1
|
Sun D, Zhao X, Wiegand T, Martin-Lemaitre C, Borianne T, Kleinschmidt L, Grill SW, Hyman AA, Weber C, Honigmann A. Assembly of tight junction belts by ZO1 surface condensation and local actin polymerization. Dev Cell 2025; 60:1234-1250.e6. [PMID: 39742662 DOI: 10.1016/j.devcel.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Tight junctions play an essential role in sealing tissues, by forming belts of adhesion strands around cellular perimeters. Recent work has shown that the condensation of ZO1 scaffold proteins is required for tight junction assembly. However, the mechanisms by which junctional condensates initiate at cell-cell contacts and elongate around cell perimeters remain unknown. Combining biochemical reconstitutions and live-cell imaging of MDCKII tissue, we found that tight junction belt formation is driven by adhesion receptor-mediated ZO1 surface condensation coupled to local actin polymerization. Adhesion receptor oligomerization provides the signal for surface binding and local condensation of ZO1 at the cell membrane. Condensation produces a molecular scaffold that selectively enriches junctional proteins. Finally, ZO1 condensates directly facilitate local actin polymerization and filament bundling, driving the elongation into a continuous tight junction belt. More broadly, our work identifies how cells couple surface condensation with cytoskeleton organization to assemble and structure adhesion complexes.
Collapse
Affiliation(s)
- Daxiao Sun
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Technische Universität Dresden, Biotechnologisches Zentrum, Center for Molecular and Cellular Bioengineering (CMCB), Dresden, Germany.
| | - Xueping Zhao
- Department of Mathematical Sciences, University of Nottingham, Ningbo, China
| | - Tina Wiegand
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Cecilie Martin-Lemaitre
- Technische Universität Dresden, Biotechnologisches Zentrum, Center for Molecular and Cellular Bioengineering (CMCB), Dresden, Germany
| | - Tom Borianne
- Technische Universität Dresden, Biotechnologisches Zentrum, Center for Molecular and Cellular Bioengineering (CMCB), Dresden, Germany
| | - Lennart Kleinschmidt
- Technische Universität Dresden, Biotechnologisches Zentrum, Center for Molecular and Cellular Bioengineering (CMCB), Dresden, Germany
| | - Stephan W Grill
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Christoph Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering, Institute of Physics, University of Augsburg, Augsburg, Germany.
| | - Alf Honigmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Technische Universität Dresden, Biotechnologisches Zentrum, Center for Molecular and Cellular Bioengineering (CMCB), Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Trevisani M, Berselli A, Alberini G, Centonze E, Vercellino S, Cartocci V, Millo E, Ciobanu DZ, Braccia C, Armirotti A, Pisani F, Zara F, Castagnola V, Maragliano L, Benfenati F. A claudin5-binding peptide enhances the permeability of the blood-brain barrier in vitro. SCIENCE ADVANCES 2025; 11:eadq2616. [PMID: 39792664 PMCID: PMC11721574 DOI: 10.1126/sciadv.adq2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis but also prevents most drugs from entering the brain. No paracellular diffusion of solutes is allowed because of tight junctions that are made impermeable by the expression of claudin5 (CLDN5) by brain endothelial cells. The possibility of regulating the BBB permeability in a transient and reversible fashion is in strong demand for the pharmacological treatment of brain diseases. Here, we designed and tested short BBB-active peptides, derived from the CLDN5 extracellular domains and the CLDN5-binding domain of Clostridium perfringens enterotoxin, using a robust workflow of structural modeling and in vitro validation techniques. Computational analysis at the atom level based on solubility and affinity to CLDN5 identified a CLDN5-derived peptide not reported previously called f1-C5C2, which was soluble in biological media, displayed efficient binding to CLDN5, and transiently increased BBB permeability. The peptidomimetic strategy described here may have potential applications in the pharmacological treatment of brain diseases.
Collapse
Affiliation(s)
- Martina Trevisani
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- Department of Experimental Medicine, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Alessandro Berselli
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Eleonora Centonze
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Silvia Vercellino
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Veronica Cartocci
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Università degli Studi di Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Dinu Zinovie Ciobanu
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Pisani
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, 16132 Genova, Italy
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, 16147 Genova, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe), Istituto Italiano di Tecnologia, Largo Rosanna Benzi, 10, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| |
Collapse
|
3
|
Nagarajan SK, Weber J, Roderer D, Piontek J. C. perfringens enterotoxin-claudin pore complex: Models for structure, mechanism of pore assembly and cation permeability. Comput Struct Biotechnol J 2024; 27:287-306. [PMID: 39881828 PMCID: PMC11774686 DOI: 10.1016/j.csbj.2024.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025] Open
Abstract
The pore-forming Clostridium perfringens enterotoxin (CPE), a common cause of foodborne diseases, facilitates Ca2+ influx in enterocytes, leading to cell damage. Upon binding to certain claudins (e.g., claudin-4), CPE forms oligomeric pores in the cell membrane. While the mechanism of CPE-claudin interaction is well understood, the structure and assembly of the pore complex remain elusive. Here, we used AlphaFold2 complex prediction, structure alignment, and molecular dynamics simulations to generate models of prepore and pore states of the CPE/claudin-4 complex. We sequentially addressed CPE-claudin, CPE-CPE, and claudin-claudin interactions, along with CPE conformational changes. The CPE pore is a hexameric variant of the typical heptameric pore stem and cap architecture of aerolysin-like β-barrel pore-forming toxins (β-PFT). The pore is lined with three hexa-glutamate rings, which differ from other β-PFTs and confer CPE-specific cation selectivity. Additionally, the pore center is indicated to be anchored by a dodecameric claudin ring formed by a cis-interaction variant of an interface found in claudin-based tight junction strands. Mutation of an interface residue inhibited CPE-mediated cell damage in vitro. We propose that this claudin ring constitutes an anchor for a twisting mechanism that drives extension and membrane insertion of the CPE β-hairpins. Our pore model agrees with previous key experimental data and provides insights into the structural mechanisms of CPE-mediated cytotoxic cation influx.
Collapse
Affiliation(s)
- Santhosh Kumar Nagarajan
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Joy Weber
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Daniel Roderer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Rheumatology and Infectious Diseases, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
4
|
Ogbu CP, Mandriota AM, Liu X, de Las Alas M, Kapoor S, Choudhury J, Kossiakoff AA, Duffey ME, Vecchio AJ. Biophysical Basis of Paracellular Barrier Modulation by a Pan-Claudin-Binding Molecule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622873. [PMID: 39605593 PMCID: PMC11601404 DOI: 10.1101/2024.11.10.622873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Claudins are a 27-member protein family that form and fortify specialized cell contacts in endothelium and epithelium called tight junctions. Tight junctions restrict paracellular transport across tissues by forming molecular barriers between cells. Claudin-binding molecules thus hold promise for modulating tight junction permeability to deliver drugs or as therapeutics to treat tight junction-linked disease. The development of claudin-binding molecules, however, is hindered by their intractability and small targetable surfaces. Here, we determine that a synthetic antibody fragment (sFab) we developed binds directly to 10 claudin subtypes with nanomolar affinity by targeting claudin's paracellular-exposed surface. Application of this sFab to cells that model intestinal epithelium show that it opens the paracellular barrier comparable to a known, but application limited, tight junction modulator. This novel pan-claudin-binding molecule can probe claudin or tight junction structure and holds potential as a broad modulator of tight junction permeability for basic or translational applications.
Collapse
|
5
|
Rathnayake SS, Erramilli SK, Kossiakoff AA, Vecchio AJ. Cryo-EM structures of Clostridium perfringens enterotoxin bound to its human receptor, claudin-4. Structure 2024; 32:1936-1951.e5. [PMID: 39383874 PMCID: PMC11560561 DOI: 10.1016/j.str.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Clostridium perfringens enterotoxin (CpE) causes prevalent and deadly gastrointestinal disorders. CpE binds to receptors called claudins on the apical surfaces of small intestinal epithelium. Claudins normally regulate paracellular transport but are hijacked from doing so by CpE and are instead led to form claudin/CpE complexes. Claudin/CpE complexes are the building blocks of oligomeric β-barrel pores that penetrate the plasma membrane and induce gut cytotoxicity. Here, we present the structures of CpE in complex with its native claudin receptor in humans, claudin-4, using cryogenic electron microscopy. The structures reveal the architecture of the claudin/CpE complex, the residues used in binding, the orientation of CpE relative to the membrane, and CpE-induced changes to claudin-4. Further, structures and modeling allude to the biophysical procession from claudin/CpE complexes to cytotoxic β-barrel pores during pathogenesis. In full, this work proposes a model of claudin/CpE assembly and provides strategies to obstruct its formation to treat CpE diseases.
Collapse
Affiliation(s)
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alex J Vecchio
- Department of Structural Biology, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
6
|
Shrestha A, Mehdizadeh Gohari I, Li J, Navarro M, Uzal FA, McClane BA. The biology and pathogenicity of Clostridium perfringens type F: a common human enteropathogen with a new(ish) name. Microbiol Mol Biol Rev 2024; 88:e0014023. [PMID: 38864615 PMCID: PMC11426027 DOI: 10.1128/mmbr.00140-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
SUMMARYIn the 2018-revised Clostridium perfringens typing classification system, isolates carrying the enterotoxin (cpe) and alpha toxin genes but no other typing toxin genes are now designated as type F. Type F isolates cause food poisoning and nonfoodborne human gastrointestinal (GI) diseases, which most commonly involve type F isolates carrying, respectivefooly, a chromosomal or plasmid-borne cpe gene. Compared to spores of other C. perfringens isolates, spores of type F chromosomal cpe isolates often exhibit greater resistance to food environment stresses, likely facilitating their survival in improperly prepared or stored foods. Multiple factors contribute to this spore resistance phenotype, including the production of a variant small acid-soluble protein-4. The pathogenicity of type F isolates involves sporulation-dependent C. perfringens enterotoxin (CPE) production. C. perfringens sporulation is initiated by orphan histidine kinases and sporulation-associated sigma factors that drive cpe transcription. CPE-induced cytotoxicity starts when CPE binds to claudin receptors to form a small complex (which also includes nonreceptor claudins). Approximately six small complexes oligomerize on the host cell plasma membrane surface to form a prepore. CPE molecules in that prepore apparently extend β-hairpin loops to form a β-barrel pore, allowing a Ca2+ influx that activates calpain. With low-dose CPE treatment, caspase-3-dependent apoptosis develops, while high-CPE dose treatment induces necroptosis. Those effects cause histologic damage along with fluid and electrolyte losses from the colon and small intestine. Sialidases likely contribute to type F disease by enhancing CPE action and, for NanI-producing nonfoodborne human GI disease isolates, increasing intestinal growth and colonization.
Collapse
Affiliation(s)
- Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mauricio Navarro
- Instituto de Patologia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, USA
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Osamura A, Onizuka H, Masui K, Murakami K, Yamamoto T, Nagashima Y, Takeda M, Kurata A. An Autopsy Case of Fulminant Systemic Infection of Clostridium perfringens With a Diverse Role of Toxins in a Healthy Patient. Case Rep Pathol 2024; 2024:9213132. [PMID: 39310291 PMCID: PMC11416167 DOI: 10.1155/2024/9213132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
We herein report an autopsy case of a fulminant Clostridium perfringens (C. perfringens or Welch bacilli) infection in a healthy adult. A 72-year-old, immunocompetent man visited the emergency department with lower back pain, and blood test revealed hemolytic attack. His condition rapidly worsened with severe acidosis and anemia, and he died despite symptomatic treatment. An autopsy examination demonstrated an abscess with necrosis and air spaces in the right lobe of his liver. Numerous Gram-positive bacilli were seen in the liver and bone marrow, and C. perfringens was identified in culture of the antemortem blood sample. Of note, a mucosal epithelium of the ileum showed loss of tight junctions (claudin 4), suggesting the involvement of C. perfringens toxins with its systemic spreading. Welch toxins were suggested to be involved in serious pathological conditions such as hemolytic anemia and systemic infections, and it is necessary to raise Welch infection as one of the differential diagnoses for fulminant systemic infections even in healthy individuals.
Collapse
Affiliation(s)
- Ayano Osamura
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Hiromi Onizuka
- Department of PathologyKyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Kenta Masui
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Kumiko Murakami
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Tomoko Yamamoto
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
- Department of Surgical PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Yoji Nagashima
- Department of Surgical PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Munekazu Takeda
- Department of Critical Care and Emergency MedicineTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Atsushi Kurata
- Department of PathologyTokyo Women's Medical University, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
8
|
Marsch P, Rajagopal N, Nangia S. Biophysics of claudin proteins in tight junction architecture: Three decades of progress. Biophys J 2024; 123:2363-2378. [PMID: 38859584 PMCID: PMC11365114 DOI: 10.1016/j.bpj.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Tight junctions are cell-cell adhesion complexes that act as gatekeepers of the paracellular space. Formed by several transmembrane proteins, the claudin family performs the primary gate-keeping function. The claudin proteins form charge and size-selective diffusion barriers to maintain homeostasis across endothelial and epithelial tissue. Of the 27 known claudins in mammals, some are known to seal the paracellular space, while others provide selective permeability. The differences in permeability arise due to the varying expression levels of claudins in each tissue. The tight junctions are observed as strands in freeze-fracture electron monographs; however, at the molecular level, tight junction strands form when multiple claudin proteins assemble laterally (cis assembly) within a cell and head-on (trans assembly) with claudins of the adjacent cell in a zipper-like architecture, closing the gap between the neighboring cells. The disruption of tight junctions caused by changing claudin expression levels or mutations can lead to diseases. Therefore, knowledge of the molecular architecture of the tight junctions and how that is tied to tissue-specific function is critical for fighting diseases. Here, we review the current understanding of the tight junctions accrued over the last three decades from experimental and computational biophysics perspectives.
Collapse
Affiliation(s)
- Patrick Marsch
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Nandhini Rajagopal
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York.
| |
Collapse
|
9
|
Ramirez-Velez I, Namjoshi AA, Effiong UM, Peppas NA, Belardi B. Paracellular Delivery of Protein Drugs with Smart EnteroPatho Nanoparticles. ACS NANO 2024; 18:21038-21051. [PMID: 39096293 DOI: 10.1021/acsnano.4c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
A general platform for the safe and effective oral delivery of biologics would revolutionize the administration of protein-based drugs, improving access for patients and lowering the financial burden on the health-care industry. Because of their dimensions and physiochemical properties, nanomaterials stand as promising vehicles for navigating the complex and challenging environment in the gastrointestinal (GI) tract. Recent developments have led to materials that protect protein drugs from degradation and enable controlled release in the small intestine, the site of absorption for most proteins. Yet, once present in the small intestine, the protein must transit through the secreted mucus and epithelial cells of the intestinal mucosa into systemic circulation, a process that remains a bottleneck for nanomaterial-based delivery. One attractive pathway through the intestinal mucosa is the paracellular route, which avoids cell trafficking and other degradative processes in the interior of cells. Direct flux between cells is regulated by epithelial tight junctions (TJs) that seal the paracellular space and prevent protein flux. Here, we describe a smart nanoparticle system that directly and transiently disrupts TJs for improved protein delivery, an unrealized goal to-date. We take inspiration from enteropathogenic bacteria that adhere to intestinal epithelia and secrete inhibitors that block TJ interactions in the local environment. To mimic these natural mechanisms, we engineer nanoparticles (EnteroPatho NPs) that attach to the epithelial glycocalyx and release TJ modulators in response to the intestinal pH. We show that EnteroPatho NPs lead to TJ disruption and paracellular protein delivery, giving rise to a general platform for oral delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Aditya A Namjoshi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Unyime M Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
10
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Structural and biophysical insights into targeting of claudin-4 by a synthetic antibody fragment. Commun Biol 2024; 7:733. [PMID: 38886509 PMCID: PMC11183071 DOI: 10.1038/s42003-024-06437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Claudins are a 27-member family of ~25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. As the backbone of tight junction structure and function, claudins are attractive targets for modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. Here we report the development of a synthetic antibody fragment (sFab) that binds human claudin-4 and the determination of a high-resolution structure of it bound to claudin-4/enterotoxin complexes using cryogenic electron microscopy. Structural and biophysical results reveal this sFabs mechanism of select binding to human claudin-4 over other homologous claudins and establish the ability of sFabs to bind hard-to-target claudins to probe tight junction structure and function. The findings provide a framework for tight junction modulation by sFabs for tissue-selective therapies.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Pfizer, San Diego, CA, 92121, USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
11
|
Dithmer S, Blasig IE, Fraser PA, Qin Z, Haseloff RF. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int J Mol Sci 2024; 25:5601. [PMID: 38891789 PMCID: PMC11172262 DOI: 10.3390/ijms25115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/10/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review addresses the role of tight junction proteins at the blood-brain barrier (BBB). Their expression is described, and their role in physiological and pathological processes at the BBB is discussed. Based on this, new approaches are depicted for paracellular drug delivery and diagnostics in the treatment of cerebral diseases. Recent data provide convincing evidence that, in addition to its impairment in the course of diseases, the BBB could be involved in the aetiology of CNS disorders. Further progress will be expected based on new insights in tight junction protein structure and in their involvement in signalling pathways.
Collapse
Affiliation(s)
- Sophie Dithmer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| | | | - Zhihai Qin
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany (I.E.B.)
| |
Collapse
|
12
|
Wang Y, Weng S, Tang Y, Lin S, Liu X, Zhang W, Liu G, Pandi B, Wu Y, Ma L, Wang L. A transmembrane scaffold from CD20 helps recombinant expression of a chimeric claudin 18.2 in an in vitro coupled transcription and translation system. Protein Expr Purif 2024; 215:106392. [PMID: 37952787 DOI: 10.1016/j.pep.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Cluster of differentiation 20 (CD20) is a nonglycosylated, multispanning transmembrane protein specifically integrated by B lymphocytes. Similar to CD20, another four-pass transmembrane protein, claudin 18.2, has attracted attention as an emerging therapeutic target for cancer. However, their poor solubility and toxic nature often hinder downstream applications, such as antibody drug development. Therefore, developing a cost-effective method for producing drug targets with multiple membrane-spanning domains is crucial. In this study, a high yield of recombinant CD20 was achieved through an E. coli-based in vitro coupled transcription-translation system. Surface plasmon resonance results showed that rituximab (an antileukemia drug) has nanomolar affinity with the CD20 protein, which aligns with published results. Notably, a previously hard-to-express claudin 18.2 recombinant protein was successfully expressed in the same reaction system by replacing its membrane-spanning domains with the transmembrane domains of CD20. The folding of the extracellular domain of the chimeric protein was verified using a commercial anti-claudin 18 antibody. This study provides a novel concept for promoting the expression of four-pass transmembrane proteins and lays the foundation for the large-scale industrial production of membrane-associated drug targets, similar to claudin 18.2.
Collapse
Affiliation(s)
- Yao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Shaoting Weng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yajie Tang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Sen Lin
- Anyang Kindstar Global Medical Laboratory Ltd, Anyang, Henan province, 455000, China
| | - Xiayue Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Wenhui Zhang
- Henan Panran Medical Equipment Co., Ltd, Anyang, Henan province, 455000, China
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Boomi Pandi
- Department of bioinformatics, Alagappa University, Karaikudi, India
| | - Yinrong Wu
- Henan Panran Medical Equipment Co., Ltd, Anyang, Henan province, 455000, China
| | - Lei Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| |
Collapse
|
13
|
McGuinness S, Li P, Li Y, Fuladi S, Konar S, Sajjadi S, Sidahmed M, Li Y, Shen L, Araghi FK, Weber CR. Molecular dynamics analyses of CLDN15 pore size and charge selectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553400. [PMID: 37645840 PMCID: PMC10461993 DOI: 10.1101/2023.08.16.553400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The Claudin-15 (CLDN15) channel is important for nutrient, electrolyte, and water transport in the gastrointestinal tract. We used cell culture studies and molecular dynamics simulations to elucidate its structure and permeability mechanisms. We provide a model that underscores the crucial role of the D55 residue in the CLDN15 selectivity filter, which interacts with permeating cations. Our studies demonstrated the mechanisms whereby the size and charge of the D55 residue influence paracellular permeability. By altering D55 to larger, negatively charged glutamic acid (E) or similarly sized neutral asparagine (N), we observed changes in pore size and selectivity, respectively. D55E mutation decreased pore size, favoring small ion permeability without affecting charge selectivity, while D55N mutation led to reduced charge selectivity without markedly altering size selectivity. These findings shed light on the complex interplay of size and charge selectivity of CLDN15 channels. This knowledge can inform the development of strategies to modulate the function of CLDN15 and similar channels, which has implications for tight junction modulation in health and disease.
Collapse
|
14
|
Ramirez-Velez I, Belardi B. Storming the gate: New approaches for targeting the dynamic tight junction for improved drug delivery. Adv Drug Deliv Rev 2023; 199:114905. [PMID: 37271282 PMCID: PMC10999255 DOI: 10.1016/j.addr.2023.114905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
As biologics used in the clinic outpace the number of new small molecule drugs, an important challenge for their efficacy and widespread use has emerged, namely tissue penetrance. Macromolecular drugs - bulky, high-molecular weight, hydrophilic agents - exhibit low permeability across biological barriers. Epithelial and endothelial layers, for example within the gastrointestinal tract or at the blood-brain barrier, present the most significant obstacle to drug transport. Within epithelium, two subcellular structures are responsible for limiting absorption: cell membranes and intercellular tight junctions. Previously considered impenetrable to macromolecular drugs, tight junctions control paracellular flux and dictate drug transport between cells. Recent work, however, has shown tight junctions to be dynamic, anisotropic structures that can be targeted for delivery. This review aims to summarize new approaches for targeting tight junctions, both directly and indirectly, and to highlight how manipulation of tight junction interactions may help usher in a new era of precision drug delivery.
Collapse
Affiliation(s)
- Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
15
|
Manzer ZA, Selivanovitch E, Ostwalt AR, Daniel S. Membrane protein synthesis: no cells required. Trends Biochem Sci 2023; 48:642-654. [PMID: 37087310 DOI: 10.1016/j.tibs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Despite advances in membrane protein (MP) structural biology and a growing interest in their applications, these proteins remain challenging to study. Progress has been hindered by the complex nature of MPs and innovative methods will be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS) is a burgeoning technique for synthesizing MPs directly into a membrane environment using reconstituted components of the cellular transcription and translation machinery in vitro. We provide an overview of CFPS and how this technique can be applied to the synthesis and study of MPs. We highlight numerous strategies including synthesis methods and folding environments, each with advantages and limitations, to provide a survey of how CFPS techniques can advance the study of MPs.
Collapse
Affiliation(s)
- Zachary A Manzer
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ekaterina Selivanovitch
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexis R Ostwalt
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan Daniel
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Cryo-EM structures of a synthetic antibody against 22 kDa claudin-4 reveal its complex with Clostridium perfringens enterotoxin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544689. [PMID: 37398044 PMCID: PMC10312657 DOI: 10.1101/2023.06.12.544689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Claudins are a family of ∼25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. Humans have 27 subtypes, which homo- and hetero-oligomerize to impart distinct properties and physiological functions to tissues and organs. As the structural and functional backbone of tight junctions, claudins are attractive targets for therapeutics capable of modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. We have developed a synthetic antibody fragment (sFab) that binds human claudin-4 and used it to resolve structures of its complex with Clostridium perfringens enterotoxin (CpE) using cryogenic electron microscopy (cryo-EM). The resolution of the structures reveals the architectures of 22 kDa claudin-4, the 14 kDa C-terminal domain of CpE, and the mechanism by which this sFab binds claudins. Further, we elucidate the biochemical and biophysical bases of sFab binding and demonstrate that this molecule exhibits subtype-selectivity by assaying homologous claudins. Our results provide a framework for developing sFabs against hard-to-target claudins and establishes the utility of sFabs as fiducial markers for determining cryo-EM structures of this small membrane protein family at resolutions that surpass X-ray crystallography. Taken together, this work highlights the ability of sFabs to elucidate claudin structure and function and posits their potential as therapeutics for modulating tight junctions by targeting specific claudin subtypes.
Collapse
|
17
|
Hashimoto Y, Greene C, Munnich A, Campbell M. The CLDN5 gene at the blood-brain barrier in health and disease. Fluids Barriers CNS 2023; 20:22. [PMID: 36978081 PMCID: PMC10044825 DOI: 10.1186/s12987-023-00424-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The CLDN5 gene encodes claudin-5 (CLDN-5) that is expressed in endothelial cells and forms tight junctions which limit the passive diffusions of ions and solutes. The blood-brain barrier (BBB), composed of brain microvascular endothelial cells and associated pericytes and end-feet of astrocytes, is a physical and biological barrier to maintain the brain microenvironment. The expression of CLDN-5 is tightly regulated in the BBB by other junctional proteins in endothelial cells and by supports from pericytes and astrocytes. The most recent literature clearly shows a compromised BBB with a decline in CLDN-5 expression increasing the risks of developing neuropsychiatric disorders, epilepsy, brain calcification and dementia. The purpose of this review is to summarize the known diseases associated with CLDN-5 expression and function. In the first part of this review, we highlight the recent understanding of how other junctional proteins as well as pericytes and astrocytes maintain CLDN-5 expression in brain endothelial cells. We detail some drugs that can enhance these supports and are being developed or currently in use to treat diseases associated with CLDN-5 decline. We then summarise mutagenesis-based studies which have facilitated a better understanding of the physiological role of the CLDN-5 protein at the BBB and have demonstrated the functional consequences of a recently identified pathogenic CLDN-5 missense mutation from patients with alternating hemiplegia of childhood. This mutation is the first gain-of-function mutation identified in the CLDN gene family with all others representing loss-of-function mutations resulting in mis-localization of CLDN protein and/or attenuated barrier function. Finally, we summarize recent reports about the dosage-dependent effect of CLDN-5 expression on the development of neurological diseases in mice and discuss what cellular supports for CLDN-5 regulation are compromised in the BBB in human diseases.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| | - Chris Greene
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland
| | - Arnold Munnich
- Institut Imagine, INSERM UMR1163, Université Paris Cité, Paris, F-75015, France
- Departments of Pediatric Neurology and Medical Genetics, Hospital Necker Enfants Malades, Université Paris Cité, Paris, F-75015, France
| | - Matthew Campbell
- Trinity College Dublin, Smurfit Institute of Genetics, Dublin, D02 VF25, Ireland.
| |
Collapse
|
18
|
Berselli A, Benfenati F, Maragliano L, Alberini G. Multiscale modelling of claudin-based assemblies: a magnifying glass for novel structures of biological interfaces. Comput Struct Biotechnol J 2022; 20:5984-6010. [DOI: 10.1016/j.csbj.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/03/2022] Open
|
19
|
Berselli A, Alberini G, Benfenati F, Maragliano L. Computational study of ion permeation through claudin-4 paracellular channels. Ann N Y Acad Sci 2022; 1516:162-174. [PMID: 35811406 PMCID: PMC9796105 DOI: 10.1111/nyas.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Claudins (Cldns) form a large family of protein homologs that are essential for the assembly of paracellular tight junctions (TJs), where they form channels or barriers with tissue-specific selectivity for permeants. In contrast to several family members whose physiological role has been identified, the function of claudin 4 (Cldn4) remains elusive, despite experimental evidence suggesting that it can form anion-selective TJ channels in the renal epithelium. Computational approaches have recently been employed to elucidate the molecular basis of Cldns' function, and hence could help in clarifying the role of Cldn4. In this work, we use structural modeling and all-atom molecular dynamics simulations to transfer two previously introduced structural models of Cldn-based paracellular complexes to Cldn4 to reproduce a paracellular anion channel. Free energy calculations for ionic transport through the pores allow us to establish the thermodynamic properties driving the ion-selectivity of the structures. While one model shows a cavity permeable to chloride and repulsive to cations, the other forms barrier to the passage of all the major physiological ions. Furthermore, our results confirm the charge selectivity role of the residue Lys65 in the first extracellular loop of the protein, rationalizing Cldn4 control of paracellular permeability.
Collapse
Affiliation(s)
- Alessandro Berselli
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- Department of Experimental MedicineUniversità degli Studi di GenovaGenovaItaly
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology (NSYN@UniGe)Istituto Italiano di TecnologiaGenovaItaly
- Department of Life and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| |
Collapse
|
20
|
Fuladi S, McGuinness S, Khalili-Araghi F. Role of TM3 in claudin-15 strand flexibility: A molecular dynamics study. Front Mol Biosci 2022; 9:964877. [PMID: 36250014 PMCID: PMC9557151 DOI: 10.3389/fmolb.2022.964877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Claudins are cell-cell adhesion proteins within tight junctions that connect epithelial cells together. Claudins polymerize into a network of strand-like structures within the membrane of adjoining cells and create ion channels that control paracellular permeability to water and small molecules. Tight junction morphology and barrier function is tissue specific and regulated by claudin subtypes. Here, we present a molecular dynamics study of claudin-15 strands within lipid membranes and the role of a single-point mutation (A134P) on the third transmembrane helix (TM3) of claudin-15 in determining the morphology of the strand. Our results indicate that the A134P mutation significantly affects the lateral flexibility of the strands, increasing the persistence length of claudin-15 strands by a factor of three. Analyses of claudin-claudin contact in our μsecond-long trajectories show that the mutation does not alter the intermolecular contacts (interfaces) between claudins. However, the dynamics and frequency of interfacial contacts are significantly affected. The A134P mutation introduces a kink in TM3 of claudin-15 similar to the one observed in claudin-3 crystal structure. The kink on TM3 skews the rotational flexibility of the claudins in the strands and limits their fluctuation in one direction. This asymmetric movement in the context of the double rows reduces the lateral flexibility of the strand and leads to higher persistence lengths of the mutant.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | | |
Collapse
|
21
|
Banga AR, Odiase P, Rachakonda K, Garg AP, Adunyah SE, Rachakonda G. Application of C-Terminal Clostridium Perfringens Enterotoxin in Treatment of Brain Metastasis from Breast Cancer. Cancers (Basel) 2022; 14:4309. [PMID: 36077843 PMCID: PMC9454751 DOI: 10.3390/cancers14174309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Claudin-4 is part of the Claudin family of transmembrane tight junction (TJ) proteins found in almost all tissues and, together with adherens junctions and desmosomes, forms epithelial and endothelial junctional complexes. Although the distribution of Claudin-4 occurs in many cell types, the level of expression is cell-specific. Claudin proteins regulate cell proliferation and differentiation by binding cell-signaling ligands, and its expression is upregulated in several cancers. As a result, alterations in Claudin expression patterns or distribution are vital in the pathology of cancer. Profiling the genetic expression of Claudin-4 showed that Claudin-4 is also a receptor for the clostridium perfringens enterotoxin (CPE) and that Claudin-4 has a high sequence similarity with CPE's high-affinity receptor. CPE is cytolytic due to its ability to form pores in cellular membranes, and CPE treatment in breast cancer cells have shown promising results due to the high expression of Claudin-4. The C-terminal fragment of CPE (c-CPE) provides a less toxic alternative for drug delivery into breast cancer cells, particularly metastatic tumors in the brain, especially as Claudin-4 expression in the central nervous system (CNS) is low. Therefore, c-CPE provides a unique avenue for the treatment of breast-brain metastatic tumors.
Collapse
Affiliation(s)
- Amita R. Banga
- Department of Biotechnology, School of Biological Engineering & Sciences, Shobhit Institute of Engineering & Technology, Meerut 250110, India
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Peace Odiase
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Kartik Rachakonda
- Undergraduate Studies, School of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA
| | - Amar P. Garg
- Department of Biotechnology, School of Biological Engineering & Sciences, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Girish Rachakonda
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
22
|
Beier LS, Waldow A, Khomeijani Farahani S, Mannweiler R, Vidal-Y-Sy S, Brandner JM, Piontek J, Günzel D. Claudin targeting as an effective tool for directed barrier modulation of the viable epidermis. Ann N Y Acad Sci 2022; 1517:251-265. [PMID: 35994210 DOI: 10.1111/nyas.14879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tight junction (TJ) formation is vital for epidermal barrier function. We aimed to specifically manipulate TJ barriers in the reconstructed human epidermis (RHE) by claudin-1 and -4 knockdown (KD) and by claudin-binding fusion proteins of glutathione S-transferase and modified C-terminal fragments of Clostridium perfringens enterotoxin (GST-cCPE). Impedance spectroscopy and tracer permeability imaging were employed for functional barrier assessment and investigation of claudin contribution. KD of claudin-1, but not claudin-4, impaired the paracellular barrier in vitro. Similarly, claudin-binding GST-cCPE variants weakened the paracellular but not the stratum corneum barrier. Combining both TJ targeting methods, we found that claudin-1 targeting by GST-cCPE after claudin-4 KD led to a marked decrease in paracellular barrier properties. Conversely, after claudin-1 KD, GST-cCPE did not further impair the barrier. Comparison of GST-cCPE variants with different claudin-1/claudin-4 affinities, NHS-fluorescein tracer detection, and immunostaining of RHE paraffin sections showed that GST-cCPE variants bind to extrajunctional claudin-1 and -4, which are differentially distributed along the stratum basale-stratum granulosum axis. GST-cCPE binding blocks these claudins, thereby specifically opening the paracellular barrier of RHE. The data indicate a critical role for claudin-1 in regulating paracellular permeability for ions and small molecules in the viable epidermis. Claudin targeting is presented as a proof-of-concept for precise barrier modulation.
Collapse
Affiliation(s)
- Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Saeed Khomeijani Farahani
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Roman Mannweiler
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Orlando BJ, Dominik PK, Roy S, Ogbu CP, Erramilli SK, Kossiakoff AA, Vecchio AJ. Development, structure, and mechanism of synthetic antibodies that target claudin and Clostridium perfringens enterotoxin complexes. J Biol Chem 2022; 298:102357. [PMID: 35952760 PMCID: PMC9463536 DOI: 10.1016/j.jbc.2022.102357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Strains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE’s C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating β-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport. CpE binding and assembly disables claudin barrier function and induces cytotoxicity via β-pore formation, disrupting gut homeostasis; however, a structural basis of this process and strategies to inhibit the claudin–CpE interactions that trigger it are both lacking. Here, we used a synthetic antigen-binding fragment (sFab) library to discover two sFabs that bind claudin-4 and cCpE complexes. We established these sFabs’ mode of molecular recognition and binding properties and determined structures of each sFab bound to claudin-4–cCpE complexes using cryo-EM. The structures reveal that the sFabs bind a shared epitope, but conform distinctly, which explains their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in binding changes, validating the structures, and uncovering the sFab’s targeting mechanism. From these insights, we generated a model for CpE’s claudin-bound β-pore that predicted sFabs would not prevent cytotoxicity, which we then verified in vivo. Taken together, this work demonstrates the development and mechanism of claudin/cCpE-binding sFabs that provide a framework and strategy for obstructing claudin/CpE assembly to treat CpE-linked gastrointestinal diseases.
Collapse
Affiliation(s)
- Benjamin J Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824 USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Sourav Roy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA.
| |
Collapse
|
24
|
Cao W, Xing H, Li Y, Tian W, Song Y, Jiang Z, Yu J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res 2022; 10:38. [PMID: 35642043 PMCID: PMC9153115 DOI: 10.1186/s40364-022-00385-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
The claudin18.2 (CLDN18.2) protein, an isoform of claudin18, a member of the tight junction protein family, is a highly selective biomarker with limited expression in normal tissues and often abnormal expression during the occurrence and development of various primary malignant tumors, such as gastric cancer/gastroesophageal junction (GC/GEJ) cancer, breast cancer, colon cancer, liver cancer, head and neck cancer, bronchial cancer and non-small-cell lung cancer. CLDN18.2 participates in the proliferation, differentiation and migration of tumor cells. Recent studies have identified CLDN18.2 expression as a potential specific marker for the diagnosis and treatment of these tumors. With its specific expression pattern, CLDN18.2 has become a unique molecule for targeted therapy in different cancers, especially in GC; for example, agents such as zolbetuximab (claudiximab, IMAB362), a monoclonal antibody (mAb) against CLDN18.2, have been developed. In this review, we outline recent advances in the development of immunotherapy strategies targeting CLDN18.2, including monoclonal antibodies (mAbs), bispecific antibodies (BsAbs), chimeric antigen receptor T (CAR-T) cells redirected to target CLDN18.2, and antibody–drug conjugates (ADCs).
Collapse
Affiliation(s)
- Weijie Cao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wenliang Tian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
25
|
Disruption of Claudin-Made Tight Junction Barriers by Clostridium perfringens Enterotoxin: Insights from Structural Biology. Cells 2022; 11:cells11050903. [PMID: 35269525 PMCID: PMC8909277 DOI: 10.3390/cells11050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Claudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium Clostridium perfringens causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins. CpE binds to claudins at or near tight junctions in the gut and disrupts their barrier function, potentially by disabling their assembly or via cell signaling means—the mechanism(s) remain unclear. CpE ultimately destroys claudin-expressing cells through the formation of a cytotoxic membrane-penetrating β-barrel pore. Structures obtained by X-ray crystallography of CpE, claudins, and claudins in complex with CpE fragments have provided the structural bases of claudin and CpE functions, revealing potential mechanisms for the CpE-mediated disruption of claudin-made tight junctions. This review highlights current progress in this space—what has been discovered and what remains unknown—toward efforts to elucidate the molecular mechanism of CpE disruption of tight junction barriers. It further underscores the key insights obtained through structure that are being applied to develop CpE-based therapeutics that combat claudin-overexpressing cancers or modulate tight junction barriers.
Collapse
|
26
|
Sharafi Y, Mirhosseini SA, Amani J. In silico prediction of amino acids involved in cCPE 290-319 interaction with claudin 4. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:501-506. [PMID: 36686873 PMCID: PMC9840802 DOI: 10.30466/vrf.2021.527750.3161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/15/2021] [Indexed: 01/24/2023]
Abstract
Among the 26 human claudin proteins, the food-poisoning bacterium Clostridium perfringens produces an enterotoxin (~ 35.00 kDa) that specifically targets human claudin 4, causing diarrhea by fluid accumulation in the intestinal cavity. The Clostridium perfringens enterotoxin (CPE) C-terminal domain (cCPE ~ 15.00 kDa) tightly binds to claudin 4 and disrupts the tight junction barriers in the intestines. In this study, we aimed to determine the contribution and type of amino acid interactions involved in association between claudin 4 and the C-terminal CPE. First, the three-dimensional format of claudin 4 was downloaded from RCSB. Then, during 60.00 nanoseconds (nsec), molecular dynamics simulation was conducted using the GROMACS package on CPE of crystallographic structure. The results indicated that the simulations performed well during the simulation times and there were no noticeable problems or artifacts. We found that Coulombic (glycine 317, proline 311 and serine 313) and Lennard-Jones (tyrosine 310, leucine 315, serine 313 and glycine 317) interactions played a significant role in complex stability. This information localized the C-terminal of CPE as a linear sequence sufficient for recognition and binding to the eukaryotic CPE receptor. A detailed description of the dissociation process brings valuable insight into the interaction of the claudin 4-cCPE290-319 complexes, which could help in the future to design more potent drugs.
Collapse
Affiliation(s)
| | | | - Jafar Amani
- Correspondence Jafar Amani. PhD Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran E-mail:
| |
Collapse
|
27
|
Beier LS, Piontek J, Piontek A, Protze J, Kobelt D, Walther W. Claudin-Targeted Suicide Gene Therapy for Claudin-Overexpressing Tumor Cells by Using Modified Clostridium perfringens Enterotoxin (CPE). Methods Mol Biol 2022; 2521:173-188. [PMID: 35732998 DOI: 10.1007/978-1-0716-2441-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacterial toxins gain growing attention as potential cancer treatment due to their potent cytotoxic effects. Among the very different toxins with diverse modes of action, the Clostridium perfringens enterotoxin (CPE) is in focus to treat solid cancers. This toxin targets the tight junction proteins claudin-3 and -4 (Cldn-3/4), which are frequently overexpressed in solid cancers. Binding to these claudins induces pore formation in the host cell plasma membrane leading to rapid oncoleaking cell death of tumor cells. Based on this, extending the targeting of CPE beyond Cldn-3/4 is of interest, since other claudins, such as claudin-1 or -5 are often overexpressed in various cancer entities such as non-small-cell lung cancer (NSCLC) or papillary thyroid carcinoma. In this chapter we describe the modification of a CPE-encoding vector by structure-directed mutagenesis to either preferentially target Cldn-1 and -5 or to expand targeting to Cldn1-9 for improved broadened cytotoxic targeting of claudin-overexpressing tumors such as but not limited to lung cancer via CPE gene transfer.
Collapse
Affiliation(s)
- Laura-Sophie Beier
- Division of Gastroenterology, Infectiology, Rheumatology, Clinical Physiology/Nutritional Medicine, Medical Department, Charitè - Universitätsmedizin Berlin, Berlin, Germany
- Division of Cell and Developmental Biology, Institute of Biology, University of Leipzig, Leipzig, Germany
| | - Jörg Piontek
- Division of Gastroenterology, Infectiology, Rheumatology, Clinical Physiology/Nutritional Medicine, Medical Department, Charitè - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Piontek
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Hashimoto Y, Campbell M, Tachibana K, Okada Y, Kondoh M. Claudin-5: A Pharmacological Target to Modify the Permeability of the Blood-Brain Barrier. Biol Pharm Bull 2021; 44:1380-1390. [PMID: 34602546 DOI: 10.1248/bpb.b21-00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Claudin-5 is the dominant tight junction protein in brain endothelial cells and exclusively limits the paracellular permeability of molecules larger than 400 Da across the blood-brain barrier (BBB). Its pathological impairment or sustained down-regulation has been shown to lead to the progression of psychiatric and neurological disorders, whereas its expression under physiological conditions prevents the passage of drugs across the BBB. While claudin-5 enhancers could potentially act as vascular stabilizers to treat neurological diseases, claudin-5 inhibitors could function as delivery systems to enhance the brain uptake of hydrophilic small-molecular-weight drugs. Therefore, the effects of claudin-5 manipulation on modulating the BBB in different neurological diseases requires further examination. To manipulate claudin-5 expression levels and function, several claudin-5 modulating molecules have been developed. In this review, we first describe the molecular, cellular and pathological aspects of claudin-5 to highlight the mechanisms of claudin-5 enhancers/inhibitors. We then discuss recently developed claudin-5 enhancers/inhibitors and new methods to discover these molecules.
Collapse
Affiliation(s)
| | | | | | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
29
|
Abstract
Claudins are adhesion molecules located at the tight junctions between epithelial cells. A series of studies have now reported aberrant expression of claudin proteins in the context of neoplastic transformation, suggesting its role in tumorigenesis. However, the precise mechanisms are still not well understood. Studies on expression alterations of claudins have revealed a range of outcomes that reflect the complexity of claudins in terms of spatial localization, tumor type and stage of disease. The diverse and dynamic expression patterns of claudins in cancer are tightly controlled by a wide range of regulatory mechanisms, which are commonly modulated by oncogenic signaling pathways. The present review summarizes the recent knowledge describing the dysregulation of claudin expression in cancer and discusses the intrinsic and extrinsic determinants of the context-specific expression patterns of claudins.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
30
|
Effective Oncoleaking Treatment of Pancreatic Cancer by Claudin-Targeted Suicide Gene Therapy with Clostridium perfringens Enterotoxin (CPE). Cancers (Basel) 2021; 13:cancers13174393. [PMID: 34503203 PMCID: PMC8431234 DOI: 10.3390/cancers13174393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Current therapies for pancreas carcinoma (PC) are of limited efficacy due to tumor aggressiveness and therapy resistance. Bacterial toxins with pore-forming (oncoleaking) potential are promising tools in cancer therapy. We have developed a novel, suicide gene therapy treatment, based on Clostridium perfringens enterotoxin (CPE)-mediated oncoleaking. This is achieved by CPE suicide gene therapy to treat PC, which overexpresses the claudin-3 and -4 (Cldn3/4) tight junction proteins, which are targets of CPE action. This targeted gene therapy causes rapid eradication of Cldn3/4 overexpressing PC cells via oncoleaking and initiation of apoptotic/necrotic signaling. We demonstrate efficacy of this approach in vitro and after nonviral in vivo gene transfer in cell lines and in patient derived xenograft PC models. This therapy approach has translational potential for treatment of pancreas carcinomas and could also be translated into new combination settings with conventional chemotherapy. Abstract Pancreatic cancer (PC) is one of the most lethal cancers worldwide, associated with poor prognosis and restricted therapeutic options. Clostridium perfringens enterotoxin (CPE), is a pore-forming (oncoleaking) toxin, which binds to claudin-3 and -4 (Cldn3/4) causing selective cytotoxicity. Cldn3/4 are highly upregulated in PC and represent an effective target for oncoleaking therapy. We utilized a translation-optimized CPE vector (optCPE) for new suicide approach of PC in vitro and in cell lines (CDX) and patient-derived pancreatic cancer xenografts (PDX) in vivo. The study demonstrates selective toxicity in Cldn3/4 overexpressing PC cells by optCPE gene transfer, mediated by pore formation, activation of apoptotic/necrotic signaling in vitro, induction of necrosis and of bystander tumor cell killing in vivo. The optCPE non-viral intratumoral in vivo jet-injection gene therapy shows targeted antitumoral efficacy in different CDX and PDX PC models, leading to reduced tumor viability and induction of tumor necrosis, which is further enhanced if combined with chemotherapy. This selective oncoleaking suicide gene therapy improves therapeutic efficacy in pancreas carcinoma and will be of value for better local control, particularly of unresectable or therapy refractory PC.
Collapse
|
31
|
Innovative and Highly Sensitive Detection of Clostridium perfringens Enterotoxin Based on Receptor Interaction and Monoclonal Antibodies. Toxins (Basel) 2021; 13:toxins13040266. [PMID: 33917845 PMCID: PMC8068247 DOI: 10.3390/toxins13040266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) regularly causes food poisoning and antibiotic-associated diarrhea; therefore, reliable toxin detection is crucial. To this aim, we explored stationary and mobile strategies to detect CPE either exclusively by monoclonal antibodies (mAbs) or, alternatively, by toxin-enrichment via the cellular receptor of CPE, claudin-4, and mAb detection. Among the newly generated mAbs, we identified nine CPE-specific mAbs targeting five distinct epitopes, among them mAbs recognizing CPE bound to claudin-4 or neutralizing CPE activity in vitro. In surface plasmon resonance experiments, all mAbs and claudin-4 revealed excellent affinities towards CPE, ranging from 0.05 to 2.3 nM. Integrated into sandwich enzyme-linked immunosorbent assays (ELISAs), the most sensitive mAb/mAb and claudin-4/mAb combinations achieved similar detection limits of 0.3 pg/mL and 1.0 pg/mL, respectively, specifically detecting recombinant CPE from spiked feces and native CPE from 30 different C. perfringens culture supernatants. The implementation of mAb- and receptor-based ELISAs into a mobile detection platform enabled the fast detection of CPE, which will be helpful in clinical laboratories to diagnose diarrhea of assumed bacterial origin. In conclusion, we successfully employed an endogenous receptor and novel high affinity mAbs for highly sensitive and specific CPE-detection. These tools will be useful for both basic and applied research.
Collapse
|
32
|
Structural basis for Clostridium perfringens enterotoxin targeting of claudins at tight junctions in mammalian gut. Proc Natl Acad Sci U S A 2021; 118:2024651118. [PMID: 33876770 PMCID: PMC8053971 DOI: 10.1073/pnas.2024651118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterium Clostridium perfringens causes severe, sometimes lethal gastrointestinal disorders in humans, including enteritis and enterotoxemia. Type F strains produce an enterotoxin (CpE) that causes the third most common foodborne illness in the United States. CpE induces gut breakdown by disrupting barriers at cell-cell contacts called tight junctions (TJs), which are formed and maintained by claudins. Targeted binding of CpE to specific claudins, encoded by its C-terminal domain (cCpE), loosens TJ barriers to trigger molecular leaks between cells. Cytotoxicity results from claudin-bound CpE complexes forming pores in cell membranes. In mammalian tissues, ∼24 claudins govern TJ barriers-but the basis for CpE's selective targeting of claudins in the gut was undetermined. We report the structure of human claudin-4 in complex with cCpE, which reveals that enterotoxin targets a motif conserved in receptive claudins and how the motif imparts high-affinity CpE binding to these but not other subtypes. The structural basis of CpE targeting is supported by binding affinities, kinetics, and half-lives of claudin-enterotoxin complexes and by the cytotoxic effects of CpE on claudin-expressing cells. By correlating the binding residence times of claudin-CpE complexes we determined to claudin expression patterns in the gut, we uncover that the primary CpE receptors differ in mice and humans due to sequence changes in the target motif. These findings provide the molecular and structural element CpE employs for subtype-specific targeting of claudins during pathogenicity of C. perfringens in the gut and a framework for new strategies to treat CpE-based illnesses in domesticated mammals and humans.
Collapse
|
33
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
34
|
Tight Junction Modulating Bioprobes for Drug Delivery System to the Brain: A Review. Pharmaceutics 2020; 12:pharmaceutics12121236. [PMID: 33352631 PMCID: PMC7767277 DOI: 10.3390/pharmaceutics12121236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), which is composed of endothelial cells, pericytes, astrocytes, and neurons, separates the brain extracellular fluid from the circulating blood, and maintains the homeostasis of the central nervous system (CNS). The BBB endothelial cells have well-developed tight junctions (TJs) and express specific polarized transport systems to tightly control the paracellular movements of solutes, ions, and water. There are two types of TJs: bicellular TJs (bTJs), which is a structure at the contact of two cells, and tricellular TJs (tTJs), which is a structure at the contact of three cells. Claudin-5 and angulin-1 are important components of bTJs and tTJs in the brain, respectively. Here, we review TJ-modulating bioprobes that enable drug delivery to the brain across the BBB, focusing on claudin-5 and angulin-1.
Collapse
|
35
|
Liu S, Li S, Yang Y, Li W. Termini restraining of small membrane proteins enables structure determination at near-atomic resolution. SCIENCE ADVANCES 2020; 6:eabe3717. [PMID: 33355146 PMCID: PMC11205269 DOI: 10.1126/sciadv.abe3717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Small membrane proteins are difficult targets for structural characterization. Here, we stabilize their folding by restraining their amino and carboxyl termini with associable protein entities, exemplified by the two halves of a superfolder GFP. The termini-restrained proteins are functional and show improved stability during overexpression and purification. The reassembled GFP provides a versatile scaffold for membrane protein crystallization, enables diffraction to atomic resolution, and facilitates crystal identification, phase determination, and density modification. This strategy gives rise to 14 new structures of five vertebrate proteins from distinct functional families, bringing a substantial expansion to the structural database of small membrane proteins. Moreover, a high-resolution structure of bacterial DsbB reveals that this thiol oxidoreductase is activated through a catalytic triad, similar to cysteine proteases. Overall, termini restraining proves exceptionally effective for stabilization and structure determination of small membrane proteins.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Yuan L, van der Mei HC, Busscher HJ, Peterson BW. Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During E. coli Challenges. Front Microbiol 2020; 11:599555. [PMID: 33329490 PMCID: PMC7710611 DOI: 10.3389/fmicb.2020.599555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Mechanisms of gastrointestinal protection by probiotic bacteria against infection involve amongst others, modulation of intestinal epithelial barrier function. Trans-epithelial electrical resistance (TEER) is widely used to evaluate cellular barrier functions. Here, we developed a two-stage interpretative model of the time-dependence of the TEER of epithelial layers grown in a transwell during Escherichia coli challenges in the absence or presence of adhering bifidobacteria. E. coli adhesion in absence or presence of adhering bifidobacteria was enumerated using selective plating. After 4-8 h, E. coli challenges increased TEER to a maximum due to bacterial adhesion and increased expression of a tight-junction protein [zonula occludens-1 (ZO-1)], concurrent with a less dense layer structure, that is indicative of mild epithelial layer damage. Before the occurrence of a TEER-maximum, decreases in electrical conductance (i.e., the reciprocal TEER) did not relate with para-cellular dextran-permeability, but after occurrence of a TEER-maximum, dextran-permeability and conductance increased linearly, indicative of more severe epithelial layer damage. Within 24 h after the occurrence of a TEER maximum, TEER decreased to below the level of unchallenged epithelial layers demonstrating microscopically observable holes and apoptosis. Under probiotic protection by adhering bifidobacteria, TEER-maxima were delayed or decreased in magnitude due to later transition from mild to severe damage, but similar linear relations between conductance and dextran permeability were observed as in absence of adhering bifidobacteria. Based on the time-dependence of the TEER and the relation between conductance and dextran-permeability, it is proposed that bacterial adhesion to epithelial layers first causes mild damage, followed by more severe damage after the occurrence of a TEER-maximum. The mild damage caused by E. coli prior to the occurrence of TEER maxima was reversible upon antibiotic treatment, but the severe damage after occurrence of TEER maxima could not be reverted by antibiotic treatment. Thus, single-time TEER is interpretable in two ways, depending whether increasing to or decreasing from its maximum. Adhering bifidobacteria elongate the time-window available for antibiotic treatment to repair initial pathogen damage to intestinal epithelial layers.
Collapse
Affiliation(s)
| | | | | | - Brandon W. Peterson
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
37
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
García-Castaño A, Perdomo-Ramirez A, Vall-Palomar M, Ramos-Trujillo E, Madariaga L, Ariceta G, Claverie-Martin F. Novel compound heterozygous mutations of CLDN16 in a patient with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Mol Genet Genomic Med 2020; 8:e1475. [PMID: 32869508 PMCID: PMC7667358 DOI: 10.1002/mgg3.1475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Background Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is an autosomal recessive tubulopathy characterized by excessive urinary wasting of magnesium and calcium, bilateral nephrocalcinosis, and progressive chronic renal failure in childhood or adolescence. FHHNC is caused by mutations in CLDN16 and CLDN19, which encode the tight‐junction proteins claudin‐16 and claudin‐19, respectively. Most of these mutations are missense mutations and large deletions are rare. Methods We examined the clinical and biochemical features of a Spanish boy with early onset of FHHNC symptoms. Exons and flanking intronic segments of CLDN16 and CLDN19 were analyzed by direct sequencing. We developed a new assay based on Quantitative Multiplex PCR of Short Fluorescent Fragments (QMPSF) to investigate large CLDN16 deletions. Results Genetic analysis revealed two novel compound heterozygous mutations of CLDN16, comprising a missense mutation, c.277G>A; p.(Ala93Thr), in one allele, and a gross deletion that lacked exons 4 and 5,c.(840+25_?)del, in the other allele. The patient inherited these variants from his mother and father, respectively. Conclusions Using direct sequencing and our QMPSF assay, we identified the genetic cause of FHHNC in our patient. This QMPSF assay should facilitate the genetic diagnosis of FHHNC. Our study provided additional data on the genotypic spectrum of the CLDN16 gene.
Collapse
Affiliation(s)
| | - Ana Perdomo-Ramirez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Mònica Vall-Palomar
- Fisiopatologia Renal, Centro de Investigaciones en Bioquímica y Biología Molecular (CIBBIM), Vall d'Hebron Institut de Recerca (VHIR, Barcelona, Spain
| | - Elena Ramos-Trujillo
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Leire Madariaga
- Biocruces Bizkaia Research Institute, Barakaldo, Bizkaia, Spain.,Pediatric Nephrology Department, Cruces University Hospital, UPV/EHU, Barakaldo, Spain
| | - Gema Ariceta
- Fisiopatologia Renal, Centro de Investigaciones en Bioquímica y Biología Molecular (CIBBIM), Vall d'Hebron Institut de Recerca (VHIR, Barcelona, Spain.,Servicio de Nefrología Pediátrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain.,Departamento de Pediatría, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Felix Claverie-Martin
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| |
Collapse
|
39
|
Nasako H, Takashina Y, Eguchi H, Ito A, Ishikawa Y, Matsunaga T, Endo S, Ikari A. Increase in Toxicity of Anticancer Drugs by PMTPV, a Claudin-1-Binding Peptide, Mediated via Down-Regulation of Claudin-1 in Human Lung Adenocarcinoma A549 Cells. Int J Mol Sci 2020; 21:ijms21165909. [PMID: 32824620 PMCID: PMC7460671 DOI: 10.3390/ijms21165909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/15/2023] Open
Abstract
Claudin-1 (CLDN1), a tight junctional protein, is highly expressed in lung cancer cells and may contribute to chemoresistance. A drug which decreases CLDN1 expression could be a chemosensitizer for enhancing the efficacy of anticancer drugs, but there is no such drug known. We found that PMTPV, a short peptide, which mimics the structure of second extracellular loop (ECL2) of CLDN1, can reduce the protein level of CLDN1 without affecting the mRNA level in A549 cells derived from human lung adenocarcinoma. The PMTPV-induced decrease in CLDN1 expression was inhibited by monodansylcadaverine, a clathrin-mediated endocytosis inhibitor, and chloroquine, a lysosome inhibitor. Quartz crystal microbalance assay showed that PMTPV can directly bind to the ECL2 of CLDN1. In transwell assay, PMTPV increased fluxes of Lucifer yellow (LY), a paracellular flux marker, and doxorubicin (DXR), an anthracycline anticancer drug, without affecting transepithelial electrical resistance. In three-dimensional spheroid culture, the size and cell viability were unchanged by short peptides, but the fluorescence intensity of hypoxia probe LOX-1 was decreased by PMTPV. PMTPV elevated the accumulation and cytotoxicity of DXR in the spheroids. Similar results were observed by knockdown of CLDN1. Furthermore, the sensitivities to cisplatin (CDDP), docetaxel, and gefitinib were enhanced by PMTPV. The level of CLDN1 expression in CDDP-resistant cells was higher than that in parental A549 cells, which was reduced by PMTPV. PMTPV restored the toxicity to DXR in the CDDP-resistant cells. Our data suggest that PMTPV may become a novel chemosensitizer for lung adenocarcinoma.
Collapse
Affiliation(s)
- Haruka Nasako
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Yui Takashina
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Ayaka Ito
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Yoshinobu Ishikawa
- Department of Physical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (H.N.); (Y.T.); (H.E.); (A.I.); (S.E.)
- Correspondence: ; Tel.: +81-58-230-8124; Fax: +81-58-230-8124
| |
Collapse
|
40
|
Lan H, Suzuki H, Nagatake T, Hosomi K, Ikegami K, Setou M, Kunisawa J. Impaired mucociliary motility enhances antigen-specific nasal IgA immune responses to a cholera toxin-based nasal vaccine. Int Immunol 2020; 32:559-568. [PMID: 32347929 PMCID: PMC9262165 DOI: 10.1093/intimm/dxaa029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
Nasal mucosal tissues are equipped with physical barriers, mucus and cilia, on their surface. The mucus layer captures inhaled materials, and the cilia remove the inhaled materials from the epithelial layer by asymmetrical beating. The effect of nasal physical barriers on the vaccine efficacy remains to be investigated. Tubulin tyrosine ligase-like family, member 1 (Ttll1) is an essential enzyme for appropriate movement of the cilia on respiratory epithelium, and its deficiency (Ttll1-KO) leads to mucus accumulation in the nasal cavity. Here, when mice were intra-nasally immunized with pneumococcal surface protein A (PspA, as vaccine antigen) together with cholera toxin (CT, as mucosal adjuvant), Ttll1-KO mice showed higher levels of PspA-specific IgA in the nasal wash and increased numbers of PspA-specific IgA-producing plasma cells in the nasal passages when compared with Ttll1 hetero (He) mice. Mucus removal by N-acetylcysteine did not affect the enhanced immune responses in Ttll1-KO mice versus Ttll1-He mice. Immunohistological and flow cytometry analyses revealed that retention time of PspA in the nasal cavity in Ttll1-KO mice was longer than that in Ttll1-He mice. Consistently, uptake of PspA by dendritic cells was higher in the nasopharynx-associated lymphoid tissue (NALT) of Ttll1-KO mice than that of Ttll1-He mice. These results indicate that the ciliary function of removing vaccine antigen from the NALT epithelial layer is a critical determinant of the efficacy of nasal vaccine.
Collapse
Affiliation(s)
- Huangwenxian Lan
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Koji Ikegami
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Graduate School of Medicine, Kobe University, Hyogo, Japan
- Graduate School of Medicine and Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
41
|
Souod N, Rismani E, Bahrami F, Pakzad SR, Ajdary S. Computational evaluation of a fusion protein consisted of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis to target Claudin-4 using C-terminal fragment of Clostridium perfringens enterotoxin. J Biomol Struct Dyn 2020; 39:5910-5919. [PMID: 32691700 DOI: 10.1080/07391102.2020.1794966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pertussis, caused by Bordetella pertussis is still one of the controversial diseases worldwide due to its high prevalence in both the developed and the developing countries, especially among young children. As currently approved vaccines are not protective enough and provide Th2-type immune responses, there is an urgent need to develop new vaccines. In the current study, we applied the C-terminal fragment of Clostridium perferingens enterotoxin (C-CPE) as a delivery system and F1S1 fragment (Filamentous hemagglutinin (F1) and subunit 1 of pertussis toxin (S1) of B. pertussis to design a novel chimeric protein in silico, to target Claudin-4 receptors in mice lung cells. To achieve this goal, the primary, secondary and tertiary structures of the fusion protein were evaluated and the interaction of this protein with Claudin-4 receptors was studied. Molecular dynamic (MD) simulation analysis was performed to investigate the physical movement of atoms in a fixed period. According to the results; the full-length fusion protein has consisted of 807 amino acid residues which could be classified as a stable protein. There was a convenient consistency between the 3D predicted structure and the secondary structure prediction. An acceptable percentage of the residues were also detected in the most favored and allowed regions for the model. Based on HADDOCK results, there were no considerable differences between the interactions and MD simulation analysis, indicating that the predicted structures were stable during the simulation. Altogether, the data reported in this study represents the first step toward developing a nasal vaccine candidate against B. pertussis infection. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Negar Souod
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Rismani
- Department of Molecular medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Reza Pakzad
- Vaccine Potency and Standardization Section, Food and Drug Control Laboratory (FDCL), Ministry of Health and Medical Education, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
42
|
Claudin-2 binding peptides, VPDSM and DSMKF, down-regulate claudin-2 expression and anticancer resistance in human lung adenocarcinoma A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118642. [DOI: 10.1016/j.bbamcr.2019.118642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022]
|
43
|
Piontek J, Krug SM, Protze J, Krause G, Fromm M. Molecular architecture and assembly of the tight junction backbone. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183279. [PMID: 32224152 DOI: 10.1016/j.bbamem.2020.183279] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
The functional and structural concept of tight junctions has developed after discovery of claudin and TAMP proteins. Many of these proteins contribute to epi- and endothelial barrier but some, in contrast, form paracellular channels. Claudins form the backbone of tight junction (TJ) strands whereas other proteins regulate TJ dynamics. The current joined double-row model of TJ strands and channels is crucially based on the linear alignment of claudin-15 in the crystal. Molecular dynamics simulations, protein docking, mutagenesis, cellular TJ reconstitution, and electron microscopy studies largely support stability and functionality of the model. Here, we summarize in silico and in vitro data about TJ strand assembly including comparison of claudin crystal structures and alternative models. Sequence comparisons, experimental and structural data substantiate differentiation of classic and non-classic claudins differing in motifs related to strand assembly. Classic claudins seem to share a similar mechanism of strand formation. Interface variations likely contribute to TJ strand flexibility. Combined in vitro/in silico studies are expected to elucidate mechanistic keys determining TJ regulation.
Collapse
Affiliation(s)
- Jörg Piontek
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Jonas Protze
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
44
|
Assembly of Tight Junction Strands: Claudin-10b and Claudin-3 Form Homo-Tetrameric Building Blocks that Polymerise in a Channel-Independent Manner. J Mol Biol 2020; 432:2405-2427. [DOI: 10.1016/j.jmb.2020.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/12/2020] [Accepted: 02/28/2020] [Indexed: 02/03/2023]
|
45
|
Nakashima C, Yamamoto K, Kishi S, Sasaki T, Ohmori H, Fujiwara-Tani R, Mori S, Kawahara I, Nishiguchi Y, Mori T, Kondoh M, Luo Y, Kirita T, Kuniyasu H. Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas. Oncotarget 2020; 11:309-321. [PMID: 32064037 PMCID: PMC6996904 DOI: 10.18632/oncotarget.27424] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Claudin (CLDN)-4 expression has been associated with malignancy in various cancers. When CLDN4 expression was examined in oral squamous cell carcinoma (OSCC), 22 out of 57 (39%) cases showed immunoreactivity in the nucleus. Nuclear CLDN4-positive cases showed a stronger correlation with cancer progression than the negative cases. Intratumoral anaerobic bacterial DNA examination revealed nuclear CLDN4 expression in 81% of Clostridium perfringens-positive cases. Treatment of human oral squamous cell carcinoma cell lines HSC3 and HSC4 with Clostridium perfringens enterotoxin (CPE), induced CLDN4 nuclear translocation to enhance epithelial-mesenchymal transition (EMT), stemness, cell proliferation and invasive ability. In addition, CPE treatment suppressed phosphorylation of yes-associated protein-1 (YAP1) and promoted YAP1 nuclear translocation, resulting in increased expression of YAP1 target genes; cyclin D1 and connective tissue growth factor. Moreover, it was revealed that the complex of YAP1, CLDN4 and zona occludens-2 (ZO-2) was formed by CPE treatment, further suppressing YAP1 phosphorylation by LATS1 and activating it. Thus YAP activation in OSCC was regarded important in promoting malignant phenotypes. Our research suggested that the control of oral anaerobic bacteria may suppress YAP activation and in turn tumor progression.
Collapse
Affiliation(s)
- Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
46
|
Piontek A, Eichner M, Zwanziger D, Beier L, Protze J, Walther W, Theurer S, Schmid KW, Führer‐Sakel D, Piontek J, Krause G. Targeting claudin-overexpressing thyroid and lung cancer by modified Clostridium perfringens enterotoxin. Mol Oncol 2020; 14:261-276. [PMID: 31825142 PMCID: PMC6998413 DOI: 10.1002/1878-0261.12615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/22/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023] Open
Abstract
Clostridium perfringens enterotoxin (CPE) can be used to eliminate carcinoma cells that overexpress on their cell surface CPE receptors - a subset of claudins (e.g., Cldn3 and Cldn4). However, CPE cannot target tumors expressing solely CPE-insensitive claudins (such as Cldn1 and Cldn5). To overcome this limitation, structure-guided modifications were used to generate CPE variants that can strongly bind to Cldn1, Cldn2 and/or Cldn5, while maintaining the ability to bind Cldn3 and Cldn4. This enabled (a) targeting of the most frequent endocrine malignancy, namely, Cldn1-overexpressing thyroid cancer, and (b) improved targeting of the most common cancer type worldwide, non-small-cell lung cancer (NSCLC), which is characterized by high expression of several claudins, including Cldn1 and Cldn5. Different CPE variants, including the novel mutant CPE-Mut3 (S231R/S313H), were applied on thyroid cancer (K1 cells) and NSCLC (PC-9 cells) models. In vitro, CPE-Mut3, but not CPEwt, showed Cldn1-dependent binding and cytotoxicity toward K1 cells. For PC-9 cells, CPE-Mut3 improved claudin-dependent cytotoxic targeting, when compared to CPEwt. In vivo, intratumoral injection of CPE-Mut3 in xenograft models bearing K1 or PC-9 tumors induced necrosis and reduced the growth of both tumor types. Thus, directed modification of CPE enables eradication of tumor entities that cannot be targeted by CPEwt, for instance, Cldn1-overexpressing thyroid cancer by using the novel CPE-Mut3.
Collapse
Affiliation(s)
- Anna Piontek
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Miriam Eichner
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory ResearchUniversity Hospital EssenGermany
| | - Laura‐Sophie Beier
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Jonas Protze
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Wolfgang Walther
- Experimental and Clinical Research CenterCharitè and Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Sarah Theurer
- Institute of PathologyUniversity Hospital EssenGermany
| | | | - Dagmar Führer‐Sakel
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory ResearchUniversity Hospital EssenGermany
| | - Jörg Piontek
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Gerd Krause
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| |
Collapse
|
47
|
Heinemann U, Schuetz A. Structural Features of Tight-Junction Proteins. Int J Mol Sci 2019; 20:E6020. [PMID: 31795346 PMCID: PMC6928914 DOI: 10.3390/ijms20236020] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Tight junctions are complex supramolecular entities composed of integral membrane proteins, membrane-associated and soluble cytoplasmic proteins engaging in an intricate and dynamic system of protein-protein interactions. Three-dimensional structures of several tight-junction proteins or their isolated domains have been determined by X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryo-electron microscopy. These structures provide direct insight into molecular interactions that contribute to the formation, integrity, or function of tight junctions. In addition, the known experimental structures have allowed the modeling of ligand-binding events involving tight-junction proteins. Here, we review the published structures of tight-junction proteins. We show that these proteins are composed of a limited set of structural motifs and highlight common types of interactions between tight-junction proteins and their ligands involving these motifs.
Collapse
Affiliation(s)
- Udo Heinemann
- Macromolecular Structure and Interaction Laboratory, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Anja Schuetz
- Protein Production & Characterization Platform, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| |
Collapse
|
48
|
Rajagopal N, Irudayanathan FJ, Nangia S. Computational Nanoscopy of Tight Junctions at the Blood-Brain Barrier Interface. Int J Mol Sci 2019; 20:E5583. [PMID: 31717316 PMCID: PMC6888702 DOI: 10.3390/ijms20225583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
The selectivity of the blood-brain barrier (BBB) is primarily maintained by tight junctions (TJs), which act as gatekeepers of the paracellular space by blocking blood-borne toxins, drugs, and pathogens from entering the brain. The BBB presents a significant challenge in designing neurotherapeutics, so a comprehensive understanding of the TJ architecture can aid in the design of novel therapeutics. Unraveling the intricacies of TJs with conventional experimental techniques alone is challenging, but recently developed computational tools can provide a valuable molecular-level understanding of TJ architecture. We employed the computational methods toolkit to investigate claudin-5, a highly expressed TJ protein at the BBB interface. Our approach started with the prediction of claudin-5 structure, evaluation of stable dimer conformations and nanoscale assemblies, followed by the impact of lipid environments, and posttranslational modifications on these claudin-5 assemblies. These led to the study of TJ pores and barriers and finally understanding of ion and small molecule transport through the TJs. Some of these in silico, molecular-level findings, will need to be corroborated by future experiments. The resulting understanding can be advantageous towards the eventual goal of drug delivery across the BBB. This review provides key insights gleaned from a series of state-of-the-art nanoscale simulations (or computational nanoscopy studies) performed on the TJ architecture.
Collapse
Affiliation(s)
| | | | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
49
|
Effects of Claudin-1 on the Action of Clostridium perfringens Enterotoxin in Caco-2 Cells. Toxins (Basel) 2019; 11:toxins11100582. [PMID: 31601044 PMCID: PMC6832201 DOI: 10.3390/toxins11100582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) contributes to diarrhea and an often-lethal enterotoxemia. CPE action starts when it binds to claudin receptors, forming a small complex (90 kDa). Six small complexes then oligomerize to create prepores, followed by insertion of beta-hairpins from CPE to form beta-barrel pores named CH-1 or CH-2. Of the ~27 members of the human claudin protein family, only some bind CPE. However, both receptor claudins and the nonreceptor claudin-1 (CLDN-1) are associated with the small and CH-1/CH-2 CPE complexes. Therefore, this study evaluated whether claudin-1 affects CPE action by generating a CLDN-1 null mutant in Caco-2 cells using CRISPR-Cas9. Compared to wild-type Caco-2 cells, paracellular permeability of the CLDN-1 mutant was significantly enhanced, suggesting that claudin-1 may reduce CPE absorption during enterotoxemia. The CLDN-1 mutant was also markedly more sensitive than wild-type Caco-2 cells to apically-applied CPE. The mechanism behind this increased sensitivity involved higher CPE binding by the CLDN-1 mutant vs. wild-type Caco-2 cells, which led to more CH-1/CH-2 complex formation. However, the CH-1/CH-2 complexes formed by the CLDN-1 mutant were less stable or trypsin resistant than those of wild-type cells. These results indicate that, although a nonreceptor, CLDN-1 positively and negatively influences CPE action.
Collapse
|
50
|
Use of Modified Clostridium perfringens Enterotoxin Fragments for Claudin Targeting in Liver and Skin Cells. Int J Mol Sci 2019; 20:ijms20194774. [PMID: 31561440 PMCID: PMC6801472 DOI: 10.3390/ijms20194774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
Claudins regulate paracellular permeability in different tissues. The claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) is a known modulator of a claudin subset. However, it does not efficiently bind to claudin-1 (Cldn1). Cldn1 is a pharmacological target since it is (i) an essential co-receptor for hepatitis C virus (HCV) infections and (ii) a key element of the epidermal barrier limiting drug delivery. In this study, we investigated the potential of a Cldn1-binding cCPE mutant (i) to inhibit HCV entry into hepatocytes and (ii) to open the epidermal barrier. Inhibition of HCV infection by blocking of Cldn1 with cCPE variants was analyzed in the Huh7.5 hepatoma cell line. A model of reconstructed human epidermis was used to investigate modulation of the epidermal barrier by cCPE variants. In contrast to cCPEwt, the Cldn1-binding cCPE-S305P/S307R/S313H inhibited infection of Huh7.5 cells with HCV in a dose-dependent manner. In addition, TJ modulation by cCPE variant-mediated targeting of Cldn1 and Cldn4 opened the epidermal barrier in reconstructed human epidermis. cCPE variants are potent claudin modulators. They can be applied for mechanistic in vitro studies and might also be used as biologics for therapeutic claudin targeting including HCV treatment (host-targeting antivirals) and improvement of drug delivery.
Collapse
|