based biosensors require enhancement. In the design of sensors, the selection of various materials and construction methods significantly influences the test performance of the sensor, and employing appropriate signal amplification strategies and construction methods to devise biosensors based on different principles is an effective strategy to enhance sensor performance. The manuscript primarily focuses on the signal amplification strategies and construction methods employed in phage-based biosensors recent ten years, and summarizes the advantages and disadvantages of different signal amplification strategies and construction methods. Meanwhile, the manuscript discusses the relationship between sensor performance and various materials and construction methods, and reviews the application progress of phage-based electrochemical biosensors in the detection of foodborne bacteria. Furthermore, the manuscript points out the present limitations and the future research direction for the field of phage-based biosensors, so as to provide the reference for developing high-performance phage-based biosensors.
Collapse
Affiliation(s)
- Jiahao Wang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Yuqing Zheng
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hongkai Huang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Ya Ma
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Xiaojuan Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
5
|
Parker DR, Nugen SR. Bacteriophage-Based Bioanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:393-410. [PMID: 39018352 DOI: 10.1146/annurev-anchem-071323-084224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Bacteriophages, which are viral predators of bacteria, have evolved to efficiently recognize, bind, infect, and lyse their host, resulting in the release of tens to hundreds of propagated viruses. These abilities have attracted biosensor developers who have developed new methods to detect bacteria. Recently, several comprehensive reviews have covered many of the advances made regarding the performance of phage-based biosensors. Therefore, in this review, we first describe the landscape of phage-based biosensors and then cover advances in other aspects of phage biology and engineering that can be used to make high-impact contributions to biosensor development. Many of these advances are in fields adjacent to analytical chemistry such as synthetic biology, machine learning, and genetic engineering and will allow those looking to develop phage-based biosensors to start taking alternative approaches, such as a bottom-up design and synthesis of custom phages with the singular task of detecting their host.
Collapse
Affiliation(s)
- David R Parker
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| | - Sam R Nugen
- Department of Food Science, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
6
|
Wahid B, Tiwana MS. Bacteriophage-based bioassays: an expected paradigm shift in microbial diagnostics. Future Microbiol 2024; 19:811-824. [PMID: 38900594 PMCID: PMC11290765 DOI: 10.2217/fmb-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/01/2024] [Indexed: 06/22/2024] Open
Abstract
Bacteriophages, as abundant and specific agents, hold significant promise as a solution to combat the growing threat of antimicrobial resistance. Their unique ability to selectively lyse bacterial cells without harming humans makes them a compelling alternative to traditional antibiotics and point-of-care diagnostics. The article reviews the current landscape of diagnostic technologies, identify gaps and highlight emerging possibilities demonstrates a comprehensive approach to advancing clinical diagnosis of microbial pathogens and covers an overview of existing phage-based bioassays. Overall, the provided data in this review effectively communicates the potential of bacteriophages in transforming therapeutic and diagnostic paradigms, offering a holistic perspective on the benefits and opportunities they present in combating microbial infections and enhancing public health.
Collapse
Affiliation(s)
- Braira Wahid
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton VIC Australia
| | | |
Collapse
|
7
|
Tamura A, Azam AH, Nakamura T, Lee K, Iyoda S, Kondo K, Ojima S, Chihara K, Yamashita W, Cui L, Akeda Y, Watashi K, Takahashi Y, Yotsuyanagi H, Kiga K. Synthetic phage-based approach for sensitive and specific detection of Escherichia coli O157. Commun Biol 2024; 7:535. [PMID: 38710842 PMCID: PMC11074155 DOI: 10.1038/s42003-024-06247-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Escherichia coli O157 can cause foodborne outbreaks, with infection leading to severe disease such as hemolytic-uremic syndrome. Although phage-based detection methods for E. coli O157 are being explored, research on their specificity with clinical isolates is lacking. Here, we describe an in vitro assembly-based synthesis of vB_Eco4M-7, an O157 antigen-specific phage with a 68-kb genome, and its use as a proof of concept for E. coli O157 detection. Linking the detection tag to the C-terminus of the tail fiber protein, gp27 produces the greatest detection sensitivity of the 20 insertions sites tested. The constructed phage detects all 53 diverse clinical isolates of E. coli O157, clearly distinguishing them from 35 clinical isolates of non-O157 Shiga toxin-producing E. coli. Our efficient phage synthesis methods can be applied to other pathogenic bacteria for a variety of applications, including phage-based detection and phage therapy.
Collapse
Affiliation(s)
- Azumi Tamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tomohiro Nakamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kohei Kondo
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kotaro Chihara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Wakana Yamashita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan.
| |
Collapse
|
8
|
Zborowsky S, Balacheff Q, Theodorou I, Kane R, Delattre R, Weitz JS, Tournebize R, Debarbieux L. A nanoluciferase-encoded bacteriophage illuminates viral infection dynamics of Pseudomonas aeruginosa cells. ISME COMMUNICATIONS 2024; 4:ycae105. [PMID: 39296778 PMCID: PMC11409504 DOI: 10.1093/ismeco/ycae105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024]
Abstract
Bacteriophages (phages) are increasingly considered for both treatment and early detection of bacterial pathogens given their specificity and rapid infection kinetics. Here, we exploit an engineered phage expressing nanoluciferase to detect signals associated with Pseudomonas aeruginosa lysis spanning single cells to populations. Using several P. aeruginosa strains we found that the latent period, burst size, fraction of infected cells, and efficiency of plating inferred from fluorescent light intensity signals were consistent with inferences from conventional population assays. Notably, imaging-based traits were obtained in minutes to hours in contrast to the use of overnight plaques, which opens the possibility to study infection dynamics in spatial and/or temporal contexts where plaque development is infeasible. These findings support the use of engineered phages to study infection kinetics of virus-cell interactions in complex environments and potentially accelerate the determination of viral host range in therapeutically relevant contexts.
Collapse
Affiliation(s)
- Sophia Zborowsky
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Quentin Balacheff
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Ioanna Theodorou
- Institut Pasteur, UTechS Photonic Bioimaging, C2RT, 75015 Paris, France
| | - Rokhaya Kane
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Raphaëlle Delattre
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
- Université Paris Cité, INSERM U1137, IAME, F-75006 Paris, France
| | - Joshua S Weitz
- Department of Biology, University of Maryland, College Park, MD 20742, United States
- Institut de Biologie, École Normale Supérieure, 75005 Paris, France
| | - Régis Tournebize
- Institut Pasteur, UTechS Photonic Bioimaging, C2RT, 75015 Paris, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| |
Collapse
|
9
|
Lv S, Wang Y, Jiang K, Guo X, Zhang J, Zhou F, Li Q, Jiang Y, Yang C, Teng T. Genetic Engineering and Biosynthesis Technology: Keys to Unlocking the Chains of Phage Therapy. Viruses 2023; 15:1736. [PMID: 37632078 PMCID: PMC10457950 DOI: 10.3390/v15081736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Phages possess the ability to selectively eliminate pathogenic bacteria by recognizing bacterial surface receptors. Since their discovery, phages have been recognized for their potent bactericidal properties, making them a promising alternative to antibiotics in the context of rising antibiotic resistance. However, the rapid emergence of phage-resistant strains (generally involving temperature phage) and the limited host range of most phage strains have hindered their antibacterial efficacy, impeding their full potential. In recent years, advancements in genetic engineering and biosynthesis technology have facilitated the precise engineering of phages, thereby unleashing their potential as a novel source of antibacterial agents. In this review, we present a comprehensive overview of the diverse strategies employed for phage genetic engineering, as well as discuss their benefits and drawbacks in terms of bactericidal effect.
Collapse
Affiliation(s)
- Sixuan Lv
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Kaixin Jiang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Xinge Guo
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jing Zhang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fang Zhou
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qiming Li
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuan Jiang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Changyong Yang
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- School of Nursing and Health, Henan University, Kaifeng 475004, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
10
|
Mazumder R, Hussain A, Bhadra B, Phelan J, Campino S, Clark TG, Mondal D. Case report: A successfully treated case of community-acquired urinary tract infection due to Klebsiella aerogenes in Bangladesh. Front Med (Lausanne) 2023; 10:1206756. [PMID: 37435536 PMCID: PMC10330784 DOI: 10.3389/fmed.2023.1206756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Klebsiella aerogenes, a nosocomial pathogen, is increasingly associated with extensive drug resistance and virulence profiles. It is responsible for high morbidity and mortality. This report describes the first successfully treated case of community-acquired urinary tract infection (UTI) caused by Klebsiella aerogenes in an elderly housewife with Type-2 diabetes (T2D) from Dhaka, Bangladesh. The patient was empirically treated with intravenous ceftriaxone (500 mg/8 h). However, she did not respond to the treatment. The urine culture and sensitivity tests, coupled with bacterial whole-genome sequencing (WGS) and analysis, revealed the bacteria to be K. aerogenes which was extensively drug-resistant but was susceptible to carbapenems and polymyxins. Based on these findings, meropenem (500 mg/8 h) was administered to the patient, who then responded to the treatment and recovered successfully without having a relapse. This case raises awareness of the importance of diagnosis of not-so-common etiological agents, correct identification of the pathogens, and targeted antibiotic therapy. In conclusion, correctly identifying etiological agents of UTI using WGS approaches that are otherwise difficult to diagnose could help improve the identification of infectious agents and improve the management of infectious diseases.
Collapse
Affiliation(s)
- Razib Mazumder
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Arif Hussain
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Bithika Bhadra
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Jody Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dinesh Mondal
- Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| |
Collapse
|
11
|
Tailoring the Host Range of Ackermannviridae Bacteriophages through Chimeric Tailspike Proteins. Viruses 2023; 15:v15020286. [PMID: 36851500 PMCID: PMC9965104 DOI: 10.3390/v15020286] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Host range is a major determinant in the industrial utility of a bacteriophage. A model host range permits broad recognition across serovars of a target bacterium while avoiding cross-reactivity with commensal microbiota. Searching for a naturally occurring bacteriophage with ideal host ranges is challenging, time-consuming, and restrictive. To address this, SPTD1.NL, a previously published luciferase reporter bacteriophage for Salmonella, was used to investigate manipulation of host range through receptor-binding protein engineering. Similar to related members of the Ackermannviridae bacteriophage family, SPTD1.NL possessed a receptor-binding protein gene cluster encoding four tailspike proteins, TSP1-4. Investigation of the native gene cluster through chimeric proteins identified TSP3 as the tailspike protein responsible for Salmonella detection. Further analysis of chimeric phages revealed that TSP2 contributed off-target Citrobacter recognition, whereas TSP1 and TSP4 were not essential for activity against any known host. To improve the host range of SPTD1.NL, TSP1 and TSP2 were sequentially replaced with chimeric receptor-binding proteins targeting Salmonella. This engineered construct, called RBP-SPTD1-3, was a superior diagnostic reporter, sensitively detecting additional Salmonella serovars while also demonstrating improved specificity. For industrial applications, bacteriophages of the Ackermannviridae family are thus uniquely versatile and may be engineered with multiple chimeric receptor-binding proteins to achieve a custom-tailored host range.
Collapse
|
12
|
Bhunia AK, Singh AK, Parker K, Applegate BM. Petri-plate, bacteria, and laser optical scattering sensor. Front Cell Infect Microbiol 2022; 12:1087074. [PMID: 36619754 PMCID: PMC9813400 DOI: 10.3389/fcimb.2022.1087074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Classical microbiology has paved the path forward for the development of modern biotechnology and microbial biosensing platforms. Microbial culturing and isolation using the Petri plate revolutionized the field of microbiology. In 1887, Julius Richard Petri invented possibly the most important tool in microbiology, the Petri plate, which continues to have a profound impact not only on reliably isolating, identifying, and studying microorganisms but also manipulating a microbe to study gene expression, virulence properties, antibiotic resistance, and production of drugs, enzymes, and foods. Before the recent advances in gene sequencing, microbial identification for diagnosis relied upon the hierarchal testing of a pure culture isolate. Direct detection and identification of isolated bacterial colonies on a Petri plate with a sensing device has the potential for revolutionizing further development in microbiology including gene sequencing, pathogenicity study, antibiotic susceptibility testing , and for characterizing industrially beneficial traits. An optical scattering sensor designated BARDOT (bacterial rapid detection using optical scattering technology) that uses a red-diode laser, developed at the beginning of the 21st century at Purdue University, some 220 years after the Petri-plate discovery can identify and study bacteria directly on the plate as a diagnostic tool akin to Raman scattering and hyperspectral imaging systems for application in clinical and food microbiology laboratories.
Collapse
Affiliation(s)
- Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Purdue University, Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
| | - Atul K. Singh
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Clear Labs, San Carlos, CA, United States
| | - Kyle Parker
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Bruce M. Applegate
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Purdue University, Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
13
|
Studies on Simultaneous Enrichment and Detection of Escherichia coli O157:H7 during Sample Shipment. Foods 2022; 11:foods11223653. [PMID: 36429244 PMCID: PMC9689055 DOI: 10.3390/foods11223653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
The USDA-FSIS has zero tolerance for E. coli O157:H7 in raw ground beef. Currently, FSIS collects samples from beef processing facilities and ships them overnight to regional testing laboratories. Pathogen detection requires robust methods that employ an initial 15-24 h culture enrichment. This study assessed the potential of using the ΦV10nluc phage-based luminescence detection assay during enrichment while the sample is in transit. Parameters including phage concentrations, temperature, and media-to-sample ratios were evaluated. Results in liquid media showed that 1.73× 103 pfu/mL of ΦV10nluc was able to detect 2 CFU in 10 h. The detection of E. coli O157:H7 was further evaluated in kinetic studies using ratios of 1:3, 1:2, and 1:1 ground beef sample to enrichment media, yielding positive results for as little as 2-3 CFU in 325 g ground beef in about 15 h at 37 °C. These results suggest that this approach is feasible, allowing the detection of a presumptive positive upon arrival of the sample to the testing lab. As the current cargo hold controlled temperature is required to be 15-25 °C, the need for elevated temperature should be easily addressed. If successful, this approach could be expanded to other pathogens and foods.
Collapse
|
14
|
Al-Hindi RR, Teklemariam AD, Alharbi MG, Alotibi I, Azhari SA, Qadri I, Alamri T, Harakeh S, Applegate BM, Bhunia AK. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment. BIOSENSORS 2022; 12:905. [PMID: 36291042 PMCID: PMC9599427 DOI: 10.3390/bios12100905] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
Foodborne microorganisms are an important cause of human illness worldwide. Two-thirds of human foodborne diseases are caused by bacterial pathogens throughout the globe, especially in developing nations. Despite enormous developments in conventional foodborne pathogen detection methods, progress is limited by the assay complexity and a prolonged time-to-result. The specificity and sensitivity of assays for live pathogen detection may also depend on the nature of the samples being analyzed and the immunological or molecular reagents used. Bacteriophage-based biosensors offer several benefits, including specificity to their host organism, the detection of only live pathogens, and resistance to extreme environmental factors such as organic solvents, high temperatures, and a wide pH range. Phage-based biosensors are receiving increasing attention owing to their high degree of accuracy, specificity, and reduced assay times. These characteristics, coupled with their abundant supply, make phages a novel bio-recognition molecule in assay development, including biosensors for the detection of foodborne bacterial pathogens to ensure food safety. This review provides comprehensive information about the different types of phage-based biosensor platforms, such as magnetoelastic sensors, quartz crystal microbalance, and electrochemical and surface plasmon resonance for the detection of several foodborne bacterial pathogens from various representative food matrices and environmental samples.
Collapse
Affiliation(s)
- Rashad R. Al-Hindi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Addisu D. Teklemariam
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona G. Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sheren A. Azhari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bruce M. Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Bhunia
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Abril AG, Carrera M, Notario V, Sánchez-Pérez Á, Villa TG. The Use of Bacteriophages in Biotechnology and Recent Insights into Proteomics. Antibiotics (Basel) 2022; 11:653. [PMID: 35625297 PMCID: PMC9137636 DOI: 10.3390/antibiotics11050653] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Phages have certain features, such as their ability to form protein-protein interactions, that make them good candidates for use in a variety of beneficial applications, such as in human or animal health, industry, food science, food safety, and agriculture. It is essential to identify and characterize the proteins produced by particular phages in order to use these viruses in a variety of functional processes, such as bacterial detection, as vehicles for drug delivery, in vaccine development, and to combat multidrug resistant bacterial infections. Furthermore, phages can also play a major role in the design of a variety of cheap and stable sensors as well as in diagnostic assays that can either specifically identify specific compounds or detect bacteria. This article reviews recently developed phage-based techniques, such as the use of recombinant tempered phages, phage display and phage amplification-based detection. It also encompasses the application of phages as capture elements, biosensors and bioreceptors, with a special emphasis on novel bacteriophage-based mass spectrometry (MS) applications.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain;
| | - Vicente Notario
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA;
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
| |
Collapse
|
16
|
Alonzo LF, Jain P, Hinkley T, Clute-Reinig N, Garing S, Spencer E, Dinh VTT, Bell D, Nugen S, Nichols KP, Le Ny ALM. Rapid, sensitive, and low-cost detection of Escherichia coli bacteria in contaminated water samples using a phage-based assay. Sci Rep 2022; 12:7741. [PMID: 35562180 PMCID: PMC9095594 DOI: 10.1038/s41598-022-11468-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Inadequate drinking water quality is among the major causes of preventable mortality, predominantly in young children. Identifying contaminated water sources remains a significant challenge, especially where resources are limited. The current methods for measuring Escherichia coli (E. coli), the WHO preferred indicator for measuring fecal contamination of water, involve overnight incubation and require specialized training. In 2016, UNICEF released a Target Product Profile (TPP) to incentivize product innovations to detect low levels of viable E. coli in water samples in the field in less than 6 h. Driven by this challenge, we developed a phage-based assay to detect and semi-quantify E. coli. We formulated a phage cocktail containing a total of 8 phages selected against an extensive bacterial strain library and recombined with the sensitive NanoLuc luciferase reporter. The assay was optimized to be processed in a microfluidic chip designed in-house and was tested against locally sourced sewage samples and on drinking water sources in Nairobi, Kenya. With this assay, combined with the microfluidic chip platform, we propose a complete automated solution to detect and semi-quantify E. coli at less than 10 MPN/100 mL in 5.5 h by minimally trained personnel.
Collapse
Affiliation(s)
- Luis F Alonzo
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Global Health Labs, 14360 Eastgate Way, Bellevue, WA, 98007, USA
| | - Paras Jain
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Troy Hinkley
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
| | - Nick Clute-Reinig
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
| | - Spencer Garing
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Global Health Labs, 14360 Eastgate Way, Bellevue, WA, 98007, USA
| | - Ethan Spencer
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Global Health Labs, 14360 Eastgate Way, Bellevue, WA, 98007, USA
| | - Van T T Dinh
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
| | - David Bell
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sam Nugen
- Independent Consultant, Issaquah, WA, 98027, USA
| | - Kevin P Nichols
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA
| | - Anne-Laure M Le Ny
- Intellectual Ventures Laboratory, 14360 SE Eastgate Way, Bellevue, WA, 98007, USA.
- Global Health Labs, 14360 Eastgate Way, Bellevue, WA, 98007, USA.
| |
Collapse
|
17
|
Wang Z, Zhao X. The application and research progress of bacteriophages in food safety. J Appl Microbiol 2022; 133:2137-2147. [PMID: 35353432 DOI: 10.1111/jam.15555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/26/2022] [Indexed: 11/29/2022]
Abstract
The abuse of antibiotics and the emergence of drug-resistant bacteria aggravate the problem of food safety. Finding a safe and efficient antibiotic substitute is an inevitable demand for ensuring the safety of animal-derived food. Bacteriophages are a kind of virus that can infect bacteria, fungi or actinomycetes. They have the advantages of simple structure, strong specificity and non-toxic side effects to human body. Bacteriophages can not only differentiate live cells from dead ones, but also detect bacteria in a viable but nonculturable state. These characteristics make bacteriophages more and more widely used in food industry. This paper describes the concept and characteristics of bacteriophages, introduces the application of bacteriophages in pre-harvest production, food processing, storage and sales. Several methods of bacteriophage detection of foodborne pathogens are listed. Finally, the advantages and limitations of bacteriophages in food industry are summarized, and the application prospect of bacteriophages in food industry are prospected.
Collapse
Affiliation(s)
- Zhihui Wang
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| |
Collapse
|
18
|
Erickson S, Paulson J, Brown M, Hahn W, Gil J, Barron-Montenegro R, Moreno-Switt AI, Eisenberg M, Nguyen MM. Isolation and engineering of a Listeria grayi bacteriophage. Sci Rep 2021; 11:18947. [PMID: 34556683 PMCID: PMC8460666 DOI: 10.1038/s41598-021-98134-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/03/2021] [Indexed: 01/02/2023] Open
Abstract
The lack of bacteriophages capable of infecting the Listeria species, Listeria grayi, is academically intriguing and presents an obstacle to the development of bacteriophage-based technologies for Listeria. We describe the isolation and engineering of a novel L. grayi bacteriophage, LPJP1, isolated from farm silage. With a genome over 200,000 base pairs, LPJP1 is the first and only reported jumbo bacteriophage infecting the Listeria genus. Similar to other Gram-positive jumbo phages, LPJP1 appeared to contain modified base pairs, which complicated initial attempts to obtain genomic sequence using standard methods. Following successful sequencing with a modified approach, a recombinant of LPJP1 encoding the NanoLuc luciferase was engineered using homologous recombination. This luciferase reporter bacteriophage successfully detected 100 stationary phase colony forming units of both subspecies of L. grayi in four hours. A single log phase colony forming unit was also sufficient for positive detection in the same time period. The recombinant demonstrated complete specificity for this particular Listeria species and did not infect 150 non-L. grayi Listeria strains nor any other bacterial genus. LPJP1 is believed to be the first reported lytic bacteriophage of L. grayi as well as the only jumbo bacteriophage to be successfully engineered into a luciferase reporter.
Collapse
Affiliation(s)
- Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA.
| | - John Paulson
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| | - Matthew Brown
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Wendy Hahn
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| | - Jose Gil
- Laboratory Corporation of America Holdings, Los Angeles, CA, 90062, USA
| | - Rocío Barron-Montenegro
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacteria Resistance (MICROB-R), Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Initiative for Collaborative Research on Bacteria Resistance (MICROB-R), Santiago, Chile
| | - Marcia Eisenberg
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Minh M Nguyen
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| |
Collapse
|
19
|
Xu L, Bai X, Bhunia AK. Current State of Development of Biosensors and Their Application in Foodborne Pathogen Detection. J Food Prot 2021; 84:1213-1227. [PMID: 33710346 DOI: 10.4315/jfp-20-464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/11/2021] [Indexed: 01/16/2023]
Abstract
ABSTRACT Foodborne disease outbreaks continue to be a major public health and food safety concern. Testing products promptly can protect consumers from foodborne diseases by ensuring the safety of food before retail distribution. Fast, sensitive, and accurate detection tools are in great demand. Therefore, various approaches have been explored recently to find a more effective way to incorporate antibodies, oligonucleotides, phages, and mammalian cells as signal transducers and analyte recognition probes on biosensor platforms. The ultimate goal is to achieve high specificity and low detection limits (1 to 100 bacterial cells or piconanogram concentrations of toxins). Advancements in mammalian cell-based and bacteriophage-based sensors have produced sensors that detect low levels of pathogens and differentiate live from dead cells. Combinations of biotechnology platforms have increased the practical utility and application of biosensors for detection of foodborne pathogens. However, further rigorous testing of biosensors with complex food matrices is needed to ensure the utility of these sensors for point-of-care needs and outbreak investigations. HIGHLIGHTS
Collapse
Affiliation(s)
- Luping Xu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Xingjian Bai
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
20
|
Zelcbuch L, Yitzhaki E, Nissan O, Gidron E, Buchshtab N, Kario E, Kredo-Russo S, Zak NB, Bassan M. Luminescent Phage-Based Detection of Klebsiella pneumoniae: From Engineering to Diagnostics. Pharmaceuticals (Basel) 2021; 14:347. [PMID: 33918942 PMCID: PMC8069110 DOI: 10.3390/ph14040347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages ("phages") infect and multiply within specific bacterial strains, causing lysis of their target. Due to the specific nature of these interactions, phages allow a high-precision approach for therapy which can also be exploited for the detection of phage-sensitive pathogens associated with chronic diseases due to gut microbiome imbalance. As rapid phage-mediated detection assays becoming standard-of-care diagnostic tools, they will advance the more widespread application of phage therapy in a precision approach. Using a conventional method and a new cloning approach to develop luminescent phages, we engineered two phages that specifically detect a disease-associated microbial strain. We performed phage sensitivity assays in liquid culture and in fecal matrices and tested the stability of spiked fecal samples stored under different conditions. Different reporter gene structures and genome insertion sites were required to successfully develop the two nluc-reporter phages. The reporter phages detected spiked bacteria in five fecal samples with high specificity. Fecal samples stored under different conditions for up to 30 days did not display major losses in reporter-phage-based detection. Luminescent phage-based diagnostics can provide a rapid co-diagnostic tool to guide the growing field of phage therapy, particularly for a precision-based approach to chronic diseases treatment.
Collapse
Affiliation(s)
- Lior Zelcbuch
- Research Department, BiomX Ltd., Ness Ziona 7414002, Israel; (E.Y.); (O.N.); (E.G.); (N.B.); (E.K.); (S.K.-R.); (N.B.Z.); (M.B.)
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kanach A, Bottorff T, Zhao M, Wang J, Chiu GTC, Applegate B. Evaluation of anhydrous processing and storage methods of the temperate bacteriophage ɸV10 for integration into foodborne pathogen detection methodologies. PLoS One 2021; 16:e0249473. [PMID: 33822808 PMCID: PMC8023450 DOI: 10.1371/journal.pone.0249473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
Due to the nascency of bacteriophage-based pathogen detection technologies, several practical hurdles stand in the way between providing promising proof-of-concept data and development of robust detection platforms. One such hurdle, and the focus of this work, is the development of methods for transitioning laboratory stocks of bacteriophage into functional, consistent, and shelf-stable delivery methods in commercial detection kits. Research described here was undertaken to evaluate two methods for their ability to store the bacteriophage ɸV10 at ambient temperature without aqueous storage solutions while limiting loss of viability. ɸV10 is a temperate bacteriophage which solely infects the zero-tolerance food adulterant Escherichia coli O157:H7 and has been genetically modified to generate a detectable phenotype in host cells. In order to integrate this reporter bacteriophage into food-borne pathogen detection methodologies, two methods of processing phage suspensions for long-term, ambient storage were evaluated: printing solutions onto pieces of dissolvable paper and lyophilizing suspensions with sucrose. Applying phage to dissolvable paper yielded key attributes to consider when addressing phage viability, however, optimized methodology still resulted in an approximate five-log reduction in titer of viable phage. Lyophilization of ɸV10 with various concentrations of the cryoprotectant molecule, sucrose, yielded losses of approximately 0.3-log after 120 days of storage at 23°C. Liquid storage buffer samples with and without sucrose saw a reduction of viable phage of at least 3.9-log in the same period. Additionally, the ability for ɸV10 to form lysogens in an E. coli O157:H7 host was not negatively affected by lyophilization. Drying ɸV10 at ambient temperature drastically reduces the viability of the phage. However, lyophilizing ɸV10 in the presence of sucrose is an effective method for dehydration and storage of the phage in ambient environmental conditions for an extended time lending to commercial application and integration into foodborne pathogen detection methodologies.
Collapse
Affiliation(s)
- Andrew Kanach
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
- Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, Indiana
| | - Theresa Bottorff
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Min Zhao
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Jun Wang
- Department of Food Science, Purdue University, West Lafayette, Indiana
- College of Food Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - George T. C. Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Bruce Applegate
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
- Department of Food Science, Purdue University, West Lafayette, Indiana
| |
Collapse
|
22
|
Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens Bioelectron 2021; 177:112973. [DOI: 10.1016/j.bios.2021.112973] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
|
23
|
Chen A, Wang D, Nugen SR, Chen J. An Engineered Reporter Phage for the Fluorometric Detection of Escherichia coli in Ground Beef. Microorganisms 2021; 9:microorganisms9020436. [PMID: 33669833 PMCID: PMC7922204 DOI: 10.3390/microorganisms9020436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
Despite enhanced sanitation implementations, foodborne bacterial pathogens still remain a major threat to public health and generate high costs for the food industry. Reporter bacteriophage (phage) systems have been regarded as a powerful technology for diagnostic assays for their extraordinary specificity to target cells and cost-effectiveness. Our study introduced an enzyme-based fluorescent assay for detecting the presence of E. coli using the T7 phage engineered with the lacZ operon which encodes beta-galactosidase (β-gal). Both endogenous and overexpressed β-gal expression was monitored using a fluorescent-based method with 4-methylumbelliferyl β-d-galactopyranoside (MUG) as the substrate. The infection of E. coli with engineered phages resulted in a detection limit of 10 CFU/mL in ground beef juice after 7 h of incubation. In this study, we demonstrated that the overexpression of β-gal coupled with a fluorogenic substrate can provide a straightforward and sensitive approach to detect the potential biological contamination in food samples. The results also suggested that this system can be applied to detect E. coli strains isolated from environmental samples, indicating a broader range of bacterial detection.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
| | - Danhui Wang
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
- Correspondence:
| | - Juhong Chen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA; (A.C.); (D.W.); (J.C.)
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
24
|
FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosens Bioelectron 2021; 178:113011. [PMID: 33517232 DOI: 10.1016/j.bios.2021.113011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 02/08/2023]
Abstract
We review the challenges and opportunities for biosensor research in North America aimed to accelerate translational research. We call for platform approaches based on: i) tools that can support interoperability between food, environment and agriculture, ii) open-source tools for analytics, iii) algorithms used for data and information arbitrage, and iv) use-inspired sensor design. We summarize select mobile devices and phone-based biosensors that couple analytical systems with biosensors for improving decision support. Over 100 biosensors developed by labs in North America were analyzed, including lab-based and portable devices. The results of this literature review show that nearly one quarter of the manuscripts focused on fundamental platform development or material characterization. Among the biosensors analyzed for food (post-harvest) or environmental applications, most devices were based on optical transduction (whether a lab assay or portable device). Most biosensors for agricultural applications were based on electrochemical transduction and few utilized a mobile platform. Presently, the FEAST of biosensors has produced a wealth of opportunity but faces a famine of actionable information without a platform for analytics.
Collapse
|
25
|
Jones HJ, Shield CG, Swift BM. The Application of Bacteriophage Diagnostics for Bacterial Pathogens in the Agricultural Supply Chain: From Farm-to-Fork. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:176-188. [PMID: 36147287 PMCID: PMC9041468 DOI: 10.1089/phage.2020.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriophages (phages) have great potential not only as therapeutics but as diagnostics. Indeed, they have been developed and used to diagnose and detect bacterial infections, primarily in human clinical settings. The ability to rapidly detect and control bacterial pathogens in agriculture is of primary importance to maintain food security, improve animal health, and prevent the passage of zoonotic pathogens into the human population. Culture-based detection methods are often labor-intensive, and require further confirmatory tests, increasing costs and processing times needed for diagnostics. Molecular detection methods such as polymerase chain reaction are commonly used to determine the safety of food, however, a major drawback is their inability to differentiate between viable and nonviable bacterial pathogens in food. Phage diagnostics have been proven to be rapid, capable of identifying viable pathogens and do not require cultivation to detect bacteria. Phage detection takes advantage of the specificity of interaction between phage and their hosts. Furthermore, phage detection is cost effective, which is vitally important in agricultural supply chains where there is a drive to keep costs down to ensure that the cost of food does not increase. The full potential of phage detection/diagnostics is not wholly realized or commercialized. This review explores the current use and potential future scope of phage diagnostics and their application to various bacterial pathogens across agriculture and food supply chains.
Collapse
Affiliation(s)
- Helen J. Jones
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Christopher G. Shield
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Benjamin M.C. Swift
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
26
|
Nguyen MM, Gil J, Brown M, Cesar Tondo E, Soraya Martins de Aquino N, Eisenberg M, Erickson S. Accurate and sensitive detection of Salmonella in foods by engineered bacteriophages. Sci Rep 2020; 10:17463. [PMID: 33060781 PMCID: PMC7567081 DOI: 10.1038/s41598-020-74587-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Salmonella is a major causative agent of foodborne illness and rapid identification of this pathogen is essential to prevent disease. Currently most assays require high bacterial burdens or prolonged enrichment to achieve acceptable performance. A reduction in testing time without loss of sensitivity is critical to allow food processors to safely decrease product holding time. To meet this need, a method was developed to detect Salmonella using luciferase reporter bacteriophages. Bacteriophages were engineered to express NanoLuc, a novel optimized luciferase originating from the deep-sea shrimp Oplophorus gracilirostris. NanoLuc-expressing bacteriophages had a limit of detection of 10-100 CFU per mL in culture without enrichment. Luciferase reporters demonstrated a broad host range covering all Salmonella species with one reporter detecting 99.3% of 269 inclusivity strains. Cross-reactivity was limited and only observed with other members of the Enterobacteriaceae family. In food matrix studies, a cocktail of engineered bacteriophages accurately detected 1 CFU in either 25 g of ground turkey with a 7 h enrichment or 100 g of powdered infant formula with a 16 h enrichment. Use of the NanoLuc reporter assay described herein resulted in a considerable reduction in enrichment time without a loss of sensitivity.
Collapse
Affiliation(s)
- Minh M Nguyen
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA
| | - Jose Gil
- Laboratory Corporation of America Holdings, Los Angeles, CA, 90062, USA
| | - Matthew Brown
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Eduardo Cesar Tondo
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Porto Alegre, RS, 91501-970, Brazil
| | - Nathanyelle Soraya Martins de Aquino
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Porto Alegre, RS, 91501-970, Brazil
| | - Marcia Eisenberg
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Stephen Erickson
- Laboratory Corporation of America Holdings, New Brighton, MN, 55112, USA.
| |
Collapse
|
27
|
Duong MM, Carmody CM, Nugen SR. Phage-based biosensors: in vivo analysis of native T4 phage promoters to enhance reporter enzyme expression. Analyst 2020; 145:6291-6297. [PMID: 32945826 DOI: 10.1039/d0an01413c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phage-based biosensors have shown significant promise in meeting the present needs of the food and agricultural industries due to a combination of sufficient portability, speed, ease of use, sensitivity, and low production cost. Although current phage-based methods do not meet the bacteria detection limit imposed by the EPA, FDA, and USDA, a better understanding of phage genetics can significantly increase their sensitivity as biosensors. In the current study, the signal sensitivity of a T4 phage-based detection system was improved via transcriptional upregulation of the reporter enzyme Nanoluc luciferase (Nluc). An efficient platform to evaluate the promoter activity of reporter T4 phages was developed. The ability to upregulate Nluc within T4 phages was evaluated using 15 native T4 promoters. Data indicates a six-fold increase in reporter enzyme signal from integration of the selected promoters. Collectively, this work demonstrates that fine tuning the expression of reporter enzymes such as Nluc through optimization of transcription can significantly reduce the limits of detection.
Collapse
Affiliation(s)
- Michelle M Duong
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
28
|
Reporter Phage-Based Detection of Bacterial Pathogens: Design Guidelines and Recent Developments. Viruses 2020; 12:v12090944. [PMID: 32858938 PMCID: PMC7552063 DOI: 10.3390/v12090944] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fast and reliable detection of bacterial pathogens in clinical samples, contaminated food products, and water supplies can drastically improve clinical outcomes and reduce the socio-economic impact of disease. As natural predators of bacteria, bacteriophages (phages) have evolved to bind their hosts with unparalleled specificity and to rapidly deliver and replicate their viral genome. Not surprisingly, phages and phage-encoded proteins have been used to develop a vast repertoire of diagnostic assays, many of which outperform conventional culture-based and molecular detection methods. While intact phages or phage-encoded affinity proteins can be used to capture bacteria, most phage-inspired detection systems harness viral genome delivery and amplification: to this end, suitable phages are genetically reprogrammed to deliver heterologous reporter genes, whose activity is typically detected through enzymatic substrate conversion to indicate the presence of a viable host cell. Infection with such engineered reporter phages typically leads to a rapid burst of reporter protein production that enables highly sensitive detection. In this review, we highlight recent advances in infection-based detection methods, present guidelines for reporter phage construction, outline technical aspects of reporter phage engineering, and discuss some of the advantages and pitfalls of phage-based pathogen detection. Recent improvements in reporter phage construction and engineering further substantiate the potential of these highly evolved nanomachines as rapid and inexpensive detection systems to replace or complement traditional diagnostic approaches.
Collapse
|
29
|
Zurier HS, Duong MM, Goddard JM, Nugen SR. Engineering Biorthogonal Phage-Based Nanobots for Ultrasensitive, In Situ Bacteria Detection. ACS APPLIED BIO MATERIALS 2020; 3:5824-5831. [PMID: 34179727 DOI: 10.1021/acsabm.0c00546] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Advances in synthetic biology, nanotechnology, and genetic engineering are allowing parallel advances in areas such as drug delivery and rapid diagnostics. Although our current visions of nanobots may be far off, a generation of nanobots synthesized by engineering viruses is approaching. Such tools can be used to solve complex problems where current methods do not meet current demands. Assuring safe drinking water is crucial for minimizing the spread of waterborne illnesses. Although extremely low levels of fecal contamination in drinking water are sufficient to cause a public health risk, it remains challenging to rapidly detect Escherichia coli, the standard fecal indicator organism. Current methods sensitive enough to meet regulatory standards suffer from either prohibitively long incubation times or requirement of expensive, impractical equipment. Bacteriophages, tuned by billions of years of evolution to bind viable bacteria and readily engineered to produce custom proteins, are uniquely suited to bacterial detection. We have developed a biosensor platform based on magnetized phages encoding luminescent reporter enzymes. This system utilizes bio-orthogonally functionalized phages to enable site-specific conjugation to magnetic nanoparticles. The resulting phage-based nanobots, when combined with standard, portable field equipment, allow for detection of <10 cfu/100 mL of viable E. coli within 7 h, faster than any methods published to date.
Collapse
Affiliation(s)
- Hannah S Zurier
- Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, United States
| | - Michelle M Duong
- Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, United States
| | - Julie M Goddard
- Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, United States
| | - Sam R Nugen
- Department of Food Science and Technology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Development and Evaluation of a Sensitive Bacteriophage-Based MRSA Diagnostic Screen. Viruses 2020; 12:v12060631. [PMID: 32545159 PMCID: PMC7354448 DOI: 10.3390/v12060631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022] Open
Abstract
Engineered luciferase reporter bacteriophages provide specific, sensitive, rapid and low-cost detection of target bacteria and address growing diagnostic needs in multiple industries. Detection of methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization and antibiotic susceptibility play a critical supportive role in preventing hospital-acquired infections and facilitating antibiotic stewardship. We describe the development and evaluation of a novel phage-based MRSA diagnostic screen for nasal swab specimens. The screen utilizes two luciferase reporter phages capable of recognizing genetically-diverse Staphylococcus aureus. The beta-lactam antibiotic cefoxitin is included to differentiate between resistant (MRSA) and susceptible organisms. The screen positively identified 97.7% of 390 clinical MRSA isolates at low bacterial concentrations. At higher inoculums, 93.5% of 123 clinical non-MRSA Staphylococcus aureus yielded appropriate negative results. Although cross-reactivity of the phage cocktail was observed with other staphylococcal and bacillus species, these false positives were absent under selective conditions. MRSA remained detectable in the presence of 38 distinct competing species and was accurately identified in 100% of 40 spiked nasal specimens. Thus, this six-hour screen sensitively detected MRSA both in vitro and in human nasal matrix.
Collapse
|
31
|
Engineered Reporter Phages for Rapid Bioluminescence-Based Detection and Differentiation of Viable Listeria Cells. Appl Environ Microbiol 2020; 86:AEM.00442-20. [PMID: 32245761 PMCID: PMC7237785 DOI: 10.1128/aem.00442-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
The pathogen Listeria monocytogenes causes listeriosis, a severe foodborne disease associated with high mortality. Rapid and sensitive methods are required for specific detection of this pathogen during food production. Bioluminescence-based reporter bacteriophages are genetically engineered viruses that infect their host cells with high specificity and transduce a heterologous luciferase gene whose activity can be detected with high sensitivity to indicate the presence of viable target cells. Here, we use synthetic biology for de novo genome assembly and activation as well as CRISPR-Cas-assisted phage engineering to construct a set of reporter phages for the detection and differentiation of viable Listeria cells. Based on a single phage backbone, we compare the performance of four reporter phages that encode different crustacean, cnidarian, and bacterial luciferases. From this panel of reporter proteins, nanoluciferase (NLuc) was identified as a superior enzyme and was subsequently introduced into the genomes of a broad host range phage (A511) and two serovar 1/2- and serovar 4b/6a-specific Listeria phages (A006 and A500, respectively). The broad-range NLuc-based phage A511::nluc CPS detects one CFU of L. monocytogenes in 25 g of artificially contaminated milk, cold cuts, and lettuce within less than 24 h. In addition, this reporter phage successfully detected Listeria spp. in potentially contaminated natural food samples without producing false-positive or false-negative results. Finally, A006::nluc and A500::nluc enable serovar-specific Listeria diagnostics. In conclusion, these NLuc-based reporter phages enable rapid, ultrasensitive detection and differentiation of viable Listeria cells using a simple protocol that is 72 h faster than culture-dependent approaches.IMPORTANCE Culture-dependent methods are the gold standard for sensitive and specific detection of pathogenic bacteria within the food production chain. In contrast to molecular approaches, these methods detect viable cells, which is a key advantage for foods generated from heat-inactivated source material. However, culture-based diagnostics are typically much slower than molecular or proteomic strategies. Reporter phage assays combine the best of both worlds and allow for near online assessment of microbial safety because phage replication is extremely fast, highly target specific, and restricted to metabolically active host cells. In addition, reporter phage assays are inexpensive and do not require highly trained personnel, facilitating their on-site implementation. The reporter phages presented in this study not only allow for rapid detection but also enable an early estimation of the potential virulence of Listeria isolates from food production and processing sites.
Collapse
|
32
|
Foddai ACG, Grant IR. Methods for detection of viable foodborne pathogens: current state-of-art and future prospects. Appl Microbiol Biotechnol 2020; 104:4281-4288. [PMID: 32215710 PMCID: PMC7190587 DOI: 10.1007/s00253-020-10542-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
Abstract
The ability to rapidly detect viable pathogens in food is important for public health and food safety reasons. Culture-based detection methods, the traditional means of demonstrating microbial viability, tend to be laborious, time consuming and slow to provide results. Several culture-independent methods to detect viable pathogens have been reported in recent years, including both nucleic acid-based (PCR combined with use of cell viability dyes or reverse-transcriptase PCR to detect messenger RNA) and phage-based (plaque assay or phage amplification and lysis plus PCR/qPCR, immunoassay or enzymatic assay to detect host DNA, progeny phages or intracellular components) methods. Some of these newer methods, particularly phage-based methods, show promise in terms of speed, sensitivity of detection and cost compared with culture for food testing. This review provides an overview of these new approaches and their food testing applications, and discusses their current limitations and future prospects in relation to detection of viable pathogens in food. KEY POINTS: • Cultural methods may be 'gold standard' for assessing viability of pathogens, but they are too slow. • Nucleic acid-based methods offer speed of detection but not consistently proof of cell viability. • Phage-based methods appear to offer best alternative to culture for detecting viable pathogens.
Collapse
Affiliation(s)
- Antonio C G Foddai
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK.
| |
Collapse
|
33
|
Hinkley TC, Garing S, Jain P, Williford J, Le Ny ALM, Nichols KP, Peters JE, Talbert JN, Nugen SR. A Syringe-Based Biosensor to Rapidly Detect Low Levels of Escherichia Coli (ECOR13) in Drinking Water Using Engineered Bacteriophages. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1953. [PMID: 32244369 PMCID: PMC7181147 DOI: 10.3390/s20071953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
A sanitized drinking water supply is an unconditional requirement for public health and the overall prosperity of humanity. Potential microbial and chemical contaminants of drinking water have been identified by a joint effort between the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF), who together establish guidelines that define, in part, that the presence of Escherichia coli (E. coli) in drinking water is an indication of inadequate sanitation and a significant health risk. As E. coli is a nearly ubiquitous resident of mammalian gastrointestinal tracts, no detectable counts in 100 mL of drinking water is the standard used worldwide as an indicator of sanitation. The currently accepted EPA method relies on filtration, followed by growth on selective media, and requires 24-48 h from sample to results. In response, we developed a rapid bacteriophage-based detection assay with detection limit capabilities comparable to traditional methods in less than a quarter of the time. We coupled membrane filtration with selective enrichment using genetically engineered bacteriophages to identify less than 20 colony forming units (CFU) E. coli in 100 mL drinking water within 5 h. The combination of membrane filtration with phage infection produced a novel assay that demonstrated a rapid, selective, and sensitive detection of an indicator organism in large volumes of drinking water as recommended by the leading world regulatory authorities.
Collapse
Affiliation(s)
- Troy C. Hinkley
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Spencer Garing
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Paras Jain
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - John Williford
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Anne-Laure M. Le Ny
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Kevin P. Nichols
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA 98007, USA; (S.G.); (P.J.); (J.W.); (A.-L.M.L.N.); (K.P.N.)
| | - Joseph E. Peters
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
| | - Joey N. Talbert
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA;
| | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
34
|
Bacteriophage Based Biosensors: Trends, Outcomes and Challenges. NANOMATERIALS 2020; 10:nano10030501. [PMID: 32168802 PMCID: PMC7153619 DOI: 10.3390/nano10030501] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/04/2023]
Abstract
Foodborne pathogens are one of the main concerns in public health, which can have a serious impact on community health and health care systems. Contamination of foods by bacterial pathogens (such as Staphylococcus aureus, Streptococci, Legionella pneumophila, Escherichia coli, Campylobacter jejuni and Salmonella typhimurium) results in human infection. A typical example is the current issue with Coronavirus, which has the potential for foodborne transmission and ruling out such concerns is often difficult. Although, the possible dissemination of such viruses via the food chain has been raised. Standard bacterial detection methods require several hours or even days to obtain the results, and the delay may result in food poisoning to eventuate. Conventional biochemical and microbiological tests are expensive, complex, time-consuming and not always reliable. Therefore, there are urgent demands to develop simple, cheap, quick, sensitive, specific and reliable tests for the detection of these pathogens in foods. Recent advances in smart materials, nanomaterials and biomolecular modeling have been a quantum leap in the development of biosensors in overcoming the limitations of a conventional standard laboratory assay. This research aimed to critically review bacteriophage-based biosensors, used for the detection of foodborne pathogens, as well as their trends, outcomes and challenges are discussed. The future perspective in the use of simple and cheap biosensors is in the development of lab-on-chips, and its availability in every household to test the quality of their food.
Collapse
|
35
|
Jung Y, Coronel-Aguilera C, Doh IJ, Min HJ, Lim T, Applegate BM, Bae E. Design and application of a portable luminometer for bioluminescence detection. APPLIED OPTICS 2020; 59:801-810. [PMID: 32225212 DOI: 10.1364/ao.59.000801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The silicon photomultiplier (SiPM) for low light detection has many advantages when compared to existing photon counting detectors, such as high sensitivity, low cost, robustness, and compact hardware. To facilitate the use of SiPM as a portable, field deployable device, an electrical circuit was designed consisting of an amplifier, comparator, and microcontroller. In addition, a 3D printing was used to create a portable cradle for housing the SiPM. To evaluate its detection ability, a laser experiment and bioluminescent experiments, including Pseudomonas fluorescens M3A detection, E. coli O157:H7 PhiV10nluc lysogen detection, and a luminescence-based detection of E. coli O157:H7 in ground meat using the engineered luminescent-based reporter phage PhiV10nluc, were conducted. In the same experimental setting, our previously developed smartphone-based luminometer called the bioluminescent-based analyte quantitation by smartphone and a conventional photomultiplier tube-based benchtop luminometer were used to compare detection levels and applicability for supporting luminescent phage-based pathogen detection. Results showed that the SiPM provides better performance in terms of time to detection and SNR and could be used as the light detection component of the PhiV10nluc phage-based detection format.
Collapse
|
36
|
Colorimetric detection of Escherichia coli using engineered bacteriophage and an affinity reporter system. Anal Bioanal Chem 2019; 411:7273-7279. [PMID: 31511947 DOI: 10.1007/s00216-019-02095-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/12/2019] [Accepted: 08/27/2019] [Indexed: 01/21/2023]
Abstract
Reporter phage systems have emerged as a promising technology for the detection of bacteria in foods and water. However, the sensitivity of these assays is often limited by the concentration of the expressed reporter as well as matrix interferences associated with the sample. In this study, bacteriophage T7 was engineered to overexpress mutated alkaline phosphatase fused to a carbohydrate-binding module (ALP*-CBM) following infection of E. coli to enable colorimetric detection in a model system. Magnetic cellulose particles were employed to separate and concentrate the overexpressed ALP*-CBM in bacterial lysate. Infection of E. coli with the engineered phage resulted in a limit of quantitation of 1.2 × 105 CFU, equating to 1.2 × 103 CFU/mL in 3.5 h when using a colorimetric assay and 100 mL sample volume. When employing an enrichment step, < 101 CFU/mL could be visually detected from a 100 mL sample volume within 8 h. These results suggest that affinity tag modified enzymes coupled with a material support can provide a simple and effective means to improve signal sensitivity of phage-based assays. Graphical abstract.
Collapse
|
37
|
Understanding and Exploiting Phage-Host Interactions. Viruses 2019; 11:v11060567. [PMID: 31216787 PMCID: PMC6630733 DOI: 10.3390/v11060567] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 01/05/2023] Open
Abstract
Initially described a century ago by William Twort and Felix d’Herelle, bacteriophages are bacterial viruses found ubiquitously in nature, located wherever their host cells are present. Translated literally, bacteriophage (phage) means ‘bacteria eater’. Phages interact and infect specific bacteria while not affecting other bacteria or cell lines of other organisms. Due to the specificity of these phage–host interactions, the relationship between phages and their host cells has been the topic of much research. The advances in phage biology research have led to the exploitation of these phage–host interactions and the application of phages in the agricultural and food industry. Phages may provide an alternative to the use of antibiotics, as it is well known that the emergence of antibiotic-resistant bacterial infections has become an epidemic in clinical settings. In agriculture, pre-harvest and/or post-harvest application of phages to crops may prevent the colonisation of bacteria that are detrimental to plant or human health. In addition, the abundance of data generated from genome sequencing has allowed the development of phage-derived bacterial detection systems of foodborne pathogens. This review aims to outline the specific interactions between phages and their host and how these interactions may be exploited and applied in the food industry.
Collapse
|
38
|
Hinkley TC, Garing S, Singh S, Le Ny ALM, Nichols KP, Peters JE, Talbert JN, Nugen SR. Reporter bacteriophage T7 NLC utilizes a novel NanoLuc::CBM fusion for the ultrasensitive detection of Escherichia coli in water. Analyst 2019; 143:4074-4082. [PMID: 30069563 DOI: 10.1039/c8an00781k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rapid detection of bacteria responsible for foodborne diseases is a growing necessity for public health. Reporter bacteriophages (phages) are robust biorecognition elements uniquely suited for the rapid and sensitive detection of bacterial species. The advantages of phages include their host specificity, ability to distinguish viable and non-viable cells, low cost, and ease of genetic engineering. Upon infection with reporter phages, target bacteria express reporter enzymes encoded within the phage genome. In this study, the T7 coliphage was genetically engineered to express the newly developed luceriferase, NanoLuc (NLuc), as an indicator of bacterial contamination. While several genetic approaches were employed to optimize reporter enzyme expression, the novel achievement of this work was the successful fusion of the NanoLuc reporter to a carbohydrate binding module (CBM) with specificity to crystalline cellulose. This novel chimeric reporter (nluc::cbm) bestows the specific and irreversible immobilization of NanoLuc onto a low-cost, widely available crystalline cellulosic substrate. We have shown the possibility of detecting the immobilized fusion protein in a filter plate which resulted from a single CFU of E. coli. We then demonstrated that microcrystalline cellulose can be used to concentrate the fusion reporter from 100 mL water samples allowing a limit of detection of <10 CFU mL-1E. coli in 3 hours. Therefore, we conclude that our phage-based detection assay displays significant aptitude as a proof-of-concept drinking water diagnostic assay for the low-cost, rapid and sensitive detection of E. coli. Additional improvements in the capture efficiency of the phage-based fusion reporter should allow a limit of detection of <10 CFU per 100 mL.
Collapse
Affiliation(s)
- T C Hinkley
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Dale NC, Johnstone EKM, White CW, Pfleger KDG. NanoBRET: The Bright Future of Proximity-Based Assays. Front Bioeng Biotechnol 2019; 7:56. [PMID: 30972335 PMCID: PMC6443706 DOI: 10.3389/fbioe.2019.00056] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Bioluminescence resonance energy transfer (BRET) is a biophysical technique used to monitor proximity within live cells. BRET exploits the naturally occurring phenomenon of dipole-dipole energy transfer from a donor enzyme (luciferase) to an acceptor fluorophore following enzyme-mediated oxidation of a substrate. This results in production of a quantifiable signal that denotes proximity between proteins and/or molecules tagged with complementary luciferase and fluorophore partners. BRET assays have been used to observe an array of biological functions including ligand binding, intracellular signaling, receptor-receptor proximity, and receptor trafficking, however, BRET assays can theoretically be used to monitor the proximity of any protein or molecule for which appropriate fusion constructs and/or fluorophore conjugates can be produced. Over the years, new luciferases and approaches have been developed that have increased the potential applications for BRET assays. In particular, the development of the small, bright and stable Nanoluciferase (NanoLuc; Nluc) and its use in NanoBRET has vastly broadened the potential applications of BRET assays. These advances have exciting potential to produce new experimental methods to monitor protein-protein interactions (PPIs), protein-ligand interactions, and/or molecular proximity. In addition to NanoBRET, Nluc has also been exploited to produce NanoBiT technology, which further broadens the scope of BRET to monitor biological function when NanoBiT is combined with an acceptor. BRET has proved to be a powerful tool for monitoring proximity and interaction, and these recent advances further strengthen its utility for a range of applications.
Collapse
Affiliation(s)
- Natasha C Dale
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Carl W White
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA, Australia.,Centre for Medical Research, The University of Western Australia, Crawley, WA, Australia.,Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia.,Dimerix Limited, Nedlands, WA, Australia
| |
Collapse
|
40
|
Pulkkinen EM, Hinkley TC, Nugen SR. Utilizing in vitro DNA assembly to engineer a synthetic T7 Nanoluc reporter phage for Escherichia coli detection. Integr Biol (Camb) 2019; 11:63-68. [PMID: 30927414 DOI: 10.1093/intbio/zyz005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Bacteria have major role in regulating human health and disease, therefore, there is a continuing need to develop new detection methods and therapeutics to combat them. Bacteriophages can be used to infect specific bacteria, which make them good candidates for detecting and editing bacterial populations. However, creating phage-based detection assays is somewhat limited by the difficulties in the engineering of phages. We present here a synthetic biology strategy to engineer phages using a simple in vitro method. We used this method to insert a NanoLuc luciferase expression cassette into the T7 phage, in order to construct the NRGp6 reporter phage. The synthetic NRGp6 phage was used to efficiently detect low concentrations of Escherichia coli from liquid culture. We envision that our approach will benefit synthetic biologists for constructing different kinds of engineered phages, and enable new approaches for phage-based therapeutics and diagnostics.
Collapse
Affiliation(s)
- Elsi M Pulkkinen
- Department of Food Science, Cornell University, Ithaca, NY, USA
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Troy C Hinkley
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Sam R Nugen
- Department of Food Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
O'Sullivan L, Bolton D, McAuliffe O, Coffey A. Bacteriophages in Food Applications: From Foe to Friend. Annu Rev Food Sci Technol 2019; 10:151-172. [PMID: 30633564 DOI: 10.1146/annurev-food-032818-121747] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages (phages) have traditionally been considered troublesome in food fermentations, as they are an important cause of starter-culture failure and trigger significant financial losses. In addition, from an evolutionary perspective, phages have contributed to the pathogenicity of many bacteria through transduction of virulence genes. In contrast, phages have played an important positive role in molecular biology. Moreover, these agents are increasingly being recognized as a potential solution to the detection and biocontrol of various undesirable bacteria, which cause either spoilage of food materials, decreased microbiological safety of foods, or infectious diseases in food animals and crops. The documented successful applications of phages and various phage-derived molecules are discussed in this review, as are many promising new uses that are currently under development.
Collapse
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland;
| | | | | | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Ireland; .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
42
|
Hinkley TC, Singh S, Garing S, Le Ny ALM, Nichols KP, Peters JE, Talbert JN, Nugen SR. A phage-based assay for the rapid, quantitative, and single CFU visualization of E. coli (ECOR #13) in drinking water. Sci Rep 2018; 8:14630. [PMID: 30279488 PMCID: PMC6168599 DOI: 10.1038/s41598-018-33097-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/21/2018] [Indexed: 01/06/2023] Open
Abstract
Drinking water standards in the United States mandate a zero tolerance of generic E. coli in 100 mL of water. The presence of E. coli in drinking water indicates that favorable environmental conditions exist that could have resulted in pathogen contamination. Therefore, the rapid and specific enumeration of E. coli in contaminated drinking water is critical to mitigate significant risks to public health. To meet this challenge, we developed a bacteriophage-based membrane filtration assay that employs novel fusion reporter enzymes to fully quantify E. coli in less than half the time required for traditional enrichment assays. A luciferase and an alkaline phosphatase, both specifically engineered for increased enzymatic activity, were selected as reporter probes due to their strong signal, small size, and low background. The genes for the reporter enzymes were fused to genes for carbohydrate binding modules specific to cellulose. These constructs were then inserted into the E. coli-specific phage T7 which were used to infect E. coli trapped on a cellulose filter. During the infection, the reporters were expressed and released from the bacterial cells following the lytic infection cycle. The binding modules facilitated the immobilization of the reporter probes on the cellulose filter in proximity to the lysed cells. Following substrate addition, the location and quantification of E. coli cells could then be determined visually or using bioluminescence imaging for the alkaline phosphatase and luciferase reporters, respectively. As a result, a detection assay capable of quantitatively detecting E. coli in drinking water with similar results to established methods, but less than half the assay time was developed.
Collapse
Affiliation(s)
- Troy C Hinkley
- Department of Food Science, Cornell University, Ithaca, NY, 14853, United States
| | - Sangita Singh
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, United States
| | - Spencer Garing
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA, 98007, United States
| | - Anne-Laure M Le Ny
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA, 98007, United States
| | - Kevin P Nichols
- Intellectual Ventures Laboratory/Global Good, Bellevue, WA, 98007, United States
| | - Joseph E Peters
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, United States
| | - Joey N Talbert
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, 50011, United States
| | - Sam R Nugen
- Department of Food Science, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
43
|
Whole genome shotgun sequencing revealed highly polymorphic genome regions and genes in Escherichia coli O157:H7 isolates collected from a single feedlot. PLoS One 2018; 13:e0202775. [PMID: 30153286 PMCID: PMC6112667 DOI: 10.1371/journal.pone.0202775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/08/2018] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli serotype O157:H7 continues to pose a serious health threat to human beings. Cattle, a major reservoir of the pathogen, harbor E. coli O157:H7 in their gastrointestinal tract and shed variable concentrations of E. coli O157:H7 into the environment. Genetic characterization of cattle-shed E. coli O157 strains is of interest to the livestock industry, food business, and public health community. The present study applied whole genome shotgun sequencing (WGS) and single nucleotide variant (SNV) calling to characterize 279 cattle-shed E. coli O157:H7 strains isolated from a single feedlot located in southwestern region of the US. More than 4,000 SNVs were identified among the strains and the resultant phylogenomic tree revealed three major groups. Using the Sakai strain genome as reference, more than 2,000 SNVs were annotated and a detailed SNV map generated. Results clearly revealed highly polymorphic loci along the E. coli O157:H7 genome that aligned with the prophage regions and highly variant genes involved in processing bacterial genetic information. The WGS data were further profiled against a comprehensive virulence factor database (VFDB) for virulence gene identification. Among the total 285 virulence genes identified, only 132 were present in all the strains. There were six virulence genes unique to single isolates. Our findings suggested that the genome variations of the E. coli O157:H7 were mainly attributable to dynamics of certain phages, and the bacterial strains have variable virulence gene profiles, even though they came from a single cattle population, which may explain the differences in pathogenicity, host prevalence, and transmissibility by E. coli O157:H7.
Collapse
|
44
|
Farooq U, Yang Q, Ullah MW, Wang S. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors. Biosens Bioelectron 2018; 118:204-216. [PMID: 30081260 DOI: 10.1016/j.bios.2018.07.058] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
In nature, different types of bacteria including pathogenic and beneficial ones exist in different habitats including environment, plants, animals, and humans. Among these, the pathogenic bacteria should be detected at earlier stages of infection; however, the conventional bacterial detection procedures are complex and time-consuming. In contrast, the advanced molecular approaches such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) have significantly reduced the detection time; nevertheless, such approaches are not acceptable to a large extent and are mostly laborious and expensive. Therefore, the development of fast, inexpensive, sensitive, and specific approaches for pathogen detection is essential for different applications in food industry, clinical diagnosis, biological defense and counter-terrorism. To this end, the novel sensing approaches involving bacteriophages as recognition elements are receiving immense consideration owing to their high degree of specificity, accuracy, and reduced assay times. Besides, the phages are easily produced and are tolerant to extreme pH, temperature, and organic solvents as compared to antibodies. To date, several phage-based assays and sensors have been developed involving different systems such as quartz crystal microbalance, magnetoelastic platform, surface plasmon resonance, and electrochemical methods. This review highlights different taxonomic species and genera of phages infecting eight common disease-causing bacterial genera. It further overviews the most recent advancements in phage-based sensing assays and sensors. Likewise, it elaborates various whole-phage and phage components-based assays. Overall, this review emphasizes the importance of electrochemical biosensors as simple, reliable, cost-effective, and accurate tools for bacterial detection.
Collapse
Affiliation(s)
- Umer Farooq
- Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiaoli Yang
- Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shenqi Wang
- Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
45
|
Abstract
Bacteriophage research has been instrumental to advancing many fields of biology, such as genetics, molecular biology, and synthetic biology. Many phage-derived technologies have been adapted for building gene circuits to program biological systems. Phages also exhibit significant medical potential as antibacterial agents and bacterial diagnostics due to their extreme specificity for their host, and our growing ability to engineer them further enhances this potential. Phages have also been used as scaffolds for genetically programmable biomaterials that have highly tunable properties. Furthermore, phages are central to powerful directed evolution platforms, which are being leveraged to enhance existing biological functions and even produce new ones. In this review, we discuss recent examples of how phage research is influencing these next-generation biotechnologies.
Collapse
Affiliation(s)
- Sebastien Lemire
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Kevin M Yehl
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Timothy K Lu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; .,Synthetic Biology Group, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
46
|
Richter Ł, Janczuk-Richter M, Niedziółka-Jönsson J, Paczesny J, Hołyst R. Recent advances in bacteriophage-based methods for bacteria detection. Drug Discov Today 2017; 23:448-455. [PMID: 29158194 DOI: 10.1016/j.drudis.2017.11.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
Fast and reliable bacteria detection is crucial for lowering the socioeconomic burden related to bacterial infections (e.g., in healthcare, industry or security). Bacteriophages (i.e., viruses with bacterial hosts) pose advantages such as great specificity, robustness, toughness and cheap preparation, making them popular biorecognition elements in biosensors and other assays for bacteria detection. There are several possible designs of bacteriophage-based biosensors. Here, we focus on developments based on whole virions as recognition agents. We divide the review into sections dealing with phage lysis as an analytical signal, phages as capturing elements in assays and phage-based sensing layers, putting the main focus on development reported within the past three years but without omitting the fundamentals.
Collapse
Affiliation(s)
- Łukasz Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Janczuk-Richter
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
47
|
Nguyen C, Makkar R, Sharp NJ, Page MA, Molineux IJ, Schofield DA. Detection of Bacillus anthracis spores from environmental water using bioluminescent reporter phage. J Appl Microbiol 2017; 123:1184-1193. [PMID: 28833845 DOI: 10.1111/jam.13569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 11/28/2022]
Abstract
AIMS We investigated the ability of a temperate Bacillus anthracis reporter phage (Wβ::luxAB-2), which transduces bioluminescence to infected cells, to detect viable spores from deliberately contaminated environmental water samples. METHODS AND RESULTS Environmental water was inoculated with spores and assayed with Wβ::luxAB-2. Bioluminescent signals directly correlated with input phage and spore concentrations. A limit of detection of 101 and 102 CFU per ml within 8 h was achieved from pond and lake water, respectively. Detection was greatly simplified by minimizing sample processing steps without spore extraction. The complex endogenous microbial flora and salt content of brackish water challenged the assay, extending the detection time to 12 h for a sensitivity of 102 CFU per ml. Phage-mediated bioluminescence was strictly dependent on bacterial physiology, being significantly reduced in mid/late log phase cells. This was shown to be due to an inability of the phage to adsorb. CONCLUSIONS The reporter phage Wβ::luxAB-2 displays potential for simplified detection of viable spores from contaminated water samples within 12 h. SIGNIFICANCE AND IMPACT OF THE STUDY A deliberate aerosol release of spores could lead to widespread contamination, leaving large areas uninhabitable until remediation. An essential requirement of this restoration process is the development of simplified detection assays in different environmental matrices.
Collapse
Affiliation(s)
- C Nguyen
- Guild BioSciences, Charleston, SC, USA
| | - R Makkar
- Guild BioSciences, Charleston, SC, USA
| | - N J Sharp
- Guild BioSciences, Charleston, SC, USA
| | - M A Page
- Construction Engineering and Research Laboratory, U.S. Army Corps of Engineers, Engineer Research and Development Center, Champaign, IL, USA
| | - I J Molineux
- Department of Molecular BioSciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
48
|
Kim J, Kim M, Kim S, Ryu S. Sensitive detection of viable Escherichia coli O157:H7 from foods using a luciferase-reporter phage phiV10lux. Int J Food Microbiol 2017; 254:11-17. [PMID: 28511109 DOI: 10.1016/j.ijfoodmicro.2017.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 11/18/2022]
Abstract
Escherichia coli O157:H7, a major foodborne pathogen, is a major public health concern associated with life-threatening diseases such as hemolytic uremic syndrome. To alleviate this burden, a sensitive and rapid system is required to detect this pathogen in various kinds of foods. Herein, we propose a phage-based pathogen detection method to replace laborious and time-consuming conventional methods. We engineered an E. coli O157:H7-specific phage phiV10 to rapidly and sensitively detect this notorious pathogen. The luxCDABE operon was introduced into the phiV10 genome and allowed the engineered phage phiV10lux to generate bioluminescence proportional to the number of viable E. coli O157:H7 cells without any substrate addition. The phage phiV10lux was able to detect at least 1CFU/ml of E. coli O157:H7 in a pure culture within 40min after 5h of pre-incubation. In artificially contaminated romaine lettuce, apple juice (pH3.51), and ground beef, the reporter phage could detect approximately 10CFU/cm2, 13CFU/ml, and 17CFU/g of E. coli O157:H7, respectively. Taken together, the constructed reporter phage phiV10lux could be applied as a powerful tool for rapid and sensitive detection of live E. coli O157:H7 in foods.
Collapse
Affiliation(s)
- Jinwoo Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minsik Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seongmi Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Food Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
49
|
Born Y, Fieseler L, Thöny V, Leimer N, Duffy B, Loessner MJ. Engineering of Bacteriophages Y2:: dpoL1-C and Y2:: luxAB for Efficient Control and Rapid Detection of the Fire Blight Pathogen, Erwinia amylovora. Appl Environ Microbiol 2017; 83:e00341-17. [PMID: 28389547 PMCID: PMC5452800 DOI: 10.1128/aem.00341-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/03/2017] [Indexed: 01/08/2023] Open
Abstract
Erwinia amylovora is the causative agent of fire blight, a devastating plant disease affecting members of the Rosaceae Alternatives to antibiotics for control of fire blight symptoms and outbreaks are highly desirable, due to increasing drug resistance and tight regulatory restrictions. Moreover, the available diagnostic methods either lack sensitivity, lack speed, or are unable to discriminate between live and dead bacteria. Owing to their extreme biological specificity, bacteriophages are promising alternatives for both aims. In this study, the virulent broad-host-range E. amylovora virus Y2 was engineered to enhance its killing activity and for use as a luciferase reporter phage, respectively. Toward these aims, a depolymerase gene of E. amylovora virus L1 (dpoL1-C) or a bacterial luxAB fusion was introduced into the genome of Y2 by homologous recombination. The genes were placed downstream of the major capsid protein orf68, under the control of the native promoter. The modifications did not affect viability of infectivity of the recombinant viruses. Phage Y2::dpoL1-C demonstrated synergistic activity between the depolymerase degrading the exopolysaccharide capsule and phage infection, which greatly enhanced bacterial killing. It also significantly reduced the ability of E. amylovora to colonize the surface of detached flowers. The reporter phage Y2::luxAB transduced bacterial luciferase into host cells and induced synthesis of large amounts of a LuxAB luciferase fusion. After the addition of aldehyde substrate, bioluminescence could be readily monitored, and this enabled rapid and specific detection of low numbers of viable bacteria, without enrichment, both in vitro and in plant material.IMPORTANCE Fire blight, caused by Erwinia amylovora, is the major threat to global pome fruit production, with high economic losses every year. Bacteriophages represent promising alternatives to not only control the disease, but also for rapid diagnostics. To enhance biocontrol efficacy, we combined the desired properties of two phages, Y2 (broad host range) and L1 (depolymerase for capsule degradation) in a single recombinant phage. This phage showed enhanced biocontrol and could reduce E. amylovora on flowers. Phage Y2 was also genetically engineered into a luciferase reporter phage, which transduces bacterial bioluminescence into infected cells and allows detection of low numbers of viable target bacteria. The combination of speed, sensitivity, and specificity is superior to previously used diagnostic methods. In conclusion, genetic engineering could improve the properties of phage Y2 toward better killing efficacy and sensitive detection of E. amylovora cells.
Collapse
Affiliation(s)
- Yannick Born
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland
- Agroscope, Research Division Plant Protection, Wädenswil, Switzerland
| | - Lars Fieseler
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland
| | - Valentin Thöny
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland
| | - Nadja Leimer
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland
| | - Brion Duffy
- Agroscope, Research Division Plant Protection, Wädenswil, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition, and Health, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
50
|
A replication-competent foot-and-mouth disease virus expressing a luciferase reporter. J Virol Methods 2017; 247:38-44. [PMID: 28532601 PMCID: PMC5490781 DOI: 10.1016/j.jviromet.2017.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
We have generated a replication-competent foot-and-mouth disease virus expressing Nanoluciferase, designated as Nano-FMDV. Nano-FMDV is genetically stable. The replication of Nano-FMDV can be monitored by bioluminescent methods. This reporter virus has potential applications in real-time monitoring of FMDV infection in vitro and in vivo, and in screening of antivirals and antibodies.
Bioluminescence is a powerful tool in the study of viral infection both in vivo and in vitro. Foot-and-mouth disease virus (FMDV) has a small RNA genome with a limited tolerance to foreign RNA entities. There has been no success in making a reporter FMDV expressing a luciferase in infected cell culture supernatants. We report here for the first time a replication-competent FMDV encoding Nanoluciferase, named as Nano-FMDV. Nano-FMDV is genetically stable during serial passages in cells and exhibits growth kinetics and plaque morphology similar to its parental virus. There are applications for the use of Nano-FMDV such as real-time monitoring of FMDV replication in vitro and in vivo.
Collapse
|