1
|
Przemieniecki SW, Damszel M, Kosewska O. The Impact of Nanoparticles and Molecular Forms of TiO 2 on the Rhizosphere of Plants in the Example of Common Wheat ( Triticum aestivum L.)-Shifts in Microbiome Structure and Predicted Microbial Metabolic Functions. Int J Mol Sci 2025; 26:685. [PMID: 39859400 PMCID: PMC11766111 DOI: 10.3390/ijms26020685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
This study investigated the effects of various titanium nanoparticles (TiO2NPs) on the structure, function, and trophic levels of the wheat rhizobiome. In contrast to the typically toxic effects of small nanoparticles (~10 nm), this research focused on molecular TiO2 and larger nanoparticles, as follows: medium-sized (68 nm, NPs1) and large (>100 nm, NPs2). The results demonstrated significant yet diverse impacts of different TiO2 forms on the rhizosphere microbiota. Large TiO2NPs2 and molecular TiO2 adversely affected the bacteriobiome and mycobiome, leading to an increase in autotrophic microbial groups. In contrast, medium-sized TiO2NPs1 shifted the microbiome toward chemoheterotrophy, promoting plant growth-associated bacteria, fungal saprotrophs, and potential phytopathogens, suggesting a beneficial r-strategy within the rhizosphere. Other treatments induced oligotrophic conditions, resulting in a less flexible rhizobiome with diminished root associations but an increased abundance of Trichoderma spp. Structural modelling revealed that even minor changes in operational taxonomic units (OTUs) could significantly alter the microbiota's metabolic potential. These findings highlight the importance of further research to optimize nanoparticle applications for sustainable agriculture.
Collapse
Affiliation(s)
- Sebastian Wojciech Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland; (M.D.); (O.K.)
| | | | | |
Collapse
|
2
|
Chandoliya R, Sharma S, Sharma V, Joshi R, Sivanesan I. Titanium Dioxide Nanoparticle: A Comprehensive Review on Synthesis, Applications and Toxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2964. [PMID: 39519883 PMCID: PMC11547906 DOI: 10.3390/plants13212964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology has garnered significant interest worldwide due to its wide-ranging applications across various industries. Titanium dioxide nanoparticles are one type of nanoparticle that is commonly utilised in everyday use and can be synthesized by different techniques using physical, chemical and biological extracts. Green synthesis is an economical, environmentally benign and non-toxic method of synthesising nanoparticles. Titanium dioxide nanoparticles have a positive impact on plant physiology, particularly in response to biotic and abiotic stresses, depending on various factors like size, concentration, exposure of the nanoparticles and other variables. Further, titanium dioxide nanoparticles have many applications, such as being used as nano-fertilizers, adsorption of heavy metal from industrial wastewater and antimicrobial activity, as discussed in this review paper. Previous studies investigated whether titanium dioxide nanoparticles also induce genotoxicity may be due to mishandling procedure, exposure time, size, concentration and other variables. This is still contradictory and requires more research. The present review is a pragmatic approach to summarize the synthesis, application, nanotoxicity, genotoxicity and eco-friendly method of nanoparticle synthesis and disposable.
Collapse
Affiliation(s)
- Rakhi Chandoliya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Kaur H, Kalia A, Manchanda P. Elucidating the effect of TiO 2 nanoparticles on mung bean rhizobia via in vitro assay: Influence on growth, morphology, and plant growth promoting traits. J Basic Microbiol 2024; 64:e2300306. [PMID: 38183339 DOI: 10.1002/jobm.202300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are among the most commonly used nanomaterials and are most likely to end up in soil. Therefore, it is pertinent to study the interaction of TiO2 NPs with soil microorganisms. The present in vitro broth study evaluates the impacts of low-dose treatments (0, 1.0, 5.0, 10.0, 20.0, and 40.0 mg L-1 ) of TiO2 NPs on cell viability, morphology, and plant growth promoting (PGP) traits of rhizobia isolated from mung bean root nodule. Two types of TiO2 NPs, that is, mixture of anatase and rutile, and anatase alone were used in the study. These TiO2 NPs were supplemented in broth along with a multifunctional isolate (Bradyrhizobium sp.) and two reference cultures. The exposure of TiO2 (anatase+rutile) NPs at low concentrations (less than 20.0 mg L-1 ) enhanced the cell growth, and total soluble protein content, besides improving the phosphate solubilization, Indole-3-acetic acid (IAA) production, siderophore, and gibberellic acid production. The TiO2 (anatase) NPs enhanced exopolysaccharide (EPS) production by the test rhizobial cultures. The radical scavenging assay was performed to reveal the mode of action of the nano-TiO2 particles. The study revealed higher reactive oxygen species (ROS) generation by the TiO2 (anatase) NPs as compared with TiO2 (anatase+rutile) NPs. Exposure to TiO2 NPs also altered the morphology of rhizobial cells. The findings suggest that TiO2 NPs could act as promoters of PGP traits of PGP bacteria when applied at appropriate lower doses.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
4
|
Kashisaz M, Enayatizamir N, Fu P, Eslahi M. Synthesis of nanoparticles using Trichoderma Harzianum, characterization, antifungal activity and impact on Plant Growth promoting Bacteria. World J Microbiol Biotechnol 2024; 40:107. [PMID: 38396217 DOI: 10.1007/s11274-024-03920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Globally cultivated cereals are frequently threatened by various plant pathogenic agents such as Fusarium fungi. To combat these pathogens, researchers have made nanoparticles as potential agricultural pesticides. In this study, selenium and titanium dioxide NPs were synthesized using Trichoderma harzianum metabolites. Characterization of the NPs indicated varying size and shapes of both NPs and functional groups existence to constitute both NPs. The evaluation of antifungal activity of NPs against plant pathogenic fungi, Fusarium culmorum, indicated both NPs maximum antifungal activity at concentration of 100 mg/L. The impacts of nanoparticles on some beneficial plant growth promoting bacteria (PGPB) were evaluated and showed their inhibition effect on optical density of PGPB at a concentration of 100 mg/L but they did not have any impact on nitrogen fixation by bacteria. Existence of TiO2NPs reduced the intensity of color change to pink compared to the control indicating auxin production. Both NPs demonstrated different impact on phosphate solubilization index. This study suggests that the synthesized nanoparticles have the potential to serve as antifungal compounds at special concentration against plant diseases without significantly reducing the potential of PGPB at low concentrations.
Collapse
Affiliation(s)
- Marayam Kashisaz
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Enayatizamir
- Department of Soil Sciecne, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Mohammadreza Eslahi
- Department of Plant Protection, Khuzestan Agricultural and Natural Resource Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| |
Collapse
|
5
|
Fox S, Stefánsson H, Peternell M, Zlotskiy E, Ásbjörnsson EJ, Sturkell E, Wanner P, Konrad-Schmolke M. Physical characteristics of microplastic particles and potential for global atmospheric transport: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122938. [PMID: 37981185 DOI: 10.1016/j.envpol.2023.122938] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Recent interest in microplastic pollution of natural environments has brought forth samples which confirm the pollutant's omnipresence in a variety of ecosystems. This includes locations furthest removed from human activity. Atmospheric transport and deposition are suspected as the primary transport pathway to these remote locations. The factors most influential on participation in atmospheric transport are yet to be determined. This meta-analysis aims to identify patterns that exist between physical characteristics of microplastic particles and their potential for atmospheric transport. Our review addresses the following questions: Which characteristics of microplastic particles promote atmospheric transport and deposition into remote regions, and how significant are these factors in determining distance transported from their sources? This article analyzes commonly reported physical attributes-- shape, polymer composition and color-- from studies in urban and remote areas. The analysis of 68 studies, composed of data from 2078 samples, shows higher occurrence of microplastic particles in remote samples with fiber shapes, polyester compositions, and red, blue, and transparent colors. This meta-analysis is the first to identify patterns between physical properties of microplastic particles and extent of their participation in atmospheric transport to global remote locations.
Collapse
Affiliation(s)
- Sydney Fox
- Department of Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Mark Peternell
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Edward Zlotskiy
- Albert Nenken School of Engineering, The Cooper Union for the Advancement of Science and Art, Brooklyn, NY, USA
| | | | - Erik Sturkell
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Wanner
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
6
|
Ferraris F, Adelantado C, Raggi A, Savini S, Zougagh M, Ríos Á, Cubadda F. An ICP-MS-Based Analytical Strategy for Assessing Compliance with the Ban of E 171 as a Food Additive on the EU Market. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2957. [PMID: 37999311 PMCID: PMC10674805 DOI: 10.3390/nano13222957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
A method was developed for the determination of total titanium in food and food supplements by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted acid digestion of samples. Five food supplements, including one certified reference material, and 15 food products were used for method development. Key factors affecting the analytical results, such as the composition of the acid mixture for sample digestion and the bias from spectral interferences on the different titanium isotopes, were investigated. Resolution of interferences was achieved by ICP-MS/MS with ammonia adduct formation and viable conditions for control laboratories equipped with standard quadrupole instruments were identified. The method was successfully validated and enables rapid screening of samples subject to confirmatory analysis for the presence of TiO2 particles. For the latter, single-particle ICP-MS (spICP-MS) analysis after chemical extraction of the particles was used. The two methods establish a viable analytical strategy for assessing the absence of titania particles in food products on the EU market following the E 171 ban as a food additive.
Collapse
Affiliation(s)
- Francesca Ferraris
- National Reference Laboratory for Nanomaterials in Food, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—National Institute of Health, 00161 Rome, Italy; (F.F.); (A.R.); (S.S.)
| | - Carlos Adelantado
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium;
| | - Andrea Raggi
- National Reference Laboratory for Nanomaterials in Food, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—National Institute of Health, 00161 Rome, Italy; (F.F.); (A.R.); (S.S.)
| | - Sara Savini
- National Reference Laboratory for Nanomaterials in Food, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—National Institute of Health, 00161 Rome, Italy; (F.F.); (A.R.); (S.S.)
| | - Mohammed Zougagh
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.Z.); (Á.R.)
- Regional Institute for Applied Scientific Research, IRICA, 13005 Ciudad Real, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.Z.); (Á.R.)
- Regional Institute for Applied Scientific Research, IRICA, 13005 Ciudad Real, Spain
| | - Francesco Cubadda
- National Reference Laboratory for Nanomaterials in Food, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità—National Institute of Health, 00161 Rome, Italy; (F.F.); (A.R.); (S.S.)
| |
Collapse
|
7
|
Hellal J, Barthelmebs L, Bérard A, Cébron A, Cheloni G, Colas S, Cravo-Laureau C, De Clerck C, Gallois N, Hery M, Martin-Laurent F, Martins J, Morin S, Palacios C, Pesce S, Richaume A, Vuilleumier S. Unlocking secrets of microbial ecotoxicology: recent achievements and future challenges. FEMS Microbiol Ecol 2023; 99:fiad102. [PMID: 37669892 PMCID: PMC10516372 DOI: 10.1093/femsec/fiad102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023] Open
Abstract
Environmental pollution is one of the main challenges faced by humanity. By their ubiquity and vast range of metabolic capabilities, microorganisms are affected by pollution with consequences on their host organisms and on the functioning of their environment. They also play key roles in the fate of pollutants through the degradation, transformation, and transfer of organic or inorganic compounds. Thus, they are crucial for the development of nature-based solutions to reduce pollution and of bio-based solutions for environmental risk assessment of chemicals. At the intersection between microbial ecology, toxicology, and biogeochemistry, microbial ecotoxicology is a fast-expanding research area aiming to decipher the interactions between pollutants and microorganisms. This perspective paper gives an overview of the main research challenges identified by the Ecotoxicomic network within the emerging One Health framework and in the light of ongoing interest in biological approaches to environmental remediation and of the current state of the art in microbial ecology. We highlight prevailing knowledge gaps and pitfalls in exploring complex interactions among microorganisms and their environment in the context of chemical pollution and pinpoint areas of research where future efforts are needed.
Collapse
Affiliation(s)
| | - Lise Barthelmebs
- Université de Perpignan Via Domitia, Biocapteurs – Analyse-Environnement, Perpignan, France
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Annette Bérard
- UMR EMMAH INRAE/AU – équipe SWIFT, 228, route de l'Aérodrome, 84914 Avignon Cedex 9, France
| | | | - Giulia Cheloni
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Simon Colas
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | | | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech (Liege University), Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | - Marina Hery
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Fabrice Martin-Laurent
- Institut Agro Dijon, INRAE, Université de Bourgogne, Université de Bourgogne Franche-Comté, Agroécologie, 21065 Dijon, France
| | - Jean Martins
- IGE, UMR 5001, Université Grenoble Alpes, CNRS, G-INP, INRAE, IRD Grenoble, France
| | | | - Carmen Palacios
- Université de Perpignan Via Domitia, CEFREM, F-66860 Perpignan, France
- CNRS, CEFREM, UMR5110, F-66860 Perpignan, France
| | | | - Agnès Richaume
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France
| | | |
Collapse
|
8
|
Fonseca E, Vázquez M, Rodriguez-Lorenzo L, Mallo N, Pinheiro I, Sousa ML, Cabaleiro S, Quarato M, Spuch-Calvar M, Correa-Duarte MA, López-Mayán JJ, Mackey M, Moreda A, Vasconcelos V, Espiña B, Campos A, Araújo MJ. Getting fat and stressed: Effects of dietary intake of titanium dioxide nanoparticles in the liver of turbot Scophthalmus maximus. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131915. [PMID: 37413800 DOI: 10.1016/j.jhazmat.2023.131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
The extensive use of nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs), raises concerns about their persistence in ecosystems. Protecting aquatic ecosystems and ensuring healthy and safe aquaculture products requires the assessment of the potential impacts of NPs on organisms. Here, we study the effects of a sublethal concentration of citrate-coated TiO2 NPs of two different primary sizes over time in flatfish turbot, Scophthalmus maximus (Linnaeus, 1758). Bioaccumulation, histology and gene expression were assessed in the liver to address morphophysiological responses to citrate-coated TiO2 NPs. Our analyses demonstrated a variable abundance of lipid droplets (LDs) in hepatocytes dependent on TiO2 NPs size, an increase in turbot exposed to smaller TiO2 NPs and a depletion with larger TiO2 NPs. The expression patterns of genes related to oxidative and immune responses and lipid metabolism (nrf2, nfκb1, and cpt1a) were dependent on the presence of TiO2 NPs and time of exposure supporting the variance in hepatic LDs distribution over time with the different NPs. The citrate coating is proposed as the likely catalyst for such effects. Thus, our findings highlight the need to scrutinize the risks associated with exposure to NPs with distinct properties, such as primary size, coatings, and crystalline forms, in aquatic organisms.
Collapse
Affiliation(s)
- Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - María Vázquez
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Natalia Mallo
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Maria Lígia Sousa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Santiago Cabaleiro
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel Spuch-Calvar
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Miguel A Correa-Duarte
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Juan José López-Mayán
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Mick Mackey
- IRMRC - Indigo Rock Marine Research Centre, Gearhies, Bantry, Co., Cork P75 AX07, Ireland
| | - Antonio Moreda
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Vítor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Biology Department, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Mário Jorge Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
9
|
He G, Yang Y, Liu G, Zhang Q, Liu W. Global analysis of the perturbation effects of metal-based nanoparticles on soil nitrogen cycling. GLOBAL CHANGE BIOLOGY 2023; 29:4001-4017. [PMID: 37082828 DOI: 10.1111/gcb.16735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although studies have investigated the effects of metal-based nanoparticles (MNPs) on soil biogeochemical processes, the results obtained thus far are highly variable. Moreover, we do not yet understand how the impact of MNPs is affected by experimental design and environmental conditions. Herein, we conducted a global analysis to synthesize the effects of MNPs on 17 variables associated with soil nitrogen (N) cycling from 62 studies. Our results showed that MNPs generally exerted inhibitory effects on N-cycling process rates, N-related enzyme activities, and microbial variables. The response of soil N cycling varied with MNP type, and exposure dose was the most decisive factor for the variations in the responses of N-cycling process rates and enzyme activities. Notably, Ag/Ag2 S and CuO had dose-dependent inhibitory effects on ammonia oxidation rates, while CuO and Zn/ZnO showed hormetic effects on nitrification and denitrification rates, respectively. Other experimental design factors (e.g., MNP size and exposure duration) also regulated the effect of MNPs on soil N cycling, and specific MNPs, such as Ag/Ag2 S, exerted stronger effects during long-term (>28 days) exposure. Environmental conditions, including soil pH, organic carbon, texture, and presence/absence of plants, significantly influenced MNP toxicity. For instance, the effects of Ag/Ag2 S on the ammonia oxidation rate and the activity of leucine aminopeptidase were more potent in acid (pH <6), organic matter-limited (organic carbon content ≤10 g kg-1 ), and coarser soils. Overall, these results provide new insights into the general mechanisms by which MNPs alter soil N processes in different environments and underscore the urgent need to perform multivariate and long-term in situ trials in simulated natural environments.
Collapse
Affiliation(s)
- Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
10
|
Zimmerman AJ, Garcia Gutierrez D, Shaghaghi N, Sharma A, Deonarine A, Landrot G, Weindorf DC, Siebecker MG. Mobility and bioaccessibility of arsenic (As) bound to titanium dioxide (TiO 2) water treatment residuals (WTRs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121468. [PMID: 36958654 DOI: 10.1016/j.envpol.2023.121468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
This work systematically describes arsenic mobility and potential bioaccessibility of arsenic-enriched titanium dioxide water treatment residuals (TiO2 WTRs) by employing a suite of wet chemical experiments and spectroscopic measurements. Specifically, Environmental Protection Agency (EPA) digestion method 3051a indicated <3% of total arsenic in the solid phase was released, and arsenic assessed by EPA method 1340 for bioaccessibility was below detection limits. A novel finding is while the arsenic appeared to be stable under highly acidic digestion conditions, it is in fact highly mobile when exposed to simple phosphate solutions. On average, 55% of arsenic was extracted from all samples during a 50-day replenishment study. This was equivalent to 169 mg kg-1 arsenic released from the solid phase. Macroscopic desorption experiments indicated arsenic likely formed inner-sphere bonds with the TiO2 particles present in the samples. This was confirmed with X-ray absorption spectroscopy (XAS), where an interatomic distance of 3.32 Å and a coordination number (CN) of 1.79 titanium atoms were determined. This translates to a configuration of arsenic on TiO2 surfaces as a bidentate binuclear inner-sphere complex. Thus, both macroscopic and spectroscopic data are in agreement. During incubation experiments, arsenic(V) was actively reduced to arsenic(III); the amount of arsenic(III) in solution varied from 8 to 38% of total dissolved arsenic. Lastly, elevated concentrations and mobility of vanadium in these systems merit further investigation. The high mobility of arsenic and its potential for reduction when reintroduced into the environment, particularly in agriculturally important areas, presents an important risk when waste products are not properly managed.
Collapse
Affiliation(s)
- Amanda Jo Zimmerman
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | | | - Negar Shaghaghi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Aakriti Sharma
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Amrika Deonarine
- Department of Civil, Environmental, & Construction Engineering, Texas Tech University, Lubbock, TX, USA
| | | | - David C Weindorf
- Department of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, MI, USA
| | - Matthew G Siebecker
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
11
|
Pasquoto-Stigliani T, Guilger-Casagrande M, Campos EVR, Germano-Costa T, Bilesky-José N, Migliorini BB, Feitosa LO, Sousa BT, de Oliveira HC, Fraceto LF, Lima R. Titanium biogenic nanoparticles to help the growth of Trichoderma harzianum to be used in biological control. J Nanobiotechnology 2023; 21:166. [PMID: 37231443 PMCID: PMC10210372 DOI: 10.1186/s12951-023-01918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The biogenic synthesis of metallic nanoparticles is a green alternative that reduces the toxicity of this nanomaterials and may enable a synergy between the metallic core and the biomolecules employed in the process enhancing biological activity. The aim of this study was to synthesize biogenic titanium nanoparticles using the filtrate of the fungus Trichoderma harzianum as a stabilizing agent, to obtain a potential biological activity against phytopathogens and mainly stimulate the growth of T. harzianum, enhancing its efficacy for biological control. RESULTS The synthesis was successful and reproductive structures remained in the suspension, showing faster and larger mycelial growth compared to commercial T. harzianum and filtrate. The nanoparticles with residual T. harzianum growth showed inhibitory potential against Sclerotinia sclerotiorum mycelial growth and the formation of new resistant structures. A great chitinolytic activity of the nanoparticles was observed in comparison with T. harzianum. In regard to toxicity evaluation, an absence of cytotoxicity and a protective effect of the nanoparticles was observed through MTT and Trypan blue assay. No genotoxicity was observed on V79-4 and 3T3 cell lines while HaCat showed higher sensitivity. Microorganisms of agricultural importance were not affected by the exposure to the nanoparticles, however a decrease in the number of nitrogen cycling bacteria was observed. In regard to phytotoxicity, the nanoparticles did not cause morphological and biochemical changes on soybean plants. CONCLUSION The production of biogenic nanoparticles was an essential factor in stimulating or maintaining structures that are important for biological control, showing that this may be an essential strategy to stimulate the growth of biocontrol organisms to promote more sustainable agriculture.
Collapse
Affiliation(s)
- Tatiane Pasquoto-Stigliani
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Mariana Guilger-Casagrande
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Estefânia V R Campos
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Tais Germano-Costa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Natalia Bilesky-José
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Bianca B Migliorini
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Leandro O Feitosa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Bruno T Sousa
- Departament of Animal and Plant Biology, University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Halley C de Oliveira
- Departament of Animal and Plant Biology, University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Leonardo F Fraceto
- Institute of Science and Technology of Sorocaba, Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Renata Lima
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
12
|
Zhang J, Xie X, Li Q, Zhang S, Wang J. Assessment of combined algal toxicity of TiO 2 nanoparticles and organochlorines in karst surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66625-66637. [PMID: 37099115 DOI: 10.1007/s11356-023-27139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
The widespread use of nanoparticles (NPs) and organic pollutants increases the risk of their coexistence in the aquatic environments. It is uncertain how the combined toxicities of NPs and OCs affect aquatic organisms in surface waters. In this study, the binary combined toxicities of TiO2 NPs with three different organochlorines (OCs)-pentachlorobenzene (PeCB), 3,3,4,4-tetrachlorobiphenyl (PCB-77), and atrazine on Chlorella pyrenoidosa in three karst surface water bodies were investigated. The correlation analysis results indicated that the toxicities of TiO2 NPs and OCs to algae were mainly related to the total organic carbon (TOC) and ionic strength of surface water. Surface water relieved the growth inhibition of the pollutants on algae as compared with ultrapure water (UW). The combined toxic effect caused by the co-exposure of TiO2 NPs-atrazine was synergistic and had an antagonistic effect for TiO2 NPs-PCB-77 in four types of water bodies. However, the co-exposure of TiO2 NPs-PeCB had an additive effect in the Huaxi Reservoir (HX) and synergistic effects in Baihua Lake (BH), Hongfeng Lake (HF), and UW. TiO2 NPs increased the bioaccumulation of OCs by algae. Both PeCB and atrazine significantly increased the bioaccumulation of TiO2 NPs by algae, except for PeCB in HX; however, PCB-77 reduced the bioaccumulation of TiO2 NPs by algae. The toxic effects of TiO2 NPs and OCs on algae in different water bodies were the result of the nature of the pollutants, bioaccumulation, hydrochemical properties, and other factors.
Collapse
Affiliation(s)
- Jun Zhang
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China
| | - Xujiao Xie
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China
| | - Qing Li
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China
| | - Shuai Zhang
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China.
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China.
| | - Ji Wang
- College of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550025, China
- Cultivation Base of Guizhou State Key Laboratory of Karst Mountain Ecological Environment, Guiyang, 550025, China
| |
Collapse
|
13
|
Ahmed A, He P, He P, Wu Y, He Y, Munir S. Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. ENVIRONMENT INTERNATIONAL 2023; 173:107819. [PMID: 36842382 DOI: 10.1016/j.envint.2023.107819] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Agriculture-related manufactured nano-objects (MNOs) can revolutionize the crop production and help to achieve sustainable development goals. MNOs with diverse physico-chemical properties and ability to encapsulate and deliver active ingredients in controlled, targeted and stimuli responsive manner can enhance the efficiency while minimizing collateral damage to non-target organisms and environment. Application of MNOs in the form of nanopesticides and nanofertilizers is known to affect soil microbial communities both positively and negatively, but detailed studies with varying dose, type and environmental conditions are scarce. Therefore, it is imperative to understand the complex mechanisms and factors which shape the MNOs-microbial interactions through integrating state of the art technologies including omics (transcriptomics, metabolomics, and proteomics), artificial intelligence, and statistical frameworks. Lastly, we propose the idea of MNOs-mediated manipulation of soil microbiome to modify the soil microbial communities for improved microbial services. These microbial services, if harnessed appropriately, can revolutionize modern agriculture and help in achieving sustainable development goals.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
14
|
Gruet C, Abrouk D, Börner A, Muller D, Moënne-Loccoz Y. Wheat genome architecture influences interactions with phytobeneficial microbial functional groups in the rhizosphere. PLANT, CELL & ENVIRONMENT 2023; 46:1018-1032. [PMID: 36494920 DOI: 10.1111/pce.14508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wheat has undergone a complex evolutionary history, which led to allopolyploidization and the hexaploid bread wheat Triticum aestivum. However, the significance of wheat genomic architecture for beneficial plant-microbe interactions is poorly understood, especially from a functional standpoint. In this study, we tested the hypothesis that wheat genomic architecture was an overriding factor determining root recruitment of microorganisms with particular plant-beneficial traits. We chose five wheat species representing genomic profiles AA (Triticum urartu), BB {SS} (Aegilops speltoides), DD (Aegilops tauschii), AABB (Triticum dicoccon) and AABBDD (Triticum aestivum) and assessed by quantitative polymerase chain reaction their ability to interact with free-nitrogen fixers, 1-aminocyclopropane-1-carboxylate deaminase producers, 2,4-diacetylphloroglucinol producers and auxin producers via the phenylpyruvate decarboxylase pathway, in combination with Illumina MiSeq metabarcoding analysis of N fixers (and of the total bacterial community). We found that the abundance of the microbial functional groups could fluctuate according to wheat genomic profile, as did the total bacterial abundance. N fixer diversity and total bacterial diversity were also influenced significantly by wheat genomic profile. Often, rather similar results were obtained for genomes DD (Ae. tauschii) and AABBDD (T. aestivum), pointing for the first time that the D genome could be particularly important for wheat-bacteria interactions.
Collapse
Affiliation(s)
- Cécile Gruet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, Villeurbanne, France
| |
Collapse
|
15
|
Synthesis of Nickel-Chitosan Nanoparticles for Controlling Blast Diseases in Asian Rice. Appl Biochem Biotechnol 2023; 195:2134-2148. [PMID: 36350485 DOI: 10.1007/s12010-022-04198-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
Rice blast caused by Pyricularia oryzae is one of most devastating fungal diseases in rice, reducing the annual yield of rice worldwide. As an alternative to fungicide for curbing rice blast, synthesis of nickel-chitosan nanoparticles (Ni-Ch NPs) was performed with nickel chloride and assessed its efficacy in inflating plant growth and hindrance of Pyricularia oryzae (blast pathogen). Characterization of Ni-Ch NPs from SEM, TEM, and DLS analyses showed smooth- and spherical-shaped nanoparticles in the range of 20-70 nm. Colloidal stability of NPs was revealed from Zeta potential exhibiting polydispersity index of 0.22. EDX spectroscopy corroborated the presence of nickel (14.05%) in synthesized Ni-Ch NPs. A significant increase in germination and growth attributes in terms of shoot and root length and number of lateral roots over control was observed in paddy seeds on the treatment with Ni-Ch NPs. Furthermore, the application of NPs in paddy plants under glasshouse condition demonstrated a remarkable improvement in plant growth. Protein profiling of NP-treated plants revealed new polypeptides (Rubisco units) enlightening the enhanced photosynthetic rate. Also, Asian rice exhibited reduced blast symptoms on leaves treated with NPs under glasshouse condition while displaying 64% mycelia inhibition in Petri plates. All these results suggest that nickel-chitosan nanoparticles could be exploited as an effective plant growth promoter cohort in controlling rice blast disease.
Collapse
|
16
|
Su Y, Zhou X, Meng H, Xia T, Liu H, Rolshausen P, Roper C, McLean JE, Zhang Y, Keller AA, Jassby D. Cost-benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. NATURE FOOD 2022; 3:1020-1030. [PMID: 37118298 DOI: 10.1038/s43016-022-00647-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/21/2022] [Indexed: 04/30/2023]
Abstract
Nanotechnology-based approaches have demonstrated encouraging results for sustainable agriculture production, particularly in the field of fertilizers and pesticide innovation. It is essential to evaluate the economic and environmental benefits of these nanoformulations. Here we estimate the potential revenue gain/loss associated with nanofertilizer and/or nanopesticide use, calculate the greenhouse gas emissions change from the use of nanofertilizer and identify feasible applications and critical issues. The cost-benefit analysis demonstrates that, while current nanoformulations show promise in increasing the net revenue from crops and lowering the environmental impact, further improving the efficiency of nanoformulations is necessary for their widescale adoption. Innovating nanoformulation for targeted delivery, lowering the greenhouse gas emissions associated with nanomaterials and minimizing the content of nanomaterials in the derived nanofertilizers or pesticides can substantially improve both economic and environmental benefits.
Collapse
Affiliation(s)
- Yiming Su
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, USA.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, National Facility Agriculture Engineering Technology Research Center, Tongji University, Shanghai, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, California NanoSystems Institute, David Geffen School of Medicine University of California, Los Angeles, CA, USA
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Philippe Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Joan E McLean
- Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, USA
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, National Facility Agriculture Engineering Technology Research Center, Tongji University, Shanghai, China
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA, USA
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Sharma P, Kumari R, Yadav M, Lal R. Evaluation of TiO 2 Nanoparticles Physicochemical Parameters Associated with their Antimicrobial Applications. Indian J Microbiol 2022; 62:338-350. [PMID: 35974921 PMCID: PMC9375816 DOI: 10.1007/s12088-022-01018-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) usage is increasing in everyday consumer products, hence, assessing their toxic impacts on living organisms and environment is essential. Various studies have revealed the significant role of TiO2NPs physicochemical properties on their toxicity. However, TiO2NPs are still poorly characterized with respect to their physicochemical properties, and environmental factors influencing their toxicity are either ignored or are too complex to be assessed under laboratory conditions. The outcomes of these studies are diverse and inconsistent due to lack of standard protocols. TiO2NPs toxicity also differs for in vivo and in vitro systems, which must also be considered during standardization of protocols to maintain uniformity and reproducibility of results. This review critically evaluates impact of different physicochemical parameters of TiO2NPs and other experimental conditions, employed in different laboratories in determining their toxicity towards bacteria. These important observations may be helpful in evaluation of environmental risks posed by these nanoparticles and this can further assist regulatory bodies in policymaking.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Zoology, Gargi College, University of Delhi, New Delhi, 110049 India
| | - Rekha Kumari
- Molecular Microbiology and Bioinformatics Laboratory, Department of Zoology, University of Delhi, Miranda House, Delhi, 110007 India
| | - Meena Yadav
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, India
| | - Rup Lal
- The Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
18
|
Kurban H, Kurban M, Dalkilic MM. Rapidly predicting Kohn-Sham total energy using data-centric AI. Sci Rep 2022; 12:14403. [PMID: 36002504 PMCID: PMC9402589 DOI: 10.1038/s41598-022-18366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Predicting material properties by solving the Kohn-Sham (KS) equation, which is the basis of modern computational approaches to electronic structures, has provided significant improvements in materials sciences. Despite its contributions, both DFT and DFTB calculations are limited by the number of electrons and atoms that translate into increasingly longer run-times. In this work we introduce a novel, data-centric machine learning framework that is used to rapidly and accurately predicate the KS total energy of anatase [Formula: see text] nanoparticles (NPs) at different temperatures using only a small amount of theoretical data. The proposed framework that we call co-modeling eliminates the need for experimental data and is general enough to be used over any NPs to determine electronic structure and, consequently, more efficiently study physical and chemical properties. We include a web service to demonstrate the effectiveness of our approach.
Collapse
Affiliation(s)
- Hasan Kurban
- Applied Data Science Department, San José State University, San Jose, CA, 95192, USA.
- Computer Science Department, Indiana University, Bloomington, IN, 47405, US.
| | - Mustafa Kurban
- Department of Electrical and Electronics Engineering, Kırşehir Ahi Evran University, 40100, Kırşehir, Turkey
| | - Mehmet M Dalkilic
- Computer Science Department, Indiana University, Bloomington, IN, 47405, US
| |
Collapse
|
19
|
Piao S, He D. Sediment Bacteria and Phosphorus Fraction Response, Notably to Titanium Dioxide Nanoparticle Exposure. Microorganisms 2022; 10:microorganisms10081643. [PMID: 36014061 PMCID: PMC9412993 DOI: 10.3390/microorganisms10081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Titanium dioxide nanoparticle (TiO2 NP) toxicity to the growth of organisms has been gradually clarified; however, its effects on microorganism-mediated phosphorus turnover are poorly understood. To evaluate the influences of TiO2 NPs on phosphorus fractionation and the bacterial community, aquatic microorganisms were exposed to different concentrations of TiO2 NPs with different exposure times (i.e., 0, 10, and 30 days). We observed the adhesion of TiO2 NPs to the cell surfaces of planktonic microbes by using SEM, EDS, and XRD techniques. The addition of TiO2 NPs resulted in a decrease in the total phosphorus of water and an increase in the total phosphorus of sediments. Additionally, elevated TiO2 NPs enhanced the sediment activities of reductases (i.e., dehydrogenase [0.19–2.25 μg/d/g] and catalase [1.06–2.92 μmol/d/g]), and significantly decreased the absolute abundances of phosphorus-cycling-related genes (i.e., gcd [1.78 × 104–9.55 × 105 copies/g], phoD [5.50 × 103–5.49 × 107 copies/g], pstS [4.17 × 102–1.58 × 106 copies/g]), and sediment bacterial diversity. TiO2 NPs could noticeably affect the bacterial community, showing dramatic divergences in relative abundances (e.g., Actinobacteria, Acidobacteria, and Firmicutes), coexistence patterns, and functional redundancies (e.g., translation and transcription). Our results emphasized that the TiO2 NP amount—rather than the exposure time—showed significant effects on phosphorus fractions, enzyme activity, phosphorus-cycling-related gene abundance, and bacterial diversity, whereas the exposure time exhibited a greater influence on the composition and function of the sediment bacterial community than the TiO2 NP amount. Our findings clarify the responses of phosphorus fractions and the bacterial community to TiO2 NP exposure in the water–sediment ecosystem and highlight potential environmental risks of the migration of untreated TiO2 NPs to aquatic ecosystems.
Collapse
|
20
|
Kaur H, Kalia A, Sandhu JS, Dheri GS, Kaur G, Pathania S. Interaction of TiO 2 nanoparticles with soil: Effect on microbiological and chemical traits. CHEMOSPHERE 2022; 301:134629. [PMID: 35447207 DOI: 10.1016/j.chemosphere.2022.134629] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are the most widely used nanomaterials and their expanding use raises concerns about their impacts on soil ecosystems and functioning. The present study evaluates the potential impacts of TiO2 NPs applied at low doses (0, 1.0, 2.5, 5.0, 10.0 and 20.0 mg L-1) on soil chemical properties including the macro and micronutrient contents, microbial population and enzyme activities in rhizosphere soil of mung bean crop at different time intervals (7, 14, 28 and 56 days). A quantitative RT-PCR study was also performed to study the relative change in the gene expression of ammonia oxidizer and nitrogen fixers upon TiO2 NP supplementation. An increase in soil nutrient content viz., available N, P, Cu, Fe, Mn, nitrate-N and ammonical-N was observed with NP application except available K and Zn content. The TiO2 NPs stimulated the growth of soil microflora at low concentrations while an inhibitory effect was recorded at high concentrations. The soil fungi and actinobacteria emerged as the most sensitive groups of soil microbes towards TiO2 NP exposure exhibiting detrimental impacts on their growth at all concentrations. Similarly, the soil enzyme activities enhanced till TiO2 NPs (10.0 mg L-1) which was followed by decrease at higher concentrations. The qRT-PCR study showed that the ammonia oxidizers were more affected by TiO2 NPs application than nitrogen fixers. These findings suggest that TiO2 NPs can be used as stimulators of soil nutrients and soil microbial dynamics at low concentrations.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Jagdeep Singh Sandhu
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurmeet Singh Dheri
- Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| | - Shivali Pathania
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
21
|
Li K, Xu D, Liao H, Xue Y, Sun M, Su H, Xiu X, Zhao T. A review on the generation, discharge, distribution, environmental behavior, and toxicity (especially to microbial aggregates) of nano-TiO 2 in sewage and surface-water and related research prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153866. [PMID: 35181357 DOI: 10.1016/j.scitotenv.2022.153866] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 05/28/2023]
Abstract
This article reviews the nano-effects and applications of different crystalline nano‑titanium dioxide (nano-TiO2), identifies their discharge, distribution, behavior, and toxicity to aquatic organisms (focusing on microbial aggregates) in sewage and surface-water, summarizes related toxicity mechanisms, and critically proposes future perspectives. The results show that: 1) based on crystal type, application boundaries of nano-TiO2 have become clear, extending from traditional manufacturing to high-tech fields; 2) concentration of nano-TiO2 in water is as high as hundreds of thousands of μg/L (sewage) or several to dozens of μg/L (surface-water) due to direct application or indirect release; 3) water environmental behaviors of nano-TiO2 are mainly controlled by hydration conditions and particle characteristics; 4) aquatic toxicities of nano-TiO2 are closely related to their water environmental behavior, in which crystal type and tested species (such as single species and microbial aggregates) also play the key role. Going forward, the exploration of the toxicity mechanism will surely become a hot topic in the aquatic-toxicology of nano-TiO2, because most of the research so far has focused on the responses of biological indicators (such as metabolism and damage), while little is known about the stress imprint caused by the crystal structures of nano-TiO2 in water environments. Additionally, the aging of nano-TiO2 in a water environment should be heeded to because the continuously changing surface structure is bound to have a significant impact on its behavior and toxicity. Moreover, for microbial aggregates, comprehensive response analysis should be conducted in terms of the functional activity, surface features, composition structure, internal microenvironment, cellular and molecular level changes, etc., to find the key point of the interaction between nano-TiO2 and microbial aggregates, and to take mitigation or beneficial measures to deal with the aquatic-toxicity of nano-TiO2. In short, this article contributes by 1) reviewing the research status of nano-TiO2 in all aspects: application and discharge, distribution and behavior, and its aquatic toxicity; 2) suggesting the response mechanism of microbial aggregates and putting forward the toxigenic mechanism of nanomaterial structure; 3) pointing out the future research direction of nano-TiO2 in water environment.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Defu Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yan Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingyang Sun
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Han Su
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaojia Xiu
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Tianyi Zhao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China; School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
22
|
When Scent Becomes a Weapon—Plant Essential Oils as Potent Bioinsecticides. SUSTAINABILITY 2022. [DOI: 10.3390/su14116847] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Crop protection still mostly relies on synthetic pesticides for crop pest control. However, the rationale for their continued use is shaded by the revealed adverse effects, such as relatively long environmental persistence that leads to water and soil contamination and retention of residues in food that brings high risks to human and animal health. As part of integrated pest management, biopesticides may provide crop protection, being eco-friendly and safe for humans and non-target organisms. Essential oils, complex mixtures of low-molecular-weight, highly volatile compounds, have been highlighted as major candidates for plant-derived bioinsecticides that are up to the sustainable biological standard. In this review, we screened the insecticidal activity of essential oils or their purified compounds, with focus given to their modes of action, along with the analyzed advantages and problems associated with their wider usage as plant-derived insecticides in agriculture.
Collapse
|
23
|
Geochemistry Study of Soil Affected Catastrophically by Tsunami Disaster Triggered by 2004 Indian Ocean Earthquake Using a Fourth Harmonics (λ=266 nm) Nd:YAG Laser Induced Breakdown Spectroscopy. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Alizadeh Sani M, Tavassoli M, Salim SA, Azizi-lalabadi M, McClements DJ. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107324] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Reyes-Herrera J, Acosta-Slane D, Castillo-Michel H, Pradas del Real AE, Vogel-Mikus K, Benetti F, Roman M, Villanova J, Valles-Aragón MC. Detection and Characterization of TiO 2 Nanomaterials in Sludge from Wastewater Treatment Plants of Chihuahua State, Mexico. NANOMATERIALS 2022; 12:nano12050744. [PMID: 35269232 PMCID: PMC8911657 DOI: 10.3390/nano12050744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
TiO2 nanoparticles (TiO2-NPs) have a wide range of industrial applications (paintings, sunscreens, food and cosmetics) and is one of the most intensively used nanomaterials worldwide. Leaching from commercial products TiO2-NPs are predicted to significantly accumulate in wastewater sludges, which are then often used as soil amendment. In this work, sludge samples from four wastewater treatment plants of the Chihuahua State in Mexico were obtained during spring and summer (2017). A comprehensive characterization study was performed by X-ray based (laboratory and synchrotron) techniques and electron microscopy. Ti was detected in all sludge samples (1810–2760 mg/kg) mainly as TiO2 particles ranging from 40 nm up to hundreds of nm. Micro-XANES data was analyzed by principal component analysis and linear combination fitting enabling the identification of three predominant Ti species: anatase, rutile and ilmenite. Micro-XANES from the smaller Ti particles was predominantly anatase (68% + 32% rutile), suggesting these TiO2-NPs originate from paintings and cosmetics. TEM imaging confirmed the presence of nanoscale Ti with smooth surface morphologies resembling engineered TiO2-NPs. The size and crystalline phase of TiO2-NPs in the sludge from this region suggest increased reactivity and potential toxicity to agro-systems. Further studies should be dedicated to evaluating this.
Collapse
Affiliation(s)
- Juan Reyes-Herrera
- European Synchrotron Radiation Facility, B.P.220, CEDEX 09, 38043 Grenoble, France; (J.R.-H.); (H.C.-M.); (J.V.)
| | - Damaris Acosta-Slane
- Faculty of Agrotechnological Sciences, Autonomous University of Chihuahua, Campus 1, Pascual Orozco, Chihuahua 31350, Mexico;
| | - Hiram Castillo-Michel
- European Synchrotron Radiation Facility, B.P.220, CEDEX 09, 38043 Grenoble, France; (J.R.-H.); (H.C.-M.); (J.V.)
| | - Ana E. Pradas del Real
- Department Agroenvironmental Research, Madrid’s Institute for Rural Research and Development, Agricultural and Food, Leganitos 47, 28013 Madrid, Spain;
| | - Katarina Vogel-Mikus
- Department of Biology, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia;
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Federico Benetti
- EcamRicert Srl, European Centre for the Sustainable Impact of Nanotechnology, Corso Stati Uniti 4, 35127 Padua, Italy;
| | - Marco Roman
- Department of Environmental Sciences Informatics and Statistics, University Ca’ Foscari, Dorsoduro 2137, 30123 Venezia, Italy;
| | - Julie Villanova
- European Synchrotron Radiation Facility, B.P.220, CEDEX 09, 38043 Grenoble, France; (J.R.-H.); (H.C.-M.); (J.V.)
| | - M. Cecilia Valles-Aragón
- Faculty of Agrotechnological Sciences, Autonomous University of Chihuahua, Campus 1, Pascual Orozco, Chihuahua 31350, Mexico;
- Correspondence: ; Tel.: +52-(614)-2396219
| |
Collapse
|
26
|
Kebonye NM, Eze PN, John K, Agyeman PC, Němeček K, Borůvka L. An in-depth human health risk assessment of potentially toxic elements in highly polluted riverine soils, Příbram (Czech Republic). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:369-385. [PMID: 33742338 DOI: 10.1007/s10653-021-00877-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Environmental pollution by potentially toxic element (PTE) and the associated health risks in humans are increasingly becoming a global challenge. The current study is an in-depth assessment of PTEs including the often studied lead (Pb), manganese (Mn), zinc (Zn), arsenic (As) and the less-studied titanium (Ti), rubidium (Rb), strontium (Sr), zirconium (Zr), barium (Ba) and thorium (Th) in highly polluted floodplain topsoil samples from the Litavka River, Czech Republic. Soil chemical properties including carbon (Cox) and reaction (pH_H2O) together with iron (Fe) were assessed in the same soils. A portable X-ray fluorescence spectrometer (p-XRFS) (Delta Premium) was used to measure the PTEs and Fe contents of the soils. Soil organic carbon and reaction pH were determined following routine laboratory procedures. The concentration level of each PTE was compared against world average and crustal values, with the majority of elements exceeding the aforementioned geochemical background levels. Distributions of the PTEs were mapped. Two pollution assessment indices including enrichment factor (EF) and pollution index (PI) levels were calculated and their means for Zn (43.36, 55.54), As (33.23, 43.59) and Pb (81.08, 103.21) show that these elements were enriched. Zn, As and Pb accounted for the high pollution load index (PLI) levels observed in the study. The EF and PI distribution maps corresponded with the concentration distribution maps for each PTE. On health risk assessment, hazard quotients (HQ) in different human groups varied. Children had the highest HQs for all PTEs than adults (women and men). PTEs with high HQ levels in distinct human groups were As, Zr and Pb. Zirconium is a less likely element to pose a health risk in humans. Nonetheless, it should be kept in check despite its low pollution occurrence.
Collapse
Affiliation(s)
- Ndiye M Kebonye
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic.
| | - Peter N Eze
- Department of Earth and Environmental Science, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Kingsley John
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic
| | - Prince C Agyeman
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic
| | - Karel Němeček
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic
| | - Luboš Borůvka
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague-Suchdol, Prague, Czech Republic
| |
Collapse
|
27
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. The dichotomy of nanotechnology as the cutting edge of agriculture: Nano-farming as an asset versus nanotoxicity. CHEMOSPHERE 2022; 288:132533. [PMID: 34655646 DOI: 10.1016/j.chemosphere.2021.132533] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/21/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The unprecedented setbacks and environmental complications, faced by global agro-farming industry, have led to the advent of nanotechnology in agriculture, which has been recognized as a novel and innovative approach in development of sustainable farming practices. The agricultural regimen is the "head honcho" of the world, however presently certain approaches have been imposing grave danger to the environment and human civilization. The nano-farming paradigm has successfully elevated the growth and development of plants, parallel to the production, quality, germination/transpiration index, photosynthetic machinery, genetic progression, and so on. This has optimized the traditional farming into precision farming, utilising nano-based sensors and nanobionics, smart delivery tools, nanotech facets in plant disease management, nanofertilizers, enhancement of plant adaptive potential to external stress, role in bioenergy conservation and so on. These applications portray nanorevolution as "the big cheese" of global agriculture, mitigating the bottlenecks of conventional practices. Besides the applications of nanotechnology, the review identifies the limitations, like possible harmful impact on environment, mankind and plants, as the "Achilles heel" in agro-industry, aiming to establish its defined role in agriculture, while simultaneously considering the risks, in order to resolve them, thus abiding by "technology-yes, but safety-must". The authors aim to provide a significant opportunity to the nanotech researchers, Botanists and environmentalists, to promote judicial use of nanoparticles and establish a secure and safe environment.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| |
Collapse
|
28
|
Wang X, Li X, Dou F, Sun W, Chen K, Wen Y, Ma X. Elucidating the impact of three metallic nanoagrichemicals and their bulk and ionic counterparts on the chemical properties of bulk and rhizosphere soils in rice paddies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118005. [PMID: 34419859 DOI: 10.1016/j.envpol.2021.118005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Growing applications of nanoagrichemicals have resulted in their increasing accumulation in agricultural soils, which could modify soil properties and affect soil health. A greenhouse pot trial was conducted to determine the effects of three metallic nanoagrichemicals on several fundamental chemical properties of a rice paddy soil, including zinc oxide nanoparticles (ZnO NPs) and copper oxide nanoparticles (CuO NPs) at 100 mg/kg, and silicon oxide nanoparticles (SiO2 NPs) at 500 mg/kg, as well as their bulk and ionic counterparts. The investigated soil amendments displayed significant and distinctive impact on the examined soil chemical properties relevant to agricultural production, including soil pH, redox potential, soil organic carbon (SOC), cation exchange capacity (CEC), and plant available As. For example, all amendments increased the bulk soil pH at day 47 to some extent, but the increase was substantially higher for SiO32- (37.7%) than other amendments (5.8%-13.7%). Soil Eh was elevated markedly at day 47 after the addition of soil amendments in both the bulk soil (45.9%-74.4%) and rice rhizosphere soil (20.3%-68.9%). CuO NPs and Cu2+ generally exhibited greater impact on soil chemical properties than other agrichemicals. Significantly different responses to soil amendments were observed between bulk and rhizosphere soils, suggesting the essential role of plants in affecting soil properties and their responses to environmental disturbance. Overall, our results confirmed that the tested amendments could have remarkable impacts on the fundamental chemical properties of rice paddy soils.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiufen Li
- Texas A&M AgriLife Research Center at Beaumont, Texas A&M University System, Beaumont, TX, 77713, USA
| | - Fugen Dou
- Texas A&M AgriLife Research Center at Beaumont, Texas A&M University System, Beaumont, TX, 77713, USA
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Science, St. Cloud State University, St. Cloud, MN, 56301, USA
| | - Kun Chen
- Department of Statistics, University of Connecticut, Storrs, CT, 06029, USA
| | - Yinghao Wen
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
29
|
Schoden F, Schnatmann AK, Davies E, Diederich D, Storck JL, Knefelkamp D, Blachowicz T, Schwenzfeier-Hellkamp E. Investigating the Recycling Potential of Glass Based Dye-Sensitized Solar Cells-Melting Experiment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6622. [PMID: 34772147 PMCID: PMC8587710 DOI: 10.3390/ma14216622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
The effects of climate change are becoming increasingly clear, and the urgency of solving the energy and resource crisis has been recognized by politicians and society. One of the most important solutions is sustainable energy technologies. The problem with the state of the art, however, is that production is energy-intensive and non-recyclable waste remains after the useful life. For monocrystalline photovoltaics, for example, there are recycling processes for glass and aluminum, but these must rather be described as downcycling. The semiconductor material is not recycled at all. Another promising technology for sustainable energy generation is dye-sensitized solar cells (DSSCs). Although efficiency and long-term stability still need to be improved, the technology has high potential to complement the state of the art. DSSCs have comparatively low production costs and can be manufactured without toxic components. In this work, we present the world' s first experiment to test the recycling potential of non-toxic glass-based DSSCs in a melting test. The glass constituents were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES), and the surface was examined by scanning electron microscopy energy dispersive X-ray (SEM-EDX). The glass was melted in a furnace and compared to a standard glass recycling process. The results show that the described DSSCs are suitable for glass recycling and thus can potentially circulate in a circular economy without a downcycling process. However, material properties such as chemical resistance, transparency or viscosity are not investigated in this work and need further research.
Collapse
Affiliation(s)
- Fabian Schoden
- Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.K.S.); (E.D.); (J.L.S.); (D.K.); (E.S.-H.)
| | - Anna Katharina Schnatmann
- Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.K.S.); (E.D.); (J.L.S.); (D.K.); (E.S.-H.)
| | - Emma Davies
- Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.K.S.); (E.D.); (J.L.S.); (D.K.); (E.S.-H.)
| | - Dirk Diederich
- Institut für Glas- und Rohstofftechnologie GmbH, 37079 Göttingen, Germany;
| | - Jan Lukas Storck
- Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.K.S.); (E.D.); (J.L.S.); (D.K.); (E.S.-H.)
| | - Dörthe Knefelkamp
- Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.K.S.); (E.D.); (J.L.S.); (D.K.); (E.S.-H.)
| | - Tomasz Blachowicz
- Institute of Physics—Center for Science and Education, Silesian University of Technology, 44100 Gliwice, Poland;
| | - Eva Schwenzfeier-Hellkamp
- Institute for Technical Energy Systems (ITES), Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (A.K.S.); (E.D.); (J.L.S.); (D.K.); (E.S.-H.)
| |
Collapse
|
30
|
Abd-Elhakim YM, Hashem MM, Abo-EL-Sooud K, Hassan BA, Elbohi KM, Al-Sagheer AA. Effects of Co-Exposure of Nanoparticles and Metals on Different Organisms: A Review. TOXICS 2021; 9:284. [PMID: 34822675 PMCID: PMC8623643 DOI: 10.3390/toxics9110284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022]
Abstract
Wide nanotechnology applications and the commercialization of consumer products containing engineered nanomaterials (ENMs) have increased the release of nanoparticles (NPs) to the environment. Titanium dioxide, aluminum oxide, zinc oxide, and silica NPs are widely implicated NPs in industrial, medicinal, and food products. Different types of pollutants usually co-exist in the environment. Heavy metals (HMs) are widely distributed pollutants that could potentially co-occur with NPs in the environment. Similar to what occurs with NPs, HMs accumulation in the environment results from anthropogenic activities, in addition to some natural sources. These pollutants remain in the environment for long periods and have an impact on several organisms through different routes of exposure in soil, water, and air. The impact on complex systems results from the interactions between NPs and HMs and the organisms. This review describes the outcomes of simultaneous exposure to the most commonly found ENMs and HMs, particularly on soil and aquatic organisms.
Collapse
Affiliation(s)
- Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed M. Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Khaled Abo-EL-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; (M.M.H.); (K.A.-E.-S.)
| | - Bayan A. Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 41639, Egypt;
| | - Khlood M. Elbohi
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Adham A. Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
31
|
Xin X, Judy JD, Zhao F, Goodrich SL, Sumerlin BS, Stoffella PJ, He Z. Transport and retention of polymeric and other engineered nanoparticles in porous media. NANOIMPACT 2021; 24:100361. [PMID: 35559820 DOI: 10.1016/j.impact.2021.100361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 10/24/2021] [Indexed: 06/15/2023]
Abstract
Increasing applications of nanoparticles (NPs) in agriculture have raised potential risks to soil and aquatic ecosystems. A comparative study examining the transport of commonly used NPs in porous media is of critical significance for their application and regulation in agroecosystems. In this study, laboratory column leaching experiments were conducted to investigate the transport and retention of polysuccinimide NPs (PSI-NPs) in two saturated porous media with different grain sizes, as compared with multi-walled carbon nanotubes (MWCNTs), nano-Ag and nano-TiO2. Zeta potential of the NPs was negative at pH6.3 and decreased in an order of PSI-NPs > nano-TiO2 > MWCNTs > nano-Ag. The coarse and fine sands used in this study had negative charges with similar zeta potentials. The movement of NPs was affected by grain size, with larger sizes facilitating mobility while finer sizes favoring retention of NPs in the porous matrix. The retention profile significantly varied between the two sand columns, with more NPs transported to deeper layers in the coarse sand than the fine sand. The relative percentage of NPs detected in leachate was found to be positively correlated with the zeta potential of NPs (r = 0.931). Among the NPs, nano-Ag had the most negative zeta potential, and therefore was the most mobile, followed by MWCNTs and nano-TiO2. Having the least negative zeta potential, PSI-NPs had the lowest mobility, as compared with other NPs regardless of matrix grain size. This work reveals grain size and zeta potential of NPs are major factors that influence transport of NPs along the vertical porous profile, as well as demonstrating the relative unimportance of NP composition, which could serve as important guideline in nanomaterials application, risk assessment, and waste management in agroecosystems.
Collapse
Affiliation(s)
- Xiaoping Xin
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Science, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| | - Jonathan D Judy
- University of Florida-IFAS, Department of Soil and Water Sciences, Gainesville, FL 32611, USA
| | - Fengliang Zhao
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Science, Indian River Research and Education Center, Fort Pierce, FL 34945, USA; Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Science, Haikou 571101, China
| | - Sofia L Goodrich
- University of Florida, Department of Chemistry, Gainesville, FL 32611, USA
| | - Brent S Sumerlin
- University of Florida, Department of Chemistry, Gainesville, FL 32611, USA
| | - Peter J Stoffella
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Science, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Department of Soil and Water Science, Indian River Research and Education Center, Fort Pierce, FL 34945, USA.
| |
Collapse
|
32
|
Krystek P, Shandilya N, Fransman W. Human Health Risk Assessments and Characterization of Nanomaterials: Are We Ready for the Next (Active) Generations? Ann Work Expo Health 2021; 65:748-759. [PMID: 33909008 DOI: 10.1093/annweh/wxab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/10/2020] [Accepted: 01/14/2021] [Indexed: 11/14/2022] Open
Abstract
Driven by the concept of the 'four generations of nanomaterials', the current state of the knowledge on risk assessment of future generation is explored for active nanomaterials. Through case studies, we identify challenges and evaluate the preparedness of characterization methods, available risk assessment modeling tools, and analytical instrumentation for such future generation active nanomaterials with dynamic hybrid structures of biotic-abiotic and organic-inorganic combinations. Currently available risk assessment tools and analytical instrumentation were found to be lacking the risk preparedness and characterization readiness for active nanomaterials, respectively. Potential future developments in risk assessment modeling tools and analytical techniques can be based upon this work which shall ensure long-term safety of the next generation of nanomaterials.
Collapse
Affiliation(s)
- Petra Krystek
- Environmental Modelling Sensing & Analysis (EMSA), Netherlands Organisation for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, The Netherlands
| | - Neeraj Shandilya
- Risk Analysis for Products in Development (RAPID), Netherlands Organisation for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, The Netherlands
| | - Wouter Fransman
- Risk Analysis for Products in Development (RAPID), Netherlands Organisation for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
33
|
Hui X, Kui H. Effects of TiO 2 and ZnO nanoparticles on vermicomposting of dewatered sludge: studies based on the humification and microbial profiles of vermicompost. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38718-38729. [PMID: 33742383 DOI: 10.1007/s11356-021-13226-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles (NPs) are prevalent in dewatered sludge, and their presence increases the environmental risks associated with the subsequent sludge treatment process. However, until now, their potential effects on sludge vermicomposting have not been clarified. This study investigated the effects of NPs on sludge humification and microbial profiles during vermicomposting by comparing fresh dewatered sludge substrates with substrates mixed with 0 mg/kg NPs (control), 100 mg/kg TiO2, 500 mg/kg TiO2, 100 mg/kg ZnO, and 500 mg/kg ZnO. The results showed that addition of TiO2 and ZnO NPs to sludge did not significantly affect the growth rate of earthworms and the superoxide dismutase activity in their guts during vermicomposting. Moreover, higher concentrations of the selected NPs promoted the humification index of sludge by 20.7-49.6%, through the formation of polysaccharides, aromatic substances, and organic acids in final vermicomposts. Compared with the control without NP addition, bacterial community diversity was enhanced in treatments with TiO2 and ZnO NPs, and dominant genera differed according to the type and concentration of NPs. This study suggests that the presence of TiO2 and ZnO NP residuals modify the microbial community of sludge, thus promoting sludge humification during vermicomposting.
Collapse
Affiliation(s)
- Xia Hui
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Huang Kui
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, China.
| |
Collapse
|
34
|
Zhang P, Guo Z, Ullah S, Melagraki G, Afantitis A, Lynch I. Nanotechnology and artificial intelligence to enable sustainable and precision agriculture. NATURE PLANTS 2021; 7:864-876. [PMID: 34168318 DOI: 10.1038/s41477-021-00946-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Climate change, increasing populations, competing demands on land for production of biofuels and declining soil quality are challenging global food security. Finding sustainable solutions requires bold new approaches and integration of knowledge from diverse fields, such as materials science and informatics. The convergence of precision agriculture, in which farmers respond in real time to changes in crop growth with nanotechnology and artificial intelligence, offers exciting opportunities for sustainable food production. Coupling existing models for nutrient cycling and crop productivity with nanoinformatics approaches to optimize targeting, uptake, delivery, nutrient capture and long-term impacts on soil microbial communities will enable design of nanoscale agrochemicals that combine optimal safety and functionality profiles.
Collapse
Affiliation(s)
- Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Sami Ullah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, Vari, Greece
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
35
|
Zhai Y, Chen L, Liu G, Song L, Arenas-Lago D, Kong L, Peijnenburg W, Vijver MG. Compositional and functional responses of bacterial community to titanium dioxide nanoparticles varied with soil heterogeneity and exposure duration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144895. [PMID: 33940706 DOI: 10.1016/j.scitotenv.2020.144895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely used as nano-agrochemicals. In this study we investigated the influence of soil heterogeneity on bacterial communities exposed to TiO2 NPs over time. Clay and sandy soils with low- and high-organic matter contents were exposed to environmentally relevant concentration of TiO2 NPs (1 mg/kg) and soil bacterial communities were sampled after short-term (15 days) and long-term exposure (60 days). After short-term TiO2 NPs exposure, significant effects regarding the enzyme activity, bacterial community structure and composition, and community functioning were observed in the clay soils with high organic matter (clay-HOM) but not in other soil groups. Response alterations were observed to taxa belonging to Acidobacteria and Verrucomicrobia, and functional pathways related to carbohydrates degradation. These results indicated that soil heterogeneity play more important roles in shaping the bacterial community in soil with low clay fraction and less organic matter, while TiO2 NPs selection was the main driver in inducing the compositional and functional impacts on the soil bacterial community in the presence of clay soil with high organic matter content. As exposure time increased, the bacterial community recovered after a long-term exposure of 60 days, suggesting that the bacterial evolution and adaptation could overcome the TiO2 NPs selection after long-term exposure. Our results highlighted the importance of soil heterogeneity including clay fraction and organic matter and exposure duration in assessing the impact of nanoparticle on soil bacterial activity, community and function. By comprehensively evaluating the risks of nanoparticles on soil ecosystem and explicitly and explicitly include spatial and temporal variations, the benefit of nano-agrochemical products has the potential to be promoted in future applications.
Collapse
Affiliation(s)
- Yujia Zhai
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| | - Lihua Chen
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA Delft, the Netherlands
| | - Gang Liu
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA Delft, the Netherlands; Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Lan Song
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Daniel Arenas-Lago
- Department of Plant Biology and Soil Science, University of Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands
| |
Collapse
|
36
|
Berta KM, Kurdi R, Lukács P, Penk M, Somogyi V. Red mud with other waste materials as artificial soil substitute and its effect on Sinapis alba. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112311. [PMID: 33752048 DOI: 10.1016/j.jenvman.2021.112311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Despite efforts to utilise bauxite residue, the amount of red mud stored in reservoirs is increasing. This paper aims to evaluate the potential of red mud and other sludge waste types as a soil substitute by monitoring plant development. Pot experiments were carried out testing two types of mixtures: dredging sludge from Lake Balaton mixed with garden soil and the sewage sludge and soil blend. These were then treated with red mud (15 and 30% w/w). The plants were under-, while the roots were more developed in the sewage sludge mix than the dredging sludge blend and the control soil. In the sewage amendment, the phosphorous content increased while the calcium content was lower than in the other soil types and the optimum. The metals uptake of the plants was a factor of the red mud quantity. Lead, nickel, titanium and silicon had elevated concentrations parallel to higher red mud content, but only the nickel exceeded the threshold of the Hungarian legislation. Silicon and titanium were beneficial for plant growth, compensating for the potentially toxic effects of lead and nickel. Results suggest that the red mud in a mixture with either sewage sludge or dredging sludge can act as catalysts for the growth rate of test plants, allowing their utilisation as secondary raw materials.
Collapse
Affiliation(s)
- Kinga M Berta
- University of Pannonia, Sustainable Solutions Research Laboratory, Veszprém, Hungary.
| | - Róbert Kurdi
- University of Pannonia, Sustainable Solutions Research Laboratory, Veszprém, Hungary.
| | - Pál Lukács
- University of Pannonia, Centre of Competence for Sustainability and Circular Economy, Veszprém, Hungary.
| | | | - Viola Somogyi
- University of Pannonia, Sustainable Solutions Research Laboratory, Veszprém, Hungary.
| |
Collapse
|
37
|
Swart E, Goodall T, Kille P, Spurgeon DJ, Svendsen C. The earthworm microbiome is resilient to exposure to biocidal metal nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115633. [PMID: 33254656 DOI: 10.1016/j.envpol.2020.115633] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution can disrupt the interactions between animals and their symbiotic bacteria, which can lead to adverse effects on the host even in the absence of direct chemical toxicity. It is therefore crucial to understand how environmental pollutants affect animal microbiomes, especially for those chemicals that are designed to target microbes. Here, we study the effects of two biocidal nanoparticles (NPs) (Ag and CuO) on the soil bacterial community and the resident gut microbiome of the earthworm Eisenia fetida over a 28-day period using metabarcoding techniques. Exposures to NPs were conducted following OECD test guidelines and effects on earthworm reproduction and juvenile biomass were additionally recorded in order to compare effects on the host to effects on microbiomes. By employing a full concentration series, we were able to link pollutants to microbiome effects in high resolution. Multivariate analysis, differential abundance analysis and species sensitivity distribution analysis showed that Ag-NPs are more toxic to soil bacteria than CuO-NPs. In contrast to the strong effects of CuO-NPs and Ag-NPs on the soil bacterial community, the earthworm gut microbiome is largely resilient to exposure to biocidal NPs. Despite this buffering effect, CuO-NPs did negatively affect the relative abundance of some earthworm symbionts, including 'Candidatus Lumbricincola'. Changes in the soil bacterial community and the earthworm microbiome occur at total copper concentrations often found or modelled to occur in agricultural fields, demonstrating that soil bacterial communities and individual taxa in the earthworm microbiome may be at risk from environmental copper exposure including in nanomaterial form.
Collapse
Affiliation(s)
- Elmer Swart
- UK Centre for Ecology and Hydrology, Maclean Building Benson Lane, Wallingford, OX10 8BB, United Kingdom.
| | - Tim Goodall
- UK Centre for Ecology and Hydrology, Maclean Building Benson Lane, Wallingford, OX10 8BB, United Kingdom
| | - Peter Kille
- School of Biosciences, Cardiff University, Sir Martin Evans Building Museum Avenue, Cardiff, CF10 3AX, United Kingdom
| | - David J Spurgeon
- UK Centre for Ecology and Hydrology, Maclean Building Benson Lane, Wallingford, OX10 8BB, United Kingdom
| | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Maclean Building Benson Lane, Wallingford, OX10 8BB, United Kingdom.
| |
Collapse
|
38
|
Simonin M, Dasilva C, Terzi V, Ngonkeu ELM, Diouf D, Kane A, Béna G, Moulin L. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European soils. FEMS Microbiol Ecol 2020; 96:5818757. [PMID: 32275297 DOI: 10.1093/femsec/fiaa067] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023] Open
Abstract
Here, we assessed the relative influence of wheat genotype, agricultural practices (conventional vs organic) and soil type on the rhizosphere microbiome. We characterized the prokaryotic (archaea and bacteria) and eukaryotic (fungi and protists) communities in soils from four different countries (Cameroon, France, Italy, Senegal) and determined if a rhizosphere core microbiome existed across these different countries. The wheat genotype had a limited effect on the rhizosphere microbiome (2% of variance) as the majority of the microbial taxa were consistently associated to multiple wheat genotypes grown in the same soil. Large differences in taxa richness and in community structure were observed between the eight soils studied (57% variance) and the two agricultural practices (10% variance). Despite these differences between soils, we observed that 177 taxa (2 archaea, 103 bacteria, 41 fungi and 31 protists) were consistently detected in the rhizosphere, constituting a core microbiome. In addition to being prevalent, these core taxa were highly abundant and collectively represented 50% of the reads in our data set. Based on these results, we identify a list of key taxa as future targets of culturomics, metagenomics and wheat synthetic microbiomes. Additionally, we show that protists are an integral part of the wheat holobiont that is currently overlooked.
Collapse
Affiliation(s)
- Marie Simonin
- IRD, Cirad, Univ Montpellier, IPME, 34394 Montpellier, France.,IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Cindy Dasilva
- IRD, Cirad, Univ Montpellier, IPME, 34394 Montpellier, France
| | - Valeria Terzi
- CREA-GB, Research Centre for Genomics and Bioinformatics, I-29017 Fiorenzuola d'Arda, Italy
| | - Eddy L M Ngonkeu
- Institute of Agronomic Research for Development (IRAD), University of Yaounde I, Yaoundé, Cameroon
| | - Diégane Diouf
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), IRD, ISRA, UCAD, Dakar, Senegal.,Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
| | - Aboubacry Kane
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), IRD, ISRA, UCAD, Dakar, Senegal.,Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar, Senegal
| | - Gilles Béna
- IRD, Cirad, Univ Montpellier, IPME, 34394 Montpellier, France
| | - Lionel Moulin
- IRD, Cirad, Univ Montpellier, IPME, 34394 Montpellier, France.,Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), IRD, ISRA, UCAD, Dakar, Senegal
| |
Collapse
|
39
|
Markowska-Szczupak A, Endo-Kimura M, Paszkiewicz O, Kowalska E. Are Titania Photocatalysts and Titanium Implants Safe? Review on the Toxicity of Titanium Compounds. NANOMATERIALS 2020; 10:nano10102065. [PMID: 33086609 PMCID: PMC7603142 DOI: 10.3390/nano10102065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Titanium and its compounds are broadly used in both industrial and domestic products, including jet engines, missiles, prostheses, implants, pigments, cosmetics, food, and photocatalysts for environmental purification and solar energy conversion. Although titanium/titania-containing materials are usually safe for human, animals and environment, increasing concerns on their negative impacts have been postulated. Accordingly, this review covers current knowledge on the toxicity of titania and titanium, in which the behaviour, bioavailability, mechanisms of action, and environmental impacts have been discussed in detail, considering both light and dark conditions. Consequently, the following conclusions have been drawn: (i) titania photocatalysts rarely cause health and environmental problems; (ii) despite the lack of proof, the possible carcinogenicity of titania powders to humans is considered by some authorities; (iii) titanium alloys, commonly applied as implant materials, possess a relatively low health risk; (iv) titania microparticles are less toxic than nanoparticles, independent of the means of exposure; (v) excessive accumulation of titanium in the environment cannot be ignored; (vi) titanium/titania-containing products should be clearly marked with health warning labels, especially for pregnant women and young children; (vi) a key knowledge gap is the lack of comprehensive data about the environmental content and the influence of titania/titanium on biodiversity and the ecological functioning of terrestrial and aquatic ecosystems.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
- Correspondence: (A.M.-S.); (E.K.)
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 42, 71-065 Szczecin, Poland;
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan;
- Correspondence: (A.M.-S.); (E.K.)
| |
Collapse
|
40
|
Recent advances in biodegradable matrices for active ingredient release in crop protection: Towards attaining sustainability in agriculture. Curr Opin Colloid Interface Sci 2020; 48:121-136. [PMID: 33013179 PMCID: PMC7509166 DOI: 10.1016/j.cocis.2020.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Climate changes, emerging species of plant pests, and deficits of clean water and arable land have made availability of food to the ever-increasing global population a challenge. Excessive use of synthetic pesticides to meet ever-increasing production needs has resulted in development of resistance in pest populations, as well as significant ecotoxicity, which has directly and indirectly impacted all life-forms on earth. To meet the goal of providing safe, sufficient, and high-quality food globally with minimal environmental impact, one strategy is to focus on targeted delivery of pesticides using eco-friendly and biodegradable carriers that are derived from naturally available materials. Herein, we discuss some of the recent approaches to use biodegradable matrices in crop protection, while exploring their design and efficiency. We summarize by discussing associated challenges with the existing approaches and future trends that can lead the world to more sustainable agricultural practices. Providing food safety and security is critical for the growing global population. Crop yield is affected by various biotic and abiotic factors. Targeted/sustained delivery of agrochemicals reduces excessive use of pesticides. Nature-derived biodegradable materials curtail plant health and environmental harm. Biodegradable matrices hold promise for sustainable crop protection.
Collapse
|
41
|
Sundararaghavan A, Mukherjee A, Suraishkumar GK. Investigating the potential use of an oleaginous bacterium, Rhodococcus opacus PD630, for nano-TiO 2 remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27394-27406. [PMID: 31493086 DOI: 10.1007/s11356-019-06388-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
The occurrence of titanium dioxide nanoparticles (nTiO2), in the effluents released from wastewater treatment plants, has raised concerns. The fate of nTiO2 and their potential impact on organisms from different ecosystems are widely investigated. For the first time, in this work, we report the responses of an oleaginous bacteria Rhodococcus opacus PD630, belonging to an ecologically important genus Rhodococcus to environmentally relevant concentrations of nTiO2, under dark and UV light conditions. We observed a dose-dependent increase in nTiO2 uptake by the bacteria that reached a maximum of 1.4 mg nTiO2 (g cell)-1 under mid-log UV exposure, corresponding to 97% uptake. The nTiO2 induced oxidative stress in bacteria that increased from 25.1 to a maximum of 100.3, 44.1, and 51.7 μmol .OH (g cell)-1 under dark, continuous, and mid-log UV, respectively. However, nTiO2 did not affect bacterial viability. Further, due to oxidative stress, the triacylglycerol (biodiesel) content from bacteria increased from 30% to a maximum of 54% CDW. Based on our findings, we propose an application of R. opacus PD 630 in nTiO2 remediation due to their high nTiO2 uptake and resistance.
Collapse
Affiliation(s)
- Archanaa Sundararaghavan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, 632014, India
| | - Gadi K Suraishkumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences building, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
42
|
Carley LN, Panchagavi R, Song X, Davenport S, Bergemann CM, McCumber AW, Gunsch CK, Simonin M. Long-Term Effects of Copper Nanopesticides on Soil and Sediment Community Diversity in Two Outdoor Mesocosm Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8878-8889. [PMID: 32543178 DOI: 10.1021/acs.est.0c00510] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of novel pesticides containing nanomaterials (nanopesticides) is growing and is considered a promising approach to reduce the impacts of agriculture on the environment and human health. However, the environmental effects of these novel agrochemicals are not fully characterized, and more research is needed to determine the benefits and risks they confer. Here, we assessed the impacts of repeated exposures to a Cu(OH)2 nanopesticide on the soil and sediment biodiversity of target (terrestrial) and nontarget (wetland) ecosystems by performing long-term outdoor mesocosm experiments. As pesticides are often used concomitantly with other agrochemicals, we also tested for interactive effects between nanopesticide exposure and fertilization treatments in both ecosystems. We used high-throughput sequencing on three marker genes to characterize effects on bacterial, fungal, and total eukaryotic community structure and diversity. Interestingly, we found limited effects of nanopesticide exposure on the terrestrial soil communities. Conversely, we found significant shifts in the sediment communities of the wetland mesocosms, especially for eukaryotes (protists, fungi, and algae). In the absence of fertilization, fungal and total eukaryotic community compositions exposed to nanopesticides for long periods of time were distinct from unexposed communities. We identified 60 taxa that were significantly affected by nanopesticide exposure, most of which were microeukaryotes affiliated to cercozoans, Gastrotricha, or unicellular algal taxa. Our study suggests that this nanopesticide has limited effects on the soil biodiversity of a target terrestrial agroecosystem, while nontarget aquatic communities are more sensitive, particularly among protists which are not targeted by this bactericide/fungicide.
Collapse
Affiliation(s)
- Lauren N Carley
- Biology Department, Duke University, Durham, North Carolina 27708, United States
- Duke University Program in Ecology, Durham, North Carolina 27708, United States
| | - Renuka Panchagavi
- Computational Science and Engineering Department, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Xin Song
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sade Davenport
- Computational Science and Engineering Department, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
| | - Christina M Bergemann
- Biology Department, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
| | - Alexander W McCumber
- Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Durham, North Carolina 27708-0287, United States
| | - Claudia K Gunsch
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
- Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Durham, North Carolina 27708-0287, United States
| | - Marie Simonin
- Biology Department, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, North Carolina 27708, United States
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, Beaucouzé 49071, France
| |
Collapse
|
43
|
Li K, Qian J, Wang P, Wang C, Lu B, Tian X, Jin W, He X, Chen H, Zhang Y, Liu Y. Differential responses of encoding-amoA nitrifiers and nir denitrifiers in activated sludge to anatase and rutile TiO 2 nanoparticles: What is active functional guild in rate limiting step of nitrogen cycle? JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121388. [PMID: 31668758 DOI: 10.1016/j.jhazmat.2019.121388] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The long-terms effects of different crystal-composition TiO2 nanoparticles (NPs) on nitrogen-cycle-related functional guilds in activated sludge remain unclear, especially under natural light irradiation. Accordingly, activated sludge was exposed to anatase TiO2-NPs (TiO2-A) and rutile TiO2-NPs (TiO2-R) for up to 45 days. With markedly (p < 0.05) reducing nitrification-/denitrification-enzymatic-activities and abundances of ammonia-oxidizing-microorganisms (AOMs) and nitrite-reducing-bacteria (NRB), TiO2-NPs triggered bacteria and archaea UPGMA clustering and a deep modification of N-cycling functional diversity guided by crystal structure. in situ13C-DNA-SIP confirmed ammonia-oxidizing-bacteria (AOB) (Nitrosomonas and Nitrosospira) in original sludge as main active AOMs with 75.4 times more abundance than ammonia-oxidizing-archaea (AOA), while AOA within Nitrosopumilus and Nitrososphaera genera were the main active AOMs and tended to aggregate inside sludge after 10-mg/L TiO2-NPs exposure. Encoding-nirK NRB were more sensitive, while encoding-nirS Zoogloea with a total share of 4.97% to 14.93%, etc. were the main active NRB. AOB was more sensitive to TiO2-A, while TiO2-R showed the stronger toxicity to AOA and NRB resulting from differences in water environmental behaviors and crystal characteristics of two TiO2-NPs. This work expands understanding of the ecological risks of titanium-dioxide-crystal-NPs in aquatic environment and may help devise better methods to alleviate environmental stress caused by NPs at wastewater treatment plants.
Collapse
Affiliation(s)
- Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xin Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Hao Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yuhang Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
44
|
Zhai Y, Hunting ER, Liu G, Baas E, Peijnenburg WJGM, Vijver MG. Compositional alterations in soil bacterial communities exposed to TiO 2 nanoparticles are not reflected in functional impacts. ENVIRONMENTAL RESEARCH 2019; 178:108713. [PMID: 31518961 DOI: 10.1016/j.envres.2019.108713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 05/23/2023]
Abstract
Titanium dioxide nanoparticles (TiO2NP) are increasingly released in soil ecosystems, while there is limited understanding of the impacts of TiO2NP on soil bacterial communities. Here we investigated the effects of TiO2NP on the taxonomic composition and functional profile of a soil bacterial community over a 60-day exposure period. In short-term exposure (1-day), contradictory effects on the taxonomic composition of soil bacterial communities were found after exposure to a low realistic environmental concentration of TiO2NP at 1 mg/kg as compared to the effects induced by medium and high concentrations of TiO2NP at 500 and 2000 mg/kg. After long-term exposure (60-day), the negative effects of TiO2NP at the low concentration disappeared, and the inhibition by TiO2NP of the abundance of core taxa was enhanced along with increasing exposure concentrations. However, although significant alterations were observed in the taxonomic composition over time and exposure concentrations, no significant change was observed in the community functional profile as well as enzyme activity after 60-day exposure, indicating that functional redundancy likely contributed to the bacterial community tolerance after the exposure to TiO2NP. Our study highlighted the importance of assessing bacterial community compositional and functional responses in assessing the environmental risk of nanoparticles on soil ecosystems.
Collapse
Affiliation(s)
- Yujia Zhai
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, the Netherlands.
| | - Ellard R Hunting
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600GA, Delft, the Netherlands.
| | - Elise Baas
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA, Leiden, the Netherlands
| |
Collapse
|
45
|
Duncan E, Owens G. Metal oxide nanomaterials used to remediate heavy metal contaminated soils have strong effects on nutrient and trace element phytoavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:430-437. [PMID: 31077921 DOI: 10.1016/j.scitotenv.2019.04.442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Engineered nanomaterials (ENMs) are increasingly utilised for the remediation of contaminated soils. In this study, contaminant (As, Pb), nutrient (N, P) and trace element (Cu, Fe, Mn, Zn) phytoavailability in three Australian soils contaminated (<10 years) with As (≈100 mg As kg-1 soil) or Pb (≈300 mg Pb kg-1 soil) was determined periodically. These soils were exposed to two ENMs (cerium dioxide - nCeO2 or titanium dioxide - nTiO2) (applied to soil at a concentration of 500 mg ENM kg-1 soil) with contaminant, nutrient and trace element phytoavailability assessed over a 260-day period. While As phytoavailability was not influenced by either ENM, the presence of nCeO2 in some soils increased Pb phytoavailability approximately two fold at the conclusion of the experiment (day 260), which was attributed to nCeO2 decreasing soil pH and/or outcompeting Pb2+ ions for sorption sites. More significantly, both ENMs significantly altered the phytoavailability of N, P and Zn across soils. In some instances >90% of the soil N was lost in the presence of both ENMs, while in some instances the phytoavailability of P and Zn was tripled and doubled respectively in the presence of ENMs. For N it was hypothesised that both ENMs altered the mineralisation of organic N and/or soil nitrification rates due to the catalytic and/or anti-microbial properties of the ENMs. For P, it was hypothesised that anti-microbial effects of both ENMs altered the activity of P-solubilising microbes. For Zn competition between the positively charged ENMs and Zn2+ ions was the most likely mechanism for altered Zn phytoavailability. This study suggested that while ENMs can potentially be effective as metal remediation agents when applied to soils, there are however a range of potentially deleterious 'non-target' effects on soil ecosystems that have not as yet been widely considered.
Collapse
Affiliation(s)
- Elliott Duncan
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia..
| |
Collapse
|
46
|
Sánchez-López KB, De Los Santos-Ramos FJ, Gómez-Acata ES, Luna-Guido M, Navarro-Noya YE, Fernández-Luqueño F, Dendooven L. TiO 2 nanoparticles affect the bacterial community structure and Eisenia fetida (Savigny, 1826) in an arable soil. PeerJ 2019; 7:e6939. [PMID: 31380145 PMCID: PMC6661143 DOI: 10.7717/peerj.6939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/11/2019] [Indexed: 01/08/2023] Open
Abstract
The amount of nanoparticles (NP), such as TiO2, has increased substantially in the environment. It is still largely unknown, however, how NP might interact with earthworms and organic material and how this might affect the bacterial community structure and their functionality. Therefore, an arable soil was amended with TiO2 NP at 0, 150 or 300 mg kg−1 and subjected to different treatments. Treatments were soil amended with ten earthworms (Eisenia fetida (Savigny, 1826)) with fully developed clitellum and an average fresh mass of 0.5 to 500 g dry soil, 1.75 g tyndallized Quaker® oat seeds Avena sativa (L.) kg−1, or earthworms plus oat seeds, or left unamended. The bacterial community structure was monitored throughout the incubation period. The bacterial community in the unamended soil changed over time and application of oats, earthworm and a combination of both even further, with the largest change found in the latter. Application of NP to the unamended soil and the earthworm-amended soil altered the bacterial community, but combining it by adding oats negated that effect. It was found that the application of organic material, that is, oats, reduced the effect of the NP applied to soil. However, as the organic material applied was mineralized by the soil microorganisms, the effect of NP increased again over time.
Collapse
Affiliation(s)
- Katia Berenice Sánchez-López
- Nanoscience and Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco J De Los Santos-Ramos
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Elizabeth Selene Gómez-Acata
- Department of Biotechnology, Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Marco Luna-Guido
- Department of Biotechnology, Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Yendi E Navarro-Noya
- CONACYT Cathedra, Tlaxcala Center of the Behavior Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Fabián Fernández-Luqueño
- Nanoscience and Nanotechnology Program, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luc Dendooven
- Department of Biotechnology, Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
47
|
Parada J, Rubilar O, Sousa DZ, Martínez M, Fernández-Baldo MA, Tortella GR. Short term changes in the abundance of nitrifying microorganisms in a soil-plant system simultaneously exposed to copper nanoparticles and atrazine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:1068-1074. [PMID: 31018422 DOI: 10.1016/j.scitotenv.2019.03.221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Copper nanoparticles (NCu) may co-exist with other pollutants in agricultural soils, such as pesticides. However, this has been little evaluated yet. Thus, possible effects of the simultaneous applications of pesticides and NCu on biogeochemical cycles are expected, for example on the nitrogen cycle. Therefore, the aim of this work was to evaluate the effect of simultaneous application of the herbicide atrazine (ATZ) and NCu on the abundance of total bacteria and nitrifying communities: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Moreover, the ATZ dissipation was evaluated. A soil-plant system containing ATZ at field dose (3 mg a.i. kg-1) was mixed with two doses of NCu (0.05% or 0.15% w/w). Changes in the abundance of 16S rRNA and ammonia monooxygenase (amoA) genes of AOA and AOB were evaluated by real-time quantitative PCR (qPCR) at three sampling times (1, 15 and 30 days). The residual ATZ and nitrate production were also measured. The results showed significant differences in microbial composition and abundance over the 30 days of the experiment. Particularly, an initial decrease was observed in total bacterial abundance due to the presence of ATZ and NCu respect to ATZ alone (~60%). The abundance of AOA was also remarkably reduced (~85%), but these communities gradually recovered towards the end of the experiment. Conversely, AOB abundance initially increased (>100%) and remained mainly unaltered in soil exposed to ATZ and NCu 0.15% w/w, where nitrate formation was also constant. Moreover, NCu decreased the ATZ dissipation, which was translated in a 2-fold increase on the ATZ half-life values (T1/2). This study demonstrates that the simultaneous presence of NCu and ATZ may represent a risk for the total bacteria present in soil and sensitive microorganisms such as nitrifying communities, and changes in the dissipation of the pesticide could influence this process.
Collapse
Affiliation(s)
- J Parada
- Doctoral Program in Sciences of Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Temuco, Chile
| | - D Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - M Martínez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - M A Fernández-Baldo
- INQUISAL, Departamento de Química, Universidad Nacional de San Luis, CONICET, Chacabuco 917, D5700BWS San Luis, Argentina
| | - G R Tortella
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Temuco, Chile.
| |
Collapse
|
48
|
Sanzari I, Leone A, Ambrosone A. Nanotechnology in Plant Science: To Make a Long Story Short. Front Bioeng Biotechnol 2019; 7:120. [PMID: 31192203 PMCID: PMC6550098 DOI: 10.3389/fbioe.2019.00120] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/07/2019] [Indexed: 11/28/2022] Open
Abstract
This mini-review aims at gaining knowledge on basic aspects of plant nanotechnology. While in recent years the enormous progress of nanotechnology in biomedical sciences has revolutionized therapeutic and diagnostic approaches, the comprehension of nanoparticle-plant interactions, including uptake, mobilization and accumulation, is still in its infancy. Deeper studies are needed to establish the impact of nanomaterials (NMs) on plant growth and agro-ecosystems and to develop smart nanotechnology applications in crop improvement. Herein we provide a short overview of NMs employed in plant science and concisely describe key NM-plant interactions in terms of uptake, mobilization mechanisms, and biological effects. The major current applications in plants are reviewed also discussing the potential use of polymeric soft NMs which may open new and safer opportunities for smart delivery of biomolecules and for new strategies in plant genetic engineering, with the final aim to enhance plant defense and/or stimulate plant growth and development and, ultimately, crop production. Finally, we envisage that multidisciplinary collaborative approaches will be central to fill the knowledge gap in plant nanotechnology and push toward the use of NMs in agriculture and, more in general, in plant science research.
Collapse
Affiliation(s)
- Ilaria Sanzari
- Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
| | | | | |
Collapse
|
49
|
Avila-Arias H, Nies LF, Gray MB, Turco RF. Impacts of molybdenum-, nickel-, and lithium- oxide nanomaterials on soil activity and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:202-211. [PMID: 30366321 DOI: 10.1016/j.scitotenv.2018.10.189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
The nano forms of the metals molybdenum oxide (MoO3), nickel oxide (NiO) and lithium oxide (Li2O) are finding wide application in advanced technologies including batteries and fuel cells. We evaluated soil responses to nanoMoO3, nanoNiO, and nanoLi2O as some environmental release of the materials, either directly or following the land application of biosolids, is expected. Using Drummer soil (Fine-silty, mixed, superactive, mesic Typic Endoaquolls), we evaluated the impacts of the three nanometals on soil gas (N2O, CH4, and CO2) emissions, enzyme activities (β-glucosidase and urease), and microbial community structure (bacterial, archaeal, and eukaryal) in a 60 day microcosms incubation. Soil treated with nanoLi2O at 474 μg Li/g soil, released 3.45 times more CO2 with respect to the control. Additionally, β-glucosidase activity was decreased while urease activity increased following nanoLi2O treatment. While no clear patterns were observed for gas emissions in soils exposed to nanoMoO3 and nanoNiO, we observed a temporary suppression of β-glucosidase activity in soil treated with either metal. All three domains of microbial community were affected by increasing metal concentrations. This is the first evaluation of soil responses to nanoMoO3, nanoNiO, or nanoLi2O.
Collapse
Affiliation(s)
- Helena Avila-Arias
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Loring F Nies
- Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | - Ronald F Turco
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
50
|
Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J Control Release 2019; 294:131-153. [PMID: 30552953 DOI: 10.1016/j.jconrel.2018.12.012] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
The incorporation of nanotechnology as a means for nanopesticides is in the early stage of development. The main idea behind this incorporation is to lower the indiscriminate use of conventional pesticides to be in line with safe environmental applications. Nanoencapsulated pesticides can provide controlled release kinetics, while efficiently enhancing permeability, stability, and solubility. Nanoencapsulation can enhance the pest-control efficiency over extended durations by preventing the premature degradation of active ingredients (AIs) under harsh environmental conditions. This review is thus organized to critically assess the significant role of nanotechnology for encapsulation of AIs for pesticides. The smart delivery of pesticides is essential to reduce the dosage of AIs with enhanced efficacy and to overcome pesticide loss (e.g., due to leaching and evaporation). The future trends of pesticide nanoformulations including nanomaterials as AIs and nanoemulsions of biopesticides are also explored. This review should thus offer a valuable guide for establishing regulatory frameworks related to field applications of these nano-based pesticides in the near future.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136, Roma, Italy
| | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|